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Abstract Number of | Avg. size of
Server LOC | fingerprints | fingerprints
We present an approach based on concept analysis [t@xt2 4,476 18 3.67
retrofit legacy servers with mechanisms for authorization X serverdiz | 30,096 115 3.76
policy enforcement. Our approach is based upon the obserPennMUSH | 94,014 38 1.42

vation that security-sensitive operations are characteriz%(iigure 1: Highlights of our results. Concept analysis dis-

by idiomatic resource manipulations, called fingerprints. : :
. o . . . _Tills servers of several-thousand lines into a manageable
We statically mine fingerprints using concept analysis an . . . .

. ) . o . number of candidate fingerprints for manual examina-
then use them to identify security-sensitive operations ar

locate where they are performed by the server. Case stide
ies with three real-world servers show that our approach is

affordable and gective. We were able to identify securitymultiple X client windows, but was not built with mecha-
sensitive operations for each of these servers with a fg#ms to isolate one X client from another, leading to sev-
hours of manualﬁ)rt and modest domain knowledge. eral pub||shed attacks (Sem for examp|e attacks)_

This paper investigates techniques for retrofitting legacy
servers with authorization policy enforcement mechanisms.
The main questions to be addressed when retrofitting a

gerver arevhat are the security-sensitive operations to be
Software systems must protect shared resources that they,.
iated?andwhere does the server perform these oper-

manage from unauthorized access. This is achieved by fOF : :

. . : o tions? In current practice, these questions are answered
mulating and enforcing an appropriate authorization pal- : .
. . : manually. A team of software engineers inspects the code
icy (also called access control policy). The policy spec: ; ; o
o ; o . of the server to determine locations where authorization
ifies the set ofsecurity-sensitive operationthat a user

checks must be placed, and the set of security-sensitive op-
can perform on a resource. For example, a popular pol-_.: 4

. . erations that must be checked at each location. Not sur-
icy on UNIX-like systems allows only theoot to per-

form the security-sensitive operatioRsad andwrite on the prisingly, this painstaking process is time-consuming and
. : error prone 18, 32]. For example, it took almost two years
/etc/passud file (the resource). Operating systems have

o . . ach for the Linux Security Modules (LSM) proje@&(],
historically had m(_ech.anlsms.s.uch as _referenge monKgrs here additional authorization checks were added to the
to enforce authorization policies. It is also important fci_r

. inux kernel to enable enforcement of mandatory access
user-space servers, such as middleware, web-, proxy an

. . ontrol policies, and the X¥$ELinux [20] project, where
window-management servers, to implement such mecha:, .~ . .

: thorization checks were added to the X11 server. Similar
nisms because they manage shared resources on behalf 0

their clients. Unfortunately, economic and practical consigeee ¢forts have also been time-consumirig[17]. In

) . . short, there are no automated techniques to aid the process
erations force developers to choose functionality and per- . O
Of securing legacy servers for authorization.

formance over security. As a result, several legacy server : :
. . e build on prior work 5] and develop a novel ap-
often completely lack policy enforcement mechanisms. For

example, the X11 serve8{] can simultaneously managéoroaCh using concept analysd] to drastically reduce the

1 Introduction
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manual &ort involved in retrofitting legacy servers. KeyPennMUSH. A dynamic approach to fingerprint-finding
to our approach is the observation that security-sensitiveant that we could not guarantee that all fingerprints were
operations performed by a server are associated with fiolnd. This paper directly addresses both these shortcom-
iomatic ways in which resources are manipulated by thmgs. Concept analysis automatically mines candidate fin-
server. Such idioms, which we cdlhgerprints are code- gerprints without the need for am priori description of
level descriptions of the security-sensitive operations thsgcurity-sensitive operations. Static program analysis en-
they represent. Each fingerprint is expressed as a consbires near-complete code-coverage, and identifies all pos-
nation of several abstract syntax trees (ASTs), callede- sible ways in which a shared resource is accessed by the
patterns We use static program analysis in combinaticerver, thus ensuring that all fingerprints have been mined.
with concept analysis to automatically mine candidate fin-In summary, our main technical contributions are:

gerprints. These are then examined and refined manuallydw fy|ly static approach to retrofit policy enforcement into
a doma|.n expert. After refinement, we statically mat'ch eachjegacy servers. The key observation here is that security-
fingerprint against the code of the server to determine loca-gensitive operations performed by a server are associ-

tions where the corresponding security-sensitive operationgted with idiomatic resource manipulations, called fin-
is performed. We then weave hooks to a reference monitorgerprints.

at all these locations to authorize that security-sensitive OP"A novel algorithm using concent analvsis to automati-
eration. This ensures that all security-sensitive operations v mi % int gf Ff{ y‘t' i
performed by the server are mediated by authorization pol-ca y Mine TINGETPTIN'S of Securly-Sensitive operations.
icy lookups. To our.knowltladge, th|s_ is the fII‘St. application of concept
Our results demonstrate thefectiveness of our ap- analysis to.m|ne security properties of software.. B
proach. We conducted case studies on three real-world sys<ase studies on three real-world servers of significant
tems of significant complexity: the ext2 file system, a subsetCOMPlexity. Our case studies demonstrate that our ap-
of X server (its dispatch loop), and PennMUSH, an online _pr(_)ach is fficient and &ective. Our analysis completed
game serverd]. Figure 1highlights our results, and shows in just over 310 seconds even for the largest ofou.r bench-
the size of each of these servers, the number of candidat§'a’ks and produced manageable concept lattices. In
fingerprints automatically mined by concept analysis, and 8ach case, we were able to inspect the lattice and identify
the average size of each candidate fingerprint (the numbep€CUrity-sensitive operations with a few hours of manual
of code-patterns it contains). An analyst's manugreis  €ffort and modest domain knowledge.
reduced to refining candidate fingerprints and determiningNote that our approach to retrofit legacy servers follows
whether each refined fingerprint is indeed security-sensitie aspect-oriented paradigm. In particular, each fingerprint
or not. As our results show, in each case we were abledgnotes a region of code before which a reference monitor
reduce the analysis of several thousand lines of code to lle@k must be placed, and thus helps identify join-poifis [
analysis of under 115 candidate fingerprints with fewer thaf]. The reference monitor query that executes as a result
4 code-patterns each (on average). For example, we wafrthe hook call is the body of the advice at that join point.
able to reduce the analysis of PennMUSH, a server wiingerprint-mining is thus aspect-mining to find join points
94,014 lines of C code, to the analysis of 38 candidate firelevant to security.
gerprints, with an average of4R2 code-patterns each. It
took just a few hours of manuatfert and modest domain .
knowledge to find security-sensitive operations in each gf ApproaCh overview
our case studies. Without our approach, the entire code-base , , , )
must be examined to find such security-sensitive operatiohs 9/V€ a high-level overview of our approach, depicted in

The approach presented in this paper overcomes two friduré 2 Using a running example, we show how a soft-
portant limitations of our prior work15]. While we in- ware engineer would use our approach to mine fingerprints

troduced fingerprints in that work, our approach for fin@f Security-sensitive operations and place hooks. We have
ing fingerprints (i) required a high-level description Ogurrently implemented our analysis to work with C pro-

security-sensitive operations, and (i) used dynamic pr_gg)r_ams, but the underlying principles apply to servers written

gram analysis to find fingerprints. Both (i) and (ii) prell Other languages as well.

vented our approach from easily being applied to a wide

variety of servers. In particular, while a high-level descriiz.1  Running example
tion of security-sensitive operations was available for the
case study that we considered (the X server), this may
be the case with other servers, as indeed was the case

use a subset of ext2, a Linux file system, and one of the
GRge studies iBection 5as our running example. In partic-
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Legacy Code

@ * Constraints * @ *

Get candidate | Refine candidate _ | Use fingerprints | Retrofitted
fingerprints > fi ) = > to determine hook [——>
from code Candidate ingerprints INGErprints| )2 cement locations | Code
fingerprints of security
sensitive ops
Codeanalysis+ Applying constraints+ Pattern matching +
Concept analysis Inter preting fingerprints Weaving hook calls

Figure 2: Steps to retrofit policy enforcement to legacy code, and the techniques used in each step.

ular, ext2 is responsible for laying out and interpreting disk [ Code-pattern = Call AST | ReadAST
blocks as belonging to specific files or directories. It uses | Write Valueto AST
several internal data structures to represent metadata infor- Value = constant AST| L (unknown)
mation using which it retrieves files and directories from AST = (type-name->)‘field

rawldisk blocks. . Figure 3: Grammar for code-patterns.
File systems on Linux are “pluggable”, and must thus

export a standard API to the kernel. A system call that
manipulates files or directories ultimately resolves to orede-patterns the grammar for which is shown iRig-
or more calls to this API. The relevant file system funeire 3 A code-pattern is either Read Write or a Call
tions then serve this request. Thus a file system is a sefaetl is expressed in terms of abstract syntax trees. For ex-
that manages files and directories. For ext2, we consinple, the C statememne->file_type = 0, wherede is
ered 10 API functions related to manipulation of directories variable of typeext2_dirent is distilled to Write @ To
(e.g.,ext2_rmdir, ext2_mkdir andext2_readdir). We show ext2_dirent->file_type. Note in particular that this trans-
how our approach can identify security-sensitive operatioiaemation ignores specific variable names and focuses in-
that ext2 performs on directories. stead on types of variables. As a result, we identify generic
resource manipulations but not the specific instance of the
2.2 Step A: From source code to candidateresource €.g.,the instancele) that they happen on. State-
fin int ments that do not manipulate tracked data structures are
gerprints . :
ignored. Call code-patterns correspond to calls via un-
In the first step, we employ static source code analysis aedolved function pointers. For each functiest2_api
identify different ways in which ext2 accesses shared ig-the ext2 API the static analyzer then aggregates code-
sources in response to client requests. This analysis is bgsaiterns of all statements potentially reachable via a call to
upon two assumptions. ext2_api. Thus, at the end of this step each ext2 API func-
First, we assume that it fices to examine accesses tton ext2_api is associated with a set of code-patteDusle-
internal data structures that ext2 uses to represent files Batiext2_api). Intuitively, CodePatéext2_api) denotes all
directories. These data structures are specified by a possible ways in whickxt2_api can potentially manipulate
main expert, and for ext2 they are variables of typede, tracked resources.
ext2_dirent, ext2_dir_entry_2 and address_space, each  The next step is to identify idiomatic resource manipu-
of which is a Cstruct. Second, we assume that a client atations by the ext2 API. The goal here is to find sets of
cesses server resources only via the server’s API. With ext@de-patterns that always appear together. That is, if one
this is indeed the case, and as mentioned earlier ext2 expoole-pattern from a set of code-patterns appears in an exe-
awell-defined API to the kernel. The inputs to our static anution of ext2, then all the other code-patterns from that set
alyzer are thus the source code of ext2, and two files, spappear in that execution as well. Note that we can have sets
ifying, respectively, the types of critical data structures {pat} with singleton code-patterns as well, denoting that no
be tracked, and a set of API functions. The static analyz#her code-pattern always appears together pidty. Each
identifies how these tracked data structures are manipulaetiof such code-patterns denotes an idiomatic way in which
by the ext2 API. a resource is manipulated by ext2, and potentially indicates
To do so, the analyzer walks the source code of exZecurity-sensitive operation. We call each such det-a
and distills each statement into a (possibly empty) set @ggrprint
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We identify candidate fingerprints using concept analy- We employprecision constraintso identify such cases
sis [29], a well-known hierarchical clustering technique. Aand enable refinement of each candidate fingerprint, sep-
a high-level (details are presented $®ction 3, concept arating the code-patterns that it contains into several fin-
analysis identifies candidate fingerprints, as well as the Agdrprints. Intuitively, a precision constraint is a rule that
functions whose code-pattern sets contain these candidkiermines the set of code-patterns that can be grouped to-
fingerprints. We use the termandidate fingerprintde- gether in a fingerprint. The second reason why refinement
cause as described in Step B, imprecisions introduced inithaecessary is because a domain expert may deem that a set
program analysis step means that each candidate fingermirtode-patterns is irrelevant for the authorization policies
may contain multiple fingerprints. to be enforced for the server, or may wish to separate (or

For example, concept analysis inferred that the setgrbup together) a pair of code-patterns in a fingerprint of
six code-patterns shown Figure 4is a candidate finger-a security-sensitive operation. Sudbmain-specific con-
print, and that it appears iBodePatéext2_rename), Code- straintsfurther refine candidate fingerprints.
Patqext2_rmdir) andCodePatéext2_unlink). For example, consider the candidate fingerprint shown
in Figure 4 Using the output of our static analysis tool,
we were able to determine that the code-patterns (1)-(4)
appear together in each successful invocation of the ext2
function ext2_delete_entry and that the code-patterns (5)
and (6) appear together in each successful invocation of
the functionext2_find_entry. Each of the three API func-
tions, ext2_rename, ext2_rmdir andext2_unlink, that con-
Figure 4: One of the candidate fingerprints that concept tain this candidate fingerprint call both these functions.
analysis identifies for ext2. Both ext2_rmdir and ext2_unlink call these functions on

. . ) , . thesameresource instance, namely the directory being re-
For ext2, we identified 18 such candidate fingerprints, g (or unlinked). However, @&gure Sshows, while

each denoting a unique way in which ext2 manipys ., rename calls both these functions on the instances
lates files and directories. ~While concept analysis i$, i, andold dentry, it calls ext2_find_entry only on

asymptotically inéficient—its complexity is exponential iny, o jnstancegew dir andnew dentry when a certain predi-
max (|CodePatéext2_api;)|)—our experiments showed thaEaten ew_inode is satisfied.

it is efficient in practice. In particular, our analysis com
pleted in about 2 seconds for ext2, and in just over 310 se
onds even for the largest of our case studies.

(1) Readaddress_space->host

(2) Readext2.direntry.2->rec.len

(3) Write o TO ext2.dir_entry_2->inode

(4) Readinode->i mtime

(5) Readinode->u->ext2_inode_info->i_dir_start_lookup

(6) Write L TO inode->u->ext2_inode_info->i_dir_start_lookup

1. int ext2_rename (inode *old.dir, dentry *old._dentry,
. inode *new._dir, dentry *new_dentry) {
/* declarations ofold_page,new_page,old_.de and new.de */
new_inode = new._dentry->d_inode;...
old_de = ext2_find entry(old.dir,old _dentry,&old_page);
if (new_inode) { ...
new_de = ext2_find entry(new.dir,new_dentry,&new_page);
} else { ...

In the second step, a domain expert (i) refines candidate fin- , /* nocallto ext_find_entry */

gerprints obtained from Step A and (i) post refinement,,”  cxi2 deleteentry(old.de,oldpage); ...
determines, for each fingerprint, whether it embodies|& !
security-sensitive operation that must be mediated by an Rlfure 5: Example showing the need for precision con-
thorization policy lookup. straints.
Refinement of candidate fingerprints is necessary for two
reasons. The first reason is because code analysis employ@écauseext2_rename performs the resource manipula-
in Step A is imprecise. As a result, multiple fingerprint§ons corresponding to code-patterns (5) and (6) on addi-
may be combined into a single candidate fingerprint. Thefénal resource instances as compared to the code-patterns
are two ways in which precision is lost: (1)-(4), code-patterns (1)-(4) and (5)-(6) represent poten-
1. Code analysis ilow-insensitiveA candidate fingerprint tially different security-sensitive operations. Imposing the
may contain a pair of code-pattenpat;, pat, that do not constraint that code-patterns orfitdrent resource instances

always appear together in all executions of the server.must be part of separate fingerprints, the candidate finger-

2. We ignore specific instances of resources that are maorgg—m shown inFigure 4is split into two fingerprints, as

ulated and focus instead on their types. Thus, a candid3f@Wn inFigure & Additional examples of the use of pre-
fingerprint may contain manipulations of multiple, po<&iSion constraints appear Bection 4 Note that such con-

sibly unrelated, resources. 1The variableold.de, which ext2_delete_entry is invoked with on
line 11 is derived from1d_dir andold_dentry.

0

2.3 Step B: Refining candidate fingerprints

5B e N v

=)
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straints can potentially be avoided with sophisticated pro-Each fingerprint is a set of code-patterns that can be
gram analyses, that we plan to explore in future work. Homatched against the server's source code. Each code-
ever, in our case studies we found that more than 50% of fregment that matches a fingerprint is deemed as perform-
candidate fingerprints did not require refinement. Thus dag the security-sensitive operation associated with that fin-
current approach provides a good trafidmetween preci- gerprint. In [L5], we had presented an approach to place
sion of results and simplicity of the code analysis algorithrhooks at the granularity of function calise., for each fin-
gerprint that matched the set of code-patterns in a function,
we would place a reference monitor hook to guard calls to
this function with the appropriate security-sensitive oper-
ation. For example, using the fingerprints from our run-
ning example, we would place a hook guarding the call to
ext2_find entry on line (5) of Figure 5to check that the
LSM operatiorDir_Search is authorized as follows:

. if (check_policy(current process old_dir, Dir_Search))
(6) Write L TO inode->u->ext2_inode_info->i_dir_start_lookup { ext2_find_entry(old.dir, old.dentry, &ld.page); }

else { Notify current process of failed authorization chegk

Fingerprint (1)

(1) Readaddress_space->host

(2) Readext2.dir_entry 2->rec.len
(3) Write 0 TO ext2_dir_entry_2->inode
(4) Readinode->imtime
Fingerprint (2)

(5) Readinode->u->ext2_inode_info->i_dir_start_lookup

Figure 6: Fingerprints obtained after refinement with
precision constraints. A similar hook will also be placed for the call on line (7).
The call toext2_delete_entry on line (11) will be protected
Domain-specific constraints encode rules that are formigith a hook that checks that the client is authorized to per-
lated by a domain-expert. In particular, whether the rfym the LSM operatiomir Remove_Name on the directory
source manipulation embodied by a fingerprint is securiyeing removed. Several optimizations are possible to this
sensitive depends on the set of policies that must be g8sic hook placement techniqueg., placing hooks so as
forced on clients. For example, it may only be necessarytminimize the number of reference monitor queries exe-
protect the integrity of directories, and not their confideRuted at runtime. We leave such optimizations for future
tiality. In this case, fingerprints that embody a write opergrprk.
tion on directories are security-sensitive, while fingerprints Note that fingerprints are useful even when hook place-
that embody a read operation are not. Fingerprints exp@sénts have been decided in advance. For example, if a team
all possible operations on resources, and let an adminisgggsoftware engineers decides to place just one hook guard-
tor decide whether an operation is security-sensitive or g calls toext2_rename (as was done in LSM), then finger-
For example, an analyst may decide that Fingerprint (2)dfints determine the security-sensitive operations that must
Figure § which corresponds to a directory lookup, is N®e authorized by that hook. In this case, the hook must
interesting for a specific set of policies to be enforced.  authorizebir_Remove_Name on the old directory (instance
After refinement, the domain expert assigns semanticsogafdir) andDir_Search on both the old¢ld_dir) and new
each fingerprint, associating it with a security-sensitive offrectories fiew_dir). Indeed, these security-sensitive op-
eration. For example, Fingerprint (1) Figure 6embod- erations are authorized in the implementation of the hook

ies the directory removal operation, while Fingerprint (Z) the LSM implementation of security-enhanced Linux
embodies the lookup operation. The LSM projefii[has (SELinux) [22].2

identified a comprehensive set of security-sensitive opera-

tions for Linux by considering a wide range of policies to be ) ) . .
enforced, including security-sensitive operations on the f EXtracting candidate fingerprints
system. It turns out that Fingerprint (1) embodies the LSM

operationDir_Remove_Name, while Fingerprint (2) embod- from code

ies the LSM operatiomirSearch. Thus, at the end of the s saction discusses Step A in detail. We discuss the use

secon_d step, we have a set of f!ﬂgefp“”tsa each of whichySatic analysis to identify all resource manipulations po-

associated with a security-sensitive operation. tentially performed by each API function, and concept anal-
ysis to find candidate fingerprints.

2.4 Step C: From fingerprints to hooks 5 , . . , -
The SELinux LSM hook authorizes additional security-sensitive oper-

The final step is to place reference monitor hooks aftpns, corresponding to fingerprints that match code-fragments that were
implement the appropriate policy lookups for each hodRted fromFigure 5

(i.e.,the advice at each join point). Because we borrow from

prior work [15] for this step, we only discuss it briefly here.
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3.1 Static analysis or FPNCodePatépi;)=0, for each API functiorapi;. As
] ] ) ) described below, we use concept analysis to identify a set
Algorithm 1 describes the static code analysis that we hayecandidate fingerprints Each candidate fingerprint may

implemented as a plugin to the CIL toolkR. Lines (1)-  hossibly contain multiple fingerprints, and must be refined
(5) employ a simple flow-insensitive analysis to extract fqg yield the actual fingerprints.

each function a set of code-patterns describing how the

function manipulates tracked data structures. While this .
step sacrifices precision, it simplifies the rest of the an&-2 Background on concept analysis

ysis by making the output amenable to concept analysincept analysis is a well-known hierarchical clustering
As described earlier, we recover some of the precision |‘P§éhnique that has found use in software engineedn§,[

in this step by applying precision constraints. While we iy 21 24, 25, 26, 27, 28]. We give a brief overview of con-
tend to explore in future work how a flow-sensitive progragpt analysis and describe how we adapt it to find candidate
analysis can interact with concept analysis, we have fOWﬂﬁgerprints.

that our current implementatiorffers a reasonable trad€o  Tpe inputs to concept analysis are (i) a seinstances |
between simplicity of analysis and precision of the resu% a set offeatures F and (iii) a binary relatiolR: | — F
obtained. Lines@)-(9) computeCodePatgapi;), the set of that associates instances with features. It producesna
resource manipulations performed byi;, for each APl cept |atticeas output. Intuitively, each node in the concept
functionapi; of the server by finding functions in the calliatiice pairs a set of instanciawith a set of feature¥, such
graph reachable frompi;. We resolve calls through func-thaty is the largest set of features in commoratbof the
tion pointers using a simple pointer analysis: each fungstancesn X. Formally, each node is a paiX, Y), where
tion pointer can resolve to any function whose addressysc: | andy e F, such that(X)=Y andy(Y)=X, where
taken and whose type signature matches that of the fugg() ={f e FlVxe X (x,f) e R, andy(Y) = {i € Iy e Y
tion pointer. This analysis is conservative in the absence(q? € R). A node(X, Y) appears as an ancestor of a node
type-casts, but may miss potential targets in the presencemio) in the concept lattice iP c X. In fact, this ordering

type-casts. also impliesY c Q. This is because a smaller set of in-
Algorithm - Extact.Cone-Parerns(Server, APL RSC) stances will share a larger set of features in common. Thus,
Input : (i) Server: source code of server, (i) ARbpiy,...,apin}: e root node shows the set of features common to all In-
o : th t node sh th t of feat to all
set of API functions of Server, and (iii) RSC: data types of : : :
consitive resoLrces. stances irl, while the leaf node shows the set of instances
Output : CodePatapi).. ...CodePatéapiy), for that share all features iA.
apii,...,apip € APL. -
1 foreach (function f in Server)do (a) The relation CodePats
2 Summaryf) = 0;
3 foreach (statemens € £ that dfects a data structure of tygeRSC)do CodePats patl pat2 pat3 pat4
4 CP = Breakdown ofsinto code-patterns (sdegure 3; apii O 0
5 L Summaryf) := Summaryf) U CP; api, 0 0 0
s fo;eagh Ejap;i ;API)) do@ apis 0 0 0
odePat&api;) := 0; 1
8 foreach (function £ reachable fronapi;) do aply O
9 | CodePatéapi)) := CodePatéapii) U Summaryg); (b) Concept lattice (c) Nodes in the concept lattice
10 return CodePatéapis),....CodePatéapin); A A: ({apii,apiz,apis,apis}, 0)
Algorithm 1: Static analysis algorithm to extract re- B’/ \c. B: ({apii,apizapis}, {pat})
source manipulations. e C:  ({apisapid}, {pali})
' . D D: ({apizapis}, {pah,patk})
R_ecall thatCoc_JePateapii) is the set of resource manip ° \ E: ({apiiapi,}, {pat,pab})
ulations that a client can perform by invoking API function E\ / F F: ({apis}, {pat;,pats,pats})
api;. However, we would like to identify idiomatic resource G G: (0, {pat,pab,pats,pats})

manipulations. Each such idiom is a set of code-patterns
FP={paty,...,paty} satisfying the following property: if one
of the code-patternpateFP appears in any valid execu-
tion trace of the server, thaall the patterns irfFP appear o i ,
in that trace. Each such idiom is callediagerprint and to our problem. Each API functioapiy, api,, apis and

denotes a potential security-sensitive operation performaé’ 415 con5|de_red an_instance, and each code-papatn
ab, pat, pat, is considered a feature. They are related by

on the resource. Note that the above property impligs

) . . . odePatswhich is obtained from static analysis, depicted
that each fingerprinEP is such thatFPcCodePatapi;) in Figures‘.(a) as a table. Each nodx, Y) is sﬁch thagll

Figure 7: Concept analysis example.

Figure 7shows an example of a concept lattice, as applied
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the code-patterns i appears in eaclodePatéapi;) for 1. Each code-pattern appears in exactly GreP,.

api;eX. This lattice shows, for example, that (i) there a8 EachCodePatéapi;) can be constructed by combining
no code-patterns in common to all API functions (n@de  candidate fingerprints using set union.

in the lattice), (ii) Bothpat; andpat; appear in botlCode-
Patgapi,) andCodePatéapis), and these are the only suc
API functions (nod®), and that (iii) No API functions have
all code-patterns (nods).

In fact, the properties above suggest an upper bound
or k, the number of candidate fingerprints. In particular,
K < | Uienn.q CodePatgapi;)|. Note that while the concept
lattice can be exponentially large in the number of API func-
tions (because asymptotically, it is a lattice on the power set
3.3 Using concept analysis of API functions), this upper bound places a restriction on
the number of nodes that will be marked in linef Algo-

We compute candidate fingerprints using Algorit@m It . L : .
firstinvokes concept analysis (lid¢on the set of API func- fithm 2. This is key, because these nodes introduce candi-
ate fingerprints, and as discussedsiction 2 they must

tions and the set of code-patterns to obtain a concept lattice

. . . ; : e manually examined for refinement in Step B.
as shown inFigure 7 It then finds candidate fingerprints, : . .
. o . . Several algorithms have been proposed in the literature to
in lines2-7, by finding nodes in the lattice where new code-

patterns are introduced. Each such node is marked, and%%%?;tglcg?ifﬁ&t La ttg?)?j.ire\;l/i\lcr[]i)Z]el;ch;r;fslzni]ter?;;hbeelgrire-
set of new code-patterns introduced in that node is consiﬂe 9 y . .

ered as a candidate fingerprint shown to work well in practice (Ammoret al[3]). While
For the example irFigure 7 t.he nodes. C. D. andE this algorithm is asymptotically exponential—its complex-

- 2p !
are marked because these nodes introduce the code-pat té’rr'fso(z D, wherep IS an upper boupd on the number of

. L €atures of any instance ir—the algorithm scaled well in
pat, pat, pat; andpat—i.e., any node containing one of

these patternmusthave the corresponding node as an anu’ case studies.

cestor. Each of these code-patterns is classified as a candi-

date fingerprint. 4 Refining fingerprints with con-
Intuitively, Algorithm 2 works because each fingerprint .
F P satisfiess PcCodePatgapi;) or FPNCodePatéapi;)=0, straints

for each API functiorapi;. Concept analysis ensures that o ) _ _ _ _

the node of the concept lattice in which a new code-pattéid described irbection 2.2candidate fingerprints obtained
pateFPis introduced will introducall of the code-patterns from concept analysis are imprecise for two reasons. First,
in FP. Line 7 identifies and marks nodes where a nejcause of flow-insensitivity, a pair of code-pattepa
code-patterrpat is introduced into the lattice. Because ofNdpak that are not part of the same fingerprint may ap-
the property above, all the code-patterns that appear in B§&" In the same candidate fingerprint. Second, the resource
same fingerprint apat appear in that node. Note howevelr:n_anlpula_tlons in a_candldate fingerprint may be associated
that code-patterns from other fingerprints may also be int#th multiple, possibly unrelated resource instances. Thus,
duced in the same node. Thus, Algoritonly computes candidate fingerprints must be refined using precision con-
candidate fingerprints: each candidate fingerprint may cgi2ints. Domain-specific constraints can additionally be
tain multiple fingerprints that must be obtained via refin@Pplied to refine constraints with domain-specific require-

ment (in Step B). ments. B
This section presents a unified framework to express con-
Algorithm : Fino_Canpmate_Fingererivts(CodePatsAPl) straints and refine candidate fingerprints (Step B of our ap-
Input . (i) CodePatsThe relation obtained from Algorithrh, and h Both .. . dd . ifi
(i) APl = {api;,...,apin}, set of API functions of the server] proac ) ot precision constraints an omain-speciiic
Output : CFPy,...,CFP, a set of candidate fingerprints. constraints can be expressed in this framework.
1 Run concept analysis with the set of instante8PI, the set of features
) F=the[1..ni CodePatgapi;), and the relatioiR=CodePats Constraint = SeparatéatSet, PatSefjgnore(PatSet)
count:=1; .
3 foreach (node(X, Y) in the concept latticejo | ComblneéPatSet, PatSet) . )
4 Let {(X;, Y;)} be the set of parents ¢K, Y) in the concept lattice; PatSet = Set of code-patterns (as definedHigure 3
5 DiﬂZ:Y-Uij; i i
6 if (Diff # 0) then Figure 8: Grammar for constraints.
7 L CFPgount := Diff; count:= count+ 1; Mark the nod&X, Y);
8 return CFPy,....CFPeount/* Note: kis the value otountin this line.*/; As Figure 8shows, each constraint is eitherSepa-
Algorithm 2 : Finding candidate fingerprints. rate(X, Y), anignore(X) or aCombingX, Y), whereX and

_ _ _ _ B Y are sets of code-patternSeparat€X, Y) refines candi-
Candidate fingerprint€ FPy,...,CF Py identified by Al-  date fingerprints by separating code-pattern detnd Y
gorithm2 can also be shown to satisfy the following:  into separate fingerprintdgnore(X) refines candidate fin-
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gerprints by discarding the code-pattern Xegftom candi- can potentially avoid the imprecisions reported above.
date fingerprintsCombinéX, Y), for which we have only However, in each of our case studies we needed precision
felt occasional need, combines code-pattern XetsxdY constraints for fewer than 50% of the candidate fingerprints
in two candidate fingerprints into a single fingerprint, thusined—918 for ext2, 24115 for X server, and /38 for
“coarsening” the results of concept analysis. For examplRennMUSH. Thus, we believe that our current approach
the constraintSeparaté{1,2,3,4, {5,6}) refines the candi- strikes a good balance between simplicity and precision of
date fingerprint irfFigure 4to yield the fingerprints ifFig- candidate fingerprints.
ure 8 We now discuss precision and domain-specific con-Domain-specific constraints encode domain knowledge
straints in this framework. to further refine fingerprints. A domain specific constraint
Precision constraints af®eparatéX, Y) constraints and that we have found useful ignore(Pat), using which we
as discussed iBection 2 they serve two goals. The firstcan eliminate certain code-patterns that we deem irrelevant
goal is to refine candidate fingerprints based upon resoui@esecurity from the set of fingerprints. For example, in
instances manipulatedSeparaté1,2,3,4, {5,6}), the use the X server, which is an event-based server, each request
of which was illustrated earlier, serves this goal. Fofrom an X client is converted into a one or more events that
mally, each set of code-patterns can be associated veith processed by the server. It may only be necessary to
one or more resource instances that it manipulates. Wfdorce an authorization policy governing the set of events
use a constrainBeparate(X, Y}o separate code-patterrthat an X client can request on a resource. In such cases, all
setsX andY that manipulate dierent sets of resource incode-patterns except those related to event-processing can
stances. For example, consider the code-patterns (1)-(4befiltered out from fingerprints usirignore constraints.
Figure 4 that appear in the functioext2_delete_entry, The use ofCombineconstraints is relatively infrequent,
and the code-patterns (5) and (6), that appear in the fuand may be used if the fingerprints mined by concept anal-
tion ext2_find_entry. Because of the way these functiongsis are at too fine a granularity. For example, in Pen-
are invoked irext2_rename (SeeFigure 9, code-patterns (5) nMUSH, we found that 30 of the 38 candidate finger-
and (6) are associated with the resource instabbgéslir, prints contained only one code-pattern. An administra-
old_dentry, new. dir andnew_dentry, while code-patternstor may wish to write authorization policies at a higher-
(1)-(4) are associated with resource instangesdir and level of granularity—where the fingerprint of each security-
old_dentry. Because the code-patterns (5) and (6) are &@nsitive operation contains multiple code-patter@em-
plied to additional resource instances, they are separatedaine constraints can be used to group together code-patterns
using the constraint above. We currently manually identifg get such fingerprints.
resource instances associated with a set of code-patterns.
However, this can potentially be automated using a progr .
analysis that is sensitive to resource instances manipulated. Case studies

The second goal of precision constraints is to identify and .
remove imprecision introduced because of flow-insensitié¢ conducted case studies on three complex systems, each

program analysis. In particular, a pair of code-patterR5Which has been in development for at least 10 years. We
pat, and pab may appear together in a candidate ﬁngelrl_sed ® _Fhe ext2 file system from Linux kernel d_|__str|but|on
print, but may not appear together in all executions of thg+21: (ii) a subsetof the X server (X118, and (iii) Pen-
server. In such casesSeparatéat;,pat) constraint sepa- "MUSH, an online game serverl(8.1p9). Our goal was to
rates these code-patterns int@elient fingerprints. For ex- identify security-sensitive operations in each Qf them. Our
ample, one of the candidate fingerprints that we obtained fpUIts lead us to conclude that our approach is:

the analysis of ext2 is shown below; it appearecCiode- 1. Effective.We were able to mine fingerprints of security-

Patext2_ioctl). sensitive operations in each of our case studies. For ext2,
(1) Write L TO inode->i_flags we could correlate many of the security-sensitive opera-
(2) Write L TO inode->i_generation tions that we found with the security-sensitive operations

However, ext2_ioctl either performs the resource ma- identified in the LSM project30], while for the X server,
nipulation corresponding to code-pattern (1) or (2), but not we found all the fingerprints (and more) that we did in a
both, in each execution, based upon the value of a flag that iprior study {L5].

is invoked with. Thus, a constraifeparat€{1},{2}) is used 2. Efficient. Our analysis completed in just over 310 sec-

to refine the candidate fingerprint above. onds (on a machine with a 1GHz AMD Athlon proces-
Note that precision constraints are not necessary if moresor, with 1GB RAM) even for PennMUSH, our largest
precise program analysis is employed. Algoritintur-  penchmark. Concept lattices produced for manual exam-

rently lacks ﬂOW-SenSitiVity and data-flow information that ination were succinct (ava”ab|e on“nﬂl and identified
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Analysis Concept lattice Num. of | Avg. size of | Refinement

Benchmark | LOC | time (secs)| # Nodes| # Edges| cand. fings. | cand. fings.| needed for
ext2 4,476 2.1 21 32 18 3.67 9 (50%)

X serverdix | 30,096 2843 319 944 115 3.76 24 (2087%)

PennMUSH | 94,014 31891 127 301 38 1.42 4  (1053%)

Figure 9: Results for each of our case studies. Concept lattices are also available onlirig [

under 115 candidate fingerprints, with fewer than 4 code-and initialization of a newinode. We believe this is the

patterns on average. In each case, refining candidate finfingerprint of the LSM operatioffile_Create (note that

gerprints, semantically interpreting and associating eachsome LSM directory operations have tfie_ prefix).
fingerprint with a security-sensitive operation took a fey The fingerprint{Write 8 To inode->i_size} appears in

hours of manual féort with modest domain knowledge. CodePatéext2_rmdir). This code-pattern embodies a

Figure 9presents statistics on the size of the concept lat-key step in directory removal, and is a fingerprint for the
tice and number of candidate fingerprints found. As theseLSM operationDir_.Rmdir.
results show, concept analysis i$eetive at distilling sev-
eral th'ousand lines of code ir)to concept. Iatticgs of manages The X11 server
able size. The number and size of candidate fingerprints In-
dicates the amount of manudfert involved. There were The X server is a popular window-management server. X
under 115 candidate fingerprints of average size undeelignts can connect to the X server, which manages re-
across all our benchmarks. Note that because our appragmivces such as windows and fonts on behalf of these X
is static, these fingerprints cover all the security-sensitigients. The X server has historically lacked mechanisms to
operations on a critical resource. Without our approach, isnlate X clients from each other, and has been the subject
analyst will have to examine the entire code-base to finflseveral attacks?[)]. Such attacks can be prevented with
such security-sensitive operations. These results show #raguthorization policy enforcement, that determines the set
our approach drastically reduces the amount of manual efsecurity-sensitive operations that an X client can perform
fort required to mine security-sensitive operations. We naw a resource. While there have beéioks to secure the X
discuss notable points from each case study. server, thesefforts have all been manuat,[10, 20], often
taking several years.

We focused on a subset of the X server, its main dispatch
loop (calleddix) that contains code to accept client requests
As discussed irsection 2 we focused on how directoriesand translate them to lower layers of the server. We focused
are manipulated by the ext2 file system. Concept analysisthis subset because it contains the bulk of code that pro-
produced 18 candidate fingerprints, of which 9 had to be messes client windows, represented byithelow data struc-
fined with precision constraints (examples of which appéarre, the resource on which we wanted to identify security-
in Section 2.3andSection 3. sensitive operations. In addition#éndow, we also included

The LSM project has identified a set of 11 operations dime xEvent data structure, because the X server uses it ex-
directories. These operations are used to write SELini@nsively to process client requests. The API that we used
policies governing how processes can manipulate directontains 274 functions that the X server exposes to clients.
ries. We were able to identify at least one fingerprint for Concept analysis produced 115 candidate fingerprints
each of these LSM operations from the fingerprints thatth 3.76 code-patterns, on average. We had previously
we mined. Section 2presented two such fingerprints (fordentified fingerprints for 15 security-sensitive operations
Dir_Remove_Name andDir_Search). Two more examples areon theWindow resource 15). However, as discussed 8ec-
discussed below. tion 1, that work used dynamic analysis, and could poten-
1. The fingerprint{Write ® To inode->i_blocks, Write tally miss fingerprints. Further, that work could automate

1 To  inode->u->ext2_inode_info@i_new_inode, fINGerprint-finding only up to the granularity of function

Write 4096 To inode->i blksize} appears inCode- calls—these were then manually refined to the granular-

Patext2 create), CodePatfext2mkdir), Code- Ity of code-patterns. Concept analysis not only identified

Patgext2 mknod) and CodePatéext2_symlink). The the fingerprints from prior work at the granularity of code-

code-patterns in this fingerprint were all extracted froRftt€rns, but did so automatically. Two examples finger-

the function calledxt2 new_inode and embody creationPrints are discussed below.

5.1 Theext2 file system
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1. The fingerprint{Write 20 To xEvent->u->type, Write L In PennMUSH, theobject data structure has just 18
To xEvent->u->mapRequest->window}, contained in fields, while the API contains 603 functions. Each security-
CodePatf 5 API functions, embodies an X client resensitive operation is performed at the granularity of ac-
guest to map &indow on the screen, and potentially repeesses to just one or two of the fieldsadfject. This ex-
resents a security-sensitive operation. plains the smaller number and size of candidate fingerprints

2. The fingerprint{Write & To Window->mapped, Write 18 €Xtracted by concept analysis (as compared to X server).
To xEvent->u->type, contained inCodePatsof 7 API While the security-sensitive operations that we extracted
functions embodies unmapping a visible X client Wirf.or PennMUSH can def|n|t8|y form the basis for ertlng

dow from the screen, also a potential security-sensitiR@licies, site-specific policies may be created by combin-
operation. ing several security-sensitive operations. For example, an

administrator might decide that reading an object’'s name is
as security-sensitive as determining the kind of object. He
5.3 The PennMUSH server can then use the domain-specific constr@ombinéRead

PennMUSH is an open-source online game server. Cliepkgect->name, Readobject->type) to combine these code-
connecting to a PennMUSH server assume the role of a Wpterns together into a single fingerprint that embodies this
tual character, as in other popular massively-multiplayer g¥Curity-sensitive operation.

line roleplaying games. For this work, it ffiges to think

of PennMUSH as a collaborative database of objects that
clients can modify. Objects are shared resources, and anau

thorization policy must govern the set of security-sensiti\ﬁehiS paper overcomes two important shortcomings that we

oper_at|0n§ that a cll_ent can perform on each object. had identified in prior work 15]. The need for ara pri-
Clients interact with PennMUSH by entering commands. - . s . .
. . . orj description of security-sensitive operations hindered the
to a text server, which activates one or more of 603 interna

functions, that we used as the API of PennMUSH. Most 8Pp||cat|on of the techniques dev_eloped there to a wide va-
riety of servers. Further, a dynamic trace-based approach to

these API functions modify a database of objects. Thus, wé e i

tracked how the PennMUSH API manipulates resources |(r)1]gerpr|nt-f|nd|ng meant that large portions of the legacy

. : server may go unexplored, thus resulting in an incomplete

type struct object. Concept analysis produced 38 can- ' :
. : ; set of fingerprints.

didate fingerprints. Most of them had only one or two code—AS discussed irSection 1 our approach follows the

patterns, so we only had to refine 4 of these candidate fin- P

gerprints using precision constraints to obtain a total of o%eﬁggﬂzatei1]p?\12232nt12]Sg\é?rﬁ:e?tg]e;ntg(yj} :Vl;rclh as
fingerprints, two examples of which we discuss below. gid » PO

prior work on Tahoe 14] also follow an aspect-oriented

1. The fingerprintWrite L To object->name potentially approach to enforce authorization policies on legacy code.
modifies an object name, and was containedCode- | g these tools, a security analyst provides a description
Patsof 16 API functions, representing creation, destrugs |ocations to be protected (join points) as well as the
tion and modification of objects. Clearly, unauthorize}gioncy check at each location (advice). These tools then
clients must be disallowed from changing the name of §yave calls to a reference monitor at each of these locations.
object, indicating that this is a fingerprint of a securityHowever, when legacy servers manage their own resources,
sensitive operation. identifying locations where policy checks must be weaved

2. The fingerprint {Write 8 To object->type, Write becomes a challenge. The techniques developed in this pa-
0 TO object->modification_time, Write 1118743 To per can benefitthe above tools by reducing the marfimte
object->warnings} appears inCodePatécmd pcreate) involved in identifying locations for reference monitoring,
andCodePatéfun pcreate), both of which are API func- as well as the advice to be integrated at these locations.
tions associated with creation of a “character” object. = Concept analysis has previously been used in software
Here, the number118743 represents a flag that signifiegngineering, including aspect mining (Ceccetal. present
that a character should be warned about problems watisurvey of such technique8]] and software modulariza-
the objects that they own, and the numbemritten to tion. For example, concept analysis has been used on iden-
the fieldtype indicates that the newly created object is ifier names to find methods and classes that implement
character. These code-patterns represent necessary sigpkar functionality P7]. Dynamic analysis in conjunc-
in character creation in PennMUSH, and thus indicatien with concept analysis has been used to find methods
that this is fingerprint of a security-sensitive operation.that implement a particular feature, [26]. The idea here

is to run an instrumented version of the program under dif-

_ Related work
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ferent use-cases and label the traces with these use ca$6k.Bauer, L., Ligart, J., anp WarLker, D. Composing
Each trace contains information about the methods exe- security policies with Polymer. IRroc. PLDI (June
cuted. Traces are then clustered using concept analysis to 2005).

find crosscutting concerns, and thus identify aspects. Con-

cept analysis has also found use to identify modular strué/] BERGER, J., Reciorro, J., WoopwarD, J., anp Cum-
ture in legacy program@[L, 24, 25, 28]. The modular struc- MINGS, .P. _Compartmented mc_)de workstation: Prot.o—
ture so identified can be used to refactor legacy software YP€ highlights.[EEE Transactions on Software Engi-
(e.g., convert non-object-oriented programs into object-  N€€ring 166 (June 1990).

oriented onesZ4]). Another recent use of concept analy- 8]
sis is in the context of debugging mined specificatiddjs [
Automatically mined temporal specifications may often be
buggy, and the problem here is for an analyst to classify
each mined specification as correct or buggy. “Similar”
traces can be clustered using concept analysis, so the anal@jt Eisensarth, T., Koscuke, R., anp Smmon, D. Locat-

Ceccaro, M., MariN, M., Mens, K., MoonEen, L.,
TonELLA, P., anp Tourwe, T. A quantitative compar-
ison of three aspect mining techniques.Proc. 13th
Intl. Wkshp. on Program Comprehensi@viay 2005).

can decide en-masse whether an entire cluster is buggy. ing features in source codéEEE TSE 293 (March
2003).

7 Summary and future work [10] EpstelN, J., McHucH, J., QkmaN, H., Riscate, R.,
SQuires, A.-M., DANNER, B., MarTIN, C., BRANSTAD,

We presented an approach to reduce the martirit én- M., Benson, G., ano Rorunig, D. A high assurance

volved in mining security-sensitive operations in legacy  window system prototypelournal of Computer Secu-
servers. Our approach uses concept analysis to mine fin- rity 2, 2-3 (1993).
gerprints, which are code-level descriptions of security- . .
sensitive behavior. Our experiments with three complEkt] ErLNGsson, U. The Inlined Reference Monitor Ap-
real-world servers show that our approach fiscent and proach to Security Policy EnforcemenPhD thesis,
effective at finding security-sensitive operations. Cornell University, January 2004.

In the future, we plan to enhance the static analy§is) gyans, D., ano Twyman, A. Flexible policy-directed

phase with flow-sensitivity and data-flow information. This ~ ~,4e safety. IProc. 1999 IEEE &P (May 1999).
will potentially enable extraction of temporal fingerprints,

i.e., those that also identify the order in which fields of i3] Fiercuer, B. Case study: Open source and com-

data structure representing a resource are manipulated. mercial applications in a Java-based SELinux cross-
domain solution. Ir'8econd Annual Security-enhanced

Linux Symp(March 2006).
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