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Abstract

JavaScript-based browser extensions (JSEs) enhance
the core functionality of web browsers by improving
their look and feel, and are widely available for com-
modity browsers. To enable a rich set of functionalities,
browsers typically execute JSEs with elevated privileges.
For example, unlike JavaScript code in a web applica-
tion, code in a JSE is not constrained by the same-origin
policy. Malicious JSEs can misuse these privileges to
compromise confidentiality and integrity, e.g., by steal-
ing sensitive information, such as cookies and saved
passwords, or executing arbitrary code on the host sys-
tem. Even if a JSE is not overtly malicious, vulnera-
bilities in the JSE and the browser may allow a remote
attacker to compromise browser security.

We present Sabre (Security Architecture for Browser
Extensions), a system that uses in-browser information-
flow tracking to analyze JSEs. Sabre associates a label
with each in-memory JavaScript object in the browser,
which determines whether the object contains sensitive
information. Sabre propagates labels as objects are
modified by the JSE and passed between browser sub-
systems. Sabre raises an alert if an object contain-
ing sensitive information is accessed in an unsafe way,
e.g., if a JSE attempts to send the object over the net-
work or write it to a file. We implemented Sabre by mod-
ifying the Firefox browser and evaluated it using both
malicious JSEs as well as benign ones that contained
exploitable vulnerabilities. Our experiments show that
Sabre can precisely identify potential information flow
violations by JSEs.

1. Introduction
Modern web browsers support an architecture that

lets third-party extensions enhance the core functional-
ity of the browser. Such extensions enhance the look and
feel of the browser and help render rich web content,
such as multimedia. Extensions are widely available
for commodity browsers as plugins (e.g., PDF readers,

Flash players, ActiveX), browser helper objects (BHOs,
e.g., toolbars) and add-ons.

This paper concerns JavaScript-based browser ex-
tensions (JSEs). Such extensions are written primarily
in JavaScript, and are widely available and immensely
popular (as “add-ons”) for Firefox [4] and related tools,
such as Thunderbird. Notable examples of JSEs for
Firefox include Greasemonkey [5], which allows user-
defined scripts to customize how web pages are ren-
dered, Firebug [3], a JavaScript development environ-
ment, and NoScript [9], a JSE that aims to improve se-
curity by blocking script execution from certain web-
sites. Other browsers like Internet Explorer and Google
Chrome also support extensions (e.g., scriptable plug-
ins and ActiveX controls) that contain or interact with
JavaScript code.

However, recent attacks show that JSEs pose a threat
to browser security. Two factors contribute to this threat:
(1) Inadequate sandboxing of JavaScript in a JSE.
Unlike JavaScript code in a web application, which exe-
cutes with restricted privileges [10], JavaScript code in a
JSE executes with the privileges of the browser. JSEs are
not constrained by the same-origin policy [37], and can
freely access sensitive entities, such as the cookie store
and browsing history. Thus, for instance, JavaScript
in a JSE is allowed to send an XMLHttpRequest to any
web domain. Even though JavaScript only provides re-
stricted language-level constructs for I/O, browsers typ-
ically provide cross-domain interfaces that enable a JSE
to perform I/O. For example, although JavaScript does
not have language-level primitives to interact with the
file system, JSEs in Firefox can access the file system via
constructs provided by the XPCOM (cross-domain com-
ponent object model) interface [8]. Importantly, these
features are necessary to create expressive JSEs that
support a rich set of functionalities. For example, JSEs
that provide cookie and password management function-
ality rely critically on the ability to access the cookie and
password stores.

However, JSEs from untrusted third parties may con-
tain malicious functionality that exploits the privileges
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that the browser affords to JavaScript code in an exten-
sion. Examples of such JSEs exist in the wild. They are
extremely easy to create and can avoid detection using
stealth techniques [12, 14, 15, 16, 18, 40]. Indeed, we
wrote several such JSEs during the course of this project.
(2) Browser and JSE vulnerabilities. Even if a JSE
is not malicious, vulnerabilities in the browser and in
JSEs may allow a malicious website to access and mis-
use the privileges of a JSE [13, 34, 38, 39, 44]. Vulner-
abilities in older versions of Firefox and Greasemonkey
allowed a remote attacker to access the file system on
the host machine [34, 44]. Similarly, vulnerabilities in
Firebug [13, 38] allowed a remote attacker to execute ar-
bitrary commands on the host machine using an exploit
akin to cross-site scripting. These attacks, which are de-
scribed in detail in Section 2, exploit subtle interactions
between the browser and JSEs.

While there is much prior work on the security of un-
trusted browser extensions such as plugins and BHOs
(which are distributed as binary executables) particu-
larly in the context of spyware [21, 29, 30], there is
relatively little work on analyzing the security of JSEs.
Existing techniques to protect against an untrusted JSE
rely on load-time verification of the integrity of the JSE,
e.g., by ensuring that scripts are digitally signed by a
trustworthy source. However, such verification is ag-
nostic to the code in a JSE and cannot prevent attacks
enabled by vulnerabilities in the browser or the JSE. Ter-
Louw et al. [40] developed a runtime agent to detect ma-
licious JSEs by monitoring XPCOM calls and ensuring
that these calls conform to a user-defined security pol-
icy. Such a security policy may, for instance, prevent
a JSE from accessing the network after it has accessed
browsing history. Unfortunately, XPCOM-level moni-
toring of JSEs is too coarse-grained and can be overly
restrictive. For example, one of their policies disallows
XPCOM calls when SSL is in use, which may prevent
some JSEs from functioning in a https browsing ses-
sion. XPCOM-level monitoring can also miss attacks,
e.g., a JSE may disguise its malicious actions so that
they appear benign to the monitor (in a manner akin to
mimicry attacks [42]).

This paper presents Sabre, a system that uses in-
browser information-flow tracking to analyze JSEs.
Sabre associates each in-memory JavaScript object with
a label that determines whether the object contains sensi-
tive information. Sabre modifies this label when the cor-
responding object is modified by JavaScript code (con-
tained both in JSEs and web applications). Sabre raises
an alert if a JavaScript object containing sensitive data
is accessed in an unsafe way, e.g., if a JSE attempts to
send a JavaScript object containing sensitive data over

the network or write it to a file. In addition to detecting
such confidentiality violations, Sabre also uses the same
mechanism to detect integrity violations, e.g., if a JSE
attempts to execute a script received from an untrusted
domain with elevated privileges.

Sabre differs from prior work [21] that uses
information-flow tracking to analyze plugins and BHOs
because it tracks information flow at the level of
JavaScript instructions and does so within the browser.
In contrast, prior work on plugin security tracks infor-
mation flow at the system level by tracking information
flow at the granularity of machine instructions. These
differences allow Sabre to report better forensic infor-
mation with JSEs because an analyst can explain flow
of information at the granularity of JavaScript objects
and instructions rather than at the granularity of mem-
ory words and machine instructions. For example, prior
work [21] required the system-level information-flow
tracker to have access to OS-aware views in order to at-
tribute suspicious actions to specific plugins and BHOs.
In contrast, Sabre can readily attribute suspicious actions
to the JSEs that performed these actions. Finally, Sabre
can be implemented by modifying the web browser and
does not require the browser to execute in specialized
information-flow tracking environments (e.g., a modi-
fied system emulator).

Prior work [17, 41] has also explored JavaScript-
level information-flow tracking as a client-side defense
against web-application vulnerabilities, such as cross-
site scripting. Although Sabre employs similar tech-
niques to propagate labels, it differs from prior work
in two ways. First, Sabre precisely tracks cross-domain
flows, i.e., information flows in which a JavaScript ob-
ject is passed between different browser subsystems, of-
ten being converted into different representations as it
is passed. Handling such flows is important because
JSEs extensively use cross-domain calls to access web
documents (the DOM), local storage and the network.
For example, Sabre precisely tracks DOM nodes that
are accessed by a JSE and propagates labels between
the DOM and the JavaScript interpreter. Sabre also
modifies the XPCOM interface to propagate labels pre-
cisely across other browser subsystems. In contrast,
prior work only tracked information flows within the
JavaScript interpreter and provided rudimentary support
for label propagation across the DOM [41]. Second,
Sabre incorporates support to declassify or endorse in-
formation flows. This support is critical for the analysis
of JSEs because benign JSEs often contain flows from
sensitive sources to low-sensitivity sinks (as illustrated
in Section 4). Such offending flows must be manually
analyzed and whitelisted because they can possibly be
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used to compromise confidentiality or integrity. To our
knowledge, prior work on JavaScript-level information
flow has not needed such support.

To summarize, the main contributions of this paper
are:
• Sabre, an information flow tracker for JSEs. We

discuss the techniques used to implement informa-
tion flow tracking in a web browser and the heuris-
tics used to achieve precision (Section 3). Sabre han-
dles explicit information flows, some forms of im-
plicit flows, as well as cross-domain flows. We have
implemented a prototype of Sabre in Firefox.
• Evaluation on 24 JSEs. We evaluated Sabre using

malicious JSEs as well as benign ones that contained
exploitable vulnerabilities. In these cases, Sabre pre-
cisely identified information flow violations. We also
tested Sabre using benign JSEs. In these experiments,
Sabre precisely identified potentially suspicious flows
that we manually analyzed and whitelisted (Sec-
tion 4).
We chose Firefox as our implementation and evalua-

tion platform because of the popularity and wide avail-
ability of JSEs for Firefox. However, JSEs pose a secu-
rity threat even in privilege-separated browser architec-
tures (e.g., [6, 26, 43]) for the same reasons as outlined
earlier. The techniques described in this paper are there-
fore relevant and applicable to such browsers as well.

2. Background and Motivating Examples
Writing browser extensions in JavaScript offers a

number of advantages that will ensure that JSEs re-
main relevant in future browsers as well. JavaScript has
emerged as the lingua franca of the Web and is sup-
ported by all major browsers. It offers several primi-
tives that are ideally suited for web browsing (e.g., han-
dlers for user-generated events, such as mouse clicks and
keystrokes) and allow easy interaction with web applica-
tions (e.g., primitives to access the DOM). JSEs can be
written by developers with only a rudimentary knowl-
edge of JavaScript and can readily be modified by oth-
ers, which in turn allows for rapid prototyping. This
is in contrast to plugins and BHOs, which are devel-
oped in low-level languages against browser-specific in-
terfaces and are distributed as binary executables. Fi-
nally, because support for JavaScript is relatively stable
as browsers evolve, JSEs can be readily ported across
platforms and browser versions. Indeed, many of these
benefits apply to extensions written in any scripting
language, and have motivated several software systems
to adopt such extension models, e.g., AppleScript and
Adobe Lightroom.

To allow easy access to browser resources and to
support a rich set of functionalities, browsers execute
JSEs with elevated privileges. For example, Firefox
executes JavaScript code in a JSE with chrome privi-
leges [7] by default, which gives this code read/write
access to arbitrary DOM elements, access to sensitive
browser entities, such as the cookie and password stores
and the address bar, and unrestricted access to the lo-
cal file system and the network. In sharp contrast,
JavaScript code in a web application is tightly sand-
boxed. For example, it can only access DOM elements
and issue network requests (e.g., XMLHttpRequest) in ac-
cordance with the same-origin policy (with the excep-
tion of signed JavaScript code [10]) and cannot access
the file system.

However, executing JSEs with elevated privileges
renders the browser susceptible to attacks via JSEs. Ma-
licious JSEs may exploit elevated privileges to steal sen-
sitive data or snoop on user activity. Worse, benign
JSEs from trusted vendors may contain vulnerabilities
that, in combination with browser vulnerabilities, may
be exploited by remote attackers. The problem is exac-
erbated by the lack of good environments and tools, such
as static bug finders, for code development in JavaScript.
Moreover, because subtle bugs only manifest when a
JSE is used with certain versions of the browser, com-
prehensive testing of JSEs for security vulnerabilities is
often difficult.

The remainder of this section presents three motivat-
ing examples that demonstrate how JSEs can compro-
mise confidentiality and integrity. The first two exam-
ples show how a remote attacker can exploit vulnera-
bilities in otherwise benign JSEs, while the third exam-
ple presents a malicious JSE. In each case, we also de-
scribe how information-flow tracking, as implemented
in Sabre, would have discovered the attack.

Greasemonkey/Firefox Vulnerability. Greasemon-
key is a popular JSE that allows user-defined scripts to
make changes to web pages on the fly. For example,
a user could register a script with Greasemonkey that
would customize the background of web pages that he
visits. Greasemonkey exports a set of API functions
(prefixed with “GM”) that user-defined scripts can be
programmed against. These API functions execute with
elevated privileges because user-defined scripts must
have the ability to read and modify arbitrary web pages.
For example, the GM XMLHttpRequest function allows
a user-defined script to execute an XMLHttpRequest to
an arbitrary web domain, and is not constrained by the
same-origin policy.

However, a combination of vulnerabilities in older

3 Rutgers University DCS Technical Report 648, April 2009



versions of Greasemonkey (CVE-2005-2455) and Fire-
fox (CVE-2006-1734) allowed arbitrary scripts loaded
on a web page to access the GM API functions and exe-
cute with elevated privileges [34, 44]. In particular, ver-
sions of Greasemonkey prior to 0.3.5 operated by adding
GM API functions to the global JavaScript window object
when a web page was loaded. When Greasemonkey
loaded user-defined scripts for execution, these scripts
could access the GM API functions via the window object.
Following the execution of user-defined scripts, Grease-
monkey would remove the GM API functions from the
window object before the onload event. Scripts loaded
in a web page will not have access to privileged GM API
functions because these scripts are executed following
the onload event.

Unfortunately, a vulnerability in older versions of
Firefox (CVE-2006-1734) allowed scripts on a web page
to capture references to GM API functions using the
JavaScript watch function, as shown in Figure 1. The
watch function on line 17 executes a callback func-
tion (trapGM) when a watched JavaScript object is mod-
ified (GM apis). This callback captures a reference
to window.GM xmlhttpRequest in the property named
GM xmlhttpRequest; this reference persists even after

Greasemonkey removes the GM API functions from the
window object. When the page loads, the script in Fig-
ure 1 uses this reference to issue a GET request to read
the contents of the boot.ini file from the local file sys-
tem. Although the script in Figure 1 simply modifies the
DOM to store the contents of the boot.ini file, it could
instead use a POST to transmit this data over the network
to a remote attacker.

Information-flow tracking as implemented in Sabre
detects this attack because sensitive user data (boot.ini)
is accessed in unsafe ways. In particular, Sabre marks
as sensitive all data that a JSE reads from a pre-defined
set of sensitive sources, including the local file sys-
tem. The call to window. GM xmlhttpRequest (line 9
in Figure 1) executes JavaScript code from Grease-
monkey to access the local file system. Consequently,
Response.responseText, which this function returns, is
also marked sensitive. In turn, the DOM node that stores
this data is also marked as sensitive because of the as-
signment on line 12 in Figure 1. Sabre raises an alert
when the browser attempts to send contents of the DOM
over the network, e.g., when the user clicks a “submit”
button.

This example illustrates how a malicious website can
exploit JSE/browser vulnerabilities to steal confidential
user data. It also illustrates the need to precisely track
security labels across browser subsystems. For instance,
Sabre detects the above attack because it also modifies

the browser’s DOM subsystem to store labels with DOM
nodes. Doing so allows Sabre to determine whether a
sensitive DOM node is transmitted over the network. An
approach that only tracks security labels associated with
JavaScript objects (e.g., [17, 41]) will be unable to pre-
cisely detect this attack.

Firebug Vulnerabilities. Firebug is a popular JSE that
provides a development and debugging environment for
HTML, CSS and JavaScript code. As a code devel-
opment aid, Firebug exports a console interface that
scripts loaded in the browser can use to display messages
within the Firebug console. For example, a script on
a web page could include console.log({‘<html>Hello
world</html>’}), which would in turn display this mes-
sage in the console. Firebug sanitizes the inputs re-
ceived from the console interface because the console
executes with chrome privileges, e.g., Firebug escapes
special characters in the arguments to console.log.

However, input sanitization vulnerabilities in an
older version of Firebug (CVE-2007-1878, CVE-2007-
1947) [13, 38] allowed a malicious web page to inject
JavaScript code into the Firebug console. Although this
attack is similar in flavor to XSS attacks, it can cause
more damage because the injected code executes with
chrome privileges. For example, the injected JavaScript
code could invoke the nsIProcess or nsILocalFile in-
terfaces exported by XPCOM and start a process or
read/modify the contents of a file on the local host,
thereby affecting both the confidentiality and integrity
of the host. In contrast, code injected into a web ap-
plication in an XSS attack is bound by the same-origin
policy and can only access data (e.g., cookies) belonging
to the vulnerable web application’s domain.

Much as prior work has used JavaScript-level taint
tracking to detect XSS attacks [41], Sabre can also de-
tect script injection attacks in Firebug. In particular,
Sabre considers all data received from the console in-
terface as untrusted because this interface is exposed to
web applications. Sabre would report an alert when the
nsILocalFile or nsIProcess interface is invoked with
untrusted parameters that are derived from data received
through the console interface. Sabre differs from prior
work [41] because it must also reason about information
received from a number of cross-domain interfaces, such
as access to the file system and the network, that are not
accessible to JavaScript code in web applications.

A Malicious JSE. FFsniFF (Firefox Sniffer) [14] is a
malicious JSE that, if installed, attempts to steal user
data entered on HTML forms. When a user “submits”
an HTML form, FFsniFF iterates through all non-empty
input fields in the form, including password entries,
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1. <script type="text/javascript">
2. window._GM_xmlhttpRequest = null;
3. function trapGM(...) {
4. window._GM_xmlhttpRequest = window.GM_xmlhttpRequest;
5. ...
6. }
7. function checkGM() {
8. if (window._GM_xmlhttpRequest) {
9. window._GM_xmlhttpRequest(
10. {method: ‘GET’, url: ‘file:///c:/boot.ini’,
11. onload: function(Response) {
12. document.formname.textfield.value

= Response.responseText;
13. }});
14. }
15. }
16. if (typeof window.addEventListener != ‘undefined’) {
17. window.watch(‘GM_apis’, trapGM);
18. window.addEventListener(‘load’, checkGM, true);
19. }
20. </script>

Figure 1. Example of malicious JavaScript code that exploits the Greasemonkey vulnerability
to read the contents of boot.ini from disk (adapted from [34]).

and saves their values. It then constructs SMTP com-
mands and transmits the saved form entries to the at-
tacker (the attack requires the vulnerable host to run an
SMTP server). FFsniFF also attempts to hide itself from
the user by exploiting a vulnerability in the Firefox ex-
tension manager (CVE-2006-6585) to delete its entry
from the add-ons list presented by Firefox.

Figure 2 presents a simplified snippet of code from
FFsniFF and illustrates the ease with which malicious
extensions can be written. Sabre detects FFsniFF be-
cause it considers all data received from form fields on
a web page as sensitive. This sensitive data is propa-
gated to both the array hesla and the variable data via
a series of assignment statements. Sabre raises an alert
when FFsniFF attempts to send the contents of the sen-
sitive data variable along with SMTP commands over
an output channel (a low-sensitivity sink) to the SMTP
server running on the host machine.

3. Tracking Information Flow with Sabre
This section describes the design and implementation

of Sabre. We had three goals:
(1) Monitor all JavaScript execution. Sabre must
monitor all JavaScript code executed by the browser.
This includes code in web applications, JSEs, as well as
JavaScript code executed by the browser core, e.g., code
in browser menus and XUL elements [11].
Monitoring all JavaScript code is important for two rea-
sons. First, an attack may involve JavaScript code in
multiple browser subsystems. For example, a malicious
JSE may copy data into a XUL element, which may then
be read and transmitted by JavaScript in a web appli-

cation. In such cases, it is important to track the flow
of sensitive data through the JSE to the XUL element
and into the web application. Second, JSEs may often
contain code, such as scripts in XUL overlays, that may
be included into the browser core. Such code often in-
teracts with JavaScript code in a web application. For
example, an overlay may implement a handler that is
invoked in response to an event raised by a web applica-
tion. It is key to track information flows through code in
overlays because overlays from untrusted JSEs may be
malicious/vulnerable.
(2) Ease action attribution. When Sabre reports an in-
formation flow violation by a JSE, an analyst may need
to determine whether the violation is because of an at-
tack or whether the offending flow is part of the adver-
tised behavior of the JSE. In the latter case, the analyst
must whitelist the flow. For example, PwdHash [36]
is a JSE that scans and modifies passwords entered on
web pages. This behavior may be considered malicious
if performed by an untrusted JSE. However, an analyst
may choose to trust PwdHash and whitelist this flow. To
do so, it is important to allow for easy action attribu-
tion, i.e., an analyst must be able to quickly locate the
JavaScript code that caused the information flow viola-
tion and determine whether the offending flow must be
whitelisted.
(3) Track information flow across browser subsys-
tems. JavaScript code in a browser and its JSEs interacts
heavily with other subsystems, such as the DOM and
persistent storage, including cookies, saved passwords,
and even the local file system. Sabre must precisely
monitor information flows across these subsystems be-
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function do_sniff() {
var hesla = window.content.document.getElementsByTagName("input");
data = "";
for (var i = 0; i < hesla.length; i++) {
if (hesla[i].value != "") {
...
data += hesla[i].type + ":" + hesla[i].name
+ ":" + hesla[i].value + "\n";

...
}

}
// the rest of the code sends ‘data’ via an email message.

}

Figure 2. A snippet of code from FFsniFF, a malicious JSE.

cause attacks enabled by JSEs (e.g., those illustrated in
Section 2) often involve multiple browser subsystems.

We implemented Sabre by modifying SpiderMonkey,
the JavaScript interpreter in Firefox, to track informa-
tion flow. We modified SpiderMonkey’s representation
of JavaScript objects to include security labels. We also
enhanced the interpretation of JavaScript bytecode in-
structions to modify labels, thereby propagating infor-
mation flow. We also modified other browser subsys-
tems, including the DOM subsystem (e.g., HTML, XUL
and SVG elements) and XPCOM, to store and propagate
security labels, thereby allowing information flow track-
ing across browser subsystems. This approach allows
us to satisfy our design goals. All JavaScript code is
executed by the interpreter, thereby ensuring complete
mediation even in the face of browser vulnerabilities,
such as those discussed in Section 2. Moreover, asso-
ciating security labels directly with JavaScript objects
and tracking these labels within the interpreter and other
browser subsystems makes our approach robust to ob-
fuscated JavaScript code, e.g., as may be found in drive-
by-download websites that attempt to exploit browser
and JSE vulnerabilities. Finally, the interpreter can read-
ily identify the source of the JavaScript bytecode cur-
rently being interpreted, thereby allowing for easy action
attribution.

Although Sabre’s approach of using browser modifi-
cations to ensure JSE security is not as readily portable
as, say, language restrictions [1, 2, 32], this approach
also ensures compatibility with legacy JSEs. For exam-
ple, Adsafe [1] would reject JSEs containing dynamic
code generation constructs, such as eval; in contrast,
Sabre allows arbitrary code in a JSE, but instead tracks
information flow. An information-flow tracker based on
JavaScript instrumentation will likely be portable across
browsers; we plan to investigate such an approach in fu-
ture work.

3.1. Security Labels

Sabre associates each in-memory JavaScript object
with a pair of security labels. One label tracks the flow
of sensitive information while the second tracks the flow
of low-integrity information (to detect, respectively, vi-
olations of confidentiality and integrity). We restrict our
discussion to tracking flows of sensitive information be-
cause confidentiality and integrity are largely symmet-
ric.

Each security label stores three pieces of information:
(i) a sensitivity level, which determines whether the ob-
ject associated with the label stores sensitive informa-
tion; (ii) a Boolean flag, which determines whether the
object was modified by JavaScript code in a JSE; and
(iii) the name(s) of the JSE(s) and web domains that
have modified the object. The sensitivity level is used to
determine possible information flow violations, e.g., if
data derived from a sensitive source is written to a low-
sensitivity sink. However, Sabre raises an alert only if
the object was modified by a JSE. In this case, Sabre re-
ports the name(s) of the JSE(s) that have modified the
object. For example, in Figure 1, the DOM node that
stores the response from the GM xmlhttpRequest call
is marked sensitive. Further, the data contained in the
node is modified by executing code contained in the
Greasemonkey JSE, in this case, via the return value
from GM xmlhttpRequest. Consequently, Sabre raises
an alert when the browser attempts to transmit the DOM
node via HTTP, e.g., when the user submits a form con-
taining this node.

Sabre’s policy of raising an alert only when an ob-
ject is modified by a JSE is key to avoiding false pos-
itives. Recall that Sabre tracks the execution of all
JavaScript code, including code in web applications and
in the browser core. Although such tracking is neces-
sary to detect attacks via compromised/malicious files in
the browser core, e.g., overlays from malicious JSEs, it
can also report confidentiality violations when sensitive
data is accessed in legal ways, such as when JavaScript
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in a web application accesses cookies. Such accesses
are sandboxed using other mechanisms, e.g., the same-
origin policy. We therefore restrict Sabre to report an
information-flow violation only when a sensitive object
that is modified by JavaScript code in a JSE (or overlay
code derived from JSEs) is written to a low-sensitivity
sink.

Security labels in Sabre allow for fine-grained infor-
mation flow tracking. Sabre associates a security label
with each JavaScript object, including objects of base
type (e.g., int, bool), as well as with complex objects
such as arrays and compound objects with properties.
For complex JavaScript objects, Sabre associates addi-
tional labels, e.g., each element of an array and each
property of a compound object is associated with its own
security label. In particular, an object obj and its prop-
erty obj.prop each have their own security label.

Sabre stores security labels by directly modifying the
interpreter’s data structures that represent JavaScript ob-
jects. Doing so considerably eases the design of label
propagation rules for a prototype-based language such
as JavaScript. A JavaScript object inherits all the prop-
erties of its ancestor prototypes. Therefore an object’s
properties may not directly be associated with the ob-
ject itself. For example, an object obj may access a
property obj.prop, which in turn may result in a chain
of lookups to locate the property prop in an ancestor
prototype of obj. In this case, the sensitivity-level of
obj.prop is the sensitivity of the value stored in prop.
Sabre stores the label of the property prop with the in-
memory representation of prop. Its label can therefore
be accessed conveniently, even if an access to prop in-
volves a chain of multiple prototype lookups to locate
the property. Moreover, objects in JavaScript are passed
by reference. Therefore, any operations that modify the
object via a reference to it, such as those in a function to
which the object is passed as a parameter, will also mod-
ify its label appropriately when the interpreter accesses
the in-memory representation of that object.

JavaScript in a browser closely interacts with sev-
eral browser subsystems. Notably, the browser provides
the document and window interfaces via which JavaScript
code can interact with the DOM, e.g., a JSE can access
and modify window.location. However, such browser
objects are not stored and managed by the JavaScript
interpreter. Rather, each access to a browser object re-
sults in a cross-domain call that gets/sets the value of the
browser object. To store security labels for such objects,
Sabre also modifies the browser’s DOM subsystem to
store security labels. Each DOM node has an associated
security label. This label is accessed and transmitted by
the browser to the JavaScript interpreter when the DOM

node is accessed in a JSE.
In addition to the DOM, cross-domain interfaces such

as XPCOM allow a JSE to interact with other browser
subsystems, such as storage and networking. For ex-
ample, the snippet of code in Figure 3 uses XPCOM’s
cookie manager.

In this case, the reference to enumerator is resolved
via a cross-domain call to the cookie manager. Sabre
must separately manage the security labels of cookieMgr
and those of its properties because cookieMgr is not a
JavaScript object. Sabre assigns a default security la-
bel to cross-domain objects (described in Section 3.2).
It also ensures that properties that are resolved via
cross-domain calls inherit the labels of their parent ob-
jects, e.g., cookieMgr.enumerator inherits the label of
cookieMgr.

3.2. Sources and Sinks

Sabre detects flows from sensitive sources to low-
sensitivity sinks. We consider several sensitive sources,
as summarized in Figure 4. These include sources origi-
nally defined in Netscape Navigator 3.0 [17] (rows 1-7),
which primarily deal with access to DOM elements, as
well as sources enabled by cross-domain access. Rows
8-12 of Figure 4 depict XPCOM interfaces that allow
access to persistent storage; any data received over these
interfaces is considered sensitive. Low-sensitivity sinks
accessible from the JavaScript interpreter include the file
system and the network, as shown in Figure 5. In ad-
dition to modifying the JavaScript interpreter to raise
an alert when a sensitive object is written to a low-
sensitivity sink, Sabre also modifies the browser’s doc-
ument interface to raise an alert when a DOM node that
stores sensitive data derived from a JSE is sent over the
network. For example, Sabre raises an alert when a form
or a script element that contains data labeled sensitive
(such as data derived from the cookie or password store)
is transmitted over the network.

The browser itself may perform several operations
that result in information flows from sensitive sources
to low-sensitivity sinks. For example, the file system
is listed both as a sensitive source and a low-sensitivity
sink. This is because a JSE may potentially leak con-
fidential data from a web application by storing this
data on the file system, which may then be accessed by
other JSEs or malware on the host machine. However,
the browser routinely reads and writes to the file sys-
tem, e.g., bookmarks and user preferences are read from
the file system when the browser starts and are written
back to disk when the browser shuts down. To avoid
raising an alert on such benign flows, Sabre reports an
information-flow violation only if an object is written to
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var cookieMgr = Components.classes["@mozilla.org/cookiemanager;1"].
getService(Components.interfaces.nsICookieManager);

var e = cookieMgr.enumerator;

Figure 3. Accessing cookies using XPCOM.

Entity Sensitive attributes/Method of access
1. Document cookie, domain, forms, lastModified, links, referrer, title, URL.
2. Form action.
3. Form input checked, defaultChecked, defaultValue, name, selectedIndex, toString, value.
4. History current, next, previous, toString.
5. Select option defaultSelected, selected, text, value.
6. Location/Link hash, host, hostname, href, pathname, port, protocol, search, toString.
7. Window defaultStatus, status.
8. Files/Streams nsIInputStream, nsIFileInputStream, nsILocalFile, nsIFile.
9. Passwords nsIPasswordManager, nsIPasswordManagerInternal.

10. Cookies nsICookieService, nsICookieManager.
11. Preferences nsIPrefService, nsIPrefBranch.
12. Bookmarks nsIRDFDataSource.

Figure 4. Sensitive sources.

Entity Method of access
1. Files/Processes nsIOutputStream, nsIFileOutputStream, nsIFile, nsIProcess nsIDownload.
2. Network nsIXMLHttpRequest, nsIHttpChannel, nsITransport.
3. DOM Submission of sensitive DOM node over the network.

Figure 5. Low-sensitivity sinks.

by a JSE (as discussed in Section 3.1). Consequently,
it does not report an alert on benign flows, such as the
browser reading and writing user preferences. Even so,
a benign JSE may contain instances of flows from sensi-
tive sources to low-sensitivity sinks as part of its adver-
tised behavior. Disallowing such flows may render the
JSE dysfunctional. In Section 3.4, we discuss how Sabre
handles such flows via whitelisting.

While sources and sinks listed above help detect
confidentiality-violating information-flows, a similar set
of low-integrity sources and high-integrity sinks can also
be used to detect integrity violations. In this case, Sabre
detects information-flows from low-integrity sources,
e.g., the network, to high-integrity sinks, e.g., calls to
nsIProcess, which can be used to start a process on the
host system. These sources and sinks are largely similar
to Figure 4 and Figure 5; we omit a detailed discussion
for brevity.

3.3. Propagating Labels

Sabre modifies the interpreter to additionally propa-
gate security labels. JavaScript instructions can roughly
be categorized into assignments, function calls and con-
trol structures, such as conditionals and loops.

Explicit flows. Sabre handles assignments in the stan-
dard way by propagating the label of the RHS of an
assignment to its LHS. If the RHS is a complex arith-
metic/logic operation, the result is considered sensitive
if any of the arguments is sensitive. Assignments to
complex objects deserve special care because JavaScript
supports dynamic creation of new object properties. For
example, the assignment obj.prop = 0 adds a new inte-
ger property prop to obj if it does not already exist. Re-
call that Sabre associates a separate label with obj and
obj.prop (in contrast to [41]). In this case, the prop-
erty prop inherits the label of obj when it is initially
created, but the label may change because of further as-
signments to prop. An aggregate operation on the entire
object (e.g., a length operation on an array) will use the
label of the object. In this case, the label of the object is
calculated (lazily, when the object is used) to be the ag-
gregate of the labels of its child properties, i.e., an object
is considered sensitive if any of its constituent proper-
ties stores sensitive information. Sabre handles arrays in
a similar fashion by associating each array element as-
sociated with its own security label. However, the label
of the entire array is the aggregate of its members; do-
ing so is important to prevent unintentional information
leaks [41].

8 Rutgers University DCS Technical Report 648, April 2009



Sabre handles each function call as (i) an assignment
of actual parameters to formal parameters; (ii) the exe-
cution of the function body; and (iii) an assignment of
any return values to the result of the function call. Se-
curity labels of actual parameters are propagated to for-
mals, and following the execution of the function, the
label of the return value is assigned to the variable that
stores the result of the function call. Complex objects
are passed by references; consequently, their labels need
not be copied. The execution of a function may happen
within a labeled scope (described below), in which case
the labels of variables modified in the function are com-
bined with the label of the current scope. The scope of a
function call such as obj.func() automatically inherits
the label of the parent object obj. eval statements are
handled similar to function calls; all variables modified
by code within an eval inherit the label of the scope in
which the eval statement executes.

Cross-domain function calls require special care. For
example, consider the following call, which initial-
izes a nsIScriptableInputStream object (sis) using
a nsIInputStream object (is): sis.init(is). In this
statement, sis is not a JavaScript object. The function
call to init is therefore resolved via a cross-domain call.
To handle cross-domain calls, we supplied Sabre with
a set of cross-domain function models that specify how
labels must be propagated across such calls. For exam-
ple, in this case, the model specifies that the label of is
must propagate to sis. We currently use 127 function
models that specify how labels must be propagated for
cross-domain calls.

Implicit flows. While the above statements are ex-
amples of explicit data dependencies, conditions (and
closely related statements, such as loops and exceptions)
induce implicit information flows. In particular, there
is a control dependency between a conditional expres-
sion and the statements executed within the conditional.
Thus, for instance, all statements in both the T and F
blocks in the following statement must be considered
sensitive, because document.cookie.length is a consid-
ered sensitive:
if (document.cookie.length > 0) then {T} else

{F}

Sabre handles implicit flows using labeled scopes. Each
conditional induces a scope for both its true and false
branches. The scope of each branch inherits the label of
its conditional; scopes also nest in the natural way. All
objects modified within each branch inherit the label of
the scope in which they are executed.

While scopes handle a limited class of implicit infor-
mation flows, it is well-known that they cannot prevent

x = false; y = false;

if (document.cookie.length > 0)

then {x = true} else {y = true}

if (x == false) {A}; if (y == false) {B}

Figure 6. An implicit flow that cannot be
detected using labeled scopes.

all implicit flows. For instance, consider the example
shown in Figure 6 (adapted from [19, 41]). In this figure,
one of block A or B executes, depending on the result of
the first conditional. Consequently, there is an implicit
information flow from document.cookie.length to both
x and y. However, a dynamic approach that uses scopes
will only mark one of x or y as sensitive, thereby missing
the implicit flow.

Precisely detecting such implicit flows requires static
analysis. However, we are not aware of static analy-
sis techniques for JavaScript that can detect all such in-
stances of implicit flow. Although prior work [41] has
developed heuristics to detect simple instances of im-
plicit flows, such as the one in Figure 6, these heuris-
tics fail to detect implicit flows in dynamically generated
code, e.g., code executed as the result of an eval. Large,
real-world JSEs contain several such dynamic code gen-
eration constructs. For example, we found several in-
stances of the eval construct in about 50% of the JSEs
that we used in our evaluation (Section 4). Our current
prototype of Sabre therefore cannot precisely detect all
instances of implicit flows. In future work, we plan to
investigate a hybrid approach that alternates static and
dynamic analysis to soundly detect all instances of im-
plicit flows.

Instruction provenance. In addition to propagating
sensitivity values, Sabre uses the provenance of each
JavaScript instruction to determine whether a JavaScript
object is modified by a JSE. If so, it sets a Boolean flag
(Section 3.1) and records the name of the JSE in the se-
curity label of the object for diagnostics. Because the
JavaScript interpreter can precisely determine the source
file containing the bytecode currently being executed,
this approach robustly determines the provenance of an
instruction, even if the instruction appears in a XUL
overlay that is integrated into the browser core.

3.4. Declassifying and Endorsing Flows

As discussed in Section 3.2, a benign JSE can con-
tain information flows that may potentially be classified
as violations of confidentiality or integrity. For exam-
ple, consider the PwdHash [36] JSE, which customizes

9 Rutgers University DCS Technical Report 648, April 2009



passwords to prevent phishing attacks. This JSE reads
and modifies a sensitive resource (i.e., a password) from
a web form, which is then transmitted over the network
when the user submits the web form. Sabre raises an
alert because an untrusted JSE can use a similar tech-
nique to transmit passwords to a remote attacker. How-
ever, PwdHash customizes an input password passwd to
a domain by converting it into SHA1(passwd||domain),
which is then written back to a DOM element whose
origin is domain. In doing so, PwdHash effectively de-
classifies the sensitive password. Consequently, this in-
formation flow can be whitelisted by Sabre.

To support declassification of sensitive information,
Sabre extends the JavaScript interpreter with the ability
to declassify flows. A security analyst supplies a de-
classification policy, which specifies how the browser
must declassify a sensitive object. Flows that violate
integrity can similarly be handled with an endorsement
policy. Sabre supports two kinds of declassification (and
endorsement) policies: sink-specific and JSE-specific. A
sink-specific policy permits fine-grained declassification
of objects by allowing an analyst to specify the location
of a bytecode instruction and the object externalized by
that instruction. In turn, the browser reduces the sensi-
tivity of the object when that instruction is executed. In
contrast, a JSE-specific policy permits declassification
of all flows from a JSE and can be used when a JSE is
trusted.

Declassification (and endorsement) policies must be
supplied with care because declassification causes Sabre
to allow potentially unsafe flows. In the experiments re-
ported in Section 4, we manually wrote declassification
policies by examining execution traces emitted by Sabre
and determining whether the offending flow is part of
the advertised behavior of the JSE. If the flow was ad-
vertised by the JSE, we wrote a sink-specific policy to
allow that flow. Diagnosing a flow and writing a declas-
sification policy took on the order of a few minutes.

4. Evaluation
We evaluated Sabre using a suite of 24 JSEs, com-

prising over 120K lines of JavaScript code. Our goals
were to test both the effectiveness of Sabre at analyzing
information flows and to evaluate its runtime overhead.

4.1. Effectiveness

Our test suite included both JSEs with known in-
stances of malicious flows as well as those with un-
known flows. In the latter case, we used Sabre to un-
derstand the flows and determine whether they were po-
tentially malicious.

JSEs with known malicious flows. We evaluated
Sabre with four JSEs that had known instances of ma-
licious flows. These included two JSEs that contained
exploitable vulnerabilities (Greasemonkey v0.3.3 and
Firebug v1.01, as discussed in Section 2) and two
publicly-available malicious JSEs (FFSniFF [14] and
BrowserSpy [40]).

To test vulnerable JSEs, we adapted information
available in public fora [13, 34, 38, 44] to write web
pages containing malicious scripts. The exploit against
Greasemonkey attempted to transmit the contents of a
file on the host to an attacker, thereby violating confiden-
tiality, while exploits against Firebug attempted to start
a process on the host and modify the contents of a file
on disk, thereby violating integrity. In each case, Sabre
precisely identified the information flow violation, as de-
scribed in Section 2. We also confirmed that Sabre did
not raise an alert when we used a JSE-enhanced browser
to visit benign web pages.

To test malicious JSEs, we considered FFSniFF and
BrowserSpy, both of which exhibit the same behavior—
they steal passwords and other sensitive entries from
web forms and hide their presence from the user by re-
moving themselves from the browser’s extension man-
ager. Nevertheless, because Sabre records the prove-
nance of each JavaScript bytecode instruction executed,
it raised an alert when FFSniFF and BrowserSpy at-
tempted to transmit passwords to a remote attacker via
the network.

In addition to the above JSEs, we also wrote a num-
ber of malicious JSEs, both to demonstrate the ease with
which malicious JSEs can be written and to evaluate
Sabre’s ability to detect them. Each of our JSEs com-
prised under 100 lines of JavaScript code, and were writ-
ten by an undergraduate student with only a rudimen-
tary knowledge of JavaScript. For example, ReadCookie
is a JSE that reads browser cookies and stores them in
memory. When the user visits a particular web page (in
our prototype, any web page containing Google’s search
utility), the JSE creates a hidden form element, stores the
cookies on this form, and modifies the action attribute
to redirect the search query to a malicious server ad-
dress. The server receives both the search query as well
as the stolen cookies via the hidden form element. Sabre
detects this malicious flow when the user submits the
search request because the hidden form field that stores
cookies (and is therefore labeled sensitive) is transmitted
over the network.

JSEs with unknown information flows. In addition
to testing Sabre against known instances of malicious
flows, we tested Sabre against 20 popular Firefox JSEs.

10 Rutgers University DCS Technical Report 648, April 2009



The goal of this experiment was to understand the na-
ture of information flows in these JSEs and identify sus-
picious flows.

Our experimental methodology was to enhance the
browser with the JSE being tested and examine any vi-
olations reported by Sabre. We would then determine
whether the violation was because of advertised func-
tionality of the JSE, in which case we whitelisted the
flow using a sink-specific declassification or endorse-
ment policy, or whether the flow was indeed malicious.
Although we ended up whitelisting suspicious flows for
all 20 JSEs, our results described below show that infor-
mation flows in several of these JSEs closely resemble
those exhibited by malicious extensions, thereby moti-
vating the need for a fine-grained approach to certify in-
formation flows in JSEs.

In our experiments, which are summarized in Fig-
ure 7, we found that the behavior of JSEs in our test
suite fell into five categories. As Figure 7 illustrates,
several JSEs contained a combination of the following
behaviors.
(1) Interaction with HTML forms. An HTML form is
a collection of form elements that allows users to submit
information to a particular domain. Example of form
elements include login names, passwords and search
queries. While malicious JSEs (e.g., FFsniFF) can steal
data by reading form elements, we also found that Pwd-
Hash [36] reads information from form elements.
PwdHash recognizes passwords prefixed with a special
symbol (“@@”) and customizes them to individual do-
mains to prevent phishing attacks. In particular, it reads
the password from the HTML form, transforms it as de-
scribed in Section 3.4, and writes the password back to
the HTML form. This behavior can potentially be mis-
used by an untrusted JSE, e.g., a malicious JSE could
read and maliciously modify form elements when the
user visits a banking website, thereby compromising in-
tegrity of banking transactions. Consequently, Sabre
marks the HTML form element containing the password
as sensitive, and raises an alert when the form is submit-
ted. However, because the information flow in PwdHash
is benign, we declassify the customized password before
it is written back to the form, thereby preventing Sabre
from raising an alert.
(2) Sending/receiving data over an HTTP channel.
JSEs extensively use HTTP messages to send and re-
ceive data, either via XMLHttpRequest or via HTTP
channels. For example, Web-of-Trust is a JSE that per-
forms an XMLHttpRequest for each URL that a user vis-
its, in order to fetch security ratings for that URL from
its server.

While this behavior can potentially be misused by mali-
cious JSEs to compromise user privacy by exposing the
user’s surfing patterns, we allowed the XMLHttpRequest
in Web-of-Trust by declassifying the request.
(3) Interaction with the file system. With the excep-
tion of two JSEs, the rest of the JSEs in our test suite
interacted with the file system. For example, Video
DownloadHelper and Greasemonkey download content
from the network on to the file system (media files and
user scripts, respectively), while ForecastFox reads user
preferences, such as zip codes, from the file system and
sends an XMLHttpRequest to receive weather updates
from accuweather.com.
Both these behaviors can potentially be misused by ma-
licious JSEs, the first to download malicious files to
the host and the second to steal confidential data, such
as user preferences. However, we allowed these flows
by endorsing the file system write operation in Video
DownloadHelper and Greasemonkey and by declassify-
ing the XMLHttpRequest in ForecastFox.
(4) Loading a URL. Several JSEs, such as Speed-
Dial and PDF Download, monitor user activity
(e.g., keystrokes, hyperlinks clicked by the user) and
load a URL based upon this activity. For example, PDF
Download, which converts PDF documents to HTML
files, captures user clicks on hyperlinks and sends an
XMLHttpRequest to its home server to get a URL to a
mirror site. It then constructs a new URL by appending
the mirror’s URL with the hyperlink visited by the user,
and loads the newly-construced URL in a new tab.
Similar behavior can potentially be misused by a JSE,
e.g., to initiate a drive-by-download attack by loading an
untrusted URL. However, for PDF Download, we en-
dorsed the JavaScript statements that load URLs in the
JSEs that we tested, thereby preventing Sabre from rais-
ing an alert.
(5) JavaScript events. Unprivileged JavaScript code
on a web page can communicate with privileged
JavaScript code (e.g., code in JSEs) via events. In par-
ticular, JSEs can listen for specific events from scripts
on web pages.
We found one instance of such communication in the
Stylish JSE, which allows easy management of CSS
styles for web sites. A user can request a new style for a
web page, in response to which the JSE opens a new tab
with links to various CSS styles. When the user chooses
a style, JavaScript code on web page retrieves the corre-
sponding CSS style and throws an event indicating that
the download is complete. Stylish captures this event,
extracts the CSS code, and opens a dialog box for the
user to save the file.
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JSE Advertised Functionality of JSE 1 2 3 4 5
1. Adblock Plus Prevent page elements, such as ads, from being downloaded 3 3
2. All-in-One-Sidebar Sidebar control to switch between sidebar panels and view dialog windows 3
3. CoolPreviews Preview links and images without leaving current page or tab. 3 3
4. Download Statusbar Manage downloads from a tidy statusbar 3
5. Fast Video Download Easy download of video files from popular sites 3
6. Forecastfox Gets weather forecasts from AccuWeather.com 3 3 3
7. Foxmarks Synchronizer Keeps bookmarks and passwords backed up and synchronized 3 3
8. Ghostery Alerts user’s about web bugs, ad networks and widgets on webpages 3
9. GooglePreview Inserts thumbnails and ranks of web sites into Google search results 3 3

10. Greasemonkey (0.8.1) Allows users customize webpages with user scripts 3 3
11. NoScript Restricts executable content to trusted domains 3 3
12. PDF Download Tool for handling, viewing and creating Web-based PDF files 3 3 3
13. Pwdhash Customizes user passwords to domains to prevent phishing 3
14. SpeedDial Easy access to frequently visited websites 3 3
15. StumbleUpon Discovers web sites based on user’s interests 3 3 3
16. Stylish Easy management of user styles to enhance browsing experience 3 3 3 3
17. Tab Mix Plus Enhances Firefox’s tab browsing capabilities 3 3
18. User Agent Switcher Switches the user agent of the browser 3
19. Video DownloadHelper Tool for web content extraction 3 3
20. Web-of-Trust Warns users before they interact with a harmful site 3 3 3

Behavior key: (1) HTML forms; (2) HTTP channels; (3) File system; (4) Loading URLS; (5) JavaScript events.

Figure 7. Behavior of popular Firefox JSEs categorized as in Section 4.1.

Sabre raises an alert when the user saves the file. This is
because Sabre assigns a low integrity label to JavaScript
code on a web page; in turn the event thrown by the
code also receives this label. Sabre reports an integrity
violation when the JavaScript code in Stylish handles
the low-integrity event and attempts to save data on to
the file system (a high-integrity sink). Nevertheless, we
suppressed the alert by endorsing this flow.

Sabre provides detailed traces of JavaScript execu-
tion for offline analysis. We used these traces in our
analysis of JSEs to determine whether an information
flow was benign, and if so, determine the bytecode in-
struction and the JavaScript object at which to execute
the declassification/endorsement policy. Although this
analysis is manual, in our experience, it only took on
the order of a few minutes to determine where to place
declassifiers.

As the examples above indicate, several benign JSEs
exhibit information flows that can possibly be misused
and must therefore be analyzed and whitelisted. It is im-
portant to note that each of these information flows ex-
hibited real behaviors in JSEs. Because such behaviors
may possibly be misused by malicious JSEs, determin-
ing whether to whitelist a flow is necessarily a manual
procedure, e.g., of studying the high-level specification
of the JSE to determine if the behavior conforms to the
specification.

To evaluate the precision of Sabre, we also studied
whether it reported any other instances of flows from
sensitive sources to low-sensitivity sinks, i.e., exclud-
ing the flows that were whitelisted above. We used a
Sabre-enhanced browser for normal web browsing ac-
tivity over a period of several weeks. During this period

Sabre reported no violations. We found that Sabre’s pol-
icy of reporting an information flow violation only when
an object is modified by a JSE was crucial to the preci-
sion of Sabre.

The analysis above shows that benign JSEs often
contain information flows that can potentially be mis-
used by malicious JSEs. These results therefore moti-
vate a security architecture for JSEs in which JSE ven-
dors explicitly state information flows in a JSE by sup-
plying a declassification/endorsement policy for confi-
dentiality/integrity violating flows. This policy must
be approved by the user (or a trusted third party, such
as addons.mozilla.org, that publishes JSEs) when the
JSE is initially installed and is then enforced by the
browser.

It is important to note that this architecture is agnostic
to the code of a JSE and only requires the user to approve
information flows. In particular, the declassification pol-
icy is decoupled from the code of the JSE is enforced by
the browser. As a result, only flows whitelisted by the
user will be permitted by the browser, thereby signif-
icantly constraining confidentiality and integrity viola-
tions via JSEs. This architecture also has the key advan-
tage of being robust even in the face of attacks enabled
by vulnerabilities in the JSE.

4.2. Performance

We evaluated the performance of Sabre by integrating
it with SpiderMonkey in Firefox 2.0.0.9. Our test plat-
form was a 2.33Ghz Intel Core2 Duo machine running
Ubuntu 7.10 with 3GB RAM. We used the SunSpider
and V8 JavaScript benchmark suites to evaluate the per-
formance of Sabre. Our measurements were averaged
over ten runs.
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With the V8 suite, a Sabre-enabled browser reported
a mean score of 29.16 versus 97.91 for an unmodi-
fied browser, an overhead of 2.36×, while with SunSpi-
der, a Sabre-enabled browser had an overhead of 6.1×.
We found that the higher overhead in SunSpider was
because of three benchmarks (3d-morph, access-nsieve
and bitops-nsieve-bits). Discounting these three bench-
marks, Sabre’s overhead with SunSpider was 1.6×. De-
spite these overheads, the performance of the browser
was not noticeably slower during normal web browsing,
even with JavaScript-heavy web pages, such as Google
maps and street views.

The main reason for the high runtime overhead re-
ported above is that Sabre monitors the provenance
of each JavaScript bytecode instruction to determine
whether the instruction is from a JSE (to set the Boolean
flag in the security label, as described in Section 3.3).
Monitoring each instruction is important, primarily be-
cause code included in overlays (that are distributed with
JSEs) is included in the browser core and may be exe-
cuted at any time. If such overlays can separately be
verified to be benign, these checks can be disabled. In
particular, when we disabled this check, we observed a
manageable overhead of 77% and 42% with the V8 and
SunSpider suites, respectively. Ongoing efforts by Eich
et al. [22, 23] to track information flow in JavaScript also
incur comparable overheads (e.g., they report 20%-70%
overheads).

We measured the memory overhead of Sabre using
the Linux top utility. Our workload consisted of us-
ing the browser to simultaneously visit web pages con-
taining moderate to large amounts of JavaScript code.
Specifically, we opened four tabs to visit Google maps
(with street views enabled), CNN, BBC and iGoogle
for a fifteen minute browsing session. The memory
consumption of a Sabre-enabled browser was approxi-
mately 74% more than that of an unmodified browser at
the end of the browsing session.

5. Related Work
Browser extension security. Prior work [21, 29, 30]
has developed techniques to identify spyware behavior
in untrusted browser extensions, particularly in plugins
and BHOs, which are distributed as binary executables.
These approaches rely on whole-system information
flow tracking [21] and on monitoring plugin/browser in-
teractions [29]. Like prior work [29, 30], Sabre also
monitors JSE/browser interactions (e.g., see Figure 4),
but supplements such monitoring with information on
sensitivity/integrity of JavaScript objects. As illustrated
in Section 4, this information is important for JSEs, be-
cause several benign JSEs interact with the browser in

a manner akin to malicious JSEs. Spyshield [30] ad-
ditionally offers containment by enforcing policies on
data accesses by untrusted plugins; such techniques can
possibly complement Sabre to contain malicious JSEs.
Like prior work [21], Sabre also performs information-
flow tracking, but does so at the JavaScript level within
the browser. As discussed in Section 1, doing so eases
action attribution and integration with the browser. Re-
cent work has explored techniques to sandbox browser
extensions [25], but such work is currently applicable
only to extensions such as plugins and BHOs, which are
distributed as binary executables.

A recent paper by Cavallaro et al. [19] developed sev-
eral techniques that malicious software could use to de-
feat information flow trackers. Among the attacks pre-
sented in that paper, Sabre is vulnerable to JSEs that use
certain forms of implicit information flows, as discussed
in Section 3.3. They also present several attacks to de-
feat taint trackers that detect malicious shared memory
extensions, such as plugins and BHOs (e.g., [21]). These
attacks rely critically on the ability of a malicious exten-
sion to directly access and modify objects in browser
memory. Sabre is immune to these attacks because JSEs
can interact with the browser only via its JavaScript in-
terpreter and cannot directly modify objects in browser
memory.

Ter-Louw et al. [40] were the first to address the se-
curity of JSEs. However, as discussed in Section 1, their
work was based on monitoring on XPCOM calls; being
coarse-grained, their approach can have both false posi-
tives and negatives.

JavaScript information flow. Netscape Navigator
3.0 first proposed the use of data tainting to detect
confidentiality-violating JavaScript code [17]. More re-
cently, this idea has been applied by Vogt et al.[41] to
detect cross-site scripting attacks. We are also aware of
concurrent work by Eich et al. to enable information-
flow tracking in JavaScript [22, 23]. In addition, there
is a rich literature on information-flow tracking for both
web applications, e.g., to detect SQL injection and other
script injection attacks, as well as for executable code;
we do not survey that work in this paper.

Although we leverage the JavaScript label propaga-
tion rules developed in prior work, analyzing informa-
tion flow in JSEs poses additional challenges, as illus-
trated throughout this paper. In particular, Sabre pre-
cisely tracks cross-domain information flows and pro-
vides support for fine-grained declassification or en-
dorsement of flows. To our knowledge, prior work on
JavaScript information flow tracking has not needed or
incorporated such support.
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JavaScript sandboxing. Early work by Hallaraker
and Vigna [28] proposed XPCOM-level monitoring to
sandbox JavaScript code. Recent work on sandboxing
JavaScript has focused on the problem of confining un-
trusted third-party code that may be included in web
pages as widgets and advertisements. Notable efforts in-
clude Adsafe [1], Caja [32] and FBJS [2], which perform
rewriting to restrict the JavaScript constructs allowed in
code included in web pages. Although such techniques
may possibly be used to secure JSEs as well, restricting
JavaScript constructs in JSEs may restrict their function-
ality.

BrowserShield [35], CoreScript [46], Phung et
al. [33] and Erlingsson et al. [24] proposed the use of
JavaScript instrumentation to ensure compliance with
site-specific security policies. Such techniques can be
used to enforce access control policies on a JSE’s ac-
cesses to sensitive browser data. While such an ap-
proach can possibly constrain malicious JSEs, it is un-
clear whether it will also protect exploits against vulner-
able JSEs (e.g., those in Section 2).

Chugh et al. [20] present an alternative approach
that uses staged information flow tracking to sandbox
third-party JavaScript code (e.g., widgets and advertise-
ments) included in web pages. Their approach uses
static analysis of the surrounding JavaScript code in the
web page to infer a set of residual checks that third-
party code (or dynamically-generated code) must pass
in order to be safely included in a web page. Yip
et al. [45] propose BFlow, an approach that uses in-
browser information-flow tracking to sandbox untrusted
third-party JavaScript code. Their approach additionally
requires server-side support to label confidential data.
In contrast to these techniques, which sandbox third-
party JavaScript executing on web pages, Sabre sand-
boxes JSEs, which execute with more privileges and can
interact with more browser subsystems.

In addition to the above work on JavaScript sandbox-
ing, recent research has investigated static analysis tech-
niques for JavaScript code [31], particularly to statically
ensure compliance with site-specific policies and to en-
sure the integrity of client-side JavaScript code of a web
application [27]. We plan to explore whether Sabre can
leverage similar static analysis techniques to reduce the
runtime overhead of information flow tracking for JSEs.
However, we expect that performing such analysis will
be challenging for obfuscated JSEs as well as those that
contain a large number of dynamic code generation con-
structs, such as eval.

6. Conclusion
This paper presented Sabre, an in-browser

information-flow tracker that can detect confiden-
tiality and integrity violations in JSEs, enabled either
because of malicious functionality in JSEs or because
of exploitable vulnerabilities in the code of a JSE.

In future work, we plan to improve the performance
of Sabre by exploring static analysis of JavaScript code.
For example, static analysis can be used to create sum-
maries of fragments of JavaScript code that do not con-
tain complex constructs (e.g., eval). These summaries
record how the labels of objects accessed by the frag-
ments are modified. Sabre can use these summaries to
update labels when the fragment is executed, thereby
avoiding the need to propagate security labels for each
bytecode instruction.
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