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Abstract

Device drivers on commodity operating systems
execute with kernel privilege and have unfettered
access to kernel data structures. Several recent
attacks demonstrate that such poor isolation ex-
poses kernel data to exploits against vulnerable de-
vice drivers, for example through buffer overruns in
packet processing code. Prior architectures to iso-
late kernel data from driver code either sacrifice
performance, execute too much driver code with
kernel privilege, or are incompatible with commod-
ity operating systems.

In this paper, we present the design, implemen-
tation and evaluation of a novel security architec-
ture that better isolates kernel data from device
drivers without sacrificing performance or compat-
ibility. In this architecture, a device driver is par-
titioned into a small, trusted kernel-mode compo-
nent and an untrusted user-mode component. The
kernel-mode component contains privileged and
performance-critical code. It communicates via
RPC with the user-mode component which contains
the rest of the driver code. A RPC monitor me-
diates all control and data transfers between the
kernel- and user-mode components. In particu-
lar, it verifies that all data transfers from the un-
trusted user-mode component to the kernel-mode
component preserve kernel data structure integrity.
We also present a runtime technique to automati-
cally infer such integrity specifications. Our experi-
ments with a Linux implementation of this architec-
ture show that it can prevent compromised device
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drivers from affecting the integrity of kernel data
and do so without impacting common-case perfor-
mance.

1. Introduction

Device drivers execute with kernel privilege in
most commodity operating systems and have unre-
stricted access to kernel data structures. Because
the kernel is part of the Trusted Computing Base
(TCB) of the system, vulnerabilities in driver code
can jeopardize the entire system.

Several studies indicate that device drivers are
rife with exploitable security holes. A recent study
of user/kernel bugs in the Linux kernel found that 9
out of 11 of these bugs were in device drivers [23].
An audit of the Linux kernel by Coverity also found
that over 50% of bugs were in device drivers [12].
Our own analysis of vulnerability databases re-
vealed several device drivers that are vulnerable to
malformed input from untrusted user-space appli-
cations, allowing an attacker to execute arbitrary
code with kernel privilege [4, 30]. Similarly, de-
vice drivers by their very nature copy untrusted data
from devices to kernel memory. Because the kernel
does not restrict the memory locations accessible to
devices, a compromised driver can write arbitrary
values to sensitive kernel data structures. For ex-
ample, a compromised driver could overwrite the
table of interrupt handlers in the operating system
with pointers to attacker-defined code. As demon-
strated by recently published exploits against wire-
less device drivers in Windows XP [7, 8] and Mac
OS X [27], vulnerabilities in drivers are an increas-
ingly attractive target for attackers.

Microkernels [26, 40, 42] offer one way to iso-
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late kernel data from vulnerable device drivers.
They execute device drivers as user-mode processes
and can prevent malicious modifications to kernel
data by enforcing domain-specific rules, e.g., as
done in Nexus [40]. However, microkernels re-
structure the operating system, and the protection
mechanisms that they offer are not applicable to
commodity operating systems, which are structured
as macrokernels. Moreover, enforcing security
policies on device drivers may impose significant
performance overhead. For example, Nexus reports
CPU overheads of 2.5× on a CPU-intensive me-
dia streaming workload. User-mode driver frame-
works [3, 10, 15, 24, 28, 38] allow commodity op-
erating systems to execute device drivers in user
mode. However, porting drivers to these frame-
works often requires complete rewrites of device
drivers and the resulting performance overheads are
often significant [3, 38].

This paper extends prior work on Micro-
drivers [20] and proposes a security architecture
that offers commodity operating systems the ben-
efits of executing device drivers in user mode with-
out affecting common-case performance. In this
architecture, each device driver is composed of a
trusted kernel-level component, called a k-driver,
and an untrusted user-level component, called a u-
driver. The k-driver contains code that requires ker-
nel privilege (e.g., interrupt processing functions)
and performance-critical code (e.g., functions on
the I/O path). The rest of the code, which con-
tains functions to initialize, shutdown, and con-
figure the device, neither requires kernel privilege
nor is on the critical path and executes as a user
mode process. The combination of the u-driver and
the k-driver is called a microdriver. A prior study
with 297 Linux device drivers comprising network,
sound and SCSI drivers showed that as much as
65% of driver code can execute in user mode with-
out requiring kernel privilege or affecting common-
case performance [20].

A u-driver and its corresponding k-driver com-
municate via an RPC-like interface. When the k-
driver receives a request from the kernel to execute
functionality implemented in the u-driver, such as
initializing or configuring the device, it forwards
this request to the u-driver. Similarly, the u-driver
may also invoke the k-driver to perform privileged

operations or to invoke functions that are imple-
mented in the kernel. However, the u-driver is un-
trusted and all requests that it sends to the k-driver
must be monitored. For example, a u-driver that
has been compromised by exploiting a buffer over-
run vulnerability may potentially send spurious up-
dates to kernel data structure in its requests to the
k-driver. Because the k-driver applies these updates
to kernel data structures, the compromised u-driver
may affect the security of the entire operating sys-
tem.

We present a RPC monitor to interpose upon
all communication between the u-driver and the k-
driver, and to ensure that each message conforms
to a security policy. The RPC monitor checks both
data values and function call targets in these mes-
sages. Data values in messages may contain up-
dates to data structures that the u-driver shares with
the k-driver. The RPC monitor enforces integrity
constraints on updates to kernel data structures ini-
tiated by the u-driver. In our implementation, these
integrity constraints are specified as data structure
invariants—constraints that must always be satis-
fied by the data structure. For example, one such
invariant may state that the list of network devices
must not change during an invocation of a u-driver
function to obtain device configuration settings. We
present an approach to automatically extract such
data structure invariants using Daikon [18], a state-
of-the-art invariant inference tool. Similarly, the
RPC monitor also ensures that k-driver function
calls that are invoked by the u-driver via RPC are
allowed by a control transfer policy that is extracted
using static analysis of the driver.

This paper makes two key contributions over
prior work on Microdrivers [20]. First, it presents
the design and implementation of the RPC moni-
tor to mediate u-driver/k-driver communication. In
prior work on Microdrivers, all communication be-
tween a u-driver and a k-driver was unchecked,
thereby poorly isolating kernel data from untrusted
u-drivers. Second, it presents a technique to auto-
matically infer data structure integrity constraints to
be enforced by the RPC monitor. The key property
of these constraints is that they express invariants
over heap data structures, thereby constricting the
updates that a compromised u-driver can apply to
kernel data structures.
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The security architecture proposed in this paper
offers several benefits over prior isolation architec-
tures.
• Reduction of kernel-mode driver code. Isola-

tion architectures such as Nooks [35], Mondrix [43]
and SafeDrive [41] execute drivers in kernel mode
and do not monitor driver-initiated updates to ker-
nel data structures. Consequently, the kernel can
be compromised by exploiting vulnerabilities that
these architectures do not protect against, e.g., race
conditions and double-free bugs. In contrast, our
architecture executes a large fraction of driver code
in user space (as u-drivers) and monitors kernel data
structure updates initiated by u-drivers.
• Compatibility with commodity operating sys-

tems. A k-driver interfaces with the kernel in much
the same way as a traditional device driver. Ker-
nel calls to functions implemented in the u-driver
are transparently forwarded by the k-driver to the
u-driver. Therefore, in contrast to prior work on
microkernels, our security architecture is compati-
ble with commodity operating systems.
• Good common-case performance. User-mode

driver frameworks have often sacrificed perfor-
mance for security [3, 38]. In contrast, our archi-
tecture executes performance-critical functionality
in the kernel thereby imposing no runtime overhead
for the common case.
• Flexibility. Rather than offering a rigid definition

of trusted and untrusted components, our architec-
ture offers the flexibility in choosing which por-
tions of the driver execute with kernel privilege. Al-
though performance-critical functions must prefer-
ably be executed in the k-driver, our architecture
does not enforce such restrictions. Thus, for in-
stance, the kernel can be protected from zero-day
attacks by relegating code with newly-discovered
vulnerabilities to the u-driver until the driver ven-
dor issues a patch.

Despite these benfits, our security architecture
is not a panacea and cannot completely prevent a
compromised u-driver from hijacking the kernel.
Nevertheless, our experiments show that it can pre-
vent a significant fraction of attacks from propagat-
ing to and hijacking the kernel.

We have implemented our security architecture
in the Linux-2.6.18.1 kernel and have applied it to

four device drivers. Experiments show that our
architecture can protect against compromised u-
drivers and do so without affecting common-case
performance.

2. Background and scope

Device drivers for commodity operating systems
execute in the same protection domain as the rest
of the kernel to achieve good performance and easy
access to hardware. This architecture does not
isolate kernel data from vulnerabilities in device
drivers, which are written in C by third-party ven-
dors. Such vulnerabilities, especially in packet-
processing code and ioctl handlers, can be ex-
ploited by malicious user-space applications. For
example, recent work [7, 8] shows that a remote
attacker can hijack control of Windows machine by
exploiting a buffer overflow in beacon and probe re-
sponse processing code in an 802.11 device driver.
Indeed, our study of vulnerability databases re-
vealed several exploitable buffer overrun and mem-
ory allocation vulnerabilities in driver code [4, 30].

The threats posed to kernel data by compromised
device drivers can broadly be classified into two
categories.
• Threats at the kernel/driver interface. Kernel

data structures are routinely updated by device
drivers, and the kernel imposes no restrictions on
the memory regions accessible to drivers or de-
vices. This freedom can be misused by compro-
mised drivers in a variety of ways. Compromised
device drivers can corrupt kernel data structures,
causing the kernel to crash. Similarly, drivers can
update kernel hooks to point to attacker-defined
code, leading to arbitrary code execution that can-
not be detected by user-mode security tools.
• Threats at the driver/device interface. A com-

promised driver can maliciously modify the state
of the device, e.g., by writing arbitrary values to
its registers or exhausting its resources. More se-
riously, a driver can harm kernel data structure in-
tegrity using DMA. The driver can initiate DMA
transfers to an arbitrary physical memory address
by simply writing this address to a device register.
Because the kernel does not restrict the memory re-
gions accessible to a device, a DMA transfer will
overwrite these memory locations.
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The architecture proposed in this paper helps de-
tect and prevent several threats at the kernel/driver
interface. By relegating a large portion of the de-
vice driver to a user-space u-driver and monitor-
ing all data and control transfers at the user/kernel
boundary, it restricts the amount of driver code that
can directly access kernel memory. Our architec-
ture can therefore protect against requests origi-
nating from a compromised u-driver. However,
to ensure good performance, our architecture does
not mediate the kernel/k-driver interface. Con-
sequently, it cannot protect against malicious k-
drivers and other kernel-resident malware. The k-
driver is trusted in our architecture and can be pro-
tected using prior fault isolation techniques [17,
43], although we do not do so in our implemen-
tation.

We do not address threats at the driver/device
interface in this paper. Monitoring data transfers
from the device to kernel memory either requires
the use of new hardware mechanisms for virtual-
ized I/O (such as IOMMU [2] and VT-D [1]) as
done in iKernel [36], or reference monitoring at
the driver/device interface as done in Nexus [40].
These techniques are orthogonal to, and may pos-
sibly be used in conjunction with, the architecture
proposed here.

We also assume the availability of driver source
code. This is because our driver partitioning tool
(discussed in Section 4) operates on source code.
While this limitation precludes us from partition-
ing and protecting against device drivers that are
only distributed in binary form, a partitioning tool
that works at the binary level would allow even such
drivers to be adapted to our architecture.

3. Design
Our security architecture aims to protect ker-

nel data from vulnerable device drivers that can be
compromised by malicious inputs from untrusted
user-space applications and from hardware. We be-
gin by outlining our design goals.
• Kernel data structure integrity. The architecture

must monitor kernel data structure modifications
initiated by device drivers and ensure that these up-
dates comply with a security policy. Each device
driver is associated with a security policy that spec-
ifies permissible updates to kernel data structures.

Kernel

K-Driver

U-Driver

Device

Application
U-Driver
Runtime

K-Driver
Runtime

RPC
Monitor

Figure 1. Design of our device driver se-
curity architecture. The solid lines show
the performance-critical path while the
dashed lines show the non-performance-
critical path.

These security policies specify kernel data struc-
ture integrity constraints, and may either be spec-
ified manually using domain-specific rules, e.g., as
in Nexus [40], or extracted automatically, as in our
implementation.
• Good common-case performance. Device drivers

are on the critical path that transfers data be-
tween user-space applications and external devices.
Hence, to be practical, the architecture must not
significantly impact I/O throughput.
• Compatibility. Modern operating systems support

several thousand device drivers. The architecture
must secure the kernel without requiring significant
changes to either the operating system or requiring
a rewrite of device drivers.

The above design goals are conflicting and are
challenging to achieve simultaneously. Commodity
operating systems often share several kernel data
structures with device drivers that are updated on
performance critical I/O paths making monitoring
all updates impractical without restructuring the
operating system.

Our security architecture, shown in Figure 1,
therefore leverages prior work on the Microdrivers
architecture to achieve the above goals on a large
fraction of device driver code. The Microdrivers ar-
chitecture offers mechanisms to split device drivers
along performance and priority boundaries without
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changing the kernel/driver interface. A microdriver
consists of a small kernel-mode k-driver that con-
tains performance-critical and high priority func-
tions, and a u-driver that contains non-performance
critical code, such as device initialization and con-
figuration.

The kernel communicates with the k-driver via
the standard driver/kernel interface to transfer data
to/from the device. Some of these requests, such
as those to initialize and configure the device, may
invoke functionality that are implemented in the
u-driver. When such requests arrive, the k-driver
invokes the u-driver via the Microdrivers runtime
(shown in Figure 1 as the k-driver runtime and the
u-driver runtime). The runtime has two key respon-
sibilities:
(1) Communication. It provides mechanisms to
transfer control and data between the u-driver and
the k-driver. It provides RPC stubs that implement
upcalls (i.e., the k-driver invoking the u-driver) and
downcalls (i.e., the u-driver invoking the k-driver)
to enable transfer of control; it also implements
marshaling/unmarshaling protocols to transfer data.
(2) Object tracking. Splitting a device driver into a
k-driver and u-driver results in data structures being
copied between address spaces. The runtime tracks
and synchronizes the k-driver’s and the u-driver’s
versions of driver data structures. Specifically, it is
responsible for propagating the k-driver’s changes
to a driver data structure to a u-driver upon an up-
call, and for propagating the u-driver’s changes to
the k-driver when the upcall returns or when the u-
driver makes a downcall into the k-driver.

There are several key challenges that must be ad-
dressed by the runtime. For example, it must ensure
that the u-driver and the k-driver can never simul-
taneously lock a data structure, and that when the
lock is released, the copies of the data structure in
the u-driver and the k-driver are synchronized. It
must also correctly allocate and deallocate mem-
ory in user and kernel space in response to alloca-
tion/deallocation requests by the u-driver and the
k-driver. We refer the interested reader to the Mi-
crodrivers paper [20], which describes mechanisms
to deal with these challenges in detail.

3.1. RPC monitor

As discussed above, the runtime ensures that
driver data structure changes made by the u-driver
are propagated to the k-driver, either when an up-
call returns or when the u-driver issues a down-
call. Because the u-driver is untrusted, all data and
control transfers initiated by the u-driver must be
checked against a security policy. This is the task
of the RPC monitor, shown in Figure 1, which me-
diates all RPC messages from the u-driver to the
k-driver. Note that control and data transfers from
the k-driver to the u-driver need not be mediated
because the k-driver is trusted. Because our archi-
tecture seeks to protect the integrity of kernel data
(rather than its secrecy), the RPC monitor need only
monitor writes to kernel data structures. The RPC
monitor is implemented as a kernel module that en-
forces security policies before control and data are
transferred to the k-driver.
Monitoring data transfer. A compromised u-driver
can maliciously modify kernel data structures by
passing corrupt data. The RPC monitor must there-
fore detect and prevent malicious data transfers.

When a u-driver returns control to its k-driver
following an upcall, or when the u-driver invokes
functionality implemented in the kernel or the k-
driver via a downcall, data structures in the k-driver
are synchronized with their u-driver counterparts
using the marshaling protocol. The RPC monitor
ensures that each such update conforms to a driver-
specific security policy. Intuitively, the goal of the
security policy is to ensure that kernel data struc-
tures are not updated maliciously, i.e., each update
must preserve kernel data structure integrity. For
instance, an update must not allow a compromised
u-driver access to kernel/device memory regions
that a benign u-driver does not normally access.
Similarly, an update must not allow a compromised
u-driver to execute arbitrary code with kernel priv-
ilege.

Specifying such integrity constraints is challeng-
ing because of the quantity and heterogeneity of
kernel data structures updated by device drivers.
In addition, our security architecture splits de-
vice drivers to ensure good performance; conse-
quently, several driver-specific data structures may
be copied across the user/kernel boundary. For ex-
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ample, Linux represents network devices using a
per-driver net device data structure. In a network
microdriver, this data structure may be modified by
the u-driver, for example, when the device is initial-
ized or configured. It is also important to monitor
updates to such driver-specific data structures be-
cause these updates propagate to the kernel. Speci-
fying integrity constraints for driver data structures
often requires domain-specific knowledge, there-
fore making manual specification of such integrity
constraints cumbersome and error-prone.

To overcome these challenges, we present an
approach that automatically infers integrity con-
straints by monitoring driver execution. In our ar-
chitecture, these constraints are expressed as data
structure invariants—properties that the data struc-
ture must always satisfy. For example, an invari-
ant may state that a function pointer to the packet-
send function (e.g., the hard start xmit pointer in
the net device data structure in Linux) of a net-
work driver must not change after being initialized.
Our approach infers such invariants during train-
ing; these are checked during enforcement.

During the training phase, we execute the
u-driver on several benign workloads, and use
Daikon [18] to infer data structure invariants auto-
matically. Daikon does so by observing the values
of data structures that cross the user/kernel bound-
ary and hypothesizing invariants. During the en-
forcement phase, the RPC monitor enforces these
invariants on data structures received from a u-
driver; it first copies these data structures to a vault
area in the kernel, and checks that the invariants
hold. If they do, it updates kernel data structures
with values from the vault. The kernel itself never
uses data structures directly from the vault before
they are checked by the RPC monitor. By monitor-
ing data transfers from the u-driver to the k-driver,
the RPC monitor prevents compromised u-drivers
from affecting kernel data integrity.
Monitoring control transfer. The RPC monitor
checks u-driver to k-driver control transfers to pre-
vent the u-driver from making unauthorized calls to
kernel functions.

As the u-driver services an upcall, it may in-
voke the k-driver via a downcall, either to call
a k-driver function or to execute a function im-
plemented in the kernel. Downcalls are imple-

mented using ioctl system calls that are handled
in the k-driver. Because the u-driver is untrusted,
these downcalls must be verified to be legitimate,
e.g., that a downcall is not initiated by a code injec-
tion attack on a compromised u-driver. Such unau-
thorized downcalls can be maliciously used by the
u-driver, e.g., to cause denial of service by invoking
the kernel function to unregister a device. To avoid
such attacks, we statically analyze the u-driver and
extract the set of downcalls that a u-driver can is-
sue in response to an upcall (static analysis is per-
formed before the driver is loaded). The RPC mon-
itor enforces this statically extracted policy when it
receives a downcall from the u-driver.

Having checked both data and control integrity,
the RPC monitor transfers control to the k-driver,
which can now resume execution on newly-updated
kernel data structures.

4. Implementation

We extended the implementation of the Micro-
drivers architecture on the Linux-2.6.18.1 kernel
with support to monitor data and control transfers
from the u-driver to the k-driver. In this implemen-
tation, the k-driver, the kernel runtime and the RPC
monitor are implemented as a kernel module while
the u-driver and the user runtime execute as a multi-
threaded user-space process.

4.1. Background on Microdrivers

A microdriver begins operation when its ker-
nel module is loaded and the user-space process
is started. The main thread of the user-space pro-
cess makes an ioctl call into the kernel module
and blocks. The kernel module unblocks this thread
when it needs to invoke functions in the u-driver.

The u-driver and k-driver exchange data and
control using an RPC-like mechanism, shown in
Figure 2. To invoke the u-driver using an an up-
call (Figure 2(a)), the k-driver (1) registers the k-
driver function that initiates the upcall with the
RPC monitor; (2) marshals data structures that
will be read/modified by the u-driver; and (3) un-
blocks the thread of the u-driver’s user-space pro-
cess. This transfers control to the u-driver, which
in turn (4) consults the object tracker and unmar-
shals the data structures into its address space; and
(5) invokes the appropriate u-driver function on the
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U-Driver  RPC Stubs
ustub_userfn(buf) {
        ptr = unmarshal(buf);
        userfn(ptr);
}

U-Driver
userfn(ptr) {
        …
}

K-Driver
call kstub_userfn(ptr) ;

K-Driver RPC Stubs
kstub_userfn(buf) {
        buf = marshal(ptr);
        rpccall(ustub_fn,buf);
}

              Object Tracker

ptr

Marshaling Buffer

5

ptr

Marshaling Buffer

2

3

4

Vault Table

Invariant Table

RPC Monitor

1

U-Driver  RPC Stubs
ustub_userfn(buf) {
       userfn(ptr);
       buf = marshal(ptr);
       return;       
}

U-Driver
userfn(ptr) {
        …
}

K-Driver
call kstub_userfn(ptr) ;

K-Driver RPC Stubs
kstub_userfn(buf) {      
        rpccall(ustub_fn,buf);
        unmarsh_check(buf);
        copy_from_vault(buf);  
}

              Object Tracker

ptr

Marshaling Buffer

ptr

Marshaling Buffer

Vault Table

Invariant Table

RPC Monitor ptr Vault Area

(a) Data movement from a k-driver to a u-driver. (b) Data movement from a u-driver to a k-driver.

Figure 2. Data movement during upcalls and downcalls. During downcalls, data is first unmar-
shaled into the vault area to enforce invariants before updating kernel data structures.

unmarshaled data structure. The object tracker is
a bi-directional table responsible for maintaining
the correspondence between kernel- and user-mode
pointers of data structures shared between the k-
driver and the u-driver. As the u-driver runtime
unmarshals data received from the k-driver into its
address space, it uses the object tracker to iden-
tify u-driver objects that correspond to kernel-mode
pointers received from the k-driver. If the runtime
is unable to find such an object, e.g., because the
k-driver or the kernel created a new object that the
u-driver is unaware of, the u-driver can allocate a
new object and enter a new mapping into the object
tracker.

When an upcall returns, or when the u-driver in-
vokes functions in the k-driver via an ioctl sys-
tem call (i.e., a downcall), data is marshaled by the
u-driver and unmarshaled in the kernel, as shown
in Figure 2(b). The main difference in this case is
that a RPC monitor interposes on these requests be-
fore they are forwarded to the k-driver. The RPC
monitor has two key responsibilities—(i) to check
control transfers; and (ii) to check data structure in-
tegrity. The RPC monitor uses a statically-extracted
control flow policy to check control transfers—
this policy statically determines the set of allowed
downcalls for each upcall. For each downcall, the
RPC monitor uses the k-driver function registered
with it (in step (1) of Figure 2(a)) to ensure that the
downcalls are allowed. If this downcall is allowed,
the RPC monitor checks the integrity of data struc-

tures received from the u-driver. To do so, it un-
marshals the data received from the u-driver into a
vault area. This area is not accessed by the k-driver
and is only used by the RPC monitor to check data
structure integrity. The RPC monitor checks that
each variable that was unmarshaled satisfies a set
of invariants; if so, it uses the data from the vault
area to update kernel data structures and frees any
data structures the vault.

DriverSlicer. To allow existing device drivers
on commodity operating systems to benefit from
our architecture, we extended DriverSlicer, a device
driver partitioning tool [20], to generate security
enforcement code. DriverSlicer is implemented as
a plugin to CIL [31], a source code transformation
tool, and consists of about 11,000 lines of Ocaml
code. Given a small number of annotations, Driver-
Slicer automatically partitions a device driver into
a k-driver and a u-driver. It also generates code
for the k-driver and u-driver runtimes, and the RPC
monitor, including code to check control transfers
from the u-driver to the k-driver and code to moni-
tor data structure integrity.

DriverSlicer consists of two parts: a splitter and
a code generator. The splitter analyzes a device
driver and identifies functions that must execute in
the kernel, i.e., those that require kernel privilege to
access the device or those that are performance crit-
ical. To do so, it uses programmer-supplied speci-
fications in the form of type signatures, to identify
such functions. For example, it identifies interrupt
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handlers based upon their function prototypes; in
Linux interrupt handlers always return a value of
type irqreturn t. Similarly, functions responsible
for transmitting network packets typically have two
parameters: a pointer to an sk buff structure, and
a pointer to a net device structure. Such type sig-
natures need only be supplied once per family of
drivers, e.g., one set of type signatures suffices to
identify performance critical and privileged func-
tions for most network drivers. The splitter uses a
statically-extracted call-graph of the device driver
to mark (1) all functions that match these type
signatures; and (2) all functions potentially called
(transitively) by such functions as those that must
execute in the k-driver; the remaining functions are
relegated to the u-driver.

DriverSlicer’s code generator uses the output of
the splitter to partition the driver into a k-driver
and a u-driver, and generates RPC code to trans-
fer control and data. In doing so, it may re-
quire programmer-supplied annotations to clarify
the semantics of pointers. For example, to gen-
erate code to marshal an object referenced by a
void * pointer, the code generator must be sup-
plied with an annotation that determines the type
of the object. Similarly, the code generator also re-
quires annotations to determine whether a pointer
refers to one instance of an object or to an ar-
ray of instances. DriverSlicer currently uses eight
kinds of annotations, details of which appear else-
where [20]. DriverSlicer uses these annotations
to generate RPC code that minimizes the amount
of data copied between the u-driver and the k-
driver; it does so by using static analysis to de-
termine variables and data structure fields that are
read/modified by the u-driver and only generating
marshaling code to copy these variables and fields
using RPC.

4.2. Monitoring kernel data structure updates

This section describes an anomaly detection-
based approach to infer and enforce invariants on
kernel data structures. The approach has two
phases: a training phase, in which invariants are in-
ferred by executing the driver on benign workloads,
and an enforcement phase, in which the RPC mon-
itor enforces these invariants. The training phase is
a one-time activity that can possibly be completed

during driver development. Section 4.2.1 presents
an automated technique to infer invariants during
training; Section 4.2.2 describes how these invari-
ants are enforced.

4.2.1 Inferring data structure integrity con-
straints

To identify kernel data structure invariants, we
adapted Daikon [18], an invariant inference tool.
Daikon consists of two components, namely, a front
end that records the values of variables during ap-
plication execution and an inference engine that
uses these values to hypothesize likely invariants.
The front end records the values of global variables
and formal parameters of functions at key program
points, such as function entries and exits, as the
application executes a set of test inputs. The in-
ference engine uses these values to hypothesize in-
variants. For example, if the value of a variable
is observed to be a constant across multiple execu-
tions of the program, Daikon hypothesizes that the
variable is likely a constant. Daikon infers over 75
different kinds of invariants, including constancy of
scalar-valued variables, arrays and pointers, bounds
of scalars, and relationships between different vari-
ables.

Daikon currently only applies to user-space ap-
plications. However, our architecture executes
the u-driver as a user-space process, which al-
lows Daikon to be applied to driver code. We use
Daikon’s front end to monitor the execution of a
u-driver as it runs several benign workloads for
each driver, such as device initialization, configura-
tion and shutdown, that exercise functionality im-
plemented in the u-driver. The front end records a
trace of values of all the global variables and formal
parameters of functions that cross the user/kernel
boundary. Daikon’s inference engine processes this
trace and hypothesizes invariants. Figure 3 presents
several examples of invariants that Daikon identi-
fied for the 8139too network driver; the left column
shows several functions that appear in the u-driver
of the 8139too microdriver, and indicates whether
the invariant was inferred at the entry or exit (or
both program points) of the function. Invariants in-
ferred at the exits of upcall functions are enforced
by the RPC monitor (Section 4.2.2). We discuss
below several classes of invariants that we found
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Function Invariant
rtl8139 init module (entry) rtl8139 intr mask == C07F, rtl8139 norx intr mask == C02E
rtl8139 init module (exit) rlt8139 intr mask == O(rtl8139 intr mask)

rtl8139 norx intr mask == O(rtl8139 norx intr mask)
rtl8139 rx config == O(rtl8139 rx config)
rtl8139 tx config == O(rtl8139 tx config)

rtl8139 get ethtool stats (exit) rtl chip info has only one value
rtl8139 get link (exit) dev->hard start xmit has only one value
rtl8139 open (entry/exit) dev->base addr ∈ {0x0531C468, 0x06520468}
rtl8139 get link (exit) L(dev->mc list) == O(L(dev->mc list))

Figure 3. Examples of invariants extracted from the 8139too driver.

useful in our experiments.
(1) Constancy of scalars and pointers. Daikon
determines whether a scalar-valued variable (i.e., a
value of a base type, such as int or char) re-
mains constant during driver execution. If so, it
also records the constant value that the variable ac-
quires. For example, consider the integer-valued
global variable rtl8139 intr mask of the 8139too
driver, which represents a 16-bit mask. Daikon in-
fers that this variable has a constant value of C07F
when the function rtl8139 init module is invoked
(see Figure 3). Indeed, an analysis of the driver
shows that this variable is always initialized in the
k-driver to this value.

In addition to scalar variables, Daikon also
determines whether a pointer always refers to
the same object during program execution. For
example, Daikon infers that the pointer-valued
global variable rtl chip info is not modi-
fied by the rtl8139 get ethtool stats func-
tion. Similarly, it infers that the function pointer
dev->hard start xmit is unmodified by a call to
rtl8139 get link (and most other functions in the
u-driver). Inferring and enforcing such invariants
on function pointers can prevent control hijacking
attacks. In fact, a recent study of 25 Linux rootk-
its revealed 22 rootkits that hijacked kernel con-
trol flow by modifying function pointers to point to
attacker-defined code [34]. Note that for pointers
that refer to the same object, Daikon only reports
that the pointer is a constant and does not report
the actual value of the pointer (which would vary
across reboots).
(2) Relationships between variables. Daikon cor-
relates the values of variables and discovers rela-
tionships between them. For example, it can dis-

cover that two variables always acquire the same
value at runtime. Importantly, Daikon can deter-
mine whether the value of a variable remains un-
changed during a function call by observing its val-
ues at function entry (the O value of the vari-
able) and exit. For example, it determines that the
value of rtl8139 intr mask is unchanged by a call
to rtl8139 init module. Enforcing such an invari-
ant constrains the values of rtl8139 intr mask that
can otherwise be modified by a compromised u-
driver to initiate I/O to unauthorized ports.
(3) Ranges/sets of values. In several cases, a vari-
able may not be a constant, but acquire one of a
small set of values. As Figure 3 shows, Daikon
infers such invariants as well; for example, it in-
fers that the dev->base addr, which represents the
base address of I/O memory, can only acquire one
of two values during driver execution. This con-
straint must be enforced when the k-driver’s copy of
dev->base addr is synchronized with the u-driver’s
copy; for otherwise, a compromised u-driver could
coerce the k-driver into writing to arbitrary I/O
memory addresses belonging to other devices.
(4) Linked list invariants. The Linux kernel uses
linked lists extensively to manage several critical
data structures. Prior work demonstrates that ker-
nel linked lists can be stealthily modified to achieve
malicious goals [33]. Unfortunately, Daikon’s C
front end does not support inference of invariants
on linked lists.

We therefore extended Daikon to infer invariants
on linked lists. In particular, we augmented the
marshaling protocol with code that records the con-
tents of linked lists that cross the user/kernel bound-
ary. Daikon then processes this trace of values and
hypothesizes invariants. Our implementation cur-
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rently supports inference of invariants that indicate
that the length of a linked list is unmodified by a
function call. Figure 3 presents one such invariant,
which states that the linked list dev->mc list is un-
modified by a call to rtl8139 get link.

A key feature of the above invariants is their abil-
ity to monitor the integrity of both control and non-
control data in the kernel. For example, by infer-
ring the constancy of function pointers, Daikon can
detect attacks that hijack control flow by modify-
ing function pointers to attacker-defined code. Sim-
ilarly, Daikon can detect attacks that modify I/O
memory addresses and allow a rogue driver to write
to arbitrary memory locations, thereby preventing
this non-control data attack. Daikon’s dynamic
analysis approach enables it to infer several kinds
of invariants that would be difficult to discover us-
ing static analysis of the driver. For example, static
analysis is ill-suited to infer invariants on lengths
of linked lists. Similarly, in pointer-intensive code
(as is common in device drivers), it is hard to stat-
ically infer whether a heap object is unmodified by
a function call without access to precise aliasing in-
formation.

One of the challenges that we faced during de-
velopment was the sheer quantity of data recorded
by Daikon’s front end during the execution of a
u-driver. This in turn resulted in two problems.
First, Daikon’s inference engine took longer to in-
fer invariants, and sometimes even exhausted the
memory available on the machine. Second, Daikon
inferred several hundred invariants per function,
which resulted in increased memory consumption
during enforcement. For example, consider the
8139cp network microdriver: Daikon inferred an
average of 878 invariants at the exit of each func-
tion in the u-driver. Worse, several of these in-
variants were serendipitous, i.e., they were overly
specific to the workloads used during inference and
were not satisfied by other workloads, thereby re-
sulting in false positives during enforcement.

To overcome these problems, we incorporated
two key optimizations. First, we configured
Daikon’s front end to only record values transmit-
ted to u-driver functions that communicate directly
with the k-driver via upcalls and downcalls, and
do not record values for functions internal to the
u-driver. Second, we configured the front end so

that only the values of variables that are accessed
in the u-driver are recorded. For example, if a u-
driver function only reads/modifies certain fields of
an otherwise large C struct, we only record the
values of the fields that are read/modified by that
function. To implement this optimization, we em-
ployed a conservative static analysis of the u-driver
to determine the fields read/modified by functions
in the u-driver. Because DriverSlicer’s code gener-
ator emits marshaling and unmarshaling code only
for variables and fields of data structures that are
read/modified by the u-driver, as discussed in Sec-
tion 4.1, malicious modifications by the u-driver on
other variables and data structure fields will not be
synchronized with the k-driver; hence, they need
not be monitored.

These optimizations drastically reduce the num-
ber of invariants that Daikon infers, which in turn
reduces the memory consumption of the invariant
table (described below) during enforcement. For
example, in the 8139cp network microdriver, the
average number of invariants at function exits drops
over forty-fold.

We expect that inferring invariants would be a
one-time activity, accomplished either during driver
development (if the driver is developed as a mi-
crodriver), or when a legacy driver is split with
DriverSlicer; these invariants can be distributed by
vendors along with drivers. Note, however, that
some invariants inferred by Daikon must be mod-
ified to be widely applicable across multiple instal-
lations and configurations. For example, the invari-
ant for dev->base addr in Figure 3 refers to spe-
cific I/O memory addresses, and is not applicable
across multiple installations (the other invariants in
Figure 3 are portable across multiple installations).
To be portable, this invariant would have to be mod-
ified to generically state that dev->base addr has
only two values, rather than referring to specific
I/O memory addresses, e.g., as with the invariant
for dev->hard start xmit in Figure 3.

4.2.2 Enforcing data structure integrity con-
straints

The invariants inferred by Daikon are enforced by
the RPC monitor when the k-driver receives mar-
shaled data from the u-driver. The RPC monitor
unmarshals this data into a vault area in the kernel’s
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address space. Data structures in the vault area are
only accessed by the RPC monitor and not by the
kernel.

The RPC monitor itself is implemented as a ker-
nel module that manages two tables: an invariant
table and a vault table. The invariant table stores
the set of invariants indexed by the u-driver vari-
able(s) that it is associated with, and is initialized
when the microdriver is loaded. The vault table
stores pointers to data structures in the vault area
and is filled by the RPC monitor when it populates
the vault area.

The RPC monitor enforces invariants on data
received from the u-driver by first unmarshaling
this data into the vault area and inserting pointers
to these resulting data structures in the vault ta-
ble. This unmarshaling code is automatically gen-
erated by DriverSlicer’s code generator. The mar-
shaling code emitted by the code generator also
makes a copy of the original values of variables
before an upcall to support invariants that refer to
the O value of a variable. To enforce invari-
ants, the RPC monitor retrieves the invariants as-
sociated with each variable in the vault table using
the invariant table, and verifies that the invariant is
satisfied. For invariants on variables that point to
the head of a linked list, the RPC monitor traverses
the list and ensures that the invariant is satisfied.
Any failures raise an alert and can trigger recovery
mechanisms, such as restarting the u-driver. If all
invariants are satisfied, then the marshaling proco-
tol synchronizes kernel data structures by overwrit-
ing them with their copies in the vault area.

4.3. Monitoring control transfers

This section describes the techniques used to ex-
tract and enforce policies on control transfers from
the u-driver to the k-driver. A u-driver may is-
sue downcalls as it serves an upcall from the k-
driver. The RPC monitor enforces (Section 4.3.2)
a statically extracted control transfer policy (Sec-
tion 4.3.1) to ensure that the downcall is permit-
ted. Extracting and enforcing such control trans-
fer policies is necessary to prevent code injection
attacks via a compromised u-driver; for example,
an attacker with control over a u-driver can issue
a downcall to a kernel function that unregisters a
device, thereby causing denial of service.

4.3.1 Extracting control transfer policies

To extract a control transfer policy, we employ
static analysis of the u-driver. We first use Driver-
Slicer to statically extract a call graph of the u-
driver. This call graph contains one node for each
function in the u-driver; an edge f→g indicates that
f can potentially call g (possibly indirectly, via a
function pointer). We resolve function pointers us-
ing a simple type-based pointer analysis: each func-
tion pointer can refer to any function whose address
is taken, and whose type signature matches that of
the function pointer. DriverSlicer’s splitter identi-
fies potential entrypoints into the u-driver; its code
generator also includes an RPC stub in the k-driver
for each such entrypoint via which upcalls are is-
sued. For each entrypoint, we use the call graph to
identify the set of downcalls that the entrypoint can
potentially issue—this set of downcalls associated
with each entrypoint serves as the control transfer
policy.

Associating an upcall with a set of downcalls can
result in a permissive policy that can potentially ad-
mit mimicry attacks [39]. However, we note that
in order to compromise kernel data structures, a
compromised u-driver issuing a downcall must also
send appropriate data with the downcall. As dis-
cussed in Section 4.2, the RPC monitor checks the
validity of this data in addition to monitoring con-
trol transfer, thereby constraining the attacker. Nev-
ertheless, our architecture admits the enforcement
of more complex control transfer policies, such as
the sequence of downcalls that can follow an up-
call. Prior work has developed techniques to extract
such control transfer policies (e.g., [21]); we plan to
extend our architecture with such support in future
work.

4.3.2 Enforcing control transfer policies

The RPC monitor enforces the control transfer pol-
icy extracted above. When a function in the k-
driver makes an upcall into the u-driver, the k-driver
registers the entrypoint invoked with the RPC mon-
itor, which in turn pushes this entrypoint on a stack.
When the u-driver issues a downcall, the RPC mon-
itor interposes on this request and ensures that the
downcall is allowed by the control transfer policy
associated with the entrypoint at the head of the
stack. The RPC monitor pops the stack when the
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upcall returns.
It is important to use a stack to track the

currently-active entrypoint because an upcall into
the u-driver can possibly result in multiple control
transfers between the user and the kernel. Driver-
Slicer’s splitter ensures that there is at most one up-
call along any path in the static call-graph of the
driver. However, in response to an upcall, the u-
driver may need to invoke a function that is im-
plemented in the operating system kernel (e.g., the
register netdev function to register a network de-
vice; note that this is a kernel function, not a k-
driver function). In turn, the kernel function may
call back into the driver and the relevant function
may be implemented in the u-driver, thus resulting
in multiple control transfers.

5. Evaluation

In this section, we report on experiments con-
ducted on four drivers secured using our architec-
ture. We ported the device drivers for the RealTek
RTL-8139 (8139too) and 8139C+ (8139cp) net-
work cards, the driver for the Ensoniq sound card
(ens1371), and the driver for the Universal host
controller (USB) interface (uhci-hcd) to our secu-
rity architecture. We used QEMU 0.9.1 (for the
network and USB drivers) and VMWare worksta-
tion 6 (for the sound driver) running an unmodified
Linux-2.6.18.1 kernel as the testbeds for our exper-
iments. Though the Linux kernel has several thou-
sand drivers, we restricted ourselves to four drivers
for two reasons. First, we only considered drivers
available on our test platforms. Second, Driver-
Slicer is not yet completely automatic (neither are
other RPC libraries, such as MSIDL [29]); porting
drivers requires domain-specific understanding and
is time-consuming. Nevertheless, the four drivers
above represent three major driver families, with
different kernel/driver interfaces.

5.1. Privilege separation

We used DriverSlicer to partition the drivers that
we considered into a k-driver and a u-driver. The k-
driver of each driver contains performance-critical
code and code that requires kernel privilege to ex-
ecute. Figure 4 compares the size of the k-driver
and the u-driver. As this figure shows, our archi-
tecture reduces the amount of hand-written driver

code running with kernel privilege and was able to
remove several non-critical functions to user space.
As discussed in Section 4.1, to split a driver into a
microdriver, DriverSlicer requires that the driver be
annotated to clarify semantics of pointers that cross
the user/kernel boundary. Figure 4 also presents
the number of annotations needed, classified as an-
notations on kernel headers, which have to be pro-
vided just once per version of the kernel, and driver-
specific annotations. As this Figure shows, device
drivers can be ported into our architecture with only
a small number of annotations.

In addition to the k-driver, the kernel runtime and
the RPC monitor also execute with kernel privilege
and contain RPC code for control and data transfer.
Though DriverSlicer currently emits several thou-
sand lines of RPC code, we note that this code is
highly stylized and is automatically generated by
DriverSlicer. The correctness of this code can be
ensured by verifying DriverSlicer.

5.2. Ability to prevent attacks

We evaluated the ability of our architecture to
prevent attacks by simulating common attacks on
driver code. As indicated by recent vulnerabil-
ity reports device drivers, buffer overflows, espe-
cially in packet processing code and ioctl han-
dlers are the most exploited class of vulnerabili-
ties. Because u-drivers contain the bulk of non-
performance-critical functionality, including pars-
ing of control packets and ioctl handling, we
tested the ability of our security architecture at
preventing simulated buffer overflow attacks on u-
drivers.

To do so, we first obtained a set of invariants for
each driver using a benign workload in a controlled
training phase. This workload exercised functions
implemented in the u-driver of each driver, such as
initializing and closing the device and configuring
device parameters. Specifically, for the network
drivers, we configured several device parameters
using the ethtool utility, for the sound driver, we
played music files in several formats and adjusted
parameters using the alsamixer utility, while for
the USB driver, we inserted and removed several
USB devices. In addition, we also initialized and
closed the devices repeatedly. We configured the
training workload to maximize the number of func-
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Size of K-driver Size of U-driver Number of Annotations
Driver SLOC # Functions SLOC # Functions Kernel header Driver specific

8139too 545 (33.7%) 11 (21.6%) 1070 (66.2%) 40 (78.4%) 34 8
8139cp 735 (44.7%) 21 (36.8%) 908 (55.3%) 36 (63.1%) 18 16
ens1371 890 (59.7%) 28 (43.7%) 599 (40.3%) 36 (56.3%) 7 7
uhci-hcd 2060 (81.8%) 60 (87.0%) 457 (18.2%) 9 (13.0%) 27 146

Figure 4. Sizes of the k-driver and the u-driver, and the number of annotations needed by
DriverSlicer.

Driver # Funcs. in u-driver # Funcs. covered
8139too 40 35
8139cp 36 33
ens1371 36 14
uhci-hcd 9 7

Figure 5. Function coverage (in the u-
driver) obtained by the training work-
load.

Driver # Invariants Inv. tab. Vault tab.
8139too 2607 247,661 65,180
8139cp 212 17,217 14,817
ens1371 750 70,218 3,918
uhci-hcd 163 12,888 7,455

Figure 6. Memory consumption (in
bytes) of the invariant and vault tables.

tions invoked in the u-driver. Figure 5 presents the
coverage obtained by our training workload. Al-
though we could not achieve 100% coverage using
our workload, 1 we expect that such coverage can
be achieved by vendors during driver development
using regression test suites. Figure 6 shows the to-
tal number of invariants inferred for each driver.

In the testing phase, we used the RPC monitor
to enforce these invariants on u-driver to k-driver
communication. During this phase, we simulated a
compromised u-driver by considering three classes
of attacks, as discussed below. Figure 6 presents
the memory consumption of the RPC monitor.
• Control hijacking via injected downcalls. We
simulated code injection attacks on the u-driver by
injecting ioctl system calls that would result in a
downcall to the k-driver. For example, we injected
a downcall to the kernel function netif wake queue
in one of the u-driver functions. The purpose of this
function is to allow upper layers to call the driver’s
function to transmit packets and for flow control
when transmit resources are available. This code
injection attack may result in data loss or block the

1We either did not know how to invoke the functions that
were not covered by the training workload or were unable to
use the applications needed to invoke these functions on our
testbed. For instance, we were unable to call several MIDI-
related functions in the audio driver because our test applica-
tion (Realplayer 11) refused to play MIDI files on the Linux
distribution we used (Fedora 5).

wait queue.
Because the RPC monitor verifies the set of

downcalls that each upcall is allowed to issue, using
a control transfer policy, it was successfully able to
detect such injection attacks.
• Control hijacking via modified function point-

ers. An attacker with control over a u-driver
can find function pointers that are communicated
from the u-driver to the k-driver, and set them
to point to arbitrary code (either injected code
or to existing kernel functions), thus resulting in
arbitrary code execution within the kernel. We
simulated such an attack within a u-driver func-
tion (rtl8139 get link in the 8139too driver)
by modifying the dev->hard start xmit function
pointer to point to attacker-injected code. The
dev->hard start xmit function pointer typically
refers to the function that transmits packets. When
the upcall to rtl8139 get link returns, the kernel’s
copy of the hard start xmit function pointer will
be updated, thereby resulting in attacker-defined
code executing with kernel privilege each time the
driver attempts to send a packet. The RPC monitor
was able to prevent this attack by enforcing the in-
variant that dev->hard start xmit is not modified
by a call to the rtl8139 get link function (see Fig-
ure 3).

Although we only executed the above attack
in our experiments, we verified that Daikon had
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Original driver Driver in our architecture
Driver Workload Throughput CPU (%) Throughput CPU (%)

8139too TCP-send 63.39Mbps 99.76% 61.20Mbps (-3.45%) 99.86% (0%)
8139too TCP-receive 91.96Mbps 34.84% 90.35Mbps (-1.8%) 34.96% (0%)
8139cp TCP-send 64.02Mbps 99.88% 64.51Mbps (+0.7%) 99.94% (0%)
8139cp TCP-receive 90.88Mbps 31.82% 91.66Mbps (+0.8%) 29.94% (-5.9%)

uhci-hcd Copy 585.84Kbps 4.92% 578.95Kbps (-1.1%) 7.01% (+42%)

Figure 7. Performance of unmodified network and USB drivers and drivers in our security ar-
chitecture.

inferred an invariant for each function pointer
that crossed the u-driver/k-driver boundary in all
four drivers (most of them of the form fptr =

O(fptr)). These invariants will detect unautho-
rized function pointer modifications within the u-
driver and prevent control hijacking attacks.
• Non-control data attacks. Sensitive scalar val-
ues, such as I/O memory addresses, interrupt masks
and configuration parameters, that are marshaled
between the u-driver and the k-driver can be ma-
liciously modified by a compromised u-driver. For
example, scalars that represent I/O memory address
ranges, e.g., dev->base addr, which represents the
base address of the driver’s I/O memory region,
are set by the kernel when the driver is loaded.
These values must not normally be modified by the
driver because it will allow the driver write access
to memory regions that it does not own, e.g., to
the I/O memory regions of other devices. Yet, a
compromised u-driver can maliciously modify such
sensitive scalar values; when these values are mar-
shaled into the k-driver, they will maliciously up-
date kernel data as well.

We simulated such an attack by modifying sev-
eral non-control data values. For instance, we mod-
ified the value of rtl8139 intr mask within the
u-driver. This variable represents a 16-bit mask;
copying this value unchecked into the k-driver will
allow the driver to write to an undesired I/O port.
We were able to successfully detect this attack
using invariants that expressed relationships be-
tween the value of the scalar before an upcall and
the value after the upcall, e.g., rtl8139 intr mask
= O(rtl8139 intr mask). We also imple-
mented an attack that modified a kernel linked list
(dev->mc list) within the u-driver, and were suc-
cessfully able to detect this attack using linked list

invariants.
• False positives and negatives. It is well-known
that Daikon can possibly infer serendipitous invari-
ants, i.e., those that are overly specific to the train-
ing workload. To determine whether such invari-
ants result in false positives during enforcement,
we ran the drivers with several benign test work-
loads that called functions in the u-driver (the train-
ing workload used to infer invariants was the same
as the one in Section 5.2). We did not observe any
false positives during this experiment. While it is
unclear whether the same result will hold for other
drivers as well, we note that in a real deployment,
false positives could be eliminated by manually in-
specting and refining the invariants.

To evaluate false negatives, i.e., cases where
invariants fail to detect a compromised u-driver,
we conducted fault-injection experiments using the
8139too and 8139cp drivers. (We could not con-
duct these experiments on the ens1371 and uhci-
hcd drivers because of limitations of our prototype
infrastructure.) We used an off-the-shelf fault injec-
tor [43] to inject 400 random faults in the u-driver
of each microdriver. We measured the number of
faults that propagated to the kernel (via RPC) and
the number of these faults that were detected by our
invariants. Note that our prototype currently lacks
a recovery subsystem. Therefore, faults that prop-
agate to the kernel crash the system, i.e., the RPC
monitor can detect data corruption, but cannot pre-
vent or recover from a system crash. Our experi-
mental methodology was therefore to inspect sys-
tem logs following each system crash to determine
whether the RPC monitor detected the crash.

Figure 8 presents the results of this study. As
this figure shows, there were several cases in which
the system did not crash and in which the faults
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were contained within the u-driver (the #NoCrash
and #UD columns, respectively). The remaining
faults, which constituted the majority, propagated
to the kernel, thereby showing the need for an RPC
monitor to inspect kernel data structure updates ini-
tiated by the u-driver. As discussed above, we used
system logs to determine whether the RPC mon-
itor detected a crash. In several cases (shown in
the #Clear column), we observed that the system
log had been cleared following the crash. In these
cases, we could not determine whether the RPC
monitor would have detected the crash. Neverthe-
less, there were several cases in which we observed
a crash for which we could inspect our logs to de-
termine the effectiveness of invariants (shown in the
#InLog column). The #Detect column shows the
number of #InLog crashes that were detected by the
RPC monitor. As these results indicate, the RPC
monitor could detect 84% of the injected faults in
the 8139too driver and 61% of the faults in the
8139cp driver. These results also show that the RPC
monitor can effectively thwart a significant fraction
of attacks enabled by a compromised u-driver.

5.3. Performance

We measured both the throughput and CPU uti-
lization of the two network drivers and the USB
driver using our QEMU testbed. While QEMU
does not provide an accurate representation of per-
formance on real hardware, it allows us to mea-
sure differences in performance. If the driver has
lower performance, it will be reflected either as
higher CPU utilization or low throughput. If neither
changes, the performance on real hardware should
be unchanged.

We measured throughput and CPU utilization of
the network drivers using netperf [14]. We trans-
mitted packets between our QEMU test environ-
ment and a client machine. The netperf tests used
TCP receive and send buffer sizes of 87KB and
16KB, respectively. To test the USB driver, we
copied a 140MB file into a USB disk. All our
measurements are averaged over 10 runs, and are
presented in Figure 7. As this Figure shows, our
security architecture minimally impacts common-
case performance (the minor speedups that we ob-
served are within the margin of experimental error).
This is because the code to transmit packets is in

the k-driver; sending a packet does not involve any
user/kernel transitions. For the sound driver, we
compared the CPU utilization of both the original
driver and the split driver as they played a 256-Kbps
MP3; CPU utilization in both cases was zero.

However, uncommon functionality, such as de-
vice initialization, shutdown and configuration, re-
sulted in several user/kernel transitions and took al-
most thrice as long. During the training phase of
the experiments reported in Section 5.2, we used
several benign workloads that exercised such func-
tionality implemented in the u-driver of each device
driver. Figure 9 presents the number of user/kernel
transitions and the amount of data transferred in up-
calls and downcalls during this training phase.

6. Related Work

Hardware-based isolation techniques, such as
Nooks [35] and Mondrix [41], rely on memory
protection at the page level (Nooks) or with fine-
grained segments (Mondrix) to isolate device driver
failures. There are two main differences between
Nooks/Mondrix and our work. First, both Nooks
and Mondrix execute device drivers in kernel mode.
Second, they do not enforce integrity specifications
on kernel data structure updates, because doing so
is likely to impose significant performance over-
heads. The consequence of these differences is that
while Nooks and Mondrix can improve reliabil-
ity with benign but vulnerable drivers, they cannot
protect against compromised drivers that attempt
to subvert the kernel. For example, they cannot
protect against buffer overflow exploits that mali-
ciously modify kernel data structures.
Virtual machine-based techniques isolate device
drivers by running a set of device drivers within
their own virtual machine e.g., [16, 19, 25]. In prin-
ciple, this approach offers all the benefits of our
architecture. However, in practice, there are two
key difficulties. First, these techniques require the
use of a VMM. Although VMMs have seen wide
deployment for server-class systems, they are still
not in wide use on personal desktops—platforms
that support a wide variety of devices and hence,
drivers. Second, VM-based techniques must pro-
vide a front-end driver within the guest VM that
communicates requests between the device driver
(running on a separate VM) and I/O requests from
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Driver Faults NoCrash UD Clear InLog Detect
8139too 400 49 26 212 113 95 (84%)
8139cp 400 134 14 147 105 64 (61%)

Figure 8. Results from fault injection.

Driver KBytes sent/received # upcalls # downcalls
8139too 813 200 160
8139cp 9.5 206 124
ens1371 15.6 395 777
uhci-hcd 25.1 36 126

Figure 9. Data movement in up and downcalls.

applications in the guest. Although such front-
ends can be developed easily for standard classes
of drivers (e.g., network, sound, SCSI), devel-
oping front-ends for other one-of-a-kind drivers,
e.g., those that support non-standard ioctl inter-
faces, is cumbersome. Thus, while the VMM-based
approach has several benefits, it is not applicable to
a wide variety of devices and drivers.

SafeDrive [43] and XFI [17] are language-based
mechanisms to isolate device drivers. SafeDrive
is an adaptation of CCured [32] to protect
against type-safety violations in device drivers.
While SafeDrive offers low-performance overhead
and compatibility, device drivers protected with
SafeDrive still execute with kernel privilege. More-
over, SafeDrive only protects against type-safety
violations; in contrast, our RPC monitor can protect
against violations that transcend type-safety, such
as requests by the u-driver to allocate large amounts
of memory, which may lead to memory exhaustion.
Similarly XFI ensures control-flow integrity for de-
vice drivers. Our security architecture allows the
use of any user-space security mechanism to be ap-
plied to a large fraction of device driver code with-
out investing the effort needed to adapt these mech-
anisms to kernel code.
Microkernels [26, 40, 42] provide new operating
system abstractions that allow device drivers to ex-
ecute in user mode. Nexus [40] is one such mi-
crokernel OS that enforces domain-specific rules
on driver/device communication using a kernel-
resident reference monitor. Supplied with ap-
propriate rules, Nexus can prevent attacks at the
driver/device interface that our architecture cannot
prevent. The effort required to port Linux drivers to

Nexus is also comparable to the effort required to
port them to our architecture. However, Nexus is a
microkernel; consequently, its security mechanisms
are largely inapplicable to commodity operating
systems, which are structured as macrokernels. In
addition, Nexus reports high CPU utilization for
CPU-intensive workloads and lower throughputs
with a network driver. In contrast, our architec-
ture imposes minimal overheads in the common-
case because performance-critical code executes in
kernel mode.
User-mode driver frameworks [10, 15, 24, 28, 37]
also attempt to execute drivers without kernel priv-
ilege. However, these techniques either offer poor
performance [3, 38] because they transmit large
amounts of data frequently across the user/kernel
boundary, or are incompatible with commodity op-
erating systems, often requiring complete rewrites
of drivers and modifications to the kernel [10, 24,
28, 37].

Program partitioning techniques have previously
been for privilege separation [6] and to create se-
cure web applications [9]. In contrast to prior
work, our architecture applies partitioning to device
driver code, which enables user-mode drivers and
the use of user-mode tools such as Daikon to in-
fer invariants. Prior work has also investigated the
use of program invariants for bug detection [22],
data structure repair [13], rootkit detection [5] and
improving the security of web applications [11].
Again, our contribution is to apply these techniques
to improve the security of device drivers.
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7 Summary
Device drivers bloat the size of the TCB in

commodity operating systems because kernel data
is isolated poorly from vulnerabilities in driver
code. The security architecture proposed in this
paper offers a practical way to better isolate ker-
nel data from device drivers without sacrificing per-
formance and in a manner that is compatible with
commodity operating systems.
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struct cp private {

char * IOMem regs;

struct cp desc * Array(64) rx ring;

...

}

struct net device {

void * Opaque(struct cp private) priv;

struct net device * Sentinel(next,0) next;

...

}

Figure 10. Structure definition from the
8139cp driver, illustrating the IOM, A-
, O and S annotations.

E. Brewer. SafeDrive: Safe and recoverable
extensions using language-based techniques.
In OSDI, 2006.

A Examples of annotations used by
DriverSlicer

Figure 10 presents four kinds of annotations
used by DriverSlicer using an example from the
8139cp network driver. These annotations are ap-
plied to structure definitions and formal parameters
of functions. DriverSlicer supports eight kinds of
annotations in total; these are described in detail in
prior work on Microdrivers [20].
• The IOM annotation, applied to the regs field

of the cp private structure, informs DriverSlicer
that regs points to device I/O memory. Pointers to
I/O memory must be handled differently than point-
ers to kernel/device memory by the object tracker.
DriverSlicer uses this annotation to generate appro-
priate marshaling code for pointers to I/O memory
pointers.
• The A annotation informs DriverSlicer that

the pointer-valued rx ring field of the cp private
structure points to an array of 64 cp desc objects.
DriverSlicer uses this annotation to marshal the en-
tire array of objects instead of simply marshaling
the object instance that rx ring points to.
• The O annotation, which is applied to the
void * pointers, helps DriverSlicer identify the
type of the object that the priv of the net device
data structure points to in the 8139cp driver. Driver-
Slicer uses this annotation to generate marshaling
code for the cp private data structure when it mar-
shals the priv field of the net device structure.

• The S annotation is applied to recursive data
structures such as the next field of a linked list. The
annotation shown in Figure 10 also contains the
predicate used to end linked list traversal (check-
ing that the next field is non-NULL). DriverSlicer
uses this annotation to generate code to marshal the
entire linked list of elements, using next,0 as the
condition to terminate traversal.

B Marshaling protocol
Figure 11 shows an example of the mar-

shaling protocol augmented to check data struc-
ture invariants. As this Figure shows, the
marshaling protocol is augmented to record the
original values of variables in the vault table;
this is required to enforce invariants of the
form var=O(var). The unmarshaling protocol
(implemented in checkinv rtl8139 init one)
copies values received from the u-driver into the
vault area and verifies that invariants are satisfied.
If so, kernel data structures are updated with values
from the vault using the copy from vault function,
which copies the value of a data structure/field from
the vault area to the kernel.
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// RPC stub in the k-driver containing code for invariant enforcement.

int rtl8139 init one (struct pci dev *dev, ...) {

void *mbuf, *dmbuf;

...

// Marshal values into mbuf.

marshal (mbuf, "pdev->hdr type", pdev->hdr type);

add vault tab ("pdev->hdr type", &pdev->hdr type, ORIGVAL);

marshal (mbuf, "pdev->devfn", pdev->devfn);

add vault tab ("pdev->devfn", &pdev->devfn, ORIGVAL);

...

// Call the u-driver with marshaled data.

dmbuf = do upcall ("rtl8139 init one", mbuf);

// Demarshaling: copy from vault.

if (checkinv rtl8139 init one(dmbuf)) {

copy from vault ("pdev->hdr type", &pdev->hdr type);

copy from vault ("pdev->devfn", &pdev->devfn);

...

}

}

// RPC monitor function that unmarshals data into the vault

// and checks invariants

int checkinv rtl8139 init one(void *unmarshbuf) {

void *ptr;

ptr = unmarsh to vault (unmarshbuf, "pdev->hdr type");

add vault tab ("pdev->hdr type", ptr, MODIFVAL);

ptr = unmarsh to vault (unmarshbuf, "pdev->devfn");

add vault tab ("pdev->devfn", ptr, MODIFVAL);

...

if (check invariants()) return 1;

else { //trigger recovery }

}

Figure 11. Code snippet from the 8139too microdriver showing marshaling protocol modified
to check for data structure invariants.
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