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ABSTRACT
Smart phones are increasingly being equipped with operat-
ing systems that compare in complexity with those on desk-
top computers. This trend makes smart phone operating sys-
tems vulnerable to many of the same threats as desktop op-
erating systems.

This paper examines the threat posed by rootkits to smart
phones. Rootkits are malware that stealthily achieve their
goals by modifying operating system code and data, and
have long been a problem for desktops. However, smart
phones expose several unique interfaces, such as voice, GPS
and battery, that rootkits can exploit in novel ways. These
attacks can have serious social consequences, ranging from
loss of privacy to denial of service during emergencies.

This paper demonstrates the threat of smart phone rootkits
with three novel attacks. We implemented rootkits that allow
a remote attacker to: (1) snoop on a victim’s confidential
conversations; (2) snoop on a victim’s geographical location;
and (3) stealthily exhaust the battery on a victim’s phone. We
also discuss the social implications of each of these attacks.

INTRODUCTION
Over the last several years, mobile phones have evolved from
a mere means of communication to general-purpose com-
puting platforms. Such mobile phones—also called smart
phones—are equipped with a variety of software and hard-
ware mechanisms that let a user better interact with the cy-
ber and physical world. For example, smart phones are of-
ten pre-installed with a number of applications, including
clients for location-based services and general-purpose web
browsers. These applications utilize hardware features such
as GPS and enhanced network access via 3G and Wimax. To
support the increasing complexity of software and hardware
on smart phones, smart phone operating systems have simi-
larly evolved. For example, modern smart phones typically
run full-fledged distributions of operating systems, such as
Linux, Windows, Android and Symbian OS, that comprise
tens of millions of lines of code.
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However, the increasing complexity of smart phones has also
increased their vulnerability to attacks. Recent years have
witnessed the emergence of mobile malware, which are viruses
and worms that infect smart phones. For instance, F-Secure
reported an almost 400% increase in mobile malware within
a two year period from 2005-2007 [27]. Mobile malware
typically use many of the same attack vectors as do malware
for traditional computing infrastructures, but often spread
via interfaces and services unique to smart phones, includ-
ing Bluetooth, SMS and MMS. The Cabir worm, for in-
stance, exploited a vulnerability in the Bluetooth interface
and replicated itself to other Bluetooth enabled phones. Re-
cent research has also explored the security implications of
connecting smart phones to the Internet—Enck et al. [24]
demonstrated attacks that could compromise open interfaces
for SMS (e.g., web sites that allow users to send SMS mes-
sages) to cripple large portions of a cellular network.

This paper explores the threat posed by kernel-level rootk-
its to smart phones. Rootkits are malware that achieve their
malicious goals by infecting the operating system. For ex-
ample, rootkits may be used to hide malicious user space
files and processes, install backdoors and Trojan horses, log
keystrokes, disable firewalls, virus scanners and intrusion
detection systems, and include the infected system into a
botnet. Worse, because they affect the operating system,
rootkits can achieve their malicious goals stealthily, thereby
remaining undetected and retaining longer-term control over
infected machines. Stealth techniques adopted by rootkits
have become popular among malware writers—a recent study
by MacAfee reported a nearly 600% increase in rootkits in
the three-year period from 2004-2006 [16].

While rootkits have long been a threat to traditional desktop
computers because their operating systems present a large
and complex attack surface, the increasing complexity of
smart phone operating systems makes them an attractive tar-
get for rootkit authors. As a general-purpose computing
platform, smart phones are also vulnerable to many of the
same threats posed by rootkits to desktop computers. How-
ever, the main contribution of this paper is in showing that
rootkits can exploit several interfaces and services unique
to smart phones to launch novel attacks with serious social
consequences. Specifically, this paper demonstrates rootkits
that implement three new attacks:

1. Snooping via the voice subsystem. We demonstrate a rootkit
that infects the GSM subsystem, thereby enabling an at-
tacker to snoop on a victim’s confidential conversations.
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The rootkit is programmed to stealthily dial the attacker’s
phone number when certain events of interest are trig-
gered, for instance, when a calendar program sends a re-
minder to the victim about an impending meeting.

2. Location-tracking with GPS. We present a rootkit that com-
promises privacy of a victim’s location. When an attacker
sends a command to a rootkit-infected phone (e.g., via
an SMS message) the rootkit queries the GPS device and
sends the victim’s coordinates to the attacker (e.g., as a
text message).

3. Denial of service via battery exhaustion. Smart phones
are battery operated and are hence resource constrained.
We demonstrate a rootkit that stealthily exhausts a smart
phone’s battery. This attack renders the phone unusable
when its user needs it the most, e.g., during emergencies.

The social consequences of these attacks are devastating.
Smart phones have become ubiquitous to the point that peo-
ple rely on their phones for day-to-day activities, such as
coordinating meetings and dealing with emergencies. As a
personal device, users typically trust their phones and do not
expect them to misbehave. Smart phone rootkits exploit this
trust to achieve their malicious goals while also being ex-
tremely difficult to detect. Because the smart phone user de-
mographic is extremely diverse, we suspect that a large frac-
tion of these users are completely unequipped to deal with
security mechanisms on their phones. Consequently, such
users are easy targets for stealth attacks such as rootkits.

Detecting and recovering from rootkits is challenging, even
on desktop systems. Because rootkits affect the operating
system, any rootkit detection mechanism must operate out-
side the operating system, typically on specialized hardware
(such as a co-processor [50, 28]) or in a virtual-machine
monitor [26, 39, 18]. Although there have been recent ef-
forts to deploy virtual machines on smart phones [14, 8, 10,
15], such support is not widely available yet. Even so, ex-
isting rootkit detection techniques [28, 36, 37, 17], which
have primarily been developed for desktop systems, employ
heavyweight mechanisms that require periodic scans of ker-
nel memory snapshots. Such techniques will likely place
substantial energy demands if used on smart phones. We
conclude the paper with a discussion of these and other tech-
niques to detect smart phone rootkits.

BACKGROUND
This section presents an overview of rootkit attacks, which
have affected desktop systems for nearly a decade. We also
discuss why smart phones are a particularly attractive plat-
form for malware, and rootkits in particular.

Rootkits: Threats and Evolution
The term “rootkit” was originally coined to refer to a toolkit
of techniques developed by attackers to conceal the pres-
ence of malicious software on a compromised system. A
rootkit is typically installed after an attacker obtains ele-
vated privileges on the system via other means. Two pop-
ular methods for a remote attacker to gain entry into a sys-
tem are (1) exploiting software vulnerabilities; and (2) drive-

by-download attacks. In either case, remote attackers com-
promise software vulnerabilities, such as buffer overflows,
either in network-facing server applications or in browser
code to download rootkits onto the system. Rootkits can
also be delivered via spam, peer-to-peer sharing applications
or through other attacks, such as worms or bots.

Once infected, a rootkit can be used to open the door to sev-
eral future attacks. For example, rootkits are commonly used
to conceal keyloggers, which steal sensitive user data, such
as passwords and credit card numbers, by silently logging
keystrokes. They might also install backdoor programs on
the system that allow a remote attacker to gain entry into the
system in the future. Rootkits can also perform other stealthy
activities, such as disabling the firewall/antivirus tools or af-
fecting the output quality of the system’s pseudo random
number generator, thereby causing the generation of weak
cryptographic keys [19]. None of these activities are di-
rectly visible to the user because the rootkit conceals their
presence. Indeed, rootkits are characterized by such stealthy
behavior. Their stealthy nature enables rootkits to stay unde-
tected, and therefore retain long-term control over infected
systems.

Stealth techniques used by rootkits have evolved significantly
over the past decade, as have techniques to detect stealthy
behavior. Early rootkits operated by replacing critical sys-
tem binaries and shared libraries with Trojan horses that con-
tained malicious functionality. These rootkits were typically
installed after the attacker had gained control over the system
via other means. For instance, an attacker could first acquire
root privileges by compromising a network-facing setuid ap-
plication via a buffer overflow exploit, following which he
could replace system binaries with Trojan horses. A popular
example of such user-level rootkits is the t0rn rootkit, which
replaced the system binary of the Linux ps utility, thereby
concealing malicious processes from the system user. User-
level rootkits remained stealthy because they infected exist-
ing system binaries rather than downloading new files on the
system. However, detecting such rootkits is also relatively
easy. For example, tools such as Tripwire and AIDE [29, 2]
detected such rootkits by checking the integrity of system bi-
naries and shared libraries, e.g., by comparing a SHA-1 hash
of these binaries against known values.

Because rootkits that affect user-level files are easily de-
tected, modern rootkits have evolved to modifying the code
and data structures of the operating system. Among the most
common targets of such kernel-level rootkits are the operat-
ing system’s data structures that store control data, such as
system call table, interrupt descriptor table and other func-
tion pointers, such as those in the virtual file system layer,
which determine control flow in the kernel. Rootkits modify
these data structures (using a technique called hooking) to
interpose upon the kernel’s control path and hide malicious
functionality and objects, such as files and processes. For
example, the Adore rootkit modifies several entries in the
system call table of an infected Linux system. Each of these
modified entries points to malicious code that is inserted into
the operating system as a loadable kernel module. When a
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user-level program invokes the system call, the modified en-
tries in the system call table cause the malicious code to be
invoked, which in turn invokes the code of the system call.
The malicious code in Adore, for instance, hides a root shell
backdoor program that it installs on the system for the at-
tacker to re-enter [1].

There are two key reasons why kernel-level rootkits are stealthy
and difficult to detect. First, kernel-level rootkits operate
by modifying the operating system. Consequently, they can
easily hide themselves from user-level antivirus tools, which
typically rely on information supplied by the operating sys-
tem to detect malicious software. For example, an infected
operating system can modify the view of the file system vis-
ible to an antivirus tool, thereby effectively preventing the
antivirus from scanning malicious files. Existing solutions
to detect kernel-level rootkits use external mechanisms, such
as a co-processor or a virtual-machine monitor, to externally
scan the contents of kernel memory to ensure integrity of its
data structures, e.g., by checking that entries in the system
call table point to code that implements system calls [28, 36,
37, 17].

The second reason why rootkits are difficult to detect is that
the kernel manages several thousand heterogeneous data struc-
tures, most of which are critical to its correct operation. As a
result, the attack surface of the kernel is huge. Recent work
demonstrated rootkits that modify several kernel data struc-
tures that store non-control data to subvert the kernel [19,
36]. For example, the Fu rootkit hides a malicious user-
space process by modifying linked lists maintained by the
Windows kernel for process accounting [6].

Recent work has also explored rootkits that use other stealth
mechanisms. These include virtual-machine based rootkits
that install a hypervisor below an existing OS [31, 4] and
those that exploit hardware-specific features [23, 42]. These
rootkits do not affect the operating system and are therefore
even more difficult to detect than kernel-level rootkits. Nev-
ertheless, kernel-level rootkits still remain by far the easiest
and most popular option for attackers to achieve stealth be-
cause of the large and complex attack surface that the kernel
presents. Therefore, the focus of this paper is on the threat
of kernel-level rootkits to smart phones.

Smart Phones and Mobile Malware
The decreasing cost of advanced computing and commu-
nication hardware has made such hardware affordable for
adoption by smart phone vendors. In turn, smart phones
equipped with such advanced features have gained tremen-
dous popularity. Over 115 million smart phones were sold
worldwide in 2007 [12]. The iPhone alone, which incor-
porates several hardware features and mobile applications,
sold one million units within 74 days of its launch [3]. To
support a rich set of hardware interfaces and application pro-
grams, smart phones are typically equipped with full-fledged
operating systems, thereby making smart phones a general-
purpose computing environment. However, smart phones
offer several unique services, such as telephony, location
awareness, and instant messaging via SMS and MMS, that

are not typically available on desktop computers.

Smart phones are an attractive target for attackers, both in
the kinds of attacks that are possible and in the social im-
plications of these attacks. Smart phones have access to
both telephony and the Internet. Malware that can attack
a smart phone has the unique advantage of being able to af-
fect the cell phone infrastructure as well as other phones on
the cellular network. These abilities have driven malware
authors to focus on smart phones, with a recent report from
MacAfee [9] stating that nearly 14% of mobile users world-
wide have been directly infected or have known someone
infected by mobile malware. Nearly 72% of the users sur-
veyed in the MacAfee study expressed concerns regarding
the safety of using emerging mobile services and more than
86% were concerned about receiving inappropriate or unso-
licited content, fraudulent bill increases, or information loss
and theft.

The pervasive nature of smart phones and a large, unsophis-
ticated user base also makes smart phones an attractive target
for malware writers. Because phone usage revolves largely
around day-to-day user activities, important personal and fi-
nancial information can likely be compromised by mobile
malware. For example, smart phones are increasingly being
used for text messaging, email, storing personal data, includ-
ing financial data, pictures and videos. Because users rely
critically on their phone for daily conversations, espionage
of such voice conversations is likely to have serious social
implications. As a second example, users typically tend to
carry their smart phones (and keep them powered on) wher-
ever they go; therefore, an attack that compromises the GPS
subsystem will compromise privacy of the victim’s location.

Traditional threats to desktop systems, such as worms and
viruses, have already begun infecting mobile platforms. Ac-
cording to F-Secure [5], there are already more than 400
mobile viruses in circulation. Several existing mobile mal-
ware result in simple annoyances—for example, the Skull.D
virus locks the phone and flashes an image of a skull and
crossbones on the screen—however, others are more dan-
gerous and can cause financial damage to the user by send-
ing text messages to “premium” numbers. Malware such as
spyware and Trojan horses have also started affecting smart
phones.

The threats posed by mobile malware can readily be coun-
tered using many of the same tools available for desktop ma-
chines. For example, an antivirus tool equipped with an ap-
propriate virus signature database can detect the presence of
viruses on a smart phone. As antivirus tools begin to get
deployed on mobile platforms, we envisage that attackers
will also move toward using stealth techniques to maintain
long-term control over infected smart phones by maliciously
modifying smart phone operating systems. Rootkit detection
techniques are based upon the use of external mechanisms
(such as a co-processor or a virtual-machine monitor) that
are not readily available for smart phones, thereby providing
attackers further incentive to implement malicious function-
ality using rootkits.
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Attack LOC Size of kernel module
GSM 116 92.8 KB
GPS 428 101.7 KB
Battery 134 87.2 KB

Figure 1. Lines of code and size of the kernel modules that implement
each of the three attacks.

In the following sections, we present three novel rootkits that
exploit interfaces and services unique to smart phones, dis-
cuss their social implications as well as the challenges that
they pose to detection.

ROOTKITS ON SMART PHONES
In this section, we present three proof-of-concept rootkits
that we developed to illustrate the threat that they pose to
smart phones. Our test platform was a Neo Freerunner smart
phone running the OpenMoko Linux distribution [11]. We
chose this platform because (a) Linux source code is freely
available, thereby allowing us to study and modify its data
structures at will; and (b) the Neo Freerunner allows for
easy experimentation, e.g., it allows end-users to re-flash the
phone with newer versions of the operating system.

All our rootkits were developed as Linux kernel modules
(LKM) that we installed into the operating system. How-
ever, during a real attack, we expect that these LKMs will be
delivered via other mechanisms, e.g., after an attacker has
compromised a network-facing application or via a drive-
by-download attack. Figure 1 presents the lines of code
needed to implement each attack, and the size of the corre-
sponding kernel module. This figure shows the relative ease
with which rootkits can be developed. It also shows that the
small size of kernel modules allows for easy delivery, even
on bandwidth-constrained smart phones.

Although our implementation and discussion in this section
are restricted to the Neo Freerunner platform, the attacks are
broadly applicable, even to phones running microkernel op-
erating systems, such as the Symbian OS. However, since
the attacks modify OS-specific data structures, they must be
re-implemented for each platform—we expect that doing so
will be relatively easy.

Attack 1: Spying on Conversations via GSM

Goal.
The goal of this attack is to allow a remote attacker to stealthily
listen into or record confidential conversations using a vic-
tim’s rootkit infected smart phone. The rootkit activates it-
self whenever certain events of interest happen. For exam-
ple, the rootkit could trigger its malicious operation when a
calendar program on the victim’s phone displays a notifica-
tion about an upcoming event, such as a meeting. When the
rootkit triggers, it stealthily dials the attacker’s phone num-
ber (which can either be pre-programmed in the rootkit, or
delivered to the rootkit via an SMS message from the at-
tacker), who can then listen into or remotely record ongoing
conversations. Alternatively, the rootkit could trigger when
the victim dials a number. The rootkit could then stealthily

Figure 2. The GSM rootkit intercepts an alarm signal, e.g., a meeting
notification, and stealthily dials the attacker, thereby allowing him to
snoop on confidential conversations.

1. char *atcommand1 = "AT command1";
2. char *atcommand2 = "AT command2";
3. ...
4. mm segment t saved fs = get fs();
5. set fs(KERNEL DS);
6. fd = sys open("/dev/ttySAC0", O RDWR | O NONBLOCK, 0);
7. sys write(fd, atcommand1, sizeof(atcommand1));
8. sys write(fd, atcommand2, sizeof(atcommand2));
9. ...
10. sys close(fd);
11. set fs(saved fs);

Figure 3. Pseudocode of the GSM rootkit. The rootkit first prepares
a set of AT commands (lines 1-3), modifies the boundaries of the data
segment (lines 4-5), and writes AT commands to the GSM device (lines
6-10).

place a three-way call to the attacker’s number, thereby al-
lowing the attacker to record the phone conversation.

Background.
The Freerunner phone is equipped with GSM radio, which
is connected via the serial bus and is therefore available to
applications as a serial device. During normal operation of
the phone, user-space applications issue system calls to the
kernel requesting access to the GSM device. The kernel ser-
vices the request and the application in turn is able to access
telephony functionality provided by the device. GSM de-
vices use a series of commands, called AT (attention) com-
mands, that let the kernel and user-space applications invoke
specific GSM functions. For example, GSM devices typ-
ically support AT commands to dial a number, fetch SMS
messages, and so on. To maliciously operate the GSM de-
vice, e.g., to place a phone call to a remote attacker, the
rootkit must therefore issue AT commands from within the
kernel.

Attack Description.
Our prototype rootkit operates by intercepting alarms set by
the user. For example, as shown in Figure 2, the alarm could
be associated with the keyword “meeting” that is displayed
in a user-space calendar program to notify the user of an im-
pending meeting. The rootkit intercepts this alarm and acti-
vates its malicious functionality when the alarm is triggered.
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The attack code stealthily dials a phone number belonging to
a remote attacker, who can then snoop or record confidential
conversations of the victim. The phone number dialed by the
rootkit can either be hard-coded into the rootkit, or delivered
via an SMS message, which the rootkit intercepts to obtain
the attacker’s phone number (Attack 2 describes SMS-based
rootkit control in further detail).

• Triggering the rootkit. To operate, the rootkit must have
the ability to intercept an alarm signal, such as an alarm from
the calendar program.1 Our prototype rootkit achieves this
goal by hooking the system call table and replacing the ad-
dress of the write system call with the address of a mali-
cious write function implemented in the rootkit. When
an alarm is signaled, a specific message is written to the
screen. The goal of the malicious write function in our
prototype rootkit is to intercept the message to be written to
the screen and check for the existence of three substrings.
First, it checks that the substring “Window Prop” appears
in the message, which indicates that the current message is
a notification message. Second, it checks for the presence of
the substring “Clock,” which verifies that the message orig-
inated from the clock program (more substrings can be used
to check for alarms from other user-space programs). Last,
the substring “NETWMType: 6” must also occur, which in-
dicates that an alarm signal is generated. We obtained these
substrings by studying how alarm notifications are delivered
to the user in an uninfected kernel.
• Placing a phone call. When triggered, the rootkit places a
phone call by emulating the functionality of user-space tele-
phony applications. In particular, user-space applications,
such as the Qtopia software stack, which ships with the Open-
Moko Linux distribution on the Freerunner phone, issue a
sequence of system calls to the kernel. These system calls
probe and initiate the GSM device and instruct the device to
place a call to a particular number. Specifically, applications
such as Qtopia use write system calls to issue AT com-
mands to the GSM device (these commands are supplied as
arguments to the write system call). The number to be
dialed is also supplied as a system call argument.
Our prototype rootkit achieves the same goal by issuing the
same sequence of AT commands from within the kernel. We
obtained the sequence of AT calls that must be issued to
place a phone call by studying the Qtopia software stack.
In particular, we used the strace utility to trace the argu-
ments to write system calls issued by Qtopia when dialing
a number. We then designed a rootkit that would issue the
same set of AT commands from kernel space when triggered
by an alarm.
To issue the above sequence of AT calls from kernel mode,
the rootkit first modifies the boundaries of the data segment
to point to kernel-addressable space instead of user-addressable
space using the get fs/set fs call sequence, as shown in
Figure 3. This sequence allows the kernel to issue system
calls (such as sys open, sys write and sys close,
shown in Figure 3) from kernel mode. When a system call

1Because the OpenMoko phone does not have any released calen-
dar programs, we used the alarm command on the Linux platform
to simulate a calendar application generating an alarm.

is issued, the Linux kernel first checks that the arguments to
the call are within the virtual address-space of a user-space
application. While this check is important when system calls
are issued by user-space applications (e.g., to ensure that an
application cannot maliciously refer to kernel data in a sys-
tem call argument), it will cause system calls issued by the
kernel to fail. The get fs/set fs call sequence modifies
the data segment so that the checks on system call arguments
succeed, thereby allowing system calls to be issued from ker-
nel space. The rootkit simply opens the GSM device, places
a sequence of write system calls with appropriate argu-
ments (e.g., AT commands) and closes the device.
The AT commands issued by the code in Figure 3 activate
the telephony subsystem and successfully establish a con-
nection to the attacker’s phone. However, AT commands
do not activate the microphone on the smart phone, which
is controlled by the sound subsystem. To activate the mi-
crophone, we programmed the rootkit to issue the following
command from kernel mode using the usermodehelper
function, which allows the kernel to run user-mode com-
mands: alsactl -f /usr/share/OpenMoko/scenarios/
gsmhandset.staterestore.

Social Impact.
Snooping on confidential conversations has severe social im-
pact because most users tend keep their mobile phones in
their proximity and powered-on most of the time. Rootkits
operate stealthily, and as a result, end users may not even be
aware that their phones are infected. Consequently, an at-
tacker can listen-in on several conversations that violate user
privacy, ranging from those that result in embarrassing social
situations to leaks of sensitive information. For example,
an attack that records the conversations at a corporate board
meeting can potentially compromise corporate trade secrets
and business reports to competitors. Similarly, several au-
tomated phone-based services often require a user to enter
(via voice or key presses) PIN numbers or passwords before
routing the call to a human operator; an attacker snooping
on such calls may financially benefit from such information.

Attack 2: Compromising Location Privacy using GPS
Goal.
The goal of this attack is to compromise a victim’s location
privacy. The victim’s rootkit-infected smart phone receives a
text message (SMS) from the attacker, querying the victim’s
current location. The rootkit intercepts (and suppresses) this
message and sends the remote attacker a text message with
the user’s current location, obtained via GPS.

Background.
As with the GSM device, the GPS device is also a serial de-
vice. The kernel maintains a list of all serial devices installed
on the system using a linked list of struct tty driver
elements. A rootkit can easily locate the GPS device us-
ing the name field of this structure. Every tty driver
structure also contains a buffer (read buf) where the cor-
responding device stores all its data until it is read by a user-
space application. Our prototype rootkit reads information
from this buffer before it is accessed by user-space applica-
tions.
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Figure 4. Sequence of steps followed in attack on location privacy.

Attack Description.
A rootkit that compromises location privacy as described
above must implement three mechanisms. First, it must be
able to intercept incoming text messages, and determine whether
a text message is a query from a remote attacker on the vic-
tim’s current location. Second, the rootkit must be able to
extract location information from the GPS receiver. Last, it
must generate a text message with the victim’s current loca-
tion, and send this information to the attacker. An overview
of this attack is shown in Figure 4. Note that the first of these
mechanisms is also useful in Attack 1—instead of hard-coding
the number that the rootkit must dial, an attacker can trans-
mit the number that the infected phone must dial via a text
message. The attacker can also enable/disable the rootkit’s
malicious functionality via text messages, in effect allowing
the attacker to remotely control the rootkit.

Our prototype rootkit intercepts text messages by hooking
the kernel’s read and write system calls. This is achieved
by modifying the corresponding entries in the system call ta-
ble to point to rootkit code. Consequently, each read/write
by a user-space application is intercepted by the rootkit. Text
messages are received and processed by the GSM device.
User-space SMS applications constantly poll the GSM de-
vice to check for new messages. When the SMS application
attempts to read from the GSM device, the rootkit’s code
intercepts this operation and reads data from the read buf
buffer of the GSM device. Text message notifications are
stored in the buffer contain a string “+CMTI=simindex,”
where “simindex” is the serial number of the text mes-
sage. Upon finding this substring, the rootkit parses the mes-
sage to determine whether it contains an instruction from
the attacker (in some pre-determined format). Each message
is also associated with a status bit that determines whether
the message is new or has already been read. Our proto-
type rootkit carefully ensures that any new messages that are
not from the attacker will remain marked as unread, and can
subsequently be processed by user-space SMS applications,
thereby allowing the rootkit to operate stealthily.

If the rootkit intercepts a message from the remote attacker,
it attempts to obtain location information from the GPS de-
vice. As before, the rootkit can easily obtain location in-
formation from the read buf buffer of the tty driver
structure associated with the GPS device. Note that the rootkit
can obtain location information even if the user has disabled

GPS. This is because the rootkit operates in kernel mode,
and can therefore enable the device to obtain location infor-
mation, and disable the device once it has this information.

Having obtained location information, the rootkit constructs
a text message and sends the message by configuring the
GSM modem to text mode, and issuing a AT+CMGS com-
mand (to send the message).

Social Impact.
Protecting location privacy is an important problem that has
received considerable recent attention in the research com-
munity. By compromising the kernel to obtain user location
via GPS, this rootkit defeats most existing defenses to pro-
tect location privacy. Further, the attack is stealthy. Text
messages received from and sent to the attacker are not dis-
played immediately to the victim. The only visible trace of
the attack is the record of text messages sent by the victim’s
phone, which is recorded by the service provider. The vic-
tim may detect the attack only when he receives his monthly
statement and notices text messages sent to an unknown num-
ber. However, many users rarely notice small increases to
their monthly statement, thereby allowing occasional attacks
to proceed undetected for long periods of time.

Attack 3: Denial of Service via Battery Exhaustion

Goal.
This attack exploits power-intensive smart phone services,
such as GPS and Bluetooth, to exhaust the battery on the
phone. The rootkit operates by powering the GPS and Blue-
tooth devices. To operate stealthily, the rootkit reverts the
GPS and Bluetooth devices back to their original states when
the user queries the status of these devices. For example, if
both devices were initially powered off, then the rootkit pow-
ers the devices off again. Consequently, these devices will
appear to be powered off to a user who queries their status,
thereby allowing the attack to proceed stealthily.

This rootkit was motivated by and is similar in its intent
to a recently proposed attack that stealthily drains a smart
phone’s battery by exploiting bugs in the MMS interface [40].
However, the key difference is that the rootkit achieves this
goal by directly modifying the smart phone’s operating sys-
tem.

Background.
The GPS and Bluetooth devices can be toggled on and off
by writing a “1” or a “0,” respectively, to their correspond-
ing power device files. For example, the GPS can be turned
on from user space using the following shell command:
echo 1 > /sys/class/i2c-adapter/i2c-0/0-0073/
neo1973-pm-gps.0/pwron.
User-space applications typically determine the status of these
devices by querying this file.

Attack Description.
The rootkit interposes upon user-space commands to tog-
gle the GPS and Bluetooth devices. To remain stealthy, the
rootkit restores the original state of these devices when a user
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Figure 5. Denial of service via battery exhaustion. This figure shows
how the battery life degrades in different phone models when the GPS
and Bluetooth devices are powered on.

attempts to view their status. Most users typically turn these
devices off when they are not in active use because they are
power-intensive.

The rootkit operates by overwriting kernel function point-
ers for the open and close system calls in the system call
table, making them point to rootkit code. Each time a file
is opened or closed in user space, rootkit code is executed.
When an open system call is executed, the rootkit examines
if the file being opened corresponds to the power device files
of the GPS or Bluetooth devices. If so, it restores the state
of these devices to their previously saved states. Upon in-
vocation of the close system call, the devices are powered
on again. Consequently, the devices are always on, except
when the user actively queries the status of these devices.

Social Impact.
This attack quickly depletes the battery on the smart phone.
In our experiments, the rootkit depleted the battery of a fully
charged and infected Neo Freerunner phone in approximately
two hours (the phone was not in active use for the duration of
this experiment). In contrast, the battery life of an uninfected
phone running the same services as the infected phone was
approximately 44 hours (see Figure 5). We also simulated
the effect of such a rootkit on the Verizon Touch and ATT
Tilt phones by powering their GPS and Bluetooth devices.
In both cases, battery lifetime reduced almost ten-fold. Be-
cause users have come to rely on their phones in emergency
situations, this attack results in denial of service when a user
needs his/her phone the most.

Although our prototype rootkit employs mechanisms to hide
itself from an end user, this attack is less stealthy than At-
tacks 1 and 2. For example, a user with access to other
Bluetooth-enabled devices may notice his smart phone is
“discoverable,” causing him to suspect foul play. Never-
theless, we hypothesize that the vast majority of users will
suspect that their phone’s battery is defective and replace the
phone or its battery.

DISCUSSION
In this section, we discuss various ways in which rootkits
can be delivered and installed on a victim’s phone and the

persistence of rootkits on the compromised phone. We then
discuss the possibility of rootkits in microkernel operating
systems, such as Symbian. We conclude with a discussion of
mechanisms that can help detect rootkits on a smart phone.

Rootkit Delivery and Persistence
Rootkits can be delivered to smart phones using many of the
same techniques as used for malware delivery on desktop
machines. A study by F-Secure showed that nearly 79.8%
of mobile phones infections in 2007 were as a result of con-
tent downloaded from malicious websites. Among the other
major contributors to malware delivery were Bluetooth and
text messages [27]. Rootkits can also be delivered to smart
phones via email attachments, spam, illegal content obtained
from peer-to-peer applications or by exploiting vulnerabili-
ties in existing applications.

Post delivery, rootkits require privileged access (e.g., root
privileges) to infect the operating system by modifying its
code and data. The Neo Freerunner phone used in our exper-
iments ran the OpenMoko Linux distribution, which directly
executed applications with root privileges. Therefore, unsafe
content downloaded on this phone automatically obtains root
privileges. Even on operating systems that do not run appli-
cations with root privileges, an attacker may exploit vulner-
abilities in application programs and the operating system
to obtain elevated privileges to install rootkits. Such vul-
nerabilities are not uncommon even in carefully engineered
systems; for example, a vulnerability in Google’s Android
platform allowed command-line instructions to execute with
root privileges [7].

Once installed, the goal of a rootkit is to maintain long-
term control over the compromised system. Rootkits typi-
cally do so by installing themselves as kernel modules that
are loaded each time the operating system is booted. Smart
phone rootkits can also employ the same mechanism to re-
tain long-term control over infected phones. However, be-
cause this approach leaves a disk footprint (i.e., the kernel
module containing the rootkit), it may possibly be detected
by antivirus tools. Sophisticated rootkits avoid this prob-
lem by directly modifying code and data in kernel memory
and do not leave a disk footprint. Although such rootkits
only persist until the system is rebooted, they are effective
on desktop computers, which are often not rebooted for sev-
eral days or months at a time. Because smart phones are
powered off more often (or may die because the battery runs
out of charge), rootkits that directly modify kernel memory
may only persist on smart phones for a few days. In such
cases, an attacker can re-infect the phone (or, for rootkits
that spread via Bluetooth, infected phones in the vicinity of
a victim may re-infect the victim). Nevertheless, the social
consequences of smart phone rootkits mean that they can
seriously affect end user security even if effective only for
short periods of time.

Rootkits on Microkernel Operating Systems
The prototype rootkits discussed in this paper were imple-
mented on a macrokernel operating system (Linux). Such
operating systems execute large amounts of code in kernel
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mode. For example, device drivers on Linux, which consti-
tute about 3.1 million lines of code (approximately 60% of
the entire code base), execute in kernel mode. Rootkits often
masquerade as device drivers or other kernel modules. Once
installed, they have ready access to kernel code and data.

In contrast, microkernel operating systems execute only a
small amount of code in kernel mode. Device drivers and
other modules, such as the networking subsystem and file
system, are executed as user-mode processes. Because mi-
crokernels limit the amount of code running in kernel mode,
they present a much smaller attack surface for kernel-level
rootkits than macrokernel operating systems. As such, rootk-
its have historically targeted only macrokernel operating sys-
tems, such as Linux, Windows and OS X, that dominate the
market; to our knowledge, rootkits have not been developed
for microkernel operating systems.

The Symbian operating system, which has approximately
50% of the market share for smart phone operating systems,
borrows features from both microkernel and macrokernel
operating systems. Device drivers and memory management
code execute in kernel-mode, as in macrokernels; however,
file systems and the networking subsystem are implemented
as user-space processes, as in microkernels [38, 13].

Rootkits that are distributed as device drivers can infect a
Symbian smart phone in the same way as they do other macro-
kernel operating systems. However, rootkits can also easily
target the microkernel-like components of Symbian, includ-
ing the file and networking subsystem by infecting the user-
space processes that implement these subsystems. For ex-
ample, antivirus tools rely on the view provided by the file
system to scan files on disk. A rootkit on a could maliciously
modify the file system process to hide itself from antivirus
tools.

Techniques to Detect Smart Phone Rootkits
Intrusion detection tools, such as antivirus software, are ef-
fective at detecting and eliminating viruses, worms and spy-
ware. Such tools are also effective at detecting mobile mal-
ware on smart phones. However, these tools typically rely
on the operating system to provide critical services, such
as access to files, and thereby implicitly trust the operating
system. In rootkit-infected systems, this trust is misplaced.
Because the rootkit runs in kernel mode, it can easily evade
detection by antivirus tools, which run as user-mode applica-
tions. Consequently, rootkit detection tools must be isolated
from the operating system that is being monitored. Rootkit
detectors that have been developed for desktop computers
therefore execute on a secure coprocessor [50, 28] or are
isolated using virtualization [26, 39].

Smart phones available on the market today are not equipped
with secure co-processors. Consequently, virtualization of-
fers the only practical alternative to implement rootkit detec-
tion tools on smart phones. A number of commercial efforts
are currently underway to build virtual machine monitors for
smart phones [14, 8, 10, 15]. The main goal of virtualizing
smart phones is to enable users to have multiple personalities

on the phone. For example, the same phone can be used with
multiple accounts and providers, such as a corporate account
and a personal account. Rootkit detection tools can leverage
these virtual machine monitors to isolate themselves from
the smart phone’s operating system. For example, a rootkit
detector can execute in a separate virtual machine and moni-
tor the memory of the smart phone’s operating system. How-
ever, most existing rootkit detection tools [28, 36, 37, 17]
employ compute-intensive algorithms that require them to
periodically fetch and scan kernel memory snapshots of the
operating system being monitored. Such monitoring can po-
tentially drain the battery of the phone, thereby bringing into
question the practicality of such rootkit detection tools, and
underscoring the need for new, energy-efficient techniques
to detect rootkits on smart phones.

An alternative approach to detect rootkits is to use trusted
hardware, such as a TPM chip [44]. TPM chips can com-
pute and securely store integrity measurements of a soft-
ware stack. When used in combination with an integrity
measurement protocol [25, 41], these measurements can de-
tect the presence of unwanted code (such as rootkits) in the
software stack. The Trusted Computing Group has recently
announced the specification of trusted hardware for mobile
phones (MTM—the Mobile Trusted Module), and an in-
creasing number of smart phone vendors are beginning to
deploy such hardware on their phones [43]. However, trusted
hardware can only detect rootkits that modify immutable
code and data. Recent research has demonstrated rootkits
that can achieve malicious goals by modifying mutable data
in the operating system [19, 36, 17]. Such rootkits can re-
main undetected even on MTM-enabled smart phones.

RELATED WORK
We focus our description of related work to two main areas:
(1) rootkits and rootkit defenses for desktop computers; and
(2) mobile malware and detection tools.

Rootkits and Detection Tools for Desktops
Rootkit detection tools on desktop computer systems are largely
centered around known techniques used by rootkits to hide
their presence. Early rootkits operated by replacing system
binaries and shared libraries on disk with Trojaned versions,
which would hide malicious objects owned by the attacker.
Tools such as Tripwire [29] and AIDE [2] detected such
rootkits by checking the integrity of system files. Other tools
such as Strider Ghostbuster [20] used a cross-view based ap-
proach to detect user-mode rootkits. Cross-view based tech-
niques operate by using different system interfaces to ob-
tain answers for a query, and comparing the query results
obtained from these interfaces. For example, a cross-view
based detector can identify hidden processes by observing
differences between the output of the ps utility and the ker-
nel’s internal representation of running processes.

More recently, rootkits have evolved to modify the kernel.
Such rootkits either modify kernel code or data structures
that store control data, such as the system call table or func-
tion pointers. Recent work has shown that non-control data
in the kernel can be modified as well to carry out highly
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stealthy attacks on the system [19]. Several tools have been
developed to detect such rootkits—they typically operate by
ensuring invariants on kernel code and data [28, 37, 36, 17].

An alternative to the above techniques are the ones that scan
kernel modules offline and determine whether they are mali-
cious. These include both signature-matching techniques as
employed by most commercial malware detection tools, and
symbolic execution tools [48, 32], which statically approxi-
mate the behavior of a kernel module to determine whether
it likely affects key kernel data structures.

Mobile Malware and Defenses
As phones have evolved to become full-fledged computing
devices, they have also become attractive targets for malware
such as viruses, worms and Trojans [22, 33, 45]. Malware
typically exploits vulnerabilities on interfaces unique to the
smart phone such as Bluetooth [49] or vulnerabilities in ap-
plications running on the phone.

Tools to detect mobile malware have adapted well-known
techniques used on desktops, such as signature and behavior-
based detection algorithms, to operate in a resource-constrained
environment. These algorithms use lesser memory, run faster,
and consume lesser battery power than their desktop coun-
terparts [47, 21]. Other approaches to detect mobile mal-
ware monitor and analyze untrusted software for anomalous
behaviors that deplete energy [30].

Mobile phones are likely targets of cross-service attacks.
For example, an attack may be perpetrated and downloaded
through the Internet onto a smart phone via its data plan, and
may access its telephony subsystem. Such threats are possi-
ble because of lax security mechanisms currently employed
by mobile phones. For example, an arbitrary user-space pro-
cess on the phone can issue AT commands to the GSM de-
vice [46]. Such cross-service attacks can be prevented by
labeling user space files and resources and enhancing access
control mechanisms on smart phone operating systems [34,
35]. However, these solutions are ineffective against the
rootkits that we propose in this paper. This is because rootk-
its achieve their malicious goals by directly modifying ker-
nel data.

CONCLUSIONS
The evolution of malware has historically been an arms race
between attackers and defenders. As defenders improve the
ability of their tools to detect malicious activities, attackers
employ new techniques to evade detection. Rootkits evade
detection by compromising the operating system, thereby al-
lowing them to defeat user-space detection tools and operate
stealthily for extended periods of time. This paper demon-
strated that kernel-level rootkits can exploit smart phone op-
erating systems, often with serious social consequences.

The popularity of the mobile platform has already caught
the attention of attackers, who have increasingly begun to
develop and deploy viruses and worms that target these plat-
forms. As these threats gain notoriety, so will the power of
tools to detect these threats. We believe that this trend, com-

bined with the increasing complexity of operating systems
on modern smart phones, will push attackers to employing
rootkits to achieve their malicious goals. We therefore con-
clude with a call for research on tools and techniques to ef-
fectively and efficiently detect rootkits on smart phones.
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