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Abstract
Correct enforcement of authorization policies is a difficult task, es-
pecially for multi-threaded software. Even in carefully-reviewed
code, unauthorized access may be possible in subtle corner cases.
We introduce Transactional Memory Introspection (TMI), a novel
reference monitor architecture that builds on Software Transac-
tional Memory—a new, attractive alternative for writing correct,
multi-threaded software.

TMI facilitates correct security enforcement by simplifying how
the reference monitor integrates with software functionality. TMI
can ensure complete mediation of security-relevant operations,
eliminate race conditions related to security checks, and simplify
handling of authorization failures. We present the design and im-
plementation of a TMI-based reference monitor and experiment
with its use in enforcing authorization policies on four significant
servers. Our experiments confirm the benefits of the TMI architec-
ture and show that it imposes an acceptable runtime overhead.

1. Introduction
Security enforcement mechanisms must be implemented with spe-
cial care, since any flaw in their implementation may open the door
to a malicious attacker. Because attackers may exploit exceptional
state transitions, enforcement must be correct even on uncommon
code paths, for unusual interleavings of execution, or during abnor-
mal error conditions. Experience shows that achieving these goals
is challenging, especially for multi-threaded software [38, 60]. This
paper introduces Transactional Memory Introspection, an architec-
ture that can significantly simplify the task of correctly implement-
ing security enforcement mechanisms.

Our work is based on Software Transactional Memory (STM),
a technique for declarative concurrency control (e.g., [33, 34, 36,
51]). STM techniques are an active area of research, especially in
connection to multi-core trends in hardware concurrency [43]. With
STM, a runtime system ensures that code sections have effects as
if they were executed in serial order; typically, those code sections
are marked using language-level annotations such as atomic or
transaction. STM constrains concurrency without relying on
error-prone locking and provides attractive guarantees, such as
consistent recovery from failures. Although current STM systems
incur high costs, hardware acceleration and language support may

soon provide competitive overhead [43]. Therefore, in the near
future, much software may be written using STM techniques.

Transactional Memory Introspection (TMI) is a reference moni-
tor architecture that builds on STM semantics and machinery. TMI
allows security enforcement to benefit from STM guarantees, yet
remains compatible with existing security mechanisms, such as
those based on history- or state-based enforcement [2, 18, 31]. TMI
helps ensure that enforcement remains correct, even in corner cases.
In particular, TMI-based enforcement needs neither consider con-
current interleavings of execution nor worry about remedial steps
on policy violation.

Notably, TMI changes how security enforcement is integrated
into software functionality. TMI builds on the precise bookkeep-
ing, or read/write sets, that STM runtime system maintain to de-
tect read/write conflicts for concurrent executions. A TMI refer-
ence monitor is implicitly invoked whenever a security-relevant
shared resource is accessed in a transaction—i.e., on all changes
to security-relevant memory objects in the STM read/write sets—
as well as when transactions commit. Application-specific security
checks ensure security-policy compliance, e.g., that all security-
relevant accesses comply with an authorization policy. A transac-
tion is aborted unless all such security checks are successful.

By triggering security checks on resource accesses, TMI can
ensure complete mediation and can also avoid exceptional control
paths and other complexities arising from explicit security checks.
Furthermore, TMI can reduce the latency and performance over-
heads of expensive security checks, such as group membership
tests. Because security checks need not be fully evaluated until a
transaction attempts to commit, costly security-policy evaluation
can be performed lazily, or in parallel with execution.

The TMI architecture is practical. We have designed and im-
plemented a TMI reference monitor for enforcing authorization
policies on server software. Our TMI implementation is based on
Sun’s Dynamic Software Transactional Memory (DSTM2) toolkit
for Java [35]. In our design, TMI-based enforcement can integrate
the functionality of existing authorization frameworks; we have
performed such integration with Java stack inspection [31] and
XACML [24].

We experimented with TMI-based enforcement of authorization
policies on four servers, comprising a total of nearly 55,000 lines of
code, converted to make use of DSTM2. Our experiments confirm
that the TMI architecture can help ensure the correct enforcement
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a1. dispatch request ( ) {

a2. . . .
a3. perform request ( );

a4. . . .
a5. }

a6. perform request ( ) {

a7. . . .
a8. if (allowed(principal, resource1, access1))

a9. perform access1(resource1);

a10. else handle failure1( );

a11. . . .
a12. if (allowed(principal, resource2, access2))

a13. perform access2(resource2);

a14. else handle failure2( );

a15. . . .
a16. }

b1. dispatch request ( ) {

b2. transaction [ principal ] {

b3. . . .
b4. perform request ( );

b5. . . .
F b6. } /* Commits only if all authorization succeeds */
b7. }

b8. perform request ( ) {

b9. . . .
F b10. perform access1(resource1);

b11. . . .
F b12. perform access2(resource2);

b13. . . .
b14. }

Authorization manager, implicitly invoked by TMI onF lines:
switch (resource access pattern)

case (resource=R, access type=A) −→
if (¬allowed(principal, R, A)) then abort tx;

(a) Current practice in authorization enforcement: Embeds refer-
ence monitor invocations in application code. Presents difficulties
in (1) identifying resource accesses and ensuring complete mediation;
(2) eliminating time-to-check to time-of-use bugs (in lines a8/a9 and
lines a12/a13); and (3) correctly handling authorization failures.

(b) TMI-based authorization enforcement: Decouples application
functionality from policy enforcement. (1) Ensures complete mediation
of all resource accesses via introspection on memory-access bookkeeping
performed by the STM runtime; (2) prevents race conditions by construc-
tion; and (3) allows simple handling of authorization failures via rollback.

Figure 1. A comparison of traditional and TMI-based enforcement of authorization policies.

of security policies, and that it can have acceptable enforcement
overhead. We also found that retrofitting STM techniques and TMI-
based authorization to existing server software was a manageable
task; most of the work was due to DSTM2 limitations that should
disappear in future, more mature, STM systems. Based on our
experiments, we conclude that the TMI architecture is a useful new
alternative for authorization-policy enforcement, and that it can be
widely applicable, even to existing software.

In summary, the main contributions of this paper are:
• Transactional Memory Introspection. We introduce TMI, a

new architecture for implementing reference monitors. We de-
scribe its components and applicability, and show that it can en-
sure complete mediation, freedom from TOCTTOU bugs, and
can simplify handling of errors and authorization failures.
• An implementation of a TMI reference monitor. We show

that TMI-based enforcement can be practically implemented
and can integrate and build on existing security mechanisms and
frameworks. We present one particular TMI implementation,
suited to the enforcement of authorization policies.
• Experimental validation of the benefits of TMI to security

enforcement. We have retrofitted server software with a TMI
reference monitor in a way that integrates with the software’s
existing security mechanisms (e.g., XACML or Java stack in-
spection). Our experiments show that adopting TMI-based en-
forcement can be straightforward, and that this results in simpler
and less error-prone code. We measured an acceptable, average
overhead of less than 11% for TMI-based enforcement of autho-
rization policies.
The remainder of this paper is as follows. In Section 2, we

explain the benefits of TMI for enforcing authorization in server
software; we also give background material on STM techniques. In
Section 3, we present the TMI architecture, give a concrete example
of its application, and discuss enhancements. In Section 4, we
present an implementation of TMI, based on a modified DSTM2,
an object-based STM system for Java. In Section 5, we present
our experiments with the enforcement of authorization policies in

server software. Finally, we discuss related work in Section 6 and
summarize in Section 7.

2. Motivation and background
In this section, we first present our focus application—enforcement
of authorization policies in server software—and explain how TMI-
based enforcement can help overcome many of the difficulties in
the implementation of such enforcement. We then present back-
ground material on transactional semantics and STM techniques.

2.1 Benefits of TMI-based authorization in server software
Server software must protect shared resources from inappropriate
client access by formulating and enforcing an authorization policy.
Such policies specify, for each shared resource, what principals can
perform which operations. At runtime, a reference monitor should
ensure that each access to a shared resource is authorized.

Unfortunately, as prior work shows, integrating authorization
enforcement into server software is time-consuming and error-
prone. For example, it took almost two years to add invocations
of the Linux Security Modules (LSM) reference monitor to the
Linux kernel [56]. Similar recent attempts to enforce authorization
policies in the X11 server [41, 54], the JVM [26], and IBM Web-
sphere [37] have also become time-consuming, multi-year efforts.

To understand the key difficulties in the current practice of
enforcing authorization policies, consider Figure 1(a), which shows
pseudo-code from a server. This server accesses resources on behalf
of a client (on lines a9 and a13). As an example, if this server is
a chat server, the accesses may correspond to adding a user to a
chat forum. Because a chat forum is a shared resource, accesses to
modify the forum must be authorized, e.g., to prevent users from
joining private forums or forums where they are blacklisted.

As shown in Figure 1(a), authorization is typically enforced
by embedding reference monitor checks with server functionality,
using a programming language pattern such as if. . .then. . .else.
Resource accesses are performed conditional on a predicate that
checks whether the access is permitted (lines a8 and a12).

If the access is denied, an error handler is executed (lines a10
and a14) to perform any remedial steps necessary to restore the
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software into a consistent state. In this current practice of autho-
rization policy enforcement, three major difficulties must be over-
come:
• Difficulty in completely mediating access to resources. Two

properties must be ensured for complete mediation of access
to shared resource. First, each access must be checked and au-
thorized. Second, each call to the reference monitor must pro-
vide the correct security-relevant metadata, such as the operat-
ing principal, the identities of accessed resources, and the types
of access (in the chat server example, respectively, the user at-
tempting to join, the chat server forum, and the operation of
joining a forum).

In current practice, ensuring these two properties is a chal-
lenge. First, the locations for authorization checks that guard
each resource access (i.e., lines a9 and a13) are currently iden-
tified manually. This process can easily fail to identify resource
accesses, especially along uncommon, easy-to-overlook code
paths. For instance, consider Figure 2, which shows (simpli-
fied) code snippets from the Linux kernel. Both vfs read and
page cache read read the contents of a file object (the lines in
bold font). However, the function page cache read does not
check for file permissions, since it expects them to have been
checked elsewhere. This omission may lead to an unauthorized
read from a file: Zhang et al. [60, Figure 10] found a case where
an unchecked file object is used by page cache read upon a
page fault from a memory-mapped region.

ssize t vfs read (struct file *file, . . .) {
. . .
if (check permission(file, MAY READ) == ALLOWED) {

file->f op->read(file, . . .);
}

. . .
}

int page cache read (struct file *file, . . .) {
struct address space *mapping =

file->f dentry->d inode->i mapping;
. . .
mapping->a ops->readpage(file, . . .);
. . .

}

Figure 2. An example showing violation of complete mediation.

Second, security-relevant metadata, such as the permissions
to check for authorizing access, are also typically identified
manually and hard-coded into server software. Such decentral-
ized, ad hoc checking is highly error prone, especially as code
is changed over time. Not surprisingly, Jaeger et al. [38, Pages
193-196] found several inconsistencies in the file-access permis-
sions checked on different code paths in the Linux kernel.
• Difficulty in preventing Time-Of-Check To Time-Of-Use

race conditions (TOCTTOU bugs). With the possibility of
concurrent execution, the current practice of authorization en-
forcement shown in Figure 1(a) becomes even more problem-
atic. In multi-threaded server software, the resource accesses
authorized on lines a8 and a12 must still be valid at lines a9
and a13, respectively, for all possible execution interleavings.
Otherwise, an attacker may be able to maliciously exploit the
resulting race condition, or TOCTTOU bug [7]. For instance,
in the chat server example, if the forum is public when the au-
thorization check is performed, then there must be no way for
the forum to become private before a user joins; otherwise, an
unauthorized user may be able to join a private forum.

It is particularly difficult to prevent TOCTTOU bugs when
enforcing authorization in efficient, multi-threaded server soft-
ware, written using modern, modular techniques. Unless all

code paths are accounted for, attackers may be able to induce
context switches between authorization and access, and perturb
shared state in ways that violate the security policy. For instance,
such TOCTTOU bugs were found in the analysis of the LSM-
protected Linux kernel [60].
• Difficulty in correctly handling authorization failures and

other errors. Server software must continue to function de-
spite errors and authorization failures due to one client. In Fig-
ure 1(a), this is the task of the error handlers (lines a10 and
a14), which must return the server software back into a consis-
tent state. Depending on the service, this may involve executing
a complex, uncommon error path, and performing compensating
actions, e.g., to undo other, previously-authorized operations re-
lated to a single server request [2, 8, 55]. If the security policy
that is being enforced is stateful, the state of the enforcement
mechanism may also have to be wound back. For example, if
a chat server user requests to join a forum, and processing this
request involves several steps, then—if the request is eventually
not authorized—an error handler may need to undo all of the
chat server state changes due to the processing of that request.

Several studies show that error-handling code can be a large
fraction of server software; one IBM survey reports error han-
dling to be up to two-thirds of code [12]. Authorization failures
and security exceptions account for a large fraction of errors,
and they are no easier to handle than other errors [6, 25]. Much
software simplifies this problem by treating all errors equally:
by either ignoring them or by halting execution [55]. However,
server software must correctly deal with the corner cases re-
sulting from errors and authorization failures. In the current
enforcement architecture shown in Figure 1(a), this results in
error-prone and difficult-to-maintain software.

The TMI architecture helps avoid the above difficulties by decou-
pling security enforcement from application functionality in soft-
ware that uses STM techniques. For this, TMI requires that ac-
cesses to security-relevant, shared resources be enclosed within a
transaction{. . .} code section, as shown in Figure 1(b). Addi-
tionally, TMI requires an application-specific authorization man-
ager that provides the security checks to be performed upon each
access to a security-relevant resource.

As the server executes, all accesses to shared resources within
a transaction are precisely monitored for the read/write sets of
the STM runtime system. A TMI reference monitor builds on
this bookkeeping to trigger authorization checks. Specifically,
in Figure 1(b), resource1 and resource2 are accessed within a
transaction{. . .} code section. Using TMI-based enforcement,
those accesses will trigger authorization-manager-specified secu-
rity checks corresponding to those in lines a8 and a12 of Fig-
ure 1(a). With TMI, if a transaction is to commit, all such au-
thorization checks as well as a final transaction validation must
succeed.

TMI can guarantee complete mediation by ensuring that the
reference monitor is implicitly invoked whenever shared, security-
relevant resources are accessed within a transaction{. . .} code
section. In particular, with TMI, a developer need no longer identify
and guard individual resource accesses as in Figure 1(a). Rather, as
shown in Figure 1(b), transaction{. . .} code sections may span
multiple resource accesses and method calls; in server software,
such a code section may naturally encompass the code that dis-
patches and handles client requests.

TMI also simplifies failure handling: authorization failures sim-
ply cause a transaction abort, thereby reverting back into the consis-
tent state at the start of a transaction. Thus, a server can be assured
that upon an authorization failure, a request will have no effect, and
the server will be able to give a default response indicating that ac-
cess is denied. With TMI, the reference monitor state itself can also
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acquire (S1.lock);
acquire (S2.lock);
value = S1.pop();
S2.push(value);
release (S2.lock);
release (S1.lock);

transaction {
value = S1.pop();
S2.push(value);

}

(a) Lock-based programming (b) STM-based programming

Figure 3. A comparison of code for atomically moving a data
item between two stacks.

have transactional memory semantics, which can further simplify
correct failure handling for stateful authorization policies.

For multi-threaded software TMI can eliminate TOCTTOU
bugs, by construction, by building on the STM serialization of
transaction{. . .} code sections. Furthermore, TMI can also allow
lazy or concurrent evaluation of security checks, such as the expen-
sive, high-latency group-membership tests often used to check au-
thorization. This enhancement can significantly reduce overheads,
as shown in Section 5; it is discussed further in Section 1.

Because TMI reference monitors are integrated directly with an
STM runtime system, they can perform introspection to determine
security-relevant information, such as old or new data values, ac-
cess types, or other authorization metadata. Such introspection also
allows TMI-based enforcement of history-based or data-dependent
authorization policies, as well as the enforcement of security poli-
cies based on well-formed transactions [14].

2.2 Background on software transactional memory
As defined by the database community [32], a transaction is a se-
quence of actions that must satisfy the ACID properties: Atomicity
requires that all actions complete successfully, in their totality, (a
transaction commit), or that none of them have any visible effects
(a transaction abort). Consistency requires transactions to maintain
application-specific data invariants that hold before transactions.
Isolation requires transaction to give the same result, irrespective
of other simultaneous transactions. Finally, Durability requires that
the data changes of a committed transaction must be persistent and
visible to all subsequent transactions.

STM techniques aim to ease the writing of correct, multi-
threaded programs by providing an abstraction for transactional
access to shared-memory data. Many STM systems extend a pro-
gramming language with new code sections, identified by a special
keyword (often atomic). These code sections execute with trans-
actional semantics as defined above, except that memory is still
transient (the D from ACID is missing). In this paper, we denote
atomic code sections using transaction{. . .}, to avoid confusion
with any given STM proposal.

To see the benefits of STM transactions as a programming ab-
straction, consider the example shown in Figure 3 (adapted from
[43]). In this example, data is popped off a first stack, S1, and
pushed onto a second stack, S2. If executed concurrently, this
code must simultaneously synchronize access to both stacks—
otherwise, execution interleaving may expose abnormal states,
e.g., states where data is on neither stack. Conventionally, this
synchronization would be achieved as shown in Figure 3(a): by
acquiring dedicated locks for S1 and S2, before performing the
pop() and push() operations.

Unfortunately, programming using locks is error-prone. The
programmer must ensure that all the required locks are acquired;
otherwise, a race condition may be possible. The programmer must
also ensure that locks are always acquired in a correct order; other-
wise, a deadlock may be possible. Thus, lock-based programming
raises hard-to-answer questions, such as: Which locks must be ac-
quired? In what order? Does this lock acquisition cause deadlock

somewhere else? Programming with locks is especially tricky in
large, complex software, with many layers of indirection and ab-
straction, or when dealing with third-party libraries, which may not
expose their locks or their locking regime.

In contrast to locks, with STM, the programmer need not spec-
ify how concurrency control is achieved: automatically, each de-
clared transaction{. . .} code section will execute atomically.
In particular, STM frees the programmer from having to identify
the resource instances for which accesses must be synchronized.
Thus, the code in Figure 3(b) can provide the same functional-
ity, yet be significantly simpler and less error-prone than the code
in Figure 3(a). STM requires significant runtime support to make
transaction{. . .} code sections atomic. An alternative is to use
recently-developed techniques [11, 17] that use transaction{. . .}
annotations to automatically infer the locking protocol. However,
these techniques rely on whole-program analysis and are unsound
in the presence of library code.

STM systems must be able to detect and resolve runtime con-
flicts between different transactions. There is great variability in
the implementation of STM runtime support. For instance, imple-
mentations may use compiler support [3], support from software
libraries [35], or hybrid schemes that combine hardware and soft-
ware [19, 23, 49]. Similarly, STM systems also differ in the granu-
larity at which they detect conflicts: word-based STM tracks indi-
vidual memory words (these include most hardware STM systems),
while object-based STM tracks language-level objects (these in-
clude most language-based STM systems). A comprehensive dis-
cussion is beyond the scope of this paper; the book by Larus and
Rajwar gives a good overview of much recent research [43].

Any STM runtime system must track the data dependencies of
transactions, i.e., what data is read, as well as what data is writ-
ten. The STM runtime system must validate that the sets of those
reads and writes (the read/write sets) are not in conflict with other
transactions; a conflict occurs when, concurrently, the same mem-
ory object is used by multiple transactions, and at least one trans-
action changes the value of that memory object. An STM runtime
system that considers only conflicts between accesses within trans-
actions can provide weak atomicity; STM systems that also detect
conflicts from non-transactional activity, and provide strong atom-
icity, may incur greater costs and are less common [1, 34, 52]. Val-
idation can happen eagerly or lazily, as long as each access is val-
idated before a transaction commits. If validation detects conflicts,
the STM runtime system consults a contention manager to decide
which transaction to commit. To allow other, conflicting transac-
tions to be aborted, the STM runtime system must also provide
rollback mechanisms that undo the execution effects of those trans-
actions. Finally, STM systems may support nested transactions, or
other transaction composition.

For software that uses declarative concurrency control, existing
STM mechanisms already perform the majority of the work needed
for TMI-based enforcement. Thus, the adoption of TMI-based se-
curity enforcement is likely to add little in terms of complexity,
mechanism, or performance overhead.

3. Transactional memory introspection
In this section, we describe the TMI architecture and its use in
enforcing authorization policies. We also show a concrete example
of TMI-based enforcement and discuss enhancements.

3.1 The TMI architecture
The TMI architecture aims to raise the level of abstraction in the
implementation of security enforcement mechanisms. It does so
by decoupling application functionality from security enforcement
code, much as STM techniques decouple applications from con-
cerns about lock acquisition order. TMI-based enforcement can
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or authorization 
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lost conflict
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Execution Validation Authorization Commit

Contention 
manager

Authorization 
checks Commit logicTX body

Figure 4. An overview of a TMI reference monitor. The solid boxes are standard components of STM systems, while the dotted boxes
show components added by the TMI architecture.

thereby eliminate concerns about check placement, race conditions,
and exceptional execution paths.

A TMI reference monitor observes the execution of transac-
tions in an STM system. Each transaction is associated with a spe-
cific principal; this principal may be given as an explicit argument
to transaction{. . .} code sections, as shown in Figure 1. The
TMI reference monitor is invoked, implicitly, whenever a security-
relevant, shared resource is accessed, so that compliance with the
security policy can be checked. The TMI reference monitor is also
invoked at the end of a transaction to ensure that only policy-
compliant transactions are allowed to commit.

With TMI, the application software defines the security policy,
the set of resources that are security-relevant, as well as the code
that checks security-policy compliance. In particular, when TMI
is used for authorization in a server, the server code must identify
the resources for which access must be authorized. Depending on
the underlying STM system, this may require code changes, such
as annotations. The server must also define an authorization man-
ager that contains code for security checks; upon each access to
a security-relevant resource, the TMI reference monitor consults
the authorization manager. The authorization manager may evalu-
ate application-specific expressions and maintain its own security
state. Furthermore, TMI supports introspection on security-relevant
information, such as the old or new values for a memory access.
Thus, a TMI reference monitor can observe a rich trace of exe-
cution activity, and evaluate predicates on that trace; this allows
the enforcement of most practical security policies—in particular,
history-based policies and other EM-enforceable policies [50].

Figure 4 shows how a TMI reference monitor extends the
mechanisms of an STM runtime system. As transactions ex-
ecute, the STM runtime system tracks accesses to shared re-
sources in its read/write sets. All accesses within the scope of
a transaction{. . .} code section are tracked, including those
that happen indirectly (e.g., through deeply-nested method calls).
To ensure complete mediation, the TMI reference monitor is in-
voked whenever a security-relevant resource is added or updated
in the read/write sets. For some STM systems, a language-level
type, or annotation (e.g., @atomic in DSTM2) is sufficient to
guarantee these TMI reference monitor invocations. Alternatively,
security-relevant resources may be placed in the read/write sets of
concurrently-executing, dummy transactions, so that they trigger
a conflict. (A similar technique is used to trigger efficient retry in
some STM systems [33].)

As seen in Figure 4, TMI extends the validation step for STM
transactions to also enforce correct authorization, or general com-
pliance with security policies. With TMI, a transaction is aborted if
it performs unauthorized resource access or otherwise violates the

security policy. (Alternatively, certain authorization failures such
as those due to a timeout, might trigger a retry, although we have
not pursued that option.) Upon an abort, the STM runtime system
will roll back all effects of a transaction, including any changes to
the state of the TMI reference monitor. Thus, the application is re-
stored into the same consistent state as before the transaction, apart
from an error code that is returned to the application to indicate the
security violation.

The results of security checks must be established before trans-
actions attempt to commit. However, security checks need not be
fully evaluated when the TMI reference monitor is invoked; the
bulk of the work can often be performed lazily, or even overlapped
with the execution of the transaction. We have used both lazy and
overlapped enforcement of authorization policies for our experi-
ments in Section 5, and found that they can significantly reduce
overheads.

The TMI reference monitor is invoked implicitly upon access to
security-relevant resources, as described above. However, there are
cases when code within an STM transaction must explicitly query
the security policy. For example, a tar utility that archives all the
files in a directory might need to create a consistent archive, even
when one file is not accessible. Therefore, for such exceptional
cases, the TMI architecture supports immediate evaluation of se-
curity policy, without the risk of a transaction abort. Such support
can be implemented in many ways, e.g., with a try. . .catch block
in the application, or by exposing a direct, Boolean authorization
query interface to application software.

The underlying STM system, and its language integration, has
an influence on aspects of TMI-based enforcement that range from
efficiency to applicability. For example, most of the performance
overheads that we measured in our experiments in Section 5 were
due to inefficiencies of the library-based DSTM2 system. Also,
as an extreme data point, TMI may not be not compatible with
some limited, hardware-only transactional memory proposals, such
as [20, 21]. More commonly, TMI-based enforcement must take
into account any gaps in complete mediation that may arise as
a result of the limited, weak atomicity provided by most STM
systems. For example, in server software, this may entail placing
transaction{. . .} code sections around all handling of requests,
since any request processing might access a security-relevant,
shared resource.

A TMI reference monitor is best built on an STM system with
comprehensive support for I/O and external state, since security
policies often aim to constrain externally-observable effects. For
example, some STM systems extend transactional semantics to
I/O in transaction{. . .} code sections using the support for dis-
tributed transactions provided by an increasing number of I/O sys-
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tems (e.g., the NTFS file system [45] and MySQL database [44]).
Techniques for extending STM semantics to I/O and external state
are an active area of research [22, 43, 48]. For this paper, we have
extended an STM implementation to provide transactional file
and database I/O, using off-the-shelf transactional I/O packages
(e.g., [39, 44, 45]).

3.2 Example of TMI-based authorization policy enforcement
As a concrete example of using a TMI reference monitor to en-
force authorization policies on client requests, consider Figure 5,
which shows a snippet of code taken from GradeSheet, a Java-
based multi-threaded server to manage student grades. For our ex-
periments in Section 5, we modified GradeSheet to make use of the
object-based STM system DSTM2.

The key data structure in GradeSheet is sheet, a two-dimensional
array of GradeCell objects, each of which stores the details of a
student, a project, and a granted grade or an average grade. The
sheet table can be accessed by multiple principals and each access
must be properly authorized. For instance, GradeSheet may enforce
that a teaching assistant can only access/modify the student grades
in projects that she supervised. GradeSheet parses commands is-
sued by clients in the top-level function doRequest, which dis-
patches requests; Figure 5 shows how getGrade and setGrade
are dispatched and access the sheet table.

The GradeSheet code must be changed in three ways to make
use of DSTM2 and TMI-based enforcement; Figure 5 shows the
relevant code in bold. First, GradeSheet code that may access
shared resources is wrapped in a transaction{. . .} code section
that correctly identifies the acting principal. Second, with TMI-
based enforcement, server code must correctly handle a transaction
abort because of authorization failure; for GradeSheet, no code
change was required, since doRequest already indicated failure
with return null. Third, DSTM2 requires shared state to be
especially marked, hence the @atomic annotation before the class
definition of GradeCell.

Aside from these changes, a separate authorization manager
also must also be provided to enable TMI-based enforcement. We
have specified GradeSheet authorization policy using XACML;
the policy details are given in Section 5.1. Parts of the autho-
rization manager are shown in the lower half of Figure 5. The
TMI reference monitor is invoked on each read or write of a
GradeCell object, since those objects are the security-relevant
resources. The GradeSheet authorization manager specifies how
xacml getdecision checks must be invoked based upon the type
of access that was performed. For example, a read access to the
grade field indicates a that the getGrade security-relevant oper-
ation is being performed, which triggers the relevant check in the
authorization manager.

3.3 Enhancements
The basic TMI reference monitor architecture presented above can
be augmented in several ways, as discussed below.
(1) Eager, lazy and overlapped enforcement. With eager en-
forcement, authorization checks happen immediately upon each
security-relevant update to the STM read/write sets of a transaction;
each authorization check must be fully completed before the trans-
action continues execution. Explicit authorization queries, such as
described in the tar utility example on page 5, Section 3.1, always
trigger eager enforcement.

In contrast, with lazy enforcement, only the inputs to autho-
rization checks are evaluated, or copied, when the TMI reference
monitor is invoked. Validation and authorization happens at the end
of the transaction, when all security-relevant operations performed
during the transaction are authorized en masse. If any of the opera-
tions is not authorized, the entire transaction fails.

With overlapped enforcement, each transaction may spawn an
auxiliary thread to perform policy evaluation. Subsequently, when
the transaction performs a security-relevant operation, the inputs
for authorization checks are dispatched in a message to this aux-
iliary thread, which then performs the authorization checks con-
currently. During validation, transaction execution joins with the
auxiliary thread, and the transaction is aborted if any authoriza-
tion checks failed. Our experimental evaluation in Section 5 shows
that overlapped enforcement is effective in improving performance
when both the transaction body and policy evaluation have high
latency, or are computationally expensive.

With lazy and overlapped TMI-based enforcement, transactions
are speculatively executed with optimistic assumptions. Like other
speculative security enforcement, such as that of [46, 59], this may
benefit performance but may also expose new side channels and
increase the risk of leaking information. (Also, like all substantial
runtime mechanisms, the STM itself system may add new covert
channels.) For example, given an STM runtime system that pro-
vides weak atomicity and updates memory in-place (e.g., that in
[3]), lazy and overlapped TMI-based enforcement will expose in-
formation to non-transactional activity. Thus, lazy and overlapped
TMI-based enforcement is more suited for policies for integrity,
auditability, etc., than for policies where confidentiality is critical.
(2) Stateful authorization policies. In stateful authorization poli-
cies, such as those expressed using security automata [18, 50], each
security-relevant operation potentially alters the state of the policy.
Enforcing such policies requires two enhancements to the basic de-
sign of the TMI reference monitor.

First, the order in which security-relevant operations happen
decides how the state of the policy changes, and must therefore
be recorded. This is achieved by building TMI an introspection log
on top of the STM read/write sets. Each read/write to an object in
a transaction is added to the end of this log, thereby preserving the
order in which these operations happen. During enforcement, the
introspection log is used to update the state of the authorization
policy. Second, for stateful policies, it is also important to have
transactional semantics on the state of the policy. This is because
upon an authorization failure, the state of the policy may also have
to be restored.
(3) Fingerprints. A security-relevant operation on a resource may
often consist of a several low-level accesses to that resource. A
fingerprint maps each such security-relevant operation to the low-
level resource accesses that constitute the operation [28]. For ex-
ample, in FreeCS, a chat server that we evaluated (Section 5.3), the
security-relevant operation of a user joining a chat room involves
reading the field usrList of an object called Group, followed by
writing to a field grp of an object called User. Prior work pre-
sented techniques to automatically mine such fingerprints by ana-
lyzing server source code [28].

For each security-relevant operation that consists of multiple
resource accesses, we supply the TMI reference monitor with its
fingerprint. The reference monitor matches the resource accesses
specified in the fingerprint against updates to the read/write sets
to determine when security-relevant operations are performed dur-
ing the transaction. In some cases, such as the FreeCS example
discussed above, the fingerprint may consist of a sequence of re-
source accesses (rather than a set). Thus, the TMI reference monitor
must be extended to support an introspection log, and fingerprints
must be matches against this log to determine when a correspond-
ing security-relevant operation is performed.

4. Implementation
We implemented a TMI reference monitor by extending Sun’s Dy-
namic Software Transactional Memory (DSTM2) package [35].
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/* @atomic */ class GradeCell {
StudentID sid;
ProjectID pid;
int grade;

};
/* Other class declarations omitted for brevity */

GradeCell[][] sheet;

String getGrade(int s, int p)
{

return "" + sheet[ s ][ p ].grade;
}

String setGrade(int s, int p, int g) {
sheet[ s ][ p ].grade = g;
return "" + g;

}

/* Server handling of a command for a client principal */

String doRequest(Object principal, String command)
{

transaction[ principal ] {
Tokenizer st = new Tokenizer( command );

String action = st.nextToken();
int student = st.nextInt();
int project = st.nextInt();

if (action.equals("getGrade")) {
return getGrade(student, project);

} else if (action.equals("setGrade")) {
int grade = st.nextInt();
return setGrade(student, project, grade);

} ...
}

return null;
}

XACML GradeSheet authorization manager: if xacml getdecision evaluates to “permission denied”, TMI aborts the transaction.
switch (resource access pattern)

case (resource=GradeCell G, field=grade, access type=read) −→ xacml getdecision(principal, G, getGrade);
case (resource=GradeCell G, field=grade, access type=write) −→ xacml getdecision(principal, G, setGrade);

Figure 5. Code fragment showing the changes needed for TMI-based policy enforcement in GradeSheet.

DSTM2 provides a framework for Java object-based STM systems,
along with some concrete STM runtime mechanisms. DSTM2 sup-
ports STM fundamentals but not uncommon features (e.g., nested
transactions). Thus, DSTM2 mechanisms track read/write sets, per-
form validation and contention management, and commit/abort
transactions. In particular, DSTM2 contains two mature, substan-
tial STM mechanisms for detecting and resolving conflicts (the
obstruction-free and shadow @atomic object factories).

Our implementation is compatible with any STM mechanism
that fits into the DSTM2 framework; in particular, we have applied
TMI-based enforcement with several different DSTM2 contention
managers and both types of @atomic objects. Our implementation
also allows TMI reference monitors to make use of other, existing
security mechanisms; for our experiments, we have integrated TMI
with XACML [24] and Java Stack Inspection [31].

Our implementation extends DSTM2 by interposing on up-
dates to read/write sets and on the transaction commit/abort logic.
A TMI reference monitor is invoked at the start and end of
transactions (just before commit or abort), as well as on each
access that may change a transaction’s read/write set (i.e., on
all accesses to @atomic objects). These invocations trigger the
application-specific authorization manager, which filters out ac-
cess to security-critical objects and performs authorization checks.
If an access is not authorized, the transaction is aborted and an
AccessDeniedException is thrown. (This is the only exception
a transaction can throw: for other exceptions, DSTM2 implements
a fail-stop model.)

In our implementation, most authorization checks can be de-
ferred by copying all security-relevant metadata into an introspec-
tion log. Security-relevant information can change during a trans-
action, so the introspection log must contain immutable copies of
this metadata for input to authorization checks. Our implementa-
tion supports both lazy-until-commit and overlapped enforcement
of deferred authorization checks. (Explicit, functional checks may
not be deferred, as discussed in Section 3.1, and are always eagerly
evaluated.) In our experiments, we have also used the introspection
log to enforce history-based authorization that detects the finger-
prints of security-relevant operations.

We also extended DSTM2 to support transactional I/O, by
adding to the commit/abort logic support for two-phase distributed
transactions [32]. Using this support and the Apache Commons li-
brary [39], we extended STM semantics to file I/O. We also added

partial DSTM2 support for transactional modifications to back-end
databases using java.sql.Connections.

Overall, not counting library code, our implementation adds
less than 500 lines of Java code to DSTM2; each application-
specific authorization manager is between 100 and 200 lines. We
also created @atomic versions of standard Java data structures and
containers; these, and other modifications comprise a few thousand
lines of code changes.

Our TMI reference monitor implementation applies only to
DSTM2 server software—just as the TMI architecture applies
only to software that uses declarative concurrency control. Be-
cause no such software existed, we first had to retrofit DSTM2
onto server software in order to experimentally validate our imple-
mentation. This porting involved three changes (the first two, sub-
stantial changes would not be required with a language-integrated
STM system, such as [3, 33]). First, all shared objects had to be
identified, and their class replaced with an equivalent, transactional
class, annotated with the DSTM2 @atomic keyword. For this, we
had to implement @atomic versions of common data structures,
such as java.util.HashMap and java.util.Vector; for sim-
pler data structures, containing only @atomic objects, scalar val-
ues, or strings, we could use DSTM2 support for automatic gener-
ation of @atomic classes. Second, the reads and writes of fields in
@atomic objects had to be changed to use DSTM2 accessor func-
tions. Third, and most simply, a transaction{. . .} block had to be
introduced around the handling of client requests, as well as other
code that accesses shared resources.

Given the above modifications, adding TMI-based enforcement
of authorization policy was easy for the server software in our ex-
periments. First, the principals had to be identified and exposed
for each transaction{. . .} code section. (In our implementa-
tion, principals are transaction arguments, as shown in Figure 5,
where the principal variable contains the principal.) Second, an
application-specific authorization manager had to be written for
instantiation at the start of server execution. This task primarily in-
volved understanding the server’s authorization policy, the server’s
security-relevant resources, and what metadata to copy into the
introspection log. Finally, for some experiments, we had to inter-
face the authorization manager with external security mechanisms
(namely, XACML [24] and Java Stack Inspection [31]).
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5. Evaluation
This section reports on the retrofitting of four servers, comprising
nearly 55,000 lines of Java code, with TMI-based authorization
using our DSTM2-based implementation. Our intent with these
experiments was to evaluate whether the TMI benefits held in
practice.

The results of our evaluation confirm that TMI-based enforce-
ment is practical, and can be easily adopted by STM servers to
facilitate the writing of simple, correct authorization code. Further-
more, our results confirm that TMI can be integrated with existing
security mechanisms, that TMI has acceptable enforcement over-
head, and that TMI can adapt enforcement and overhead to each
workload—in some cases allowing absolute performance improve-
ments over traditional authorization.

5.1 GradeSheet: A simple grade management system
As discussed in Section 3.2, GradeSheet is a simple client/server
Java application to manage student grades, containing about 900
lines of code. Principals are either graders (professors or TAs) or
students. GradeSheet enforces the following authorization policy:
(1) a professor may read/write all grades and read all grade aver-
ages; (2) a TA may read/write grades for projects that she super-
vised and read any project’s grade average; and (3) a student can
only read her own grades and project grade averages.

We ported GradeSheet to use TMI-based authorization policy
enforcement and converted all shared objects to their DSTM2
@atomic equivalents. GradeCell objects must be authorized
based upon their security-relevant attributes, namely grades, stu-
dent IDs and project IDs. We integrated the TMI authorization
module with both a custom-built policy engine as well as another
one that used XACML [24] policies.

5.2 A Tar archive service
We experimented with a 5,000 line Java service that allows standard
Tar archives to be created and processed [53]. We converted this
code to use TMI-enhanced DSTM2, and perform each service
invocation within a transaction. Few lines were changed in this
conversion: we used a simple, static escape analysis to establish
that most state was transaction-local, and that no @atomic objects
were required.

Subsequently, we added TMI-based enforcement of file-system
authorization policies to the converted Tar service. We imple-
mented this enforcement with an authorization manager that is also
installed as, and inherits from, the Java SecurityManager [31].
Thus, our TMI reference monitor accurately models system-level
access control in Java.

In particular, our TMI reference monitor is invoked whenever
any files are opened for reading or writing. As before, it can per-
form authorization checks lazily or in an overlapped fashion, by
copying into an introspection log any security-relevant metadata,
including the Java stack-based security context.

We have used our implementation for lazy and overlapped en-
forcement of existing Java stack inspection security policies. We
used java.security.AllPermission, the simplest policy avail-
able for Java stack inspection. Coupled with overlapped enforce-
ment, more complex policies would amplify the trends shown in
our experiments. In particular, potentially more work could be per-
formed in parallel with the main execution.

5.3 FreeCS: A chat server
FreeCS is a Java-based chat server that consists of about 22,000
lines of code [27]. FreeCS allows its users to broadcast messages;
a message broadcast by a user is visible to all other users in the
same group (FreeCS’s equivalent of a chat room). A user can issue
several commands via a FreeCS interface, including commands to

join a new group, invite other users to her group and ban members
from her group; in all, FreeCS supports 47 such commands.

A FreeCS user is associated with a privilege level, e.g., Super-
User, Guest, Punished, Banned; the set of commands that a user
can issue is based upon her privileges. Similarly, a group can also
be Open or Locked: users can freely join Open groups, while spe-
cial privileges are required to join Locked groups. FreeCS enforces
a variety of policies on users and groups. However, these poli-
cies are hard-coded in FreeCS (using language constructs, such as
if. . .then. . .else).

We ported FreeCS to use TMI-based authorization policy en-
forcement. We used the TMI reference monitor to both replace
FreeCS’s enforcement mechanisms for several commands, as well
as augment FreeCS to enforce several policies that it currently does
not. Our implementation uses the XACML framework to express
FreeCS authorization policies. In each case, if a user is not autho-
rized to perform an operation (e.g., join a group), FreeCS rolls back
the failed operation, and sends a failure message to the user; no ad-
ditional failure-handling code was required.

Overall, our port of FreeCS to use TMI-based enforcement
required about 860 changes in seven classes. In all, we introduced
transactions for all 47 FreeCS client requests. Most of the changes
to FreeCS involved replacing reads/writes of transactional objects
with DSTM2 accessor functions. As described in Section 4, this is
a limitation of any library-based STM, which can be overcome with
compiler-based or language-based support for transactions.

Several security-relevant operations in FreeCS consisted of
multiple low-level object accesses. We therefore supplied the TMI
reference monitor with fingerprints to recognize these security-
relevant operations. These fingerprints were also sensitive to the
order of accesses; we therefore used introspection logs as the basis
for TMI-based enforcement.

5.4 WeirdX: A window management server
WeirdX is a Java-based X window server that consists of about
27,000 lines of code [40]. WeirdX supports the X protocol; there-
fore X clients can connect to WeirdX, and communicate with each
other and with WeirdX in much the same way that they do on the
X11 server [58].

Much like the X11 server, WeirdX does not enforce any policies
on X clients that connect to it. Therefore, a malicious X client can
access/modify resources that belong to other clients of WeirdX.
This has serious consequences; an X client can register to receive
events (e.g., keystrokes) sent to other clients, or even shut them
down. Prior work has motivated the need for window management
servers to enforce authorization policies on clients to prevent such
attacks [41].

We ported WeirdX to enforce authorization policies using TMI.
We used TMI in conjunction with the XACML framework to for-
mulate and enforce several policies that have been discussed in
prior work [41], including preventing a rogue X client from killing
arbitrary X clients, and mediating copy/paste operations. For exam-
ple, we enforced the Bell-LaPadula policy on how data copied from
an X client can be pasted to other X clients.1 Overall, our port of
WeirdX required about 4,800 changes in 25 classes, and introduced
108 transactions to the code that dispatches X protocol requests to
handlers; as with FreeCS, most of these changes were related to re-
placing reads/writes of transactional objects with DSTM2 accessor
functions. We also had to make a few changes to WeirdX code that
handled output to the screen. In particular, we modified WeirdX to
buffer writes that happen within transactions, and flush the buffers
only upon a transaction commit.

1 We used IP addresses of X clients as their security labels, though finer-
grained security labels are possible with OS support [54].
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No-STM STM-only STM-TMI/Eager STM-TMI/Lazy STM-TMI/Overlapped
GradeSheet 398 µs 451 µs 452 µs (0.3%) 458 µs (1.4%) 694 µs (54%)
Tar 4.96 s 15.40 s 15.24 s (−1.0%) 16.87 s (9.5%) 12.96 s (−15.8%)
FreeCS 321 µs 3907 µs 5471 µs (40%) 4075 µs (4.3%) 4244 µs (8.6%)
WeirdX 0.23 ms 6.40 ms 69.12 ms (10.8×) 7.74 ms (21%) 7.15 ms (11%)

Figure 6. Performance measurements for servers. The overhead of using TMI (shown in parentheses) is calculated by comparing the
STM-TMI variant against the STM-only variant. Numbers in bold show the most efficient TMI variant for each server.

5.5 Performance
We evaluated the performance of three variants of the GradeSheet,
Tar, FreeCS and WeirdX servers. The first variant, No-STM, is an
unmodified server. The second variant, STM-only, is a server that
has been ported to use an unmodified DSTM2, for concurrency
control only (STM-only). The third server variant, STM-TMI, is the
server ported to use our modified DSTM for concurrency control
and to use TMI-based authorization. In this variant, each client re-
quest to the server is handled as an STM transaction, the TMI refer-
ence monitor mediates on all access to security-relevant resources,
and a server authorization manager performs security checks.

The same authorization policy is enforced in all three server
variants. In the STM-TMI variant, enforcement uses our added
TMI-based enforcement mechanisms, while the No-STM and
STM-only variants use the original server authorization mecha-
nisms. However, only the STM-TMI variant of WeirdX performs
enforcement, since the unmodified server had no security policy.

We ran experiments and measured the performance of the four
servers and their variants. Furthermore, for the STM-TMI variant,
we ran three experiments, using implementations of eager, lazy and
overlapped authorization managers. Figure 6 reports the arithmetic
mean of the measured wall-clock execution time for the following
processing: the handling of a client request in GradeSheet (avg.
over 60,000 requests), the archiving of 10,000 empty files to/from
a ramdisk using Tar (avg. over 10 runs), the addition of a user to
a FreeCS forum (avg. over 750 runs), and creating and mapping
subwindows (as performed by the x11perf/create benchmark [57]).
These experiments included no contention and no authorization
failures; they ran on a quiescent system with Intel Core 2 Duo
processors. The measurements did not significantly vary from the
reported averages.

As Figure 6 shows, lazy TMI enforcement (STM-TMI/Lazy)
always incurs acceptable overheads—under 21% in all cases. Ea-
ger TMI-based enforcement (STM-TMI/Eager) has even lower
overhead for GradeSheet and Tar (which shows a not-statistically-
significant 1% speedup). However, eager enforcement is not a good
strategy for FreeCS and WeirdX, where it results in a significant
slowdown. This is because both FreeCS and WeirdX use a complex
fingerprint to identify security-relevant operations, such as joining
a forum and creating/mapping windows. While lazy enforcement
can match fingerprints once and for all, before commit, eager en-
forcement checks for a match on every security-critical access. In
particular, the x11perf/create benchmark creates and maps several
hundred subwindows; with eager enforcement, each of the create
and map operations entails fingerprint matching and policy lookup,
which results in a very significant slowdown of WeirdX. Thus, the
choice between lazy and eager TMI-based enforcement can depend
on the authorization strategy, as well as the server software and its
workload.

With overlapped TMI enforcement (STM-TMI/Overlapped),
our implementation creates a thread for each transaction. There-
fore, one may expect significant overhead on short transactions;
indeed, as shown in Figure 6, we measured 54% overhead for
GradeSheet. However, we observed a speedup of 15.8% for Tar;
this is because expensive stack-inspection-based authorization of
Tar can be usefully overlapped with transaction execution. FreeCS

and WeirdX can similarly benefit from having fingerprint match-
ing performed on a parallel thread. (However, for FreeCS, the
best strategy is still lazy, one-shot matching upon commit.) Thus,
whether to overlap TMI-based enforcement can depend on trans-
action length, the cost of thread creation and synchronization, and
the cost of authorization checks.

As shown in Figure 6, TMI-based authorization has acceptable
overhead when applied to servers written to use STM techniques;
TMI-based enforcement can even improve the performance of such
software. However, the No-STM and STM-only columns show that
simply using DSTM2 for concurrency control results in a very sub-
stantial performance overhead. It must be emphasized that this high
overhead (11× for FreeCS and 28× for WeirdX) does not apply
in general to other STM systems (see [43]). Rather, it is an arti-
fact of the library-based DSTM2 implementation, which is a re-
search prototype without compiler or language-runtime support.
STM systems that are compiler-based [3], language-based [33], or
hardware-accelerated [19, 23, 49] incur much lower overheads than
DSTM2. The overhead of future, language-integrated STM sys-
tems is likely to be competitive with other means of concurrency—
especially as STM techniques are widely adopted, and optimized,
and accelerated with hardware support.
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Figure 7. Comparing lazy versus eager enforcement in the
presence of contention.

We also evaluated the overhead of lazy and eager authorization
managers at different contention levels; Figure 7 presents the results
of this experiment. At x% contention, a transaction execution has
x% chance of being retried because it conflicts with another, con-
current transaction; thus, 100−x% of execution attempts will return
a response (by commit or authorization failure). We measured the
time for GradeSheet requests while varying the contention from 0–
50%; of all requests, 5% failed an authorization check. At low con-
tention, eager enforcement is more efficient, since it performs no
work in copying metadata into an introspection log. However, as
contention grows, lazy enforcement becomes more efficient. This
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is because eager enforcement performs authorization checks on all
accesses, even for transactions that must be retried because they
encounter a conflict due to contention. In contrast, with lazy en-
forcement, authorization checks happen only once, at commit, no
matter how often the transaction was retried.

Determining the most efficient enforcement strategy requires
measuring factors such as contention, the cost of authorization
checks, the time to execute a transaction body, and the rate of autho-
rization failures. We have implemented simple measure-and-adapt
authorization managers that switch between eager and lazy en-
forcement. Our experiments with such adaptive enforcement con-
firms that it can follow the more efficient of the two curves shown
in Figure 7.

6. Related work
We focus our discussion of related work to four areas: applications
of transactions to security; comparing TMI and virtual machine in-
trospection; work on exception handling and recovery; and aspect-
oriented software development.

Applications of transactions to security. Clark and Wilson’s in-
fluential model for commercial security policies is defined in terms
of separation of duty and well-formed transactions that preserve
data integrity [14]. Our TMI-based approach is well-suited to en-
forcing such security policies: TMI can ensure that transactions
never commit unless all actions are authorized, e.g., based upon
separation of duty policies, and that application data is consistent,
i.e., the integrity of all data items has been verified.

The Vino operating system used transactions to isolate the ef-
fects of misbehaving and/or malicious kernel extensions, such as
device drivers, by executing them in the context of a transaction.
If an extension fails or violates system policy (e.g., by hoarding
resources), Vino simply terminates the corresponding transaction,
thereby isolating the extension. In contrast to TMI, which uses ex-
isting STM mechanisms to enforce policies, Vino used a custom-
built transaction manager in the kernel. Further, Vino only relied
on transactions for remediation; though resources accessed during
a transaction are logged, they are only used to restore system state.
In contrast, TMI uses access logging in a key way to achieve com-
plete mediation.

Chung et al. recently used transactional memory to imple-
ment thread-safe binary translation and applied it to implement
information-flow tracking [13]. This work primarily uses transac-
tional memory to ensure thread-safe access to security metadata
(i.e., taint bits). The TMI architecture, coupled with a dynamic bi-
nary translation system, can also be applied to track information
flow; in this role, TMI will primarily help avoid TOCTTOU bugs
when accessing security metadata. However, Chung et al. show that
information-flow tracking can be implemented using hardware-
only transactional memory techniques as well; in contrast, the TMI
architecture requires software support.

Peyton-Jones and Harris proposed a framework to support
programmer-supplied data invariants in the Haskell STM [47].
These invariants are Boolean functions that are evaluated just be-
fore a transaction commits. Much like TMI, any invariants that
are violated result in a transaction abort. However, this framework
does not allow security checks at each access to a security-relevant
resource, or the maintenance of introspection logs. Even so, a TMI
reference monitor could potentially benefit from its supporting
mechanisms.

Virtual machines for security. Virtual machine monitors (VMM)
have recently emerged as a popular location to implement security
enforcement mechanisms [10]. Indeed, at least superficially, they
offer many of the same benefits as a TMI-based security mecha-
nism. They allow introspection of runtime state of the guest oper-

ating system, thereby easing the construction of intrusion detection
systems that resist evasion and attack [30]. They also permit roll-
back and replay of system state, thereby allowing the construction
of malware detection and forensic tools (e.g., [16, 42]).

TMI offers several advantages over the VMM-based approach.
Foremost, TMI extends declarative concurrency control and there-
fore applies at the instruction-level of granularity, in contrast to
VMM-based techniques, which apply at a much coarser level of
granularity. This difference is significant. It allows TMI-based
techniques finer-grained control over program execution, thereby
permitting instruction-level rollback. It also improves application
development by easing the integration of security enforcement
mechanism: TMI eliminates TOCTTOU bugs by construction, sim-
plifies the handling of security exceptions, and ensures complete
mediation of all resource accesses within transactions. Such fine
grained control over program execution may possibly be imple-
mented within a VMM as well, but the engineering overheads of
doing so are much higher.

In contrast, the VMM-based approach provides better control
over system level events, such as I/O. For example, file system
changes can be undone by simply rolling back to an earlier state;
TMI must be coupled with transactional I/O libraries to support
rollback of system-level events. In addition, the VMM-based ap-
proach can be used to enforce security policies on legacy binaries;
in contrast, TMI requires changes to server code. Combining TMI
with VMM-based techniques to construct security mechanisms is
an interesting area for future work.

Exception handling and recovery. As argued earlier, TMI lever-
ages transaction rollback to simplify the handling of security ex-
ceptions. An IBM survey reports that a large fraction of server code
relates to exception handling [12]. Weimer and Necula [55] found
that up to 46% of code on several Java benchmarks was exception
handling code (or reachable from it) and that SecurityException
was one of the most common exception classes that these bench-
marks handled erroneously. Exception handling code is often com-
plex, especially when it must consider several corner cases [9, 25,
55]. Indeed, there is experimental evidence that exception handling
code is more likely to contain bugs [15]. Because security excep-
tions account for a large fraction of exception handling code, the
TMI-based approach can result in easier-to-maintain, and less clut-
tered code.

Another related approach to handling exceptions without im-
pacting availability is Microreboot [8]. This technique offers fine-
grained control over the server, e.g., by allowing parts of it to be
rebooted, without impacting server availability. TMI is similar to
Microreboot in that it also offers fine-grained, instruction-level con-
trol over exception handling in server software.

Aspect-oriented software development. Aspect-oriented pro-
gramming languages, such as AspectJ [5] and AspectC++ [4],
allow concerns that crosscut an application (e.g., security and error-
handling) to be developed separately and integrated with the appli-
cation. An aspect weaver matches the application against a set of
patterns (called pointcuts) and integrates appropriate advice (akin
to actions) at each program point that matches a pattern.

Because TMI enforces authorization policies by introspecting
on the STM’s read/write sets, it is a dynamic aspect weaver. How-
ever, the key advantage that TMI provides over traditional aspect
weavers is that it does not require advice to deal with authoriza-
tions exceptions, which automatically trigger transaction rollback.
In contrast, traditional aspect weavers must be supplied with ad-
vice to restore application state on an exception. In addition, TMI
also provides thread-safe aspect weaving, and does not introduce
TOCTTOU bugs or deadlocks.
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7. Summary
The correct implementation of security mechanisms is a difficult
task, due to the challenges of providing complete mediation, pre-
venting TOCTTOU bugs, and ensuring correct handling of policy
violations. The TMI architecture can significantly reduce the dif-
ficulties of correctly implementing security enforcement. A TMI-
based authorization mechanism can get precise information about
all security-relevant runtime accesses, without having to worry
about race conditions, and can handle security violations by rolling
back to a consistent software state. TMI-based enforcement is flexi-
ble, and can integrate with other, existing security mechanisms. For
some policies and workloads, TMI-based enforcement can lower
the overhead and latency of enforcement; in particular, TMI allows
authorization checks to be overlapped with execution. We believe
that the combination of TMI and declarative concurrency control
is a highly attractive architecture for the creation of future, secure
software.

There are several avenues for future work on the TMI architec-
ture. For instance, while this paper has focused on enforcing au-
thorization policies, TMI can also implement many other security
services, ranging from runtime information-flow tracking to intru-
sion forensics. Similarly, TMI may be combined with static anal-
ysis, in particular, to automatically identify authorization points
(e.g., as in [29]), to determine transaction boundaries, or to elim-
inate unnecessary reference monitor invocations. Finally, TMI en-
forcement might integrate some of the developments in the rapidly-
progressing field of STM systems, such as the recently-proposed
techniques for handling I/O within transactions [22, 48].
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