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Abstract

We present an approach based on concept analysis to
retrofit legacy servers with mechanisms for authorization
policy enforcement. Our approach is based upon the obser-
vation that security-sensitive operations are characterized
by idiomatic resource manipulations, called fingerprints.
We statically mine fingerprints using concept analysis and
then use them to identify security-sensitive operations and
locate where they are performed by the server. Case stud-
ies with three real-world servers show that our approach is
affordable and effective. We were able to identify security-
sensitive operations for each of these servers with a few
hours of manual effort and modest domain knowledge.

1 Introduction

Software systems must protect shared resources that they
manage from unauthorized access. This is achieved by for-
mulating and enforcing an appropriate authorization pol-
icy (also called access control policy). The policy spec-
ifies the set ofsecurity-sensitive operationsthat a user
can perform on a resource. For example, a popular pol-
icy on UNIX-like systems allows only theroot to per-
form the security-sensitive operationsRead andWrite on the
/etc/passwd file (the resource). Operating systems have
historically had mechanisms such as reference monitors [4]
to enforce authorization policies. It is also important for
user-space servers, such as middleware, web-, proxy and
window-management servers, to implement such mecha-
nisms because they manage shared resources on behalf of
their clients. Unfortunately, economic and practical consid-
erations force developers to choose functionality and per-
formance over security. As a result, several legacy servers
often completely lack policy enforcement mechanisms. For
example, the X11 server [31] can simultaneously manage

Number of Avg. size of
Server LOC fingerprints fingerprints
ext2 4,476 18 3.67
X server/dix 30,096 115 3.76
PennMUSH 94,014 38 1.42

Figure 1: Highlights of our results. Concept analysis dis-
tills servers of several-thousand lines into a manageable
number of candidate fingerprints for manual examina-
tion.

multiple X client windows, but was not built with mecha-
nisms to isolate one X client from another, leading to sev-
eral published attacks (see [20] for example attacks).

This paper investigates techniques for retrofitting legacy
servers with authorization policy enforcement mechanisms.
The main questions to be addressed when retrofitting a
server arewhat are the security-sensitive operations to be
mediated?andwhere does the server perform these oper-
ations? In current practice, these questions are answered
manually. A team of software engineers inspects the code
of the server to determine locations where authorization
checks must be placed, and the set of security-sensitive op-
erations that must be checked at each location. Not sur-
prisingly, this painstaking process is time-consuming and
error prone [18, 32]. For example, it took almost two years
each for the Linux Security Modules (LSM) project [30],
where additional authorization checks were added to the
Linux kernel to enable enforcement of mandatory access
control policies, and the X11/SELinux [20] project, where
authorization checks were added to the X11 server. Similar
recent efforts have also been time-consuming [13, 17]. In
short, there are no automated techniques to aid the process
of securing legacy servers for authorization.

We build on prior work [15] and develop a novel ap-
proach using concept analysis [29] to drastically reduce the
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manual effort involved in retrofitting legacy servers. Key
to our approach is the observation that security-sensitive
operations performed by a server are associated with id-
iomatic ways in which resources are manipulated by the
server. Such idioms, which we callfingerprints, are code-
level descriptions of the security-sensitive operations that
they represent. Each fingerprint is expressed as a combi-
nation of several abstract syntax trees (ASTs), calledcode-
patterns. We use static program analysis in combination
with concept analysis to automatically mine candidate fin-
gerprints. These are then examined and refined manually by
a domain expert. After refinement, we statically match each
fingerprint against the code of the server to determine loca-
tions where the corresponding security-sensitive operation
is performed. We then weave hooks to a reference monitor
at all these locations to authorize that security-sensitive op-
eration. This ensures that all security-sensitive operations
performed by the server are mediated by authorization pol-
icy lookups.

Our results demonstrate the effectiveness of our ap-
proach. We conducted case studies on three real-world sys-
tems of significant complexity: the ext2 file system, a subset
of X server (its dispatch loop), and PennMUSH, an online
game server [2]. Figure 1highlights our results, and shows
the size of each of these servers, the number of candidate
fingerprints automatically mined by concept analysis, and
the average size of each candidate fingerprint (the number
of code-patterns it contains). An analyst’s manual effort is
reduced to refining candidate fingerprints and determining
whether each refined fingerprint is indeed security-sensitive
or not. As our results show, in each case we were able to
reduce the analysis of several thousand lines of code to the
analysis of under 115 candidate fingerprints with fewer than
4 code-patterns each (on average). For example, we were
able to reduce the analysis of PennMUSH, a server with
94,014 lines of C code, to the analysis of 38 candidate fin-
gerprints, with an average of 1.42 code-patterns each. It
took just a few hours of manual effort and modest domain
knowledge to find security-sensitive operations in each of
our case studies. Without our approach, the entire code-base
must be examined to find such security-sensitive operations.

The approach presented in this paper overcomes two im-
portant limitations of our prior work [15]. While we in-
troduced fingerprints in that work, our approach for find-
ing fingerprints (i) required a high-level description of
security-sensitive operations, and (ii) used dynamic pro-
gram analysis to find fingerprints. Both (i) and (ii) pre-
vented our approach from easily being applied to a wide
variety of servers. In particular, while a high-level descrip-
tion of security-sensitive operations was available for the
case study that we considered (the X server), this may not
be the case with other servers, as indeed was the case with

PennMUSH. A dynamic approach to fingerprint-finding
meant that we could not guarantee that all fingerprints were
found. This paper directly addresses both these shortcom-
ings. Concept analysis automatically mines candidate fin-
gerprints without the need for ana priori description of
security-sensitive operations. Static program analysis en-
sures near-complete code-coverage, and identifies all pos-
sible ways in which a shared resource is accessed by the
server, thus ensuring that all fingerprints have been mined.

In summary, our main technical contributions are:

• A fully static approach to retrofit policy enforcement into
legacy servers. The key observation here is that security-
sensitive operations performed by a server are associ-
ated with idiomatic resource manipulations, called fin-
gerprints.

• A novel algorithm using concept analysis to automati-
cally mine fingerprints of security-sensitive operations.
To our knowledge, this is the first application of concept
analysis to mine security properties of software.

• Case studies on three real-world servers of significant
complexity. Our case studies demonstrate that our ap-
proach is efficient and effective. Our analysis completed
in just over 310 seconds even for the largest of our bench-
marks and produced manageable concept lattices. In
each case, we were able to inspect the lattice and identify
security-sensitive operations with a few hours of manual
effort and modest domain knowledge.

Note that our approach to retrofit legacy servers follows
the aspect-oriented paradigm. In particular, each fingerprint
denotes a region of code before which a reference monitor
hook must be placed, and thus helps identify join-points [5,
19]. The reference monitor query that executes as a result
of the hook call is the body of the advice at that join point.
Fingerprint-mining is thus aspect-mining to find join points
relevant to security.

2 Approach overview

We give a high-level overview of our approach, depicted in
Figure 2. Using a running example, we show how a soft-
ware engineer would use our approach to mine fingerprints
of security-sensitive operations and place hooks. We have
currently implemented our analysis to work with C pro-
grams, but the underlying principles apply to servers written
in other languages as well.

2.1 Running example

We use a subset of ext2, a Linux file system, and one of the
case studies inSection 5as our running example. In partic-
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Applying constraints +
Interpreting fingerprints

Pattern matching +
Weaving hook calls

Code analysis +
Concept analysis
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Figure 2: Steps to retrofit policy enforcement to legacy code, and the techniques used in each step.

ular, ext2 is responsible for laying out and interpreting disk
blocks as belonging to specific files or directories. It uses
several internal data structures to represent metadata infor-
mation using which it retrieves files and directories from
raw disk blocks.

File systems on Linux are “pluggable”, and must thus
export a standard API to the kernel. A system call that
manipulates files or directories ultimately resolves to one
or more calls to this API. The relevant file system func-
tions then serve this request. Thus a file system is a server
that manages files and directories. For ext2, we consid-
ered 10 API functions related to manipulation of directories
(e.g.,ext2 rmdir, ext2 mkdir andext2 readdir). We show
how our approach can identify security-sensitive operations
that ext2 performs on directories.

2.2 Step A: From source code to candidate
fingerprints

In the first step, we employ static source code analysis and
identify different ways in which ext2 accesses shared re-
sources in response to client requests. This analysis is based
upon two assumptions.

First, we assume that it suffices to examine accesses to
internal data structures that ext2 uses to represent files and
directories. These data structures are specified by a do-
main expert, and for ext2 they are variables of typeinode,
ext2 dirent, ext2 dir entry 2 and address space, each
of which is a Cstruct. Second, we assume that a client ac-
cesses server resources only via the server’s API. With ext2,
this is indeed the case, and as mentioned earlier ext2 exports
a well-defined API to the kernel. The inputs to our static an-
alyzer are thus the source code of ext2, and two files, spec-
ifying, respectively, the types of critical data structures to
be tracked, and a set of API functions. The static analyzer
identifies how these tracked data structures are manipulated
by the ext2 API.

To do so, the analyzer walks the source code of ext2
and distills each statement into a (possibly empty) set of

Code-pattern := Call AST | ReadAST
|Write Valueto AST

Value := constant| AST | ⊥ (unknown)
AST := (type-name->)∗field

Figure 3: Grammar for code-patterns.

code-patterns, the grammar for which is shown inFig-
ure 3. A code-pattern is either aRead, Write or a Call
and is expressed in terms of abstract syntax trees. For ex-
ample, the C statementde->file type = 0, wherede is
a variable of typeext2 dirent is distilled to Write 0 To
ext2 dirent->file type. Note in particular that this trans-
formation ignores specific variable names and focuses in-
stead on types of variables. As a result, we identify generic
resource manipulations but not the specific instance of the
resource (e.g.,the instancede) that they happen on. State-
ments that do not manipulate tracked data structures are
ignored. Call code-patterns correspond to calls via un-
resolved function pointers. For each functionext2 api
in the ext2 API the static analyzer then aggregates code-
patterns of all statements potentially reachable via a call to
ext2 api. Thus, at the end of this step each ext2 API func-
tionext2 api is associated with a set of code-patternsCode-
Pats(ext2 api). Intuitively, CodePats(ext2 api) denotes all
possible ways in whichext2 api can potentially manipulate
tracked resources.

The next step is to identify idiomatic resource manipu-
lations by the ext2 API. The goal here is to find sets of
code-patterns that always appear together. That is, if one
code-pattern from a set of code-patterns appears in an exe-
cution of ext2, then all the other code-patterns from that set
appear in that execution as well. Note that we can have sets
{pat} with singleton code-patterns as well, denoting that no
other code-pattern always appears together with{pat}. Each
set of such code-patterns denotes an idiomatic way in which
a resource is manipulated by ext2, and potentially indicates
a security-sensitive operation. We call each such set afin-
gerprint.
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We identify candidate fingerprints using concept analy-
sis [29], a well-known hierarchical clustering technique. At
a high-level (details are presented inSection 3), concept
analysis identifies candidate fingerprints, as well as the API
functions whose code-pattern sets contain these candidate
fingerprints. We use the termcandidate fingerprintsbe-
cause as described in Step B, imprecisions introduced in the
program analysis step means that each candidate fingerprint
may contain multiple fingerprints.

For example, concept analysis inferred that the set of
six code-patterns shown inFigure 4is a candidate finger-
print, and that it appears inCodePats(ext2 rename), Code-
Pats(ext2 rmdir) andCodePats(ext2 unlink).

(1) Readaddress space->host
(2) Readext2 dir entry 2->rec len
(3) Write 0 To ext2 dir entry 2->inode
(4) Readinode->i mtime
(5) Readinode->u->ext2 inode info->i dir start lookup
(6) Write⊥ To inode->u->ext2 inode info->i dir start lookup

Figure 4: One of the candidate fingerprints that concept
analysis identifies for ext2.

For ext2, we identified 18 such candidate fingerprints,
each denoting a unique way in which ext2 manipu-
lates files and directories. While concept analysis is
asymptotically inefficient—its complexity is exponential in
maxi(|CodePats(ext2 apii)|)—our experiments showed that
it is efficient in practice. In particular, our analysis com-
pleted in about 2 seconds for ext2, and in just over 310 sec-
onds even for the largest of our case studies.

2.3 Step B: Refining candidate fingerprints

In the second step, a domain expert (i) refines candidate fin-
gerprints obtained from Step A and (ii) post refinement,
determines, for each fingerprint, whether it embodies a
security-sensitive operation that must be mediated by an au-
thorization policy lookup.

Refinement of candidate fingerprints is necessary for two
reasons. The first reason is because code analysis employed
in Step A is imprecise. As a result, multiple fingerprints
may be combined into a single candidate fingerprint. There
are two ways in which precision is lost:

1. Code analysis isflow-insensitive. A candidate fingerprint
may contain a pair of code-patternspat1, pat2 that do not
always appear together in all executions of the server.

2. We ignore specific instances of resources that are manip-
ulated and focus instead on their types. Thus, a candidate
fingerprint may contain manipulations of multiple, pos-
sibly unrelated, resources.

We employprecision constraintsto identify such cases
and enable refinement of each candidate fingerprint, sep-
arating the code-patterns that it contains into several fin-
gerprints. Intuitively, a precision constraint is a rule that
determines the set of code-patterns that can be grouped to-
gether in a fingerprint. The second reason why refinement
is necessary is because a domain expert may deem that a set
of code-patterns is irrelevant for the authorization policies
to be enforced for the server, or may wish to separate (or
group together) a pair of code-patterns in a fingerprint of
a security-sensitive operation. Suchdomain-specific con-
straintsfurther refine candidate fingerprints.

For example, consider the candidate fingerprint shown
in Figure 4. Using the output of our static analysis tool,
we were able to determine that the code-patterns (1)-(4)
appear together in each successful invocation of the ext2
function ext2 delete entry and that the code-patterns (5)
and (6) appear together in each successful invocation of
the functionext2 find entry. Each of the three API func-
tions,ext2 rename, ext2 rmdir andext2 unlink, that con-
tain this candidate fingerprint call both these functions.
Both ext2 rmdir andext2 unlink call these functions on
thesameresource instance, namely the directory being re-
moved (or unlinked). However, asFigure 5shows, while
ext2 rename calls both these functions on the instances
old dir andold dentry,1 it calls ext2 find entry only on
the instancesnew dir andnew dentry when a certain predi-
catenew inode is satisfied.
1. int ext2 rename (inode *old dir, dentry *old dentry,
2. inode *new dir, dentry *new dentry) {
3. /* declarations ofold page,new page,old de and new de */
4. new inode = new dentry->d inode;...
5. old de = ext2 find entry(old dir,old dentry,&old page);
6. if (new inode) { ...
7. new de = ext2 find entry(new dir,new dentry,&new page);
8. } else { ...
9. /* no call to ext find entry */
10. };...
11. ext2 delete entry(old de,old page); ...
12. }

Figure 5: Example showing the need for precision con-
straints.

Becauseext2 rename performs the resource manipula-
tions corresponding to code-patterns (5) and (6) on addi-
tional resource instances as compared to the code-patterns
(1)-(4), code-patterns (1)-(4) and (5)-(6) represent poten-
tially different security-sensitive operations. Imposing the
constraint that code-patterns on different resource instances
must be part of separate fingerprints, the candidate finger-
print shown inFigure 4 is split into two fingerprints, as
shown inFigure 6. Additional examples of the use of pre-
cision constraints appear inSection 4. Note that such con-

1The variableold de, which ext2 delete entry is invoked with on
line 11 is derived fromold dir andold dentry.
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straints can potentially be avoided with sophisticated pro-
gram analyses, that we plan to explore in future work. How-
ever, in our case studies we found that more than 50% of the
candidate fingerprints did not require refinement. Thus our
current approach provides a good tradeoff between preci-
sion of results and simplicity of the code analysis algorithm.

Fingerprint (1)
(1) Readaddress space->host
(2) Readext2 dir entry 2->rec len
(3) Write 0 To ext2 dir entry 2->inode
(4) Readinode->i mtime

Fingerprint (2)
(5) Readinode->u->ext2 inode info->i dir start lookup
(6) Write⊥ To inode->u->ext2 inode info->i dir start lookup

Figure 6: Fingerprints obtained after refinement with
precision constraints.

Domain-specific constraints encode rules that are formu-
lated by a domain-expert. In particular, whether the re-
source manipulation embodied by a fingerprint is security-
sensitive depends on the set of policies that must be en-
forced on clients. For example, it may only be necessary to
protect the integrity of directories, and not their confiden-
tiality. In this case, fingerprints that embody a write opera-
tion on directories are security-sensitive, while fingerprints
that embody a read operation are not. Fingerprints expose
all possible operations on resources, and let an administra-
tor decide whether an operation is security-sensitive or not.
For example, an analyst may decide that Fingerprint (2) in
Figure 6, which corresponds to a directory lookup, is not
interesting for a specific set of policies to be enforced.

After refinement, the domain expert assigns semantics to
each fingerprint, associating it with a security-sensitive op-
eration. For example, Fingerprint (1) inFigure 6embod-
ies the directory removal operation, while Fingerprint (2)
embodies the lookup operation. The LSM project [30] has
identified a comprehensive set of security-sensitive opera-
tions for Linux by considering a wide range of policies to be
enforced, including security-sensitive operations on the file
system. It turns out that Fingerprint (1) embodies the LSM
operationDir Remove Name, while Fingerprint (2) embod-
ies the LSM operationDir Search. Thus, at the end of the
second step, we have a set of fingerprints, each of which is
associated with a security-sensitive operation.

2.4 Step C: From fingerprints to hooks

The final step is to place reference monitor hooks and
implement the appropriate policy lookups for each hook
(i.e.,the advice at each join point). Because we borrow from
prior work [15] for this step, we only discuss it briefly here.

Each fingerprint is a set of code-patterns that can be
matched against the server’s source code. Each code-
fragment that matches a fingerprint is deemed as perform-
ing the security-sensitive operation associated with that fin-
gerprint. In [15], we had presented an approach to place
hooks at the granularity of function calls,i.e., for each fin-
gerprint that matched the set of code-patterns in a function,
we would place a reference monitor hook to guard calls to
this function with the appropriate security-sensitive oper-
ation. For example, using the fingerprints from our run-
ning example, we would place a hook guarding the call to
ext2 find entry on line (5) ofFigure 5to check that the
LSM operationDir Search is authorized as follows:
if (check policy(current process, old dir, Dir Search))

{ ext2 find entry(old dir, old dentry, &old page); }
else { Notify current process of failed authorization check}

A similar hook will also be placed for the call on line (7).
The call toext2 delete entry on line (11) will be protected
with a hook that checks that the client is authorized to per-
form the LSM operationDir Remove Name on the directory
being removed. Several optimizations are possible to this
basic hook placement technique,e.g.,placing hooks so as
to minimize the number of reference monitor queries exe-
cuted at runtime. We leave such optimizations for future
work.

Note that fingerprints are useful even when hook place-
ments have been decided in advance. For example, if a team
of software engineers decides to place just one hook guard-
ing calls toext2 rename (as was done in LSM), then finger-
prints determine the security-sensitive operations that must
be authorized by that hook. In this case, the hook must
authorizeDir Remove Name on the old directory (instance
old dir) andDir Search on both the old (old dir) and new
directories (new dir). Indeed, these security-sensitive op-
erations are authorized in the implementation of the hook
in the LSM implementation of security-enhanced Linux
(SELinux) [22].2

3 Extracting candidate fingerprints
from code

This section discusses Step A in detail. We discuss the use
of static analysis to identify all resource manipulations po-
tentially performed by each API function, and concept anal-
ysis to find candidate fingerprints.

2The SELinux LSM hook authorizes additional security-sensitive oper-
ations, corresponding to fingerprints that match code-fragments that were
omitted fromFigure 5.
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3.1 Static analysis

Algorithm 1 describes the static code analysis that we have
implemented as a plugin to the CIL toolkit [23]. Lines (1)-
(5) employ a simple flow-insensitive analysis to extract for
each function a set of code-patterns describing how the
function manipulates tracked data structures. While this
step sacrifices precision, it simplifies the rest of the anal-
ysis by making the output amenable to concept analysis.
As described earlier, we recover some of the precision lost
in this step by applying precision constraints. While we in-
tend to explore in future work how a flow-sensitive program
analysis can interact with concept analysis, we have found
that our current implementation offers a reasonable tradeoff
between simplicity of analysis and precision of the results
obtained. Lines (6)-(9) computeCodePats(apii), the set of
resource manipulations performed byapii , for each API
functionapii of the server by finding functions in the call-
graph reachable fromapii . We resolve calls through func-
tion pointers using a simple pointer analysis: each func-
tion pointer can resolve to any function whose address is
taken and whose type signature matches that of the func-
tion pointer. This analysis is conservative in the absence of
type-casts, but may miss potential targets in the presence of
type-casts.

Algorithm : E C-P(Server, API, RSC)
Input : (i) Server: source code of server, (ii) API={api1,. . .,apin}:

set of API functions of Server, and (iii) RSC: data types of
sensitive resources.

Output : CodePats(api1),. . .,CodePats(apin), for
api1,. . .,apin ∈ API.

foreach (functionf in Server)do1
Summary(f) := ∅;2
foreach (statements∈ f that affects a data structure of type∈ RSC)do3

CP := Breakdown ofs into code-patterns (seeFigure 3);4
Summary(f) := Summary(f) ∪ CP;5

foreach (apii ∈ API) do6
CodePats(apii ) := ∅;7
foreach (functionf reachable fromapii ) do8

CodePats(apii ) := CodePats(apii ) ∪ Summary(f);9

return CodePats(api1),. . .,CodePats(apin);10

Algorithm 1 : Static analysis algorithm to extract re-
source manipulations.

Recall thatCodePats(apii) is the set of resource manip-
ulations that a client can perform by invoking API function
apii . However, we would like to identify idiomatic resource
manipulations. Each such idiom is a set of code-patterns
FP={pat1,. . .,patm} satisfying the following property: if one
of the code-patternspati∈FP appears in any valid execu-
tion trace of the server, thenall the patterns inFP appear
in that trace. Each such idiom is called afingerprint and
denotes a potential security-sensitive operation performed
on the resource. Note that the above property implies
that each fingerprintFP is such thatFP⊆CodePats(apii)

or FP∩CodePats(apii)=∅, for each API functionapii . As
described below, we use concept analysis to identify a set
of candidate fingerprints. Each candidate fingerprint may
possibly contain multiple fingerprints, and must be refined
to yield the actual fingerprints.

3.2 Background on concept analysis

Concept analysis is a well-known hierarchical clustering
technique that has found use in software engineering [3, 8,
9, 21, 24, 25, 26, 27, 28]. We give a brief overview of con-
cept analysis and describe how we adapt it to find candidate
fingerprints.

The inputs to concept analysis are (i) a set ofinstances I,
(ii) a set offeatures F, and (iii) a binary relationR : I → F
that associates instances with features. It produces acon-
cept latticeas output. Intuitively, each node in the concept
lattice pairs a set of instancesX with a set of featuresY, such
thatY is the largest set of features in common toall of the
instancesin X. Formally, each node is a pair〈X, Y〉, where
X ∈ I andY ∈ F, such thatα(X)=Y andγ(Y)=X, where
α(X) = { f ∈ F|∀x ∈ X (x, f ) ∈ R}, andγ(Y) = {i ∈ I |∀y ∈ Y
(i,y) ∈ R}. A node〈X, Y〉 appears as an ancestor of a node
〈P, Q〉 in the concept lattice ifP ⊂ X. In fact, this ordering
also impliesY ⊂ Q. This is because a smaller set of in-
stances will share a larger set of features in common. Thus,
the root node shows the set of features common to all in-
stances inI , while the leaf node shows the set of instances
that share all features inF.

(a) The relation CodePats
CodePats pat1 pat2 pat3 pat4
api1 ✓ ✓

api2 ✓ ✓ ✓

api3 ✓ ✓ ✓

api4 ✓

(b) Concept lattice (c) Nodes in the concept lattice
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A A : 〈{api1,api2,api3,api4}, ∅〉
B : 〈{api1,api2,api3}, {pat1}〉
C : 〈{api3,api4}, {pat4}〉
D : 〈{api2,api3}, {pat1,pat3}〉
E : 〈{api1,api2}, {pat1,pat2}〉
F : 〈{api3}, {pat1,pat3,pat4}〉
G : 〈∅, {pat1,pat2,pat3,pat4}〉

Figure 7: Concept analysis example.

Figure 7shows an example of a concept lattice, as applied
to our problem. Each API functionapi1, api2, api3 and
api4 is considered an instance, and each code-patternpat1,
pat2, pat3, pat4 is considered a feature. They are related by
CodePats, which is obtained from static analysis, depicted
in Figure 7(a) as a table. Each node〈X, Y〉 is such thatall
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the code-patterns inY appears in eachCodePats(apii) for
apii∈X. This lattice shows, for example, that (i) there are
no code-patterns in common to all API functions (nodeA
in the lattice), (ii) Bothpat1 andpat3 appear in bothCode-
Pats(api2) andCodePats(api3), and these are the only such
API functions (nodeD), and that (iii) No API functions have
all code-patterns (nodeG).

3.3 Using concept analysis

We compute candidate fingerprints using Algorithm2. It
first invokes concept analysis (line1) on the set of API func-
tions and the set of code-patterns to obtain a concept lattice
as shown inFigure 7. It then finds candidate fingerprints,
in lines2-7, by finding nodes in the lattice where new code-
patterns are introduced. Each such node is marked, and the
set of new code-patterns introduced in that node is consid-
ered as a candidate fingerprint.

For the example inFigure 7, the nodesB, C, D, andE
are marked because these nodes introduce the code-patterns
pat1, pat4, pat3 andpat2—i.e., any node containing one of
these patternsmusthave the corresponding node as an an-
cestor. Each of these code-patterns is classified as a candi-
date fingerprint.

Intuitively, Algorithm 2 works because each fingerprint
FP satisfiesFP⊆CodePats(apii) or FP∩CodePats(apii)=∅,
for each API functionapii . Concept analysis ensures that
the node of the concept lattice in which a new code-pattern
pati∈FP is introduced will introduceall of the code-patterns
in FP. Line 7 identifies and marks nodes where a new
code-patternpat is introduced into the lattice. Because of
the property above, all the code-patterns that appear in the
same fingerprint aspat appear in that node. Note however,
that code-patterns from other fingerprints may also be intro-
duced in the same node. Thus, Algorithm2 only computes
candidate fingerprints: each candidate fingerprint may con-
tain multiple fingerprints that must be obtained via refine-
ment (in Step B).

Algorithm : F C F(CodePats,API)
Input : (i) CodePats: The relation obtained from Algorithm1, and

(ii) API= {api1,. . .,apin}, set of API functions of the server.
Output : CFP1,. . .,CFPk, a set of candidate fingerprints.
Run concept analysis with the set of instancesI=API, the set of features1
F=∪i∈[1..n]CodePats(apii ), and the relationR=CodePats;
count:= 1;2
foreach (node〈X, Y〉 in the concept lattice)do3

Let {〈X j , Yj 〉} be the set of parents of〈X, Y〉 in the concept lattice;4
Diff := Y - ∪ jYj ;5
if (Diff , ∅) then6

CFPcount := Diff; count:= count+ 1; Mark the node〈X, Y〉;7

return CFP1,. . .,CFPcount /* Note: k is the value ofcountin this line.*/;8

Algorithm 2 : Finding candidate fingerprints.

Candidate fingerprintsCFP1,. . .,CFPk identified by Al-
gorithm2 can also be shown to satisfy the following:

1. Each code-pattern appears in exactly oneCFPi .

2. EachCodePats(apii) can be constructed by combining
candidate fingerprints using set union.

In fact, the properties above suggest an upper bound
for k, the number of candidate fingerprints. In particular,
k ≤ | ∪i∈[1..n] CodePats(apii)|. Note that while the concept
lattice can be exponentially large in the number of API func-
tions (because asymptotically, it is a lattice on the power set
of API functions), this upper bound places a restriction on
the number of nodes that will be marked in line7 of Algo-
rithm 2. This is key, because these nodes introduce candi-
date fingerprints, and as discussed inSection 2, they must
be manually examined for refinement in Step B.

Several algorithms have been proposed in the literature to
compute concept lattices. We chose to implement the incre-
mental algorithm by Godinet al. [16] because it has been
shown to work well in practice (Ammonset al.[3]). While
this algorithm is asymptotically exponential—its complex-
ity is O(22p|I |), wherep is an upper bound on the number of
features of any instance inI—the algorithm scaled well in
our case studies.

4 Refining fingerprints with con-
straints

As described inSection 2.2, candidate fingerprints obtained
from concept analysis are imprecise for two reasons. First,
because of flow-insensitivity, a pair of code-patternspat1
andpat2 that are not part of the same fingerprint may ap-
pear in the same candidate fingerprint. Second, the resource
manipulations in a candidate fingerprint may be associated
with multiple, possibly unrelated resource instances. Thus,
candidate fingerprints must be refined using precision con-
straints. Domain-specific constraints can additionally be
applied to refine constraints with domain-specific require-
ments.

This section presents a unified framework to express con-
straints and refine candidate fingerprints (Step B of our ap-
proach). Both precision constraints and domain-specific
constraints can be expressed in this framework.

Constraint := Separate(PatSet, PatSet)| Ignore(PatSet)
| Combine(PatSet, PatSet)

PatSet := Set of code-patterns (as defined inFigure 3)

Figure 8: Grammar for constraints.

As Figure 8 shows, each constraint is either aSepa-
rate(X, Y), anIgnore(X) or aCombine(X, Y), whereX and
Y are sets of code-patterns.Separate(X, Y) refines candi-
date fingerprints by separating code-pattern setsX and Y
into separate fingerprints.Ignore(X) refines candidate fin-
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gerprints by discarding the code-pattern setX from candi-
date fingerprints.Combine(X, Y), for which we have only
felt occasional need, combines code-pattern setsX andY
in two candidate fingerprints into a single fingerprint, thus
“coarsening” the results of concept analysis. For example,
the constraintSeparate({1,2,3,4}, {5,6}) refines the candi-
date fingerprint inFigure 4to yield the fingerprints inFig-
ure 6. We now discuss precision and domain-specific con-
straints in this framework.

Precision constraints areSeparate(X, Y) constraints and
as discussed inSection 2, they serve two goals. The first
goal is to refine candidate fingerprints based upon resource
instances manipulated.Separate({1,2,3,4}, {5,6}), the use
of which was illustrated earlier, serves this goal. For-
mally, each set of code-patterns can be associated with
one or more resource instances that it manipulates. We
use a constraintSeparate(X, Y)to separate code-pattern
setsX andY that manipulate different sets of resource in-
stances. For example, consider the code-patterns (1)-(4) in
Figure 4, that appear in the functionext2 delete entry,
and the code-patterns (5) and (6), that appear in the func-
tion ext2 find entry. Because of the way these functions
are invoked inext2 rename (seeFigure 5), code-patterns (5)
and (6) are associated with the resource instancesold dir,
old dentry, new dir andnew dentry, while code-patterns
(1)-(4) are associated with resource instancesold dir and
old dentry. Because the code-patterns (5) and (6) are ap-
plied to additional resource instances, they are separated out
using the constraint above. We currently manually identify
resource instances associated with a set of code-patterns.
However, this can potentially be automated using a program
analysis that is sensitive to resource instances manipulated.

The second goal of precision constraints is to identify and
remove imprecision introduced because of flow-insensitive
program analysis. In particular, a pair of code-patterns
pat1 and pat2 may appear together in a candidate finger-
print, but may not appear together in all executions of the
server. In such cases, aSeparate(pat1,pat2) constraint sepa-
rates these code-patterns into different fingerprints. For ex-
ample, one of the candidate fingerprints that we obtained in
the analysis of ext2 is shown below; it appeared inCode-
Pats(ext2 ioctl).

(1) Write⊥ To inode->i flags
(2) Write⊥ To inode->i generation

However,ext2 ioctl either performs the resource ma-
nipulation corresponding to code-pattern (1) or (2), but not
both, in each execution, based upon the value of a flag that it
is invoked with. Thus, a constraintSeparate({1},{2}) is used
to refine the candidate fingerprint above.

Note that precision constraints are not necessary if more
precise program analysis is employed. Algorithm1 cur-
rently lacks flow-sensitivity and data-flow information that

can potentially avoid the imprecisions reported above.
However, in each of our case studies we needed precision
constraints for fewer than 50% of the candidate fingerprints
mined—9/18 for ext2, 24/115 for X server, and 4/38 for
PennMUSH. Thus, we believe that our current approach
strikes a good balance between simplicity and precision of
candidate fingerprints.

Domain-specific constraints encode domain knowledge
to further refine fingerprints. A domain specific constraint
that we have found useful isIgnore(Pat), using which we
can eliminate certain code-patterns that we deem irrelevant
for security from the set of fingerprints. For example, in
the X server, which is an event-based server, each request
from an X client is converted into a one or more events that
are processed by the server. It may only be necessary to
enforce an authorization policy governing the set of events
that an X client can request on a resource. In such cases, all
code-patterns except those related to event-processing can
be filtered out from fingerprints usingIgnoreconstraints.

The use ofCombineconstraints is relatively infrequent,
and may be used if the fingerprints mined by concept anal-
ysis are at too fine a granularity. For example, in Pen-
nMUSH, we found that 30 of the 38 candidate finger-
prints contained only one code-pattern. An administra-
tor may wish to write authorization policies at a higher-
level of granularity—where the fingerprint of each security-
sensitive operation contains multiple code-patterns.Com-
bineconstraints can be used to group together code-patterns
to get such fingerprints.

5 Case studies

We conducted case studies on three complex systems, each
of which has been in development for at least 10 years. We
used (i) the ext2 file system from Linux kernel distribution
2.4.21, (ii) a subset of the X server (X11R6.8), and (iii) Pen-
nMUSH, an online game server (v1.8.1p9). Our goal was to
identify security-sensitive operations in each of them. Our
results lead us to conclude that our approach is:

1. Effective.We were able to mine fingerprints of security-
sensitive operations in each of our case studies. For ext2,
we could correlate many of the security-sensitive opera-
tions that we found with the security-sensitive operations
identified in the LSM project [30], while for the X server,
we found all the fingerprints (and more) that we did in a
prior study [15].

2. Efficient. Our analysis completed in just over 310 sec-
onds (on a machine with a 1GHz AMD Athlon proces-
sor, with 1GB RAM) even for PennMUSH, our largest
benchmark. Concept lattices produced for manual exam-
ination were succinct (available online [1]) and identified
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Analysis Concept lattice Num. of Avg. size of Refinement
Benchmark LOC time (secs) # Nodes # Edges cand. fings. cand. fings. needed for

ext2 4,476 2.1 21 32 18 3.67 9 (50%)
X server/dix 30,096 28.43 319 944 115 3.76 24 (20.87%)
PennMUSH 94,014 318.91 127 301 38 1.42 4 (10.53%)

Figure 9: Results for each of our case studies. Concept lattices are also available online [1].

under 115 candidate fingerprints, with fewer than 4 code-
patterns on average. In each case, refining candidate fin-
gerprints, semantically interpreting and associating each
fingerprint with a security-sensitive operation took a few
hours of manual effort with modest domain knowledge.

Figure 9presents statistics on the size of the concept lat-
tice and number of candidate fingerprints found. As these
results show, concept analysis is effective at distilling sev-
eral thousand lines of code into concept lattices of manage-
able size. The number and size of candidate fingerprints in-
dicates the amount of manual effort involved. There were
under 115 candidate fingerprints of average size under 4
across all our benchmarks. Note that because our approach
is static, these fingerprints cover all the security-sensitive
operations on a critical resource. Without our approach, an
analyst will have to examine the entire code-base to find
such security-sensitive operations. These results show that
our approach drastically reduces the amount of manual ef-
fort required to mine security-sensitive operations. We now
discuss notable points from each case study.

5.1 Theext2 file system

As discussed inSection 2, we focused on how directories
are manipulated by the ext2 file system. Concept analysis
produced 18 candidate fingerprints, of which 9 had to be re-
fined with precision constraints (examples of which appear
in Section 2.3andSection 4).

The LSM project has identified a set of 11 operations on
directories. These operations are used to write SELinux
policies governing how processes can manipulate directo-
ries. We were able to identify at least one fingerprint for
each of these LSM operations from the fingerprints that
we mined. Section 2presented two such fingerprints (for
Dir Remove Name andDir Search). Two more examples are
discussed below.

1. The fingerprint {Write 0 To inode->i blocks, Write
1 To inode->u->ext2 inode info@i new inode,
Write 4096 To inode->i blksize} appears inCode-
Pats(ext2 create), CodePats(ext2 mkdir), Code-
Pats(ext2 mknod) and CodePats(ext2 symlink). The
code-patterns in this fingerprint were all extracted from
the function calledext2 new inode and embody creation

and initialization of a newinode. We believe this is the
fingerprint of the LSM operationFile Create (note that
some LSM directory operations have theFile prefix).

2. The fingerprint{Write 0 To inode->i size} appears in
CodePats(ext2 rmdir). This code-pattern embodies a
key step in directory removal, and is a fingerprint for the
LSM operationDir Rmdir.

5.2 The X11 server

The X server is a popular window-management server. X
clients can connect to the X server, which manages re-
sources such as windows and fonts on behalf of these X
clients. The X server has historically lacked mechanisms to
isolate X clients from each other, and has been the subject
of several attacks [20]. Such attacks can be prevented with
an authorization policy enforcement, that determines the set
of security-sensitive operations that an X client can perform
on a resource. While there have been efforts to secure the X
server, these efforts have all been manual [7, 10, 20], often
taking several years.

We focused on a subset of the X server, its main dispatch
loop (calleddix) that contains code to accept client requests
and translate them to lower layers of the server. We focused
on this subset because it contains the bulk of code that pro-
cesses client windows, represented by theWindow data struc-
ture, the resource on which we wanted to identify security-
sensitive operations. In addition toWindow, we also included
the xEvent data structure, because the X server uses it ex-
tensively to process client requests. The API that we used
contains 274 functions that the X server exposes to clients.

Concept analysis produced 115 candidate fingerprints
with 3.76 code-patterns, on average. We had previously
identified fingerprints for 15 security-sensitive operations
on theWindow resource [15]. However, as discussed inSec-
tion 1, that work used dynamic analysis, and could poten-
tially miss fingerprints. Further, that work could automate
fingerprint-finding only up to the granularity of function
calls—these were then manually refined to the granular-
ity of code-patterns. Concept analysis not only identified
the fingerprints from prior work at the granularity of code-
patterns, but did so automatically. Two examples finger-
prints are discussed below.
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1. The fingerprint{Write 20 To xEvent->u->type, Write⊥
To xEvent->u->mapRequest->window}, contained in
CodePatsof 5 API functions, embodies an X client re-
quest to map aWindow on the screen, and potentially rep-
resents a security-sensitive operation.

2. The fingerprint{Write 0 To Window->mapped, Write 18
To xEvent->u->type, contained inCodePatsof 7 API
functions embodies unmapping a visible X client win-
dow from the screen, also a potential security-sensitive
operation.

5.3 The PennMUSH server

PennMUSH is an open-source online game server. Clients
connecting to a PennMUSH server assume the role of a vir-
tual character, as in other popular massively-multiplayer on-
line roleplaying games. For this work, it suffices to think
of PennMUSH as a collaborative database of objects that
clients can modify. Objects are shared resources, and an au-
thorization policy must govern the set of security-sensitive
operations that a client can perform on each object.

Clients interact with PennMUSH by entering commands
to a text server, which activates one or more of 603 internal
functions, that we used as the API of PennMUSH. Most of
these API functions modify a database of objects. Thus, we
tracked how the PennMUSH API manipulates resources of
typestruct object. Concept analysis produced 38 can-
didate fingerprints. Most of them had only one or two code-
patterns, so we only had to refine 4 of these candidate fin-
gerprints using precision constraints to obtain a total of 43
fingerprints, two examples of which we discuss below.

1. The fingerprintWrite ⊥ To object->name potentially
modifies an object name, and was contained inCode-
Patsof 16 API functions, representing creation, destruc-
tion and modification of objects. Clearly, unauthorized
clients must be disallowed from changing the name of an
object, indicating that this is a fingerprint of a security-
sensitive operation.

2. The fingerprint {Write 8 To object->type, Write
0 To object->modification time, Write 1118743 To
object->warnings} appears inCodePats(cmd pcreate)
andCodePats(fun pcreate), both of which are API func-
tions associated with creation of a “character” object.
Here, the number1118743 represents a flag that signifies
that a character should be warned about problems with
the objects that they own, and the number8 written to
the fieldtype indicates that the newly created object is a
character. These code-patterns represent necessary steps
in character creation in PennMUSH, and thus indicate
that this is fingerprint of a security-sensitive operation.

In PennMUSH, theobject data structure has just 18
fields, while the API contains 603 functions. Each security-
sensitive operation is performed at the granularity of ac-
cesses to just one or two of the fields ofobject. This ex-
plains the smaller number and size of candidate fingerprints
extracted by concept analysis (as compared to X server).

While the security-sensitive operations that we extracted
for PennMUSH can definitely form the basis for writing
policies, site-specific policies may be created by combin-
ing several security-sensitive operations. For example, an
administrator might decide that reading an object’s name is
as security-sensitive as determining the kind of object. He
can then use the domain-specific constraintCombine(Read
object->name, Readobject->type) to combine these code-
patterns together into a single fingerprint that embodies this
security-sensitive operation.

6 Related work

This paper overcomes two important shortcomings that we
had identified in prior work [15]. The need for ana pri-
ori description of security-sensitive operations hindered the
application of the techniques developed there to a wide va-
riety of servers. Further, a dynamic trace-based approach to
fingerprint-finding meant that large portions of the legacy
server may go unexplored, thus resulting in an incomplete
set of fingerprints.

As discussed inSection 1, our approach follows the
aspect-oriented paradigm. Several other tools, such as
PoET/PSLang [11], Naccio [12], Polymer [6] and our own
prior work on Tahoe [14] also follow an aspect-oriented
approach to enforce authorization policies on legacy code.
In all these tools, a security analyst provides a description
of locations to be protected (join points) as well as the
policy check at each location (advice). These tools then
weave calls to a reference monitor at each of these locations.
However, when legacy servers manage their own resources,
identifying locations where policy checks must be weaved
becomes a challenge. The techniques developed in this pa-
per can benefit the above tools by reducing the manual effort
involved in identifying locations for reference monitoring,
as well as the advice to be integrated at these locations.

Concept analysis has previously been used in software
engineering, including aspect mining (Ceccatoet al.present
a survey of such techniques [8]) and software modulariza-
tion. For example, concept analysis has been used on iden-
tifier names to find methods and classes that implement
similar functionality [27]. Dynamic analysis in conjunc-
tion with concept analysis has been used to find methods
that implement a particular feature [9, 26]. The idea here
is to run an instrumented version of the program under dif-
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ferent use-cases and label the traces with these use cases.
Each trace contains information about the methods exe-
cuted. Traces are then clustered using concept analysis to
find crosscutting concerns, and thus identify aspects. Con-
cept analysis has also found use to identify modular struc-
ture in legacy programs [21, 24, 25, 28]. The modular struc-
ture so identified can be used to refactor legacy software
(e.g., convert non-object-oriented programs into object-
oriented ones [24]). Another recent use of concept analy-
sis is in the context of debugging mined specifications [3].
Automatically mined temporal specifications may often be
buggy, and the problem here is for an analyst to classify
each mined specification as correct or buggy. “Similar”
traces can be clustered using concept analysis, so the analyst
can decide en-masse whether an entire cluster is buggy.

7 Summary and future work

We presented an approach to reduce the manual effort in-
volved in mining security-sensitive operations in legacy
servers. Our approach uses concept analysis to mine fin-
gerprints, which are code-level descriptions of security-
sensitive behavior. Our experiments with three complex
real-world servers show that our approach is efficient and
effective at finding security-sensitive operations.

In the future, we plan to enhance the static analysis
phase with flow-sensitivity and data-flow information. This
will potentially enable extraction of temporal fingerprints,
i.e., those that also identify the order in which fields of a
data structure representing a resource are manipulated.
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