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Abstract

Securing access to files is an important and growing concern in corporate environments. Employees
are increasingly accessing files from untrusted devices, including personal home computers and mobile
devices such as smart phones, that are not under the control of the corporation, and may be infected with
viruses, worms, and other malware. In such cases, it is crucial to protect the confidentiality and integrity
of corporate data from malicious accesses. Existing tools available to network administrators are either
too permissive or too restrictive in allowing file access from untrusted devices.

This paper proposes a novel scheme called Working Set-Based Access Control (WSBAC) to restrict
network file system accesses from untrusted devices. The key idea is to continuously observe and extract
working sets for users when they access files from trusted devices. These working sets are used to restrict
file accesses when users connect untrusted devices. This paper reports on the design and implementa-
tion of tools to automatically extract working sets, and transparently enforce WSBAC without requiring
changes to the file system. Our experiments with realistic network file system traces lead us to conclude
that using working sets offers a flexible yet secure way to restrict access from untrusted devices, and that
the runtime overheads of WSBAC enforcement are negligible.

1 Introduction

This paper concerns the problem of securing access to files on corporate Intranets. Employees are increas-
ingly beginning to access such files from a variety of devices, including personal computers as well as
mobile devices, such as smart phones. File access is typically secured using standard network file systems
authentication mechanisms, such as VPNs and firewalls. However, a user may choose to access files from
a device whose software stack is not under the control of the corporation. Such an untrusted device may
contain malware, such as viruses and worms, that compromise the confidentiality and integrity of corporate
files when they are accessed via these devices. For example, a worm on an employee’s mobile phone may
delete all her files when she accesses the corporate Intranet.

Prior work on securing access to resources on corporate Intranets has focused on verifying the software
stack on employees’ devices. Sailer ef al. [24] present an attestation-based approach that uses Trusted Plat-
form Module (TPM) hardware to acquire integrity measurements of the software running on an employee’s
device. User connections are allowed only from devices that run software configurations that have been ap-
proved by the corporate network. While this approach limits user connection origination from valid trusted
devices, it assumes the existence of TPM hardware on those devices. Neither legacy devices nor most of to-
day’s handheld devices have such hardware installed. This necessitates an all-or-nothing approach to allow
access from such devices—either prevent them from connecting to the corporate network or allow them to
connect at the risk of exposing the file system to malicious accesses from these devices.

This paper proposes a novel approach, called Working Set-Based Access Control (WSBAC), that restricts
file access from untrusted devices without requiring special hardware and in a manner that is fully compatible



with legacy file systems. Our approach augments access control mechanisms implemented on network file
systems with the notion of working sets. The key idea is to prevent accesses to files outside an employee’s
working set when this access happens from an untrusted device. | When an employee accesses files from a
trusted device (e.g., on the corporate network), she is allowed free access to all her files, and is limited only
by the native access control policy enforced by the network file system. Simultaneously, an agent on the
corporate network observes her file access patterns and extracts her working set. This working set is used to
construct an access control policy that is enforced upon access from an untrusted device.

Using the employee’s working set to regulate file accesses ensures that access control is neither overly
restrictive, nor overly permissive. Intuitively, most file accesses are governed by the working set; indeed
prior work has shown temporal patterns in user file accesses [29]. Because an employee will tend to access
a file that she has recently accessed, using the working set does not overly restrict file accesses. In contrast,
malware accesses to the file system, such as those by viruses and worms, typically exhibit no such patterns.
Using the working set to guard accesses from untrusted devices ensures that files outside of the employee’s
working set are protected from such accesses by malware. Damage caused by malware is thus restricted
to the employee’s working set. Because the working set only contains files that have most recently been
modified by the employee (e.g., during the course of a day), WSBAC can be coupled with version-control
systems to recover quickly from the damage caused by malware.

Implementing WSBAC requires the design and implementation of two key agents, one that extracts the
working set and formulates a file access policy (POLEX), and one that enforces this policy (POLEN). We have
implemented both POLEX and POLEN for the network file system (NFS) protocol. POLEX automatically
extracts a user’s network file system working sets by observing that user’s network file system accesses.
Through this extraction, POLEX generates per-user working set summaries, which are subsequently utilized
by POLEN. POLEN is the WSBAC enforcement agent that interposes on the network file system client-
server path and intercepts all messages passed between them. To perform WSBAC policy enforcement,
POLEN extracts, inspects, and modifies network file system message attributes. Finally, POLEN provides
speculation mechanisms to allow file creations and writes from untrusted devices to occur in the case of
imprecise working set estimation. Speculations are reconciled and committed to the file server by the user
(or user’s delegate) from a trusted device. To be compatible with legacy file systems, we have implemented
both POLEX and POLEN as network middleboxes. However, WSBAC can also possibly be implemented by
suitably modifying the file system.

This paper makes the following, novel, contributions:

o Working Set-Based Access Control (WSBAC). We propose and evaluate WSBAC, an access control
technique that estimates per-user working sets to formulate an access control policy that is enforced
during untrusted accesses.

¢ Design and implementation of POLEX and POLEN. We present an implementation of WSBAC in
the context of the Network File System (NFS). We have implemented POLEX, an agent that continu-
ously observes user file access patterns and formulates a working set-based access policy, and POLEN,
an agent that enforces this policy using a network middlebox.

e Evaluation on network file system traces. We present an empirical evaluation of POLEX and POLEN
using real-world network file system traces. Our evaluation suggests that WSBAC is highly effective;

"For this paper, we will assume that devices administered by the corporation are trusted, and that employee’s personal devices are
untrusted. However, WSBAC is independent of this assumption and will work with any technique that can be used to differentiate
between trusted and untrusted devices, e.g., devices equipped with TPM hardware and integrity measurement tools [24] could be
considered trusted.



in particular, the working set-based policies extracted by POLEX estimate file access behavior to
within an error rate of 0.92%.

The remainder of this paper is organized as follows. Section 2 further motivates the work and presents
an illustrative example. We address several common concerns on the applicability of WSBAC in Section 3.
Section 4 presents the WSBAC system design. Section 5 describes the implementation of POLEX and
POLEN, while Section 6 presents the prototype evaluation. Finally, Section 7 reviews related work and
Section 8 concludes the paper.

2 Example Scenario

To motivate WSBAC, consider the file accesses made
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computer that her employer does not trust, e.g., from ‘L
home or during travel. Such accesses typically hap-
pen via a VPN connection to the corporate Intranet, and
may either be from a personal laptop, a PC on the net- Figure 1: Example scenario showing access to
work of a business partner or client of her employer, or, corporate files from untrusted personal devices.
increasingly, via mobile devices such as smart phones (e.g., utilizing web-based file access).

To ensure safe yet easy access to files in such scenarios, two conflicting requirements must be met.
First, Alice must be allowed access to read/modify her files, being constrained only by the access control
policy of the networked file system. This requirement is necessary to ensure seamless access to files both
within and outside the corporate network. Second, “insecure” accesses to Alice’s files must be denied. This
requirement is necessary to prevent accesses that may potentially be performed by malicious software on
Alice’s personal computer or mobile device using her credentials.

These requirements conflict because of the limited power of network file system administration tools.
These tools offer an all-or-nothing choice to enforce secure accesses to files on a corporate Intranet. First,
existing tools do not offer any fine-grained method to determine the file accesses performed by Alice, either
from within the corporate network, or from her personal computing device. Consequently, these tools can
neither observe Alice’s file system access patterns nor enforce policies that disallow anomalous file system
accesses. Second, network file systems do not store the network context of a user’s accesses with the file
system context. This makes it difficult to differentiate Alice’s file system accesses from different devices,
such as from her work PC within the corporate network or from her personal computing device at home.

WSBAC addresses the above shortcomings by extracting the working set of Alice’s file accesses and
enforcing access control based upon the working set when she accesses her files from untrusted devices.
WSBAC’s POLEX agent continuously approximates Alice’s working set by observing her file access patterns
when she is connected from a device that her corporation trusts. This working set is used as the basis
for enforcing access control when Alice connects from her smart phone or personal laptop. WSBAC’s
POLEN agent enforces policy, and is implemented as a network middlebox, thereby ensuring transparent
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enforcement, even with legacy network file systems.

The ability of WSBAC to continuously and automatically adapt to changes in Alice’s working set is its
central, novel, feature. This feature ensures that untrusted file accesses are not governed by a static access
control policy that is restrictive, hard to formulate, and hard to maintain. Working sets offer a flexible yet
secure abstraction to restrict untrusted file accesses. However, strictly enforcing access control by denying
all accesses outside the working set may be too restrictive in certain scenarios. For example, the IDE or
spreadsheet application that Alice uses to access her files may create temporary files, such as locks, that
may not be in her working set. Alice may be unable to usefully access her files from her personal device if
the creation of such files is disallowed. WSBAC handles such cases by allowing for speculative file accesses
during policy enforcement. Speculative file accesses allow the IDE or spreadsheet application to create and
modify temporary files, thereby still allowing Alice to usefully access her files on the network file server.

3 Applicability of WSBAC
With the background above, we now address some common concerns on the applicability of WSBAC.

Suppose that a user, Alice, accesses files from an untrusted device. How can she access files that are
not in the working set extracted by POLEX? We consider separately the case of reads and writes. To
handle writes to files that are not in the working set, POLEN supports speculation, as discussed above. Writes
to files that are not in the working set, including the creation of new files, are handled speculatively; changes
made to such files are visible only to Alice. When Alice accesses these files again from a trusted device,
POLEN commits the speculative accesses after they have been verified by Alice.

To handle reads to files that are not in the working set, WSBAC supports an authenticated Web interface
through which Alice can add files to her working set. By requiring Alice to authenticate, WSBAC ensures
that malware on untrusted devices cannot automatically add files to her working set. Alice can now access
the newly added files in her working set, thereby allowing WSBAC to be practical even in scenarios where
Alice does not have access to a trusted device for extended periods of time, e.g., during travel.

Can Alice share speculative updates to files with other users? As described earlier, WSBAC handles
writes to files that are not in Alice’s working set using speculation; these updates are normally only visible
to Alice until she commits them. However, there may be cases where these updates must be visible to other
users. For example, suppose that Alice is the collaborating on a paper with others.

WSBAC offers Alice two choices to ensure that an update to the paper made from an untrusted device
is visible to her co-authors. Alice can include the file in her working set using the Web interface; because
POLEN does not restrict accesses to files in the working set, updates to the paper will be visible to the entire
group. However, this approach has the disadvantage of committing possibly malicious updates to the files,
e.g., by malware on Alice’s untrusted device, to the file system.

Alice can avoid this problem by instead using WSBAC’s mechanism to share speculative file updates.
Using this mechanism, Alice can share speculative updates to selected files with her co-authors. However,
this mechanism also ensures that all subsequent updates to the file (including those made by her co-authors)
will be speculative. Changes are committed only when one of the group members (not necessarily Alice)
working on a trusted device verifies the file updates. In this way, by sharing speculative updates with her co-
authors, Alice is also delegating commit permission to them, should they be working from trusted devices.

Can Alice defeat WSBAC protection by artificially inflating the size of her working set? Yes, this is
possible. For example, Alice could write a script that runs overnight from a trusted terminal and accesses all
her files, thereby forcing POLEX to include all her files into her working set. Alternately, Alice could add
all her files to her working set via the Web interface.

However, it is to Alice’s advantage to use WSBAC protection. Much as Alice can disable the virus
scanner on her computer at the risk of being infected, she can disable WSBAC protection at the risk of
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exposing the files in her working set to malware. Even in this case, damage is limited to Alice’s files,
because WSBAC augments traditional network file system access control.

Still, there are several procedural regulations that Alice’s employer could use to prevent her from arti-
ficially inflating her working set. For example, POLEN could record her accesses from an untrusted device
and compare them against the POLEX working set. If these accesses differ significantly, the employer could
use this as an indication that Alice is artificially inflating her working set, and issue her a warning.

Doesn’t WSBAC compromise Alice’s privacy? Both POLEX and POLEN continuously monitor Alice’s
accesses. While Alice’s employer could potentially use these tools to compromise her privacy, such compro-
mise is possible even otherwise. The network file server, accesses to which WSBAC protects, is administered
by Alice’s employer, who therefore can observe all her accesses even without POLEX and POLEN. Several
reports suggest that corporations perform such monitoring on their employee’s work habits [1, 21, 26] and
are unlikely to change this practice. We argue that the use of POLEX and POLEN at least makes employees
aware of such monitoring by their employers. WSBAC also requires that encrypted file accesses originating
from untrusted devices be decrypted at POLEN (rather than at the network file server). However, because
both POLEN and the network file server are administered by Alice’s employer, decrypting file accesses at
POLEN compromises her privacy no more than decrypting them at the file server.

In spite of these restrictions, Alice can protect her privacy by using a scheme that only encrypts the
contents of packets (and not their headers, which contain information that is used by POLEX and POLEN).

4 Design

In this section, we provide a detailed overview of the design and architecture of our WSBAC system. This
includes descriptions of both the POLEX and POLEN agents.

4.1 Working Set-Based Access Control (WSBAC)

We define a user’s file system working set (WS) to be the set of files (including directories) that the user
has accessed over some recent period of time. Within this set, files belong to subsets that define the access
permissions for that file. For example, all of the WS files for which a user has read permission are included
in the read permission subset of the WS. These subsets are not necessarily disjoint, as a file may be included
in multiple permission subsets (e.g., a file for which a user has both read and write permissions). Therefore,
a file included in any permission subset of the user’s WS implies that the user possesses the permission
defined by that subset for that file.

Since working sets are specific to each user and typical network file systems may scale to serve several
hundred users, it is impractical for an administrator to manually define the WS for each user of the system.
Alternately, allowing users to self-define their WSs defeats the primary purpose of the WSBAC system.
Users will likely over-estimate their WSs for fear of lacking access to files they may need, even if there
is a low probability that they will actually need to access the files while working remotely. To address
these concerns, we approximate the per-user WSs automatically. This removes the potential burden on
administrators, while reducing the ability of a user to over-estimate their WS. WS extraction is performed
by the POLEX agent of our system.

Automatic extraction of user WSs may lead to inaccuracies because of two possibilities. First, the WS
may include files that the user will not need to access from an untrusted device. Second, required files may
be excluded from a user’s WS. In either case, users will never gain access to a file that they do not already
have access to since WSBAC only augments the standard network file system access policy, and cannot
make a user’s access rights more permissive. In the limit, a user’s WS may only grow to match the set of all
files that they already have permission to access from a file server.

In general, there are two read cases and two write cases that must be handled by the WSBAC system.



File and directory reads may be attempted for files either included in or excluded from a user’s WS. For
these cases, WSBAC allows reads only for those files included in a user’s WS and denies all other read
attempts (although, a user is able to add files to her WS using a web interface). Note that this covers both data
and meta-data reads. File and directory writes include both data and meta-data writes (create, remove,
rename fall into this category). Writes to files and directories included in a user’s WS are performed
normally, while writes to files and directories not included in a user’s WS are performed speculatively
(described in Sections 4.4 and 5.2.2). WSBAC enforcement is performed by the POLEN agent of our system.

4.2 WSBAC Policy Extraction (POLEX)

WSBAC working set extraction and policy for-

mulation is performed by the POLEX agent.

POLEX observes a user’s network file system ac-

cesses when they are performed from a trusted

device. These accesses, which travel between

network file system clients and servers in mes-

sages, are captured by POLEX and inspected.
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Figure 2 illustrates how this occurs. In the
figure, a trusted device performs a network file
system access, shown in the figure as a network Figure 2: WSBAC Overview. Requests from trusted (1) and
message labeled 1. This message travels through untrusted (2 and 3) devices are shown. Request 3 is handled
the network and ultimately reaches the network speculatively.
file server where the file access is performed on
the file system. Along the way, the message is captured by a network element and a copy is sent to POLEX
for processing. Any network element, such as a network switch, could perform this message capture and
copy forwarding function. To handle the case of encrypted or signed network traffic, POLEX (and POLEN)
shares the encryption keys with the network file server.

POLEX maintains the per-user WS summaries on stable storage, as they are built and updated. These
summaries are built through the use of compact summary data structures (Bloom filters, in our implementa-
tion) and they are exported by POLEX for use in POLEN. POLEX also utilizes the WS summaries to provide
per-user virtual file system namespaces. These virtual namespaces provide administrators a mechanism to
view and modify the WSBAC permissions for individual users as approximated by POLEX. Further discus-
sion of POLEX virtual namespaces is deferred until Section 5.1 of the paper.

4.3 WSBAC Policy Enforcement (POLEN)

WSBAC enforcement is performed by the POLEN agent. POLEN resides on the network, interposed between
the network file system clients and servers, and intercepts all messages passed between them. POLEN utilizes
the file system attributes contained within the messages and the per-user WS summaries to enforce WSBAC.
This enforcement is only for those users accessing the network file system from an untrusted device.

Figure 2 shows POLEN interposed between network file system clients and a file server. Messages
from untrusted devices, such as message 2 in the figure, are evaluated against the WSBAC policy. For file
accesses that are allowed, POLEN forwards them to the file server (as is the case for message 2 in the figure),
otherwise, POLEN responds directly with a “permission denied” message.




4.4 POLEN Speculation

Writes from an untrusted device to files not included in a remote user’s WS are allowed by POLEN, but are
not committed to the network file system. Instead, POLEN holds these writes aside by logging them in a
special vault area. This area is a stable storage location where speculative writes can be sequestered from the
network file system. Access to the vault is reserved for POLEN only. This partitioning of speculative writes
from the network file system provides safety for these writes, while denying visibility of the speculative
accesses for all other users. Speculative writes are visible to the users who issue them. All user accesses
flow through POLEN, which exports per-user virtual namespaces to the users. These namespaces are the
union of the real file system merged with the speculative operations that a user has performed.

POLEN allows speculative writes to data and meta-data to be performed by a user from an untrusted
device for two reasons. First, the user may wish to create new or temporary files. If POLEN limits writes
to files within the user’s WS, it will not allow for new file creation. Second, although POLEX may have
observed reads to a file and included the file in the WS for reads, POLEX may not have observed any
writes by that user to that file. Since it is possible the user may have write permission, as well, we allow
these writes to occur speculatively.

Figure 2 shows an example speculative access as it traverses the network from an untrusted device to
a network file server (shown as message 3). When the message is intercepted by POLEN, it is logged and
stored in the POLEN vault area, which may reside on any stable storage accessible to POLEN.

Speculative writes may pose a problem in the cases of write-after-write and read-after-write sharing
between users. This problem is mitigated by two factors, though. First, for typical deployments of network
file systems, both types of sharing have been found to be very low (between 0.9% and 0.6% of all file
systems operations as reported in [16, 30, 17]). Second, network file systems, such as NFS [8], in the
absence of locking, do not provide strong sharing consistency between users. They typically provide only
close-to-open consistency where update propagation is only guaranteed at the time of file closure. In spite of
this, there are likely to be cases where the update delays due to speculation poses a problem between users
sharing files. To handle this, we extend sharing to speculative accesses through our speculation sharing and
delegation mechanism. Further description of this mechanism is held until Section 5.2.2.

Reconciliation of speculative accesses occurs when a user returns to a trusted device and resumes in-
teracting with the network file system. At this point, POLEN starts reconciliation for speculative changes
stored for the user in the vault area. POLEN allows speculative creates and writes to temporary files to be
automatically committed to the server once reconciliation begins, since they will not potentially destroy or
modify any existing data. We assume that all network file servers perform virus scanning for all file writes
before committing them, as this is common practice. In the event that virus scanning is not performed at the
server, automatic reconciliation can be completely disabled.

All other speculative updates to existing files must be manually verified by the user, before POLEN
will proceed to commit them. This may occur in a number of ways, including a web-based interface or an
automated email service. Once verified, the speculative updates are presented to the network file server as
if initiated by the user. Prior to committing any update, POLEN verifies that the state of the file or directory
to be updated reflects a safe and consistent state for the update to occur. For example, if a file has been
modified after the user speculatively wrote to the file, then the user’s update is not committed to the server,
reconciliation halts and must be handled manually by the user.

5 Implementation

We have implemented both POLEX and POLEN by extending Filewall [27], a network middlebox that we
developed in prior work. Using a middlebox permits WSBAC enforcement without modifying the file
system. However, WSBAC can also possibly be implemented by suitably modifying the file system.
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5.1 Implementation of POLEX

In this section, we describe the implementation of our policy extraction agent. We have two primary require-
ments in designing this system. First, it must run online in order to continuously and automatically adapt to
changes in users’ network file system working sets. Second, it should be non-intrusive both to clients and
servers. By requiring no server modifications, POLEX can be easily deployed without impact (in terms of
software maintenance, or performance effects) to the critical resource being monitored. We further restrict
the system to not require any software modifications to the clients. For this system to be most useful, it must
be deployable in any scenario, including situations that involve legacy deployments and untrusted devices.

POLEX implements a framework to extract approximations of user network file system working sets.
It is these working sets that form the basis of WSBAC. We built POLEX as a network agent that receives
and processes copies of network file system messages to examine message attributes and extract per-user
working sets. Figure 2 shows how POLEX is deployed for a typical network file system infrastructure. In this
model copies of network file system messages are forwarded to POLEX by a cooperating network element
(e.g., network switch port mirroring, POLEN etc.)

POLEX is implemented as a policy within the FileWall framework [27, 7], which is built on top of the
Click modular router [18]. The remainder of this section describes the working set extraction mechanism,
the administration interface provided by POLEX, and WSBAC state maintenance.

5.1.1 Working Set Extraction

As shown in Figures 2 and 3, POLEX extracts per-user working sets by observing the network file sys-
tem messages that flow between trusted devices and file servers. This is accomplished by using semantic
knowledge about the network file system protocol. Since POLEX can observe the servers’ responses to the
devices’ requests, it can discover, over time, the file permissions users have to various portions of the file
system (files and directories). Once discovered, these permissions are stored in a set of per-user compact
summary data structures (Bloom Filters). POLEX creates and maintains six Bloom Filters per user, three for
file permissions (read, write, and execute) and three for directory permissions (read, write, and execute).
The Bloom filters comprise the WSBAC user policy summaries and are stored on local persistent storage.
Once generated, they are held by POLEX for later use in POLEN.

Figure 3 shows how network file system messages are handled by POLEX. Messages from trusted
devices are processed by the Extraction Handler, which executes the extraction algorithm (see Appendix A
for further description). Once the Extraction Handler has completed processing a message, it is dropped.



5.1.2 Policy View Namespace (PVN)

POLEX defines a virtual namespace, called the Policy View Namespace (PVN), for WSBAC working set
summary administration. It is an interface that provides views of users’ effective network file system access
control policies. Through the PVN, administrators can interact with POLEX over the network file system
interface using a familiar set of tools. In fact, one of the main purposes of using the standard file system
protocol as the policy view interface was to enable building tools that could easily take advantage of this
well-known interface. Access to the PVN is restricted to administrators. In a secure deployment, such access
would occur over a secured private network, reserved for this purpose.

The functionality of the PVN is similar to that of the /proc file system in Linux. View Handlers are in-
voked at POLEX on receiving file system requests for virtual objects (see Figure 3). For read-only requests,
for example, read, readdir, getattr, etc., the handlers query the PVN state and generate the file contents
dynamically. Write operations update the PVN state and are used to modify the POLEX and PVN configu-
ration parameters, or manually modify per-user working set summaries. Figure 4 shows an example PVN
for user Bob. There is a similar pair of namespaces for every other user in the system. The figure shows the
two primary components to Bob’s PVN: the control namespace and the WS namespace.

Through the PVN control namespace, administrators can specify/modify tailor view configurations to
meet their needs. Additionally, they can modify WS estimation parameters and start/stop the WS estimation
process. These tasks can be performed for individual users (e.g., Bob in the figure) or globally for all users.
The PVN WS namespace provides a view of the real exported network file system namespace filtered by
the application of user WS summary permissions. The names for objects in the WS namespace are derived
directly from the files they represent in the observed network file system, but only the files and directories
that exist in a user’s estimated working set are visible in the WS namespace. The WS namespace provides
an interface for an administrator to query and modify the effective permission assignments for each of a
user’s files as well as manually adding and removing files from a user’s estimated working set.

5.1.3 State Maintenance

POLEX maintains two different forms of persistent state. First, it maintains the system configuration based
on any parameter/control changes issued through the PVN. Second, POLEX stores the WSBAC per-user
working set summaries extracted from the network file system messages it observes. Keeping the summaries
as persistent state is more for convenience rather than a strict requirement. Since this state is built through
observation of network file system messages, it can be continuously regenerated over time. The primary
penalty, in the case of lost state, is the time that it takes to regenerate that state.

5.2 Implementation of POLEN

In this section, we describe the implementation of our policy enforcement agent. POLEN includes mecha-
nisms for WSBAC policy evaluation and enforcement, write speculation, speculation sharing and delegation,
and update reconciliation. As with POLEX, we implement POLEN as a policy in the FileWall framework.

5.2.1 WSBAC Policy Enforcement

POLEN operates on network file system messages as they are exchanged between the clients and servers,
as shown in Figure 5. As messages are captured they are handled by POLEN for WSBAC evaluation and
enforcement. POLEN only operates on messages from untrusted devices (see Figure 2).?

ZFor the purposes of this paper, we consider untrusted devices to be those that gain access to the corporate network through
a secure external VPN connection. Only devices that are physically connected to the internal corporate network are trusted. Ad-
ditionally, to be connected internally, we assume such devices are subject to corporate integrity measurement procedures prior to
connection (e.g., using mechanisms as described in [24]).



Messages from untrusted devices are passed to the
Enforcement Handler (see Figure 5). This handler ex- Sehedtr
tracts network file system attributes from the message I
to determine the file system operation (fop), file identi- am f: =
fier (fileid), user identifier (uid), and request identifier Fi%}?;s)r{;m — Sp[e]ciﬁon - —
(reqid). The handler then retrieves the user’s working Hapder
set policy summary from a local persistent state store POLEN
using the user’s wid, and checks if the fileid is included Sommarics

in the WS of this user with the necessary permission to
perform the requested operation fop. For reads, the Figure 5: This figures shows the primary com-
network file system message will either be forwarded to  ponents of POLEN. Included are the Enforcement
the file server (as in the figure) or POLEN will generate Handler, Speculation Handler, User Policy Sum-
a “permission denied” response message and forward it maries (access context), and Vault Area.

to the client. For writes, the message will either be for-

warded to the file server or will be speculatively allowed.

5.2.2 Write Speculation

Whenever POLEN encounters a Write operation to a file from an untrusted device that is not explicitly
allowed based on the WSBAC evaluation, POLEN handles it speculatively. File system updates are stored
within a predefined vault area, located on stable storage. POLEN includes an interface for a user to view her
speculative updates from the untrusted device that performed them. This interface can be accessed via the
standard network file system protocol or via a web-based mechanism, and is implemented by the Speculation
Handler as shown in Figure 5.

5.2.3 Reconciliation

Reconciliation must occur when a user has any outstanding speculative updates stored for them by POLEN
in the vault area. During reconciliation, speculative updates must first be verified by the user who issued
them (or by a user’s delegate), before they will be committed to the server. Such verification guarantees that
any speculative updates submitted by malware will be identified by the user prior to commit.

Users manage their speculative updates through the same interface (network file system or web-based
mechanisms) provided by POLEN for write speculation. Through this interface, a user (or administrator)
can manually inspect her speculative updates currently stored in the vault area, approve the updates to be
committed to the file server, and handle any exceptional conditions that arise. The granularity of the update
is per file, and a user can view the individual changes prior to approving or denying them.

5.3 Speculation Sharing and Delegation

As previously mentioned in Section 4.4, to support the existing sharing model common to modern network
file systems, we provide a mechanism to allow speculative updates to be shared between users. There are
two methods provided to accomplish this. The first has been discussed in the previous subsection. A user
who has performed a speculative update can directly commit those updates through the POLEN-provided
interface. Once committed, they are available to all other users immediately.

This is insufficient, though, for more tightly coupled sharing situations. In such situations, it might be
tedious for each untrusted user to manually commit changes to a small set of files. For this case, we allow a
user to share a portion of their speculative updates with other untrusted devices. Using the POLEN-provided
interface, a user can directly specify, per file, other untrusted devices that should have immediate visibility
to her speculative updates. Under this sharing model, users experience traditional close-to-open network file
system semantics and are not burdened with manually committing updates. In this case, the users updates
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Size of Trace | Time to Analyze State Size
1 Day 52 min 145MB (1.16MB per user)
1 Hour 2.49 min 145MB (1.16MB per user)

Figure 6: Processing time and storage costs for working set estimation in POLEX.

remain speculative and WSBAC protection holds.

For trusted devices to access speculative changes from untrusted devices, we provide a delegation mech-
anism. The owner of the speculative changes can allow a user of a trusted device to commit the updates to
the shared files (again through the POLEN user interface). This gives a user the ability to commit the updates
as if they were the update owner. Finally, for frequent sharing between trusted and untrusted devices, we
allow a trusted device to connect to the file server through the same path as an untrusted device, in order to
gain visibility to the speculative update similar to an untrusted device.?

6 Evaluation

In this section, we present the evaluation of the WSBAC system. The goals of the evaluation are as follows.
First, we measure the processing time and storage costs to perform WS extraction with POLEX. Second,
we measure the accuracy of per-user working set extraction. Third, we perform sensitivity analysis on
working-set extraction accuracy. Fourth, we quantify the amount of speculation that occurs during POLEN
enforcement. Finally, we measure the overheads imposed by the POLEN enforcement mechanism.

In our experimental setup, all systems are Dell SMP systems with two 2.4GHz Intel P4 CPUs, and 3GB
of RAM. All systems run a Linux 2.6 kernel and are connected using a Gigabit Ethernet switch. POLEX is
configured to listen to all NFS v3 requests and responses. This is accomplished by enabling port monitoring
on the switch. POLEN is configured to interpose on all NFS v3 requests and responses.

6.1 Evaluation of POLEX

Time and Storage Costs: The utility of POLEX to administrators is determined not only by the benefits
of the functionality it provides, but also by the costs associated with this functionality. We measure costs
for POLEX in terms of (i) the time it takes to process the network file system messages it receives, as
well as the size of the state that must be stored to maintain a fixed amount of history (in terms of time). To
quantify the accuracy, we perform offline analysis using a set of large file system traces provided by Harvard
University [10]. These traces represent a month of network file system usage from the EE/CS Department
at Harvard University.

Figure 6 shows the results in terms of processing time and the size of the resulting state, once process-
ing has been completed. We measure these costs for trace samples of size corresponding to one day and
one hour. One day of the trace represents 3.3GB of trace storage space corresponding to 6, 308,023 NFS
request/response pairs. To process 1 day took 52 mins and generated 145MB (1.16MB per user on average)
of state as history. This equates to an approximate time compression factor of 96%. Since we utilize Bloom
filters to store per-user working set state, the storage costs remain fixed at approximately 145MB regardless
of trace size. Therefore, we observe that POLEX imposes negligible costs in terms of processing time and
state storage requirements.

6.2 Evaluation of POLEN

Accuracy: A key factor in the utility of POLEN is the accuracy with which the system operates. The
accuracy is presented as the ratio of the set of file permissions that we approximate incorrectly to the total

3For the purposes of this paper, we assume any trusted device that requires such access can either connect through the secure
VPN to be treated as an untrusted device, or may connect to the file server through the POLEN path.
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Average Accuracy Day 2 Day 3 Day 4 Day 5 Day 6
Run 1 1.08% User 1 | 0.262% | 0.027% | 0.017% | 0.012% | 0.096%
Run 2 0.76% User2 | 0.309% | 4.40% 0% 3.30% | 0.274%
Run 3 1.02% User 3 | 0.386% | 0.356% | 0.818% | 2.51% | 0.608%
Run 4 0.79% User4 | 0.479% | 1.82% | 0.548% | 0.655% | 0.105%
Run 5 0.97% User5 | 0.181% | 0.278% | 0.177% | 0.343% | 0.270%
Total 0.92% Total | 0.323% | 1.38% | 0.312% | 1.36% | 0.271%
Figure 7: WSBAC working set accuracy. Figure 8: WSBAC working set sensitivity.

that we observe (including correctly approximated permissions). This provides the error or false positive
rating for POLEN. To quantify these costs, we again perform offline analysis using the Harvard file system
traces.

To determine the accuracy using the network file system traces, we choose two consecutive days worth
of trace data. We randomly select ten users from those in the traces. We use the traces from the first day
to perform per-user working set extraction using the POLEX algorithm. Then we run a test against the WS
summaries using the traces from the second day, and measure the number of errors. An error is generated
by a file or directory access, if the access is to a file (or directory) for which the user does not have the
appropriate permission to execute the specific access, according to the user’s WS summary. These errors
represent file access attempts by the user that would be denied by the WSBAC system, but allowed by the
network file server. We repeat this experiment five times using a different two days worth of trace data and
randomly choosing a new set of ten users each time. The results are reported in Figure 7.

The figure shows the average error rate for each of the five runs. The maximum error rate is 1.08%, the

minimum is 0.76%, and the total average is 0.92%. From these results, we observe that the average per-user
accuracy is high (low error rates), and this confirms that WSBAC is not overly restrictive.
Sensitivity: To understand how frequently a user’s working set estimate must be updated, we perform a
sensitivity analysis on the working set accuracy. For this experiment, we perform offline analysis similar to
the accuracy measurements. This time, though, we choose six consecutive days worth of traces with which
to work. We use the traces from the first day to perform per-user working set extraction and test with the
remaining five days worth of traces. Accuracy measurements are determined as before, and are reported in
Figure 8.

The figure shows the average error rate for five randomly selected users over the five days following the
working set extraction day. From these results, we observe that the average per-user accuracy remains fairly
stable over a reasonable period of time. Users 1 and 5 are very stable across the five days, while users 3 and
4 are stable four out of five days. Finally, user 2 is the least stable fluctuating every other day, which possibly
indicates that a multi-day extraction period might benefit some users. In general, the accuracy results are
very promising, given the low error rates across the board.

Speculation: Since the amount of speculative accesses a user performs directly relates to the number of
updates that must be validated by the user when they return to a trusted device, we measure the average
rate of speculation for ten randomly chosen users from the trace data. Due to space constraints, we do not
provide a figure for these results. For this experiment, the average speculation rate is 1.44%, the maximum
is 2.4%, and the minimum is 0.018%. These results are also promising since they imply a low burden on
the average user with respect to the amount of manual validation that must be performed for speculative
updates. Even for heavy users of the system, the results imply relatively low levels of manual intervention.

Performance-Microbenchmark: To study the fine-grained overhead of POLEN with respect to the network
file system, we utilize our own microbenchmark. This benchmark is an NFS client that issues requests
without relying on the client file system interface. Using this benchmark eliminates any noise due to the
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Figure 9: Microbenchmark results for POLEN. Figure 10: OpenSSH compilation for POLEN.

client buffer cache and allows fine-grained measurements to be collected.

We present the operation latency of the default NFS protocol, as a baseline. Figure 9 shows the client
observed latency for the most common NFS operations, as reported by various file system workload stud-
ies [10]. In the figure, each group of bars has four members, NFS and POLEN in a minimal configuration,
and NFS and POLEN in a typical LAN configuration. The average round-trip time for the minimal configura-
tion is 30us and 300us for the LAN configuration. The latency measurement for the minimal configuration
represents the average latency measured through a 1Gbps network switch. The height of each bar shows the
average response latency for 1000 instances of a call.

We observe that POLEN imposes modest overhead when compared to the NFS case for the minimal

configuration. The largest overhead measured for the minimal case was 40us, which represents a 15%
performance degradation. Since typical LAN round-trip times are larger than 30us, this represents the worst
case performance for our system. Very little of the POLEN processing time is hidden by the network latency.
As we introduce delay in the network, most if not all of the POLEN processing time is hidden due to the
relative time of processing to network latency. In fact, at and beyond the 300us mark (as shown in the figure
as the LAN bars) the relative performance between base NFS and POLEN is within 10us on average which
corresponds to, at most, a 2% overhead. For users accessing a corporate Intranet over a WAN the situation
is even better (e.g., from satellite office or remote access situation). Since the typically observed network
latencies in a WAN deployment are between 15ms - 30ms, we expect there to be no perceived performance
impact on WAN users due to this system. We have also validated this experimentally, but do not present the
results due to space constraints.
Performance—Application Benchmark: In the following, we compare the performance of NFS with
POLEN WSBAC enforcement against the default NFS for an OpenSSH build benchmark similar to a modi-
fied Andrew Benchmark [13]. We measure the time taken to complete each of five phases (untar, configure,
compile, install, and remove). To simulate LAN conditions a typical user would experience, we introduce
an additional delay in the network, such that we increase the approximate round trip-time between hosts in
the experiment to 300us. The results are reported in Figure 10.

This figure shows the average time over five runs with a cold client cache for each phase of the bench-
mark from left to right. The bars in each group are base NFS and NFS with POLEN. We observe that POLEN
imposes very low overheads (less than 2% in all cases) when compared to the normal NFS case for remote
users over a LAN. We conclude from these and the microbenchmark results, presented earlier, that POLEN
introduces no perceived performance overheads on network file system users.
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7 Related Work

This section describes the work related to WSBAC. We divide the related work into two categories: (i)
Policy Extraction and Inference, and (ii) Context-Aware Access Control.

Policy Extraction and Inference: Role-Based Access Control (RBAC) [14, 11] has been proposed as a
standard for network file system access control management and specification. Although there are many
attractive features in favor of RBAC, legacy installations have to handle the onerous task of migrating their
existing access control information (e.g., ACLs, access permissions, etc.) to Roles and Object Permission
Matrices. For large installations, this task is a major road block towards acceptance of RBAC. There have
been a number of works attempting to address this problem automatically, through the use of Data Min-
ing techniques (i.e., association mining and clustering) [19, 25]. The goal of these works is to learn the
common patterns in the existing ACLs or permissions lists in order to automatically define the roles in the
RBAC system and place the appropriate users into these roles, thereby extracting the RBAC policy prin-
ciples from the existing legacy data. There has also been work to infer access control properties specified
in the XACML language [4, 20], to infer and confine process privileges through the observation of process
syscall behavior [22], and to automatically generate SELinux policies based on observing dynamic program
behavior [28].

Although there has been substantial work in the general area of firewall and packet filter analysis, there
are a number of works related specifically to firewall policy inference [12, 31]. Tongaonkar, et al., [31],
describe a method to infer high-level policies from low level firewall rule sets. They describe a method to
generate a flattened rule set (high-level rules) by first generating an automaton based on the low-level rules.
Golnabi, et al., [12], use data mining techniques to learn a set of firewall rules from packet logs, based on
packet frequencies. These observed rules are used to analyze the existing rule set configurations for firewalls
as an aid to determine a new, more efficient, set of firewall rules.

Our work shares a similar goal to these works, in that we are attempting to determine efficient repre-
sentations of the access control policies. We differ in that we operate on network file systems, rather than
firewalls. Additionally, we are not attempting to generate static rules sets. Instead we are approximating
the set of resources (files and directories) that a user needs to access in the near future based on their past
accesses. It is not clear that the working set approach generalizes to network resources other than network
file systems.

Program verification techniques require a formal specification of valid program execution. In most cases,
determining this formal specification requires substantial effort on the part of the application developer.
Work in the area of specification mining [2, 3] attempts to automatically determine formal specifications of
valid program execution behavior through the observation of program execution traces. Additionally, since
these specifications are determined automatically, there have been methods proposed to debug the inferred
specifications using concept analysis. The goal of our work is similar to the specification mining work, in
that we are attempting to determine a specification of system behavior (namely the access control system)
through observation. It differs from these works in that we are not attempting to perform formal verification
of the network file system, but rather are looking to produce more restrictive access control policies for
untrusted network file system access.

Finally, in the general area of policy inference and control, there has been work in using gray-box
techniques to monitor and control the enforcement of operating systems policies (e.g., buffer cache, memory
access control, file layout, etc.) [5]. The general technique is to either understand the policy under control a
priori, or to infer it through external (to the system) observation. Additionally, it is acceptable to perturb the
system under observation, in order to aid the process or to actually enact control over system policies. Our
goal differs from typical gray-box techniques in that we do not assume a priori to understand the effective
access control policy, instead we determine the WSBAC policy automatically per-user.
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Context-Aware Access Control: There have been numerous works in the area of context-aware access
control. The concept has been applied to the area of mobile and pervasive computing to provide secure
collaborations [32] for wireless and mobile devices, to provide anonymous context-aware access control
for ubiquitous services [33], for ubiquitous service provisioning [9], and an adaptive context-aware access
control scheme for ad-hoc networks [23]. A number of works have been proposed in the area of context-
aware access control for web services [15, 6]. These works all attempt to include context in the access control
decision-making process, in some cases for mobile computing. Our work shares this general approach, but
we utilize different context and apply it in a different manner to a different domain. First, we leverage a
user’s network file system access behavior to further restrict their access to those files that they are actually
using. Second, we only apply this restriction for user access from untrusted devices.

8 Conclusions

In this paper we presented the Working Set-Based Access Control scheme for network file systems. WS-
BAC is an access control technique that extracts per-user working sets through the observation of users’
network file system accesses. We also presented the design and implementation of our WSBAC system. It
is composed of two network agents: POLEX and POLEN. POLEX monitors network file system accesses for
users of trusted devices, extracts per-user working sets, and produces compact per-user working set sum-
maries. The summaries are used by POLEN to enforce WSBAC for untrusted devices. We evaluated our
system using a set of real-world traces and our experiments validate our approach. The average accuracy for
working set estimation is high (low error rates) and the costs in terms of POLEX processing time and storage
requirements are low. Finally, we measured the performance overheads of POLEN, which were shown to be
very low for typical LAN deployments and completely hidden for typical WAN deployment scenarios.
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A POLEX Extraction Algorithm

Algorithm 1 presents the method that POLEX uses to estimate the WSBAC per-user working sets and to
discover the users permissions for the files and directories included in the working sets. For brevity, we only
present a portion of the algorithm for a representative set of network file system operations.

Algorithm 1 POLEX working set inference algorithm.

: INPUT := A network file system message (M SG)

: Let zid := Request transaction identifier

: Let op =: Network file system operation

. Let uid := User identifier

Let FILE_W S := Set of per-user file WSBAC permissions (R, W, X)
: Let DIR.W S := Set of per-user directory WSBAC permissions (R, W, X)
: Let HOLD := Table of requests not yet matched to responses

: Let fid := File or directory identifier

. Let status := Response status for network file system operation

10: Let mode := User permissions for a file or directory object

11: if MSG.TY PE = Request then

12: zid — MSG.XID

13: uid — MSG.UID

14: fid — MSG.FID

15: HOLD|zid] —< uid, fid >

16: else

17: status «— MSG.STATUS

18:  if status = OK then

19: zid — MSG.XID

20: op — MSG.OP

21: < uid, fid >— HOLD|zid)

22: if op = LOOKU P then

23: DIR.W S[uid, X] — FID

24: fid2 — MSG.FID

25: mode «— MSG.MODE

26: if fid2 Type = F'ile then

27: FILE W S[uid, {R, W, X}] +< fid2, mode >
28: else if fid2 Type = Directory then

29: DIR.W S[uid, {R,W, X }] —< fid2, mode >
30: end if

31: else if op = Read then

32: FILE W S[uid, R] «— fid

33: else if op = Write then

34: FILE_W S[uid, W] «— fid

35: else if op = Readdir then

36: DIR.W S[uid, R] — fid

37: else if op = Create then

38: fid2 « MSG.FID

39: mode «— MSG.MODE

40: DIR.W S[uid, W] — fid

41: FILE W Sluid, {R, W, X}] —< fid2, mode >
42:

43: end if

44 else

45: Drop response M SG

46: Delete request tuple from HOLD

47: end if

48: end if

The algorithm takes a network file system message (M SG) as input (Line 1) and this message can be
either a request (from a client) or response (from a server). For a request, the transaction identifier (zid),
user identifier (uid), and file identifier ( fid) are extracted from M SG. The 2-tuple < wid, fid > is stored
in HOLD, indexed by xid (Lines 11-15). Tuples in HOL D represent requests that have been processed by
the algorithm, but for which a response has not yet been observed. These tuples remain in HO LD until they
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are referenced by the response processing portion of the algorithm, and this table is periodically garbage
collected.

Response processing begins at Line 16 of the algorithm. First, the status of the response message
is inspected, to determine the result of the file system operation. If the request is successful (Line 18),
the algorithm continues to process the results contained in the message (Lines 19-43). Unsuccessful re-
quest/response pairs are discarded and unused by the algorithm (Lines 45-46). Next, the algorithm extracts
the x¢d and the file operation (op) from M SG. The uid and fid are retrieved from HOLD indexed by
the xid. For each operation type, the correct WS summary (either FILE_W S or DIR_WS) is updated
to include the file for the appropriate access permission (read, write, or execute). In some cases, for exam-
ple the Lookup and Create operations, the server returns a file identifier attribute (fid2) in M SG, which
POLEX also includes in the user’s WS. This corresponds to a child file or directory within the parent direc-
tory identified by fid. As an optimization, we take advantage of the fact that the exact permissions (mode)
for fid2 are provided by the protocol, and we include f7d2 in the appropriate WS permission filters (either
FILE WS or DIR_WS). The remaining network file system operations have been omitted for brevity,
but they are all processed in a similar fashion to those already described (Line 42).
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