Monitoring Data Structures using Hardware Transactional Memory
Rutgers University DCS-TR-662, December 2009

Shakeel Butt Arati Baliga Vinod Ganapathy

Rutgers University
{shakeelb,aratib,vinodg}@cs.rutgers.edu

Abstract

The robustness of software systems is adversely affected by
programming errors and security exploits that corrupt heap
data structures. Such corruptions are especially common in
software written in low-level languages and in extensible
software systems, such as operating systems and browsers,
where untrusted extensions can corrupt data structures in a
software kernel. They are also hard to identify because the
effect of heap data structure corruptions is often delayed.

In this paper, we present the design and implementation
of TxInt, a system to detect data structure corruptions. TxInt
leverages concurrency control mechanisms implemented in
harware transactional memory (HTM) systems to addition-
ally enforce programmer-specified consistency properties on
data structures at runtime. TxInt incorporates several opti-
mizations to improve the performance of runtime monitor-
ing, thereby enabling it to be an “always on” tool for contin-
uous runtime monitoring of data structures.

We implemented a prototype version of TxInt by extend-
ing an HTM system (LogTM-SE) and studied the feasibility
of using TxInt to enforce data structure consistency proper-
ties on three benchmarks. Our study shows that TxInt is ef-
fective at monitoring data structure properties, and that with
suitable optimizations, it can do so with acceptable runtime
overhead.

1. Introduction

Modern software systems manage a vast amount of data
on the heap, and the correctness and consistency of these
data structures is crucial to the robustness of these sys-
tems. However, programming errors in such software sys-
tems may lead to data structure corruptions that adversely
affect their reliability and security. These errors may either
lead to data structures that violate well-accepted correctness
criteria, e.g., dangling pointer errors and heap metadata cor-
ruptions, or application-specific data structure consistency
properties [10, 7, 33]. These errors are often hard to debug
because their effect may be delayed, e.g., a dangling pointer
error does not result in a crash until the pointer in question is
dereferenced. Consequently, data structure corruptions due
to such programming errors may not manifest during test-
ing.

For extensible software systems, such as operating sys-
tems and Web browsers, programming errors are not the
only source of data structure corruptions. In such systems,
the functionality of a software kernel is augmented by third-

Rutgers University DCS-TR-662, December 2009

1

Mihai Christodorescu

IBM TJ Watson Research Center
mihai@us.ibm.com

party extensions, which have unrestricted access to data
structures of the kernel. While this feature allows good per-
formance and easy development of extensions, it also leads
to security and reliability problems. For example, buggy de-
vice drivers may corrupt data structures in the operating sys-
tem kernel, thereby causing the entire system to crash. Simi-
larly, malicious device drivers (also called kernel-level rootk-
its) can affect system security by stealthily modifying data
structures of the operating system kernel [12, 43, 31, 30].
Similar problems also apply to several commodity Web
browsers, which allow untrusted third-party plugins to ex-
ecute in the protection domain of the browser kernel with
unrestricted privileges.

In this paper, we present the design and evaluation of
TxInt, a prototype system that uses hardware transactional
memory (HTM) [39, 40] to detect data structure corruptions.
HTM systems (e.g., [24, 21, 23, 22]) provide a set of mech-
anisms in hardware and software to support memory trans-
actions, and can potentially ease the development of concur-
rent programs. To use transactional memory for concurrency
control, programmers demarcate critical sections in a pro-
gram as transactions using instructions provided by the hard-
ware. The HTM system ensures that the memory operations
performed within these transactions are afomic, i.e., they
appear to execute in their entirety or not at all, and iso-
lated, i.e., their effects are not visible to other concurrently-
executing threads until the transaction completes. By ensur-
ing these properties, the HTM system can allow transactions
to synchronize access to shared data structures, thereby pro-
viding a viable alternative to lock-based synchronization.

TxInt is based upon the insight that the mechanisms im-
plemented by HTM systems to ensure atomicity and isola-
tion can also be used to detect data structure corruptions. In
particular, most HTM systems use read/write sets to track the
set of memory locations accessed/modified by each transac-
tion. These read/write sets are used by the HTM system to
determine whether shared data structure accesses made by
one transaction are in conflict with another concurrent trans-
action, e.g., there is a race condition in the way shared data
is accessed by two transactions. A transaction is committed
only if it does not conflict with other transactions. Otherwise,
the HTM system aborts one of the conflicting transactions.

TxInt interposes on the standard workflow of an HTM
system to additionally monitor data structure consistency
properties. It introspects on the HTM system’s read/write
sets to identify data structures that were accessed during a
transaction and automatically triggers callbacks that check



the consistency of these data structures. These callbacks can
include both well-accepted correctness conditions as well as
application-specific assertions.

TxInt’s approach to detecting data structure corruptions
offers several advantages:

(1) Language independence. TxInt leverages hardware
support to check data structure consistency, and can be used
with any application compiled for that hardware platform.
Therefore, in contrast to techniques that rely on support from
garbage collectors [4] or language runtimes [15], TxInt can
check data structure consistency even in applications written
in low-level languages, such as C/C++. We demonstrate this
feature by using TxInt to monitor data structure consistency
in ClamAV, a popular antivirus tool [1], and Memcached,
a distributed object caching system [2], both of which are
written in C.

(2) Applicability to multi-threaded programs. TxInt can
readily benefit multi-threaded applications that use trans-
actional memory for concurrency control, where transac-
tions serve as triggers for data structure consistency checks
in addition to demarcating critical sections. The HTM sys-
tem additionally ensures thread-safety of these data structure
checks. TxInt also applies to single-threaded applications.
For such programs, the HTM system is used solely to check
data structure consistency. The benchmarks in our experi-
mental evaluation contain both kinds of applications.

(3) Extensibility. TxInt allows programmers to specify and
monitor arbitrary properties of data structures. For example,
we used TxInt to check complex properties of list and trie
data structures in our benchmarks. In contrast, most prior
runtime techniques [4, 7, 32] can only check specific kinds
of data structure consistency properties and are not as easily
extensible as TxInt.

The idea of using transactional memory to check data
structure consistency was first proposed by Harris and
Peyton-Jones [37], who demonstrated this idea by extending
a software transactional memory (STM) system for Haskell.
Their work also used the STM system’s read/write sets to
trigger programmer-specified consistency checks on data
structures accessed in a transaction.

The main contribution of our paper is in leveraging HTM
machinery to enforce data structure consistency. Migrating
to an HTM system is important because applications that
use STM for concurrency control often suffer significant per-
formance overheads [16]. These overheads, which arise be-
cause STM systems maintain read/write sets in software, can
negate the benefits of checking data structure consistency. In
contrast, HTM systems incorporate additional hardware to
maintain and update read/write sets, and therefore impose
lower runtime overheads.

Although our overall approach is similar to that of Har-
ris and Peyton-Jones, we encountered and addressed a num-
ber of challenges unique to HTM systems as we built TxInt.

Rutgers University DCS-TR-662, December 2009

2

a task_struct *run_list;

?) task_struct *all_tasks;

3) createnew_process (task.struct *proc) {
@) init (proc);

5) add-to_list (&all_tasks, proc);

©) }

) add_to_runlist (task-struct *proc) {

®) add-to_list (&run_list, proc);

O }

(10) execute_process () {

an task_struct *curr_proc;

(12) curr_proc = select_elem (run_list);
13) execute (curr_proc);

(14) del_from_list (&run_list, curr_proc);

as) }
(a) A simple process scheduler.

run_list l l
proc_0 proc_1 proc_2
all_tasks

f I

(b) Normal operation of all_tasks and run_list.

run_list l l
—

Hidden
process

i T

proc_0 proc_1 proc_2

all_tasks

(c) Example of a hidden process in run_list.

Figure 1. Motivating example.

First, HTM systems reason about data structures in terms of
low-level memory addresses. TxInt must therefore express
consistency checks using memory addresses of data struc-
tures and trigger them based upon whether these memory
addresses appear in the HTM system’s read/write sets. In
contrast, Harris and Peyton-Jones’ work relies in a key way
on Haskell data types to specify and enforce data structure
consistency. Second, HTM systems use hardware to imple-
ment read/write sets (e.g., as Bloom filters). Each read/write
set can store only a limited number of entries and therefore
over-approximates the memory locations accessed in a trans-
action. Because TxInt relies on read/write sets to identify
data structures accessed in a transaction, it will likely trigger
more runtime checks than necessary, thereby resulting in a
performance overhead. This overhead turns out to be signifi-
cant, necessitating us to incorporate several optimizations to
make TxInt practical as an “always on” tool for consistency
checking. This problem does not arise in STM systems, be-
cause they support read/write sets of unbounded size in soft-
ware.

We implemented a prototype of TxInt by extending the
LogTM-SE HTM system [24]. Our implementation only re-
quired minor modifications to the HTM system. We applied
it to monitor data structure consistency properties on three



benchmarks, including a microbenchmark that we devel-
oped, and two real-world applications—ClamAV and Mem-
cached. Our experimental evaluation shows that TxInt is ef-
fective at monitoring complex properties and that it can be
optimized to ensure an acceptable runtime overhead.

2. Motivation and System Overview

We use the example in Figure 1(a) to motivate the key
requirements that a data structure monitor must satisfy,
and then illustrate how TxInt satisfies these requirements.
The snippet of code in Figure 1(a) is drawn from the
microbenchmark that we used in our experiments, and
represents a simplified version of the process manage-
ment code in Linux.! Each process is represented by a
C struct of type task_struct. This code manages pro-
cesses in two circular, doubly-linked lists called all_tasks
and run_list. The all_tasks list is a list of all pro-
cesses on the system, and is populated when a new pro-
cess is created in the function create_new_process. As
processes become ready for execution, the corresponding
task_struct structures are placed on run_list (by the
function add_to_runlist). The scheduler, which is denoted
in Figure 1(a) by execute_process, periodically selects
processes from run_list and schedules them for execu-
tion; upon completion, it removes them from run_list.
Figure 1(b) shows an example in which three processes are
created, all of which are scheduled for execution.

In Linux, user-space process accounting utilities, such as
ps, consult the all_tasks list to identify the list of pro-
cesses on the system. In contrast, the scheduler uses the
run_list, as shown in execute_process in Figure 1(a).
During normal execution, a process that is an element
of run_list will also have a corresponding entry in the
all_tasks list. Consequently, all running processes will
also be displayed in the output of the ps command.

However, prior work [30] shows that the discrepancy be-
tween the scheduler’s view and the user-space view of pro-
cesses can be exploited to hide malicious user-space pro-
cesses in Linux (and other commodity operating systems).
In particular, commodity operating systems support an ex-
tensible architecture in which kernel modules and device
drivers have unfettered access to read and write kernel data
structures. Petroni et al. [30] used this feature to construct
a malicious loadable kernel module (also called a rootkit)
that created a new process and inserted it into run_list but
not into all_tasks (Figure 1(c)). This process is scheduled
for execution but is not visible to user-space accounting util-
ities, and can therefore stealthily perform malicious activ-
ities, e.g., logging keystrokes or serving as a backdoor for
future attacks on the system.

This example illustrates that data structure properties can
be subtly violated to compromise system security. In this

! Although we use this example from Linux to motivate our work, we have
only applied the TxInt prototype to user-space applications to date.

Rutgers University DCS-TR-662, December 2009

3

example, the property violated was a data structure invari-
ant, run_list C all_tasks, i.e, all elements of run_list
must also be elements of the all_tasks list. Data struc-
ture corruptions can similarly lead to reliability problems.
For instance, a programming error in the del_from_list
function, which deletes an element from the doubly-linked
run_list, may fail to modify the next and prev pointers
of elements of the list appropriately, in turn leading to a dan-
gling pointer. This error may result in a crash in a future
invocation of execute_process, when select_elem tra-
verses run_list to choose another process for execution.
Such security and reliability problems can be detected by
monitoring data structure properties.

The above example motivates five design requirements
that a data structure monitor must satisfy:

(1) Ability to monitor complex data structures. Veri-
fying properties of a complex data structure may require
traversing the data structure, and possibly other related data
structures. For instance, in the example above, ensuring that
run_list € all_tasks involves traversing both run_list
and all_tasks to ensure that all elements of the former are
also elements of the latter.

(2) Extensibility. In the above example, a programmer may
additionally wish to verify the circularity of both run_list
and all_tasks. The monitor must therefore be extensible,
and allow the programmer to supply a checker for this prop-
erty.

(3) Applicability to low-level code. Data structure cor-
ruptions are common in applications written in low-level
memory-unsafe languages, such as C and C++. The moni-
tor must therefore be applicable to programs written in such
languages as well.

(4) Ability to monitor all data accesses. Modern appli-
cations manage a large number of data structures, most of
which are critical to their correct operation. Failure to mon-
itor all data structures accessed during the execution of the
application may result in security and reliability holes. For
example, a rootkit can evade detection by a monitor that fails
to check the run_list data structure during the execution of
execute_process.

(5) Low runtime overhead. To monitor data structure
properties in deployed software, the monitor must be an
“always-on” tool, and must therefore impose a low runtime
performance overhead.

Simultaneously satisfying all five requirements, and in
particular the last two, is challenging. As we discuss in
Section 4, the basic design of TxInt satisfies the first three
requirements. However, the limitations imposed by existing
HTM systems required us to employ several optimizations
in TxInt, which result in a tradeoff between performance and
the ability to monitor all data accesses. Nevertheless, TxInt
is tunable, and programmers can choose to execute some
portions of the program without incurring the overhead of



o)) task_struct *run_list;

@) task_struct *all_tasks;

A3 register.ds (run_list, check.contain);
@) register.ds (all_tasks, check_contain);
6) create_new_process (task.struct *proc) {
(6) transaction (txint_entry) {

%) init (proc);

@®) add-to_list (&all_tasks, proc);
© }

(10) }

1 add_to_runlist (task_struct *proc) {

(12) transaction (txint_entry) {

13) add_-to_list (&run_list, proc);
(14) }

as) }

(16) execute_process () {

a”n task_struct *curr_proc;

18) transaction (txint_entry) {

(19) curr_proc = select_elem (run_list);
(20) execute (curr_proc);

@1 del_from list (&run_list, curr_proc);

@2 }
23) }
The TxInt monitor (implemented in software)

(m1) bool txint_entry() {

(m2) rset = Get read set from hardware registers;
(m3) wset = Get write set from hardware registers;
(md) for (each ds € registered data structures) {
(m5) if (map(ds)n(rsetUwset) #+ 0) {
(m6) invoke callback associated with ds;
(m7) }

(m8) }

(m9) void register_ds(void *dsptr, void *fptr) {
(m10) //register fptr as checking callback for dsptr
(m11) }

(m12) bool check_contain () |
(m13) for (each p € run_list)
(m14) if (p ¢ all_tasks) return false;
(m15) update address maps of run_list and all_tasks;
(m16) return true;

(m17) }

Figure 2. Process scheduler from Figure 1(a) modified to use
TxInt to monitor run_list and all_tasks. Code in bold-faced
font must be added by a programmer to use TxInt.

runtime checks, while fully monitoring all data accesses in
other portions of the program. We defer a detailed discussion
of performance to Section 4.

To motivate how TxInt monitors data structure proper-
ties, we consider an approach in which a programmer in-
lines checks at key locations in the program. For exam-
ple, to detect the attack in Figure 1(c), the program in Fig-
ure 1(a) can include a check to ensure that the property
run_list C all_tasks holds prior to the execution of the

Rutgers University DCS-TR-662, December 2009

4

function execute_process. Although apparently simple,
an approach that inlines checks must overcome two chal-
lenges. First, data structure checks must be placed at all lo-
cations where sensitive data structures (e.g., run_list) are
accessed (to satisfy the fourth requirement). Identifying all
such locations can be challenging, especially in the pres-
ence of pointer aliasing. Second, in multi-threaded software,
the placement of checks must avoid time-of-check to time-
of-use errors (race conditions), in which a concurrently-
executing thread may modify a data structure in the interval
between property verification and use of the data structure.

The TxInt system developed in this paper eases the task
of placing such data structure checks in the program. Rather
than requiring a programmer to manually inline checks,
TxInt instead requires code that manipulates sensitive data
structures to be embedded in transactions, as shown in Fig-
ure 2. In this figure, all operations on the all_tasks and
run_list linked lists happen within transactions. The pro-
grammer uses the register_ds calls in Figure 2 to no-
tify TxInt that the all_tasks and run_list data structures
must be monitored. Note that the programmer only regis-
ters pointers to the head of these data structures, and does
so during program startup. The programmer also specifies
the properties to be verified in checker callbacks associ-
ated with each data structure. In this example, the same
checker callback (check_contain) is associated with both
all_tasks and run_list. This function checks run_list
c all_tasks.

Upon completion of a transaction, our modifications to
the HTM system cause it to transfer control to the entrypoint
of TxInt’s data structure monitor. As shown in Figure 2, the
entrypoint is a function pointer that is registered with the
HTM system using an argument to the transaction{...}
keyword. The HTM also passes the read/write sets to the
monitor via hardware registers. Internally, the TxInt monitor
maintains an address map for each data structure. The ad-
dress map stores the set of all memory addresses associated
with that data structure. For example, the address map of
run_list would contain the memory addresses associated
with each of its constituent elements. TxInt’s data structure
monitor determines whether the memory addresses accessed
during the transaction are also contained in the address maps
of any of the data structures registered with it. If so, it trig-
gers the checker callback associated with the corresponding
data structure, which verifies the properties of that data struc-
ture. The key point to note is that the programmer need not
specify which checker callbacks must be invoked at the end
of a transaction. Rather, TxInt uses the HTM system’s read-
/write sets to infer which callbacks must be invoked.

As discussed, TxInt requires code that manipulates sensi-
tive data structures (run_list and all_tasks) to be placed
within transactions. Such transactions may naturally be
placed in multi-threaded code that uses transactional mem-
ory to synchronize access to shared data structures. In such



cases, the use of TxInt additionally verifies data structure
properties before transactions are committed. However, Tx-
Int also applies to single-threaded programs. In such cases,
transactions are placed in the code to simply identify pro-
gram points where data structures are triggered.

3. Hardware Transactional Memory

In this section, we provide background on transactional
memory, focusing on HTM systems, and the features rel-
evant to the design of TxInt. HTM systems typically extend
hardware instruction sets with new primitives that define the
start (begin_tx) and end of transactions (end_tx). They en-
sure atomicity and isolation for all execution transactions,
but vary widely in how they do so [40]. Nevertheless, all
HTM systems implement mechanisms for conflict detection
and version management.

Conflict detection mechanisms allow the HTM system
to detect race conditions between concurrently-executing
transactions. Early HTM systems (e.g., [39]) implemented
conflict detection by piggybacking on cache coherence pro-
tocols. However, such HTM systems placed serious lim-
itations on the length of transactions. Modern HTM sys-
tems overcome this limitation, and support transactions of
unbounded length by incorporating new hardware in the
form of per-transaction read and write sets to record the
memory locations accessed/modified by a transaction. Read-
/write sets can be implemented in hardware as Bloom filters
(e.g., [22,24]). An HTM system can detect conflicts by inter-
secting the read/write sets of a transaction with those of other
in-flight transactions. Bloom filters also allow for simple and
efficient hardware-based mechanisms to intersect and com-
pare read/write sets. If a conflict is detected, the HTM must
abort at least one conflicting transaction; it consults a con-
tention manager to decide which transactions to abort, and
roll back the changes made by these transactions.

While read/write sets record the memory locations read/-
modified by a transaction, version management mechanisms
allow the HTM system to record the set of data modifications
made by the transaction. When a transaction is committed
(or aborted), the HTM system consults the version manager
to commit (or discard) the changes made by the transaction.
HTM systems vary widely in how they implement version
management. For example, they can buffer all the updates
made by a transaction and commit these changes at the end
of a transaction (e.g., [23]). An alternative approach, which
is adopted by LogTM-SE, is to log the old values at mem-
ory locations modified by a transaction (in a per-transaction
undo log), and use the undo log to restore memory if the
transaction aborts.

The basic design of TxInt, which is described in the fol-
lowing section, is applicable to any HTM system. However,
in this paper, we assume an HTM system in which read/write
sets are easily accessible from software. For our prototype
implementation, we chose the LogTM-SE HTM. This HTM

Rutgers University DCS-TR-662, December 2009

5

Read/Write sets

TxInt monitor

et (LTI
o T
Transaction Conflict | "° conflicts Cotr;tfrillr)::er success Commit
Body Detection ) Logic
monitor
l Failed check
l' ------ \\
.
Abort { Abort \:
retry Logic conflict i 2
o S

Figure 3. Workflow of a TxInt-enhanced HTM system.

transaction (txint_entry) {
—check_tx = Application
}

Address maps Callbacks

TxInt’s data
structure monitor

Software

Read and Djjjjj
Write sets|

Hardware

Figure 4. Flow of control in TxInt. The execution of a
check_tx or end_tx instruction triggers the HTM mechanism.
(1) the HTM system copies read and write sets into registers
and transfers control to TxInt’s entrypoint; (2) the monitor
executes checker callbacks for data structures that were ac-
cessed in the transaction; and (3) upon successful completion,
TxInt returns control to the hardware, which either commits
the transaction or resumes the application.

implements read/write sets as Bloom filters (which can be
exposed to software with minor HTM modifications), uses
an undo log for version management, and allows transac-
tions of unbounded length.

4. The Design and Implementation of TxInt

TxInt enforces data structure properties by interposing on
the standard workflow of an HTM system, as shown in Fig-
ure 3. As this figure shows, an HTM system detects conflicts
using read/write sets. Transactions that have completed and
are not in conflict with other transactions can be committed.
Our modifications to the HTM system interpose on the com-
mit logic to additionally invoke TxInt’s data structure mon-
itor. This monitor, which is implemented in software, veri-
fies properties of the data structures that were accessed in the
transaction. The transaction is committed only if the moni-
tor returns successfully. While TxInt’s data structure moni-
tor is invoked at the end of transactions, it can optionally be
triggered at any point during the execution of a transaction,
using the check_tx instruction, discussed next.



4.1 HTM Changes to Support TxInt

To support the above changes to the workflow of an HTM
system, we made three key changes to the implementation
of its programming interface:

(1) Registering an entrypoint using begin_tx. We mod-
ified begin_tx, the instruction that signifies that start of
a transaction, to accept an address <addr> as an argu-
ment, i.e., the programming interface changes to begin_tx
<addr>. This address must point to a valid region of code in
the application’s address space, and is meant to denote the
entrypoint into TxInt’s data structure monitor. In Figure 2,
the address of txint_entry is passed as the argument to
begin_tx (the language-level transactionf...} construct
is compiled into a pair of begin_tx/end_tx instructions).

(2) New instruction: check_tx. We added a new instruc-
tion that allows programmers to trigger TxInt within a trans-
action. Execution of this instruction triggers three steps (see
Figure 4). First, it copies the transaction’s read and write sets
into hardware registers. These registers can be accessed by
TxInt’s data structure monitor. Second, it transfers control
to <addr>, the entrypoint registered using the most recently
encountered begin_tx instruction. This step invokes TxInt’s
data structure monitor. Third, once the monitor returns suc-
cessfully (i.e., returns true), hardware resumes execution
in the instruction following the check_tx instruction. If the
monitor detects a data structure corruption, it triggers the
HTM’s transaction abort logic.

(3) Modifying the functionality of end tx. In an HTM
system, the end_tx instruction triggers the conflict detec-
tion mechanism. If no conflicts are found, it triggers the
transaction commit logic. We modified the implementation
of end_tx to trigger TxInt’s monitor (in a manner akin to
check_tx) once a transaction successfully passes conflict
detection. The main difference is that once the monitor re-
turns successfully, end_tx automatically triggers the trans-
action commit logic.

4.2 TImplementation in LogTM-SE

We implemented the above changes by modifying the LogTM-

SE HTM system. This system is built for the SPARC ar-
chitecture using the Virtutech Simics full system simulator.
LogTM-SE employs eager conflict detection, i.e., conflicts
between transactions are detected as soon as they happen.
LogTM-SE also supports strong atomicity [40], i.e., it can
detect conflicting data accesses even if one of them was gen-
erated by non-transactional code.

Our choice of LogTM-SE as the implementation plat-
form was motivated by three reasons. First, as a practical
matter, LogTM-SE is a mature, freely-available, state of the
art HTM system. Rather than building a new HTM sys-
tem from scratch, using LogTM-SE allowed us to evaluate
what changes would be necessary to an existing HTM sys-
tem to monitor data structure properties. Second, LogTM-
SE supports transactions of unbounded length. This feature

Rutgers University DCS-TR-662, December 2009

6

is important for real-world applications, such as ClamAV
and Memcached, in which data structures are modified by
complex functions. Third, it implements read/write sets us-
ing Bloom filters (these Bloom filters are called a trans-
action’s read/write signatures). Bloom filters are fixed-size
structures, and can easily be made accessible to software.

In our implementation, check_tx and end_tx copy the
contents of read/write Bloom filters into hardware registers.
However, it is also well-known that Bloom filters can only
approximate a set of elements (in this case, memory ad-
dresses). In particular, a membership check for a memory
address can falsely determine that the address is a member
of the read (or write) set represented by the Bloom filter.
This problem is particularly pronounced when a Bloom fil-
ter is used to represent a large set, e.g., if a 1024-bit Bloom
filter is used to represent a set of addresses drawn from a
32-bit address-space, as in our implementation. Section 4.4
describes the implications of this problem and the optimiza-
tions that TxInt uses to address it.

The LogTM-SE HTM system provides a mechanism
called escape actions that allows code in a transaction to
execute outside the purview of the HTM system, i.e., mem-
ory accesses within an escape action are not recorded in
that transaction’s read/write sets. In our implementation, the
code of the TxInt data structure monitor executes in an es-
cape action. This feature ensures that any accesses to the
data structure within the monitor itself (e.g., in a checker
callback) are not recorded in the read/write set. We synchro-
nize access to the monitor’s own data structures by acquiring
a global lock before executing the code of the monitor and
releasing the lock upon completion.

Overall, we added about 50 lines of C++ and SPARC
code to the LogTM-SE simulator to implement the changes
to its programming interface, showing that TxInt can be im-
plemented with minimal modifications to an existing HTM
system.

4.3 TxInt’s Data Structure Monitor

TxInt’s data structure monitor is implemented in software,
and is loaded into the application’s address space. Its main
responsibility is to trigger checks to verify the properties of
all data structures accessed by a transaction.

At the heart of the monitor is a table that stores address
maps of data structures to be monitored, and the check-
ing callback associated with each data structure. Program-
mers can register/unregister data structures to be monitored
using an API exported by the monitor (e.g., the function
register_ds shown in Figure 2). The address map of a
data structure contains the set of all memory locations of
the data structure that are relevant to the property to be
checked. The programmer must also supply the address map
of each data structure (or specify how the address map must
be computed) when he registers the data structure. For the
example considered in Section 2 (i.e., verifying the property
run_list C all_tasks), the address map of all_tasks



(and run_list) should contain the memory locations of all
next and prev fields of each task_struct node in the list.
This is because any attempt to violate the property run_list
C all_tasks must modify these fields.

In our implementation, address maps are represented as
Bloom filters that are of the same size as the read/write
Bloom filters (1024 bits). We also use the same function as
implemented by the HTM system to hash a memory address
to a location in the Bloom filter. This design allows the
address map of a data structure to be efficiently compared
against a read (or write) Bloom filter for intersection.

When the application invokes the TxInt monitor (via a

check_tx or end_tx instruction), the monitor traverses the
address map table to determine data structures that were ac-
cessed by the application, and triggers the callbacks associ-
ated with those data structures. Note that the monitor must
intersect read/write Bloom filters with all the address maps
registered with it. This can be done by sequentially travers-
ing the address map table, requiring an O(n) operation each
time the monitor is invoked, where #n is the size of the ad-
dress map table. However, this operation can be inefficient if
the transaction only accesses a small number of data struc-
tures, i.e., only a few address maps intersect the read/write
Bloom filters. To optimize for this case, we implemented a
tree-structured index for the address map table. The leaves of
this tree store the address maps in the table. Each node in the
tree stores a Bloom filter that is the logical-or of its children
(equivalent to a set union), resulting in a tree of height lg n.
Locating the k address maps that intersect non-trivially with
a read/write Bloom filter only requires k 1g n operations. The
tree-based index is therefore more efficient for small values
of k.
e Computing and Maintaining Address Maps. Because the
monitor detects accesses to a data structure by comparing
read/write sets to its address map, this map must be updated
periodically to reflect changes to the data structure. For ex-
ample, the addition of a new node or the deletion of an exist-
ing node in run_list must appropriately modify its address
map in the TxInt monitor.

One way to achieve this goal is to register/unregister
elements of a data structure as they are allocated/destroyed.
In the example shown in Figure 1, this would require the
programmer to register each new element proc when it is
created in create new_process. However, this approach
is impractical for large code bases, because it requires the
programmer to manually insert code to update address maps
at several locations in the code.

We alleviate this problem by automating the creation of
address maps. During program startup, we only require that
the heads of data structures be registered with the TxInt
monitor, to indicate which data structures must be moni-
tored. For example, in Figure 1, the programmer only reg-
isters pointers to the heads of all_tasks and run_list. To
create address maps, we leverage the insight that the call-

Rutgers University DCS-TR-662, December 2009

7

back associated with each data structure must access all its
memory addresses that are relevant for property verification.
We can therefore piggyback address map creation with data
structure verification. To do so, we require the programmer
to specify how the address map of a data structure must be
updated within the callback of that data structure. In Fig-
ure 2, code that updates the address maps of all_tasks and
run_list is supplied in line m15. As this callback executes,
TxInt can update its address map for the data structures mon-
itored by the callback.

We illustrate this idea using the data structure in Fig-

ure 1(b). The address map for run_list contains the next
and prev pointers of each of the three nodes in the linked
list. Suppose that a call to add_to_runlist in Figure 1
adds a fourth node to run_list. This operation adds the
addresses of the next and prev pointers that were mod-
ified to the read/write Bloom filters of the transaction. In
turn, this triggers the TxInt monitor, which invokes the
check_contain callback. When this callback executes, it
traverses all the nodes in run_list to verify the property
run_list € all_tasks. In doing so, it computes a new
address map for run_list containing the addresses of the
next and prev fields of the newly-added node. The code of
the monitor replaces the address map for run_list with the
newly computed one, thereby ensuring that address maps
accurately reflect modifications to run_list.
e Classes of Properties Checked. The architecture of TxInt
allows arbitrary functions to be registered as callbacks for a
data structure. However, our experience suggests that two
kinds of properties are particularly useful to express data
structure properties, namely global invariants and context-
sensitive invariants, as discussed below.

(1) Global invariants specify data structure properties that
must hold for the duration of program execution. The prop-
erty run_list € all_tasks is an example of a global in-
variant. Other examples include checking the circularity of
a linked list and checking ranges of scalar values. Our pro-
totype supports an API to ease the specification of checker
callbacks for a variety of global invariants. We have imple-
mented a library that allows programmers to easily create
checker callbacks for invariants inferred by Daikon [25].
Global invariants may temporarily be violated when a data
structure is being modified. For example, the circularity of
run_list may temporarily be violated when a node is added
to the list, e.g., in add_to_list. Therefore, these invari-
ants must be checked only when the data structure is well-
formed. TxInt allows programmers to specify when checks
must be triggered using the check_tx and end_tx instruc-
tions, thereby avoiding cases where checks may fail because
a data structure is not well-formed.

TxInt supports a particularly important class of global invari-
ants, namely, those that check the constancy of data values
stored in a region of memory. Such invariants can be used to
implement fine-grained software fault isolation (SFI) [35].



In turn, SFI has a number of applications. For example, it
can be used to detect heap metadata corruptions by register-
ing the region of memory that stores heap metadata with the
TxInt monitor. SFI can also be used to protect the state of the
TxInt monitor itself from data corruptions, e.g., the address
map table. This feature ensures that TxInt can detect modifi-
cations to its own data structures in spite of executing in the
same address-space as the application that it monitors.

(2) Context-sensitive invariants specify data structure
properties that hold at specific points during program execu-
tion. For example, consider the property run_list # NULL.
This property must hold when add_to_runlist (in Fig-
ure 1) terminates, but need not hold when execute_process
terminates. The TxInt monitor supports context-sensitive in-
variants by allowing the programmer to modify the checker
callback associated with a data structure at different points in
the program. For example, the programmer could register the

property run_list # NULL before invoking add_to_runlist,

and unregister it after the function returns.

4.4 Design Enhancements to Improve Performance

The basic design of TxInt described so far satisfies the first
four criteria outlined in Section 2. The use of an HTM sys-
tem also ensures that read/write sets can be recorded effi-
ciently. However, as we explain below, the use of Bloom
filters to represent read/write sets and address maps often
results in a system that imposes unacceptably high perfor-
mance overheads. For example, TxInt imposes overheads in
excess of 8x when used with Memcached. In this section, we
explain why the use of Bloom filters is a performance bot-
tleneck, and describe two optimizations that we developed
to make TxInt practical for “always on” use.

Recall that a Bloom filter is an approximate representa-
tion of a set of elements. In the TxInt prototype, the Bloom
filter contains 1024 entries that store a set of memory ad-
dresses, which could have up to 232 elements. When the set
of memory addresses is large, the corresponding Bloom fil-
ter “saturates,”’ i.e., most of its bits will be set. In our setting,
Bloom filter saturation leads to two problems:

(1) Read/write set saturation. Bloom filters representing
read/write sets may saturate for large transactions, i.e., trans-
actions that access a large number of data structures. In soft-
ware that uses HTMs for concurrency control, such satura-
tion can result in false conflicts, i.e., situations where two
concurrent transactions access different data elements, but
appear to conflict because the intersection of their read/write
Bloom filters is non-empty. This kind of saturation is ger-
mane to the design of the HTM itself, and has been rec-
ognized as a problem by the HTM community [17]. False
conflicts can abort transactions that could have otherwise
completed successfully. Because aborted transactions must
be re-executed, this situation results in runtime performance
overhead.

Rutgers University DCS-TR-662, December 2009

8

Read/write set saturation is particularly problematic for Tx-
Int. Even if a transaction successfully passes conflict detec-
tion, saturated Bloom filters give the illusion that a large
number of data structures were accessed in the transaction.
In turn, TxInt will trigger the callbacks associated with each
of these data structures, even if they were not actually ac-
cessed in the transaction, thereby resulting in further over-
heads.

(2) Address map saturation. Large data structures will
typically have saturated address maps. This situation is par-
ticularly problematic for linked lists, arrays and other com-
plex data structures that contain several elements. A satu-
rated address map will intersect non-trivially with most read-
/write Bloom filters, even if the read/write Bloom filters are
not saturated. In turn, this will trigger the callbacks associ-
ated with that address map, even if the corresponding data
structure was not accessed within the transaction.

One way to avoid executing a large number of falsely-

triggered data structure checks is to avail of the HTM sys-
tem’s undo logs to determine whether the data structure was
accessed in a transaction. The undo log of a transaction
stores the list of memory addresses that were modified by
the transaction, which TxInt can use to verify that a memory
address was indeed accessed. While this approach ensures
that data structures will be checked only if they are accessed,
walking the log is an expensive operation, and can result in
performance overheads as well. We therefore incorporated
two optimizations in the design of TxInt to address poor per-
formance that results from Bloom filter saturation.
o Optimization 1: Creating address maps using sampling.
As discussed above, address maps of large data structures
can be saturated. This optimization targets address map sat-
uration and creates address maps by sampling the data struc-
ture’s memory locations. That is, each memory location that
was previously stored in the address map of the data struc-
ture is now included in the address map with a probability
p1. As a consequence, only a fraction p; of the data struc-
ture’s memory locations appear in its address map. We peri-
odically resample the data structure to produce new address
maps. In our current implementation, we resample when we
update the address maps to reflect changes to the data struc-
ture.

This optimization ensures that address maps will be less
saturated, thereby triggering fewer checks of the data struc-
ture. While this optimization reduces the runtime perfor-
mance overhead, it comes at a cost—a data structure check
may not be triggered even if the data structure was accessed
(a false negative), thereby potentially failing to detect data
structure corruptions.

e Optimization 2: Probabilistically triggering data struc-
ture checks. This optimization targets read/write Bloom fil-
ter saturation. Saturated read/write Bloom filters intersect
non-trivially with a large fraction of address maps in the



TxInt monitor (even if the address maps are not saturated),
thereby triggering a large number of data structure checks.

We handle this problem in TxInt by setting a threshold
to detect whether a read/write Bloom filter is saturated; a
Bloom filter is said to be saturated if the number of bits set
in the Bloom filter exceeds that threshold. When a saturated
read/write Bloom filter intersects non-trivially with an ad-
dress map, we trigger the associated callback with probabil-
ity p,. Consequently, only a fraction p; of address maps that
intersect with the read/write Bloom filter will trigger data
structure checks. As with optimization 1, this optimization
can also potentially result in false negatives.

Both these optimizations offer a practical way to trade
performance against the ability to monitor all data accesses.
The total number of data structure checks triggered can be
reduced by choosing suitable values for probabilities p; and
P2, thereby reducing the runtime overhead of TxInt. These
optimizations are independent, and may possibly be used in
conjunction with each other to achieve good performance.

5. Evaluation

We evaluated TxInt using the default configuration of Sim-
ics, which simulates an UltraSPARC-III-plus processor run-
ning at 75SMHz, with 256MB RAM, a 32KB instruction
cache, 64KB data cache, and an 8MB L2 cache, running a
Solaris 10 operating system. We extended Simics with the
Wisconsin GEMS suite (version 2.1) to simulate a LogTM-
SE HTM system. Our implementation of TxInt used 1024-
bit Bloom filters. On this platform, the check_tx instruction
takes 300 nanoseconds to copy Bloom filters into hardware
registers, and transfer control from the HTM system to the
TxInt monitor; this time is comparable to the cost of making
a function call on this architecture. We evaluated the effec-
tiveness and performance of TxInt using two macrobench-
marks (ClamAV and Memcached) and one microbenchmark.

5.1 ClamAV

We evaluated TxInt’s ability to monitor complex data struc-
ture properties by using it with Clamscan, a command-
line version of ClamAV. Clamscan uses a virus definition
database to scan a set of input files, and determines if any
of these files contain patterns in the database. As it oper-
ates, Clamscan internally constructs and maintains several
data structures to represent the virus definition database. Be-
cause ClamAYV is written in C, it may potentially contain
vulnerabilities that can be exploited by malware to hijack
its execution and evade detection (e.g., [3]). It is therefore
critical to protect the integrity of Clamscan’s data structures,
such as those that represent the virus definition database,
from malware.

For the experiments reported below, we used Clamscan
version-0.95.2 with its default virus definition database. We
ran Clamscan on a TxInt-enhanced LogTM-SE system, and
used it to scan the contents of a directory containing 356

Rutgers University DCS-TR-662, December 2009

9

Version Time in seconds
Unmodified 10.95

Ported to LogTM-SE (no TxInt) | 10.99 (0%)

With TxInt enabled 11.35 (3.7%)

Figure 5. Performance of Clamscan with TxInt.

files. We modified Clamscan so that code that accesses crit-
ical data structures is embedded in transactions. In all, we
modified the code to place 23 transactions. Clamscan is a
single-threaded benchmark; transactions placed in its code
serve the sole purpose of triggering TxInt’s data structure
monitor. This example illustrates how TxInt can benefit
single-threaded applications as well.

We studied the source code of Clamscan to identify data
structures that were critical to its correct and secure op-
eration. We identified one data structure, called engine
(of type struct cl_engine), that was particularly criti-
cal. This data structure has several fields, which store scan
settings, file types to be scanned, and a pointer to an internal
representation of the virus database. We wrote checkers for
a total of 22 properties for this data structure. In each case,
we also injected synthetic faults into Clamscan that violated
these properties, and verified that TxInt was able to detect
the violation. Below, we explain one of these invariants,
namely, the Aho-Corasick trie property.

To ensure that files can be efficiently matched against
virus definitions, Clamscan internally stores these defini-
tions as a trie, as specified by the Aho-Corasick algo-
rithm [5]. The Aho-Corasick algorithm also requires each
node in this trie to also contain a link to another node in
the trie, denoting its longest proper suffix; this link is called
a failure link. In all, Clamscan stores pointers to nine such
tries, for various kinds of file formats, in an array called
engine->root. An attack that corrupts the integrity of any
of these tries (e.g., by modifying failure links) can easily
misguide the detection algorithm.

To protect these tries, we registered the memory ad-
dresses of nodes in these tries with the TxInt monitor. We
verified two properties: (a) failure links point to existing
nodes in the trie and that they are not modified after Clam-
scan is initialized; and (b) the trie is free of cycles. While
these properties are not complete (i.e., they do not com-
pletely specify the trie data structure), they increase the dif-
ficulty of corrupting the data structure and misleading the
scanner.

Figure 5 reports the overall performance of Clamscan as
it scanned a directory containing 356 files. All numbers are
averaged over 10 runs of Clamscan. The first row shows the
time taken by an unmodified version of Clamscan executing
in our simulation environment. The second row reports the
performance of a version of Clamscan that contains trans-
actions to enforce the properties discussed above. However,
we did not enable TxInt; this row therefore reports the per-
formance of porting Clamscan to LogTM-SE. The third row



Version Operations/second
Unmodified 22,200
Ported to LogTM-SE (no TxInt) 21,962 (1.01x)
With TxInt enabled 2,764 (8.03%)

Figure 6. Performance of Memcached with TxInt.

shows the performance of Clamscan with TxInt enabled to
check the properties discussed above. We configured TxInt
to use the tree-structured index (described in Section 4.3)
to locate address maps that intersect read/write sets. In all
cases, we used the Solaris gethrvtime function to measure
the time taken by Clamscan.

As this figure shows, TxInt imposes an overhead of 3.7%
on Clamscan, which shows that it can be adopted as an
“always on” tool to monitor the integrity of Clamscan’s data
structures. Because the runtime performance overhead was
manageable, we did not enable the optimizations discussed
in Section 4.4.

5.2 Memcached

Memcached is a distributed object caching system that has
been adapted by Web services such as Livejournal, Slash-
dot and Wikipedia. Unlike Clamscan, Memcached is multi-
threaded, and currently uses locks for synchronization. It
stores key/value pairs and supports operations such as insert-
ing new key/value pairs and querying the value associated
with a key. Internally, it maintains 255 slabs to store key/-
value pairs corresponding to values of different sizes. Each
of these slabs is implemented as a doubly-linked list, and
serves as an LRU cache for items stored in the slab.

We converted Memcached to use transactional memory
for synchronization by converting each client request to ex-
ecute as a single transaction, and registered these linked lists
with the TxInt monitor. We wrote checkers to enforce the fol-
lowing properties: (a) the tail of each list is reachable from
the head by following next fields; (b) the head of each list
is reachable from the tail by following prev fields; (c) items
in each list are stored sorted in decreasing order of the time
that they were inserted.

We used Memcached version 1.4.0 for our experiments
and ran a workload that inserted 100 key/value pairs, and
then queried Memcached for the values corresponding to
each of the 100 keys that were just inserted. We measured
average performance of Memcached as it performed these
200 operations. Figure 7 reports the performance of (i) the
unmodified version of Memcached, (ii) a version that uses
transactions for synchronization alone; and (iii) version that
uses TxInt to monitor data structures.

As Figure 7 shows, TxInt imposes a significant (8.03x)
overhead to enforce data structure properties. We found that
this was because transactions in Memcached saturated the
read/write Bloom filters of LogTM-SE, which in turn trig-
gered checks for several linked lists that were not accessed
in transactions. We therefore enabled optimization 2 (Sec-

Rutgers University DCS-TR-662, December 2009

10

Prob. (p;) | Operations/second
100% 2,764 (8.03%)
75% 3,598 (6.17%)

50% 4,700 (4.70x)

25% 7,017 (3.16x)

10% 14,207 (1.56x)

1% 19,703 (1.12x)

Figure 7. Impact of optimization 2 on memcached perfor-
mance.

tion 4.4) to probabilistically trigger data structure property
checks if the number of bits set in a read/write Bloom filter
exceeded 90%. Figure 7 reports the impact of this optimiza-
tion for various values of p,. As this figure shows, reduc-
ing the probability of checks improves the performance of
Memcached. However, as described in Section 4.4, this per-
formance improvement comes at the cost of failing to check
data structures that were accessed in transactions. We quan-
tify the impact of such false negatives using a microbench-
mark, which we describe next.

5.3 Process Scheduling Microbenchmark

In addition to evaluating the effectiveness of TxInt with
Clamscan and Memcached, we designed a microbench-
mark to dissect how TxInt’s performance can be affected
by the optimizations discussed in Section 4.4. This mi-
crobenchmark is based upon the process scheduling exam-
ple in Section 2. The microbenchmark begins execution by
initializing 300 doubly-linked lists, named run_listy, ...,
run_listsgg. It also initializes one all_tasks list. Each
linked list is initialized to contain five nodes; each node
stores an integer, representing the process identifier, and
pointers to the previous and next nodes in the list.

We registered all these linked lists with the TxInt mon-
itor; the address map of each linked list stores the mem-
ory addresses of all fields of each of the five nodes in the
list. For each list run_list;, we registered a checking call-
back to ensure that run_list; C all_tasks, i.e., that if a
node with a process identifier p exists in run_list;, then
a corresponding node with the same process identifier ex-
ists in all_tasks. The main body of the microbenchmark
is a CPU-bound loop that accesses nodes in run_list,
..., run_list, (1 < m < 300) within a single transaction.
Thus, we can vary the length of the transaction by modify-
ing the value of m. Because our main goal was to evaluate
performance, we ensured that all the invariants run_list;
C all_tasks were satisfied for the duration of the experi-
ment, i.e., all run_1ist;’s and all_tasks had nodes with
the same set of process identifiers.

Figure 8 plots the impact of optimization 1 on the perfor-
mance of the microbenchmark. The x-axis shows the value
of p;, the sampling rate, while the y-axis shows the ratio
of the time taken by a TxInt-enhanced version to the native
version of the microbenchmark. We ran the microbenchmark
with a number of different values for m, which is the number



-1

<10
=50
=+ 100
+=200
=300

150

overhead
&

100

50

100 0 70 50 30 10 1
address map sampling rate

250 ©10
=50
200 =100
=200
=300

overhead

100 0 70 50 30 10 1
probability to trigger data structure check

Figure 8. Performance impact of Optimization 1.

140 120
120

100

DI I

)

01
maio
250
5100
200

number of false checks
i) WH

Do

R RN SN RNN NN R

DI D

S

address map sampling rate

false check rate
IS
g5

false negative rate

address map sampling rate

Figure 9. Performance impact of Optimization 2.

120

-1
<10
50
=100
200
=300

address map sampling rate

Figure 10. Number of false checks.

of run_lists accessed within the transaction, in the main
loop of the microbenchmark. Figure 8 shows that as the sam-
pling rate p; is reduced, the performance overhead imposed
by TxInt also reduces.

Note that the overheads observed for larger values of m
(i.e., larger transactions) is smaller than the overheads ob-
served for smaller values of m, e.g., an overhead of 40x
for m=300 versus 310x for m=10. This is because the mi-
crobenchmark is CPU-bound, and only performs a few sim-
ple memory operations within the transaction. When TxInt
is triggered at the end of each transaction, it compares the
read/write Bloom filters against the address maps of all reg-
istered data structures. This traversal incurs a cost, which is
amortized as the value of m increases, thereby resulting in
lower overheads.

To evaluate the effect of optimization 2, we fixed the value
of p; to 100%, and ran the microbenchmark with different
values for p,, which is the probability with which a data
structure check is triggered when the read/write Bloom filter
intersects its address map. Figure 9 presents the results of
this experiment. The x-axis of this figure shows the value of
P> (as a percentage), while the y-axis shows overhead, which
reduces linearly with p,.

Figure 10 explains why these optimizations improve per-
formance. This figure shows how the number of “false” data
structure checks triggered (shown on the y-axis) varies with

Rutgers University DCS-TR-662, December 2009

Figure 11. False check rate.

11

Figure 12. False negative rate.

p1, which is plotted on the x-axis.2 A false data structure
check is defined as one that is triggered even if the data struc-
ture was not accessed in the transaction. By definition, the
number of false data structure checks for m = 300 is zero.
As Figure 10 indicates, the number of false checks reduces
as p; is reduced. In turn, fewer data structure checks are trig-
gered, thereby improving performance.

Although the number of false checks triggered reduces
with p;, we found that the false check rate, i.e., the ratio of
false checks to the total number of checks triggered, remains
relatively constant as p; is reduced (see Figure 11). How-
ever, performance overhead is determined by the number of
checks, not the false check rate. Consequently, reducing p;
improves the overall performance of the microbenchmark.

While reducing p; (and p,) improves performance, it
does so at the cost of potentially failing to trigger checks
on data structures that were accessed in a transaction. We
call each such check that should have been triggered (but
was not) a false negative. The false negative rate is the ratio
of false negatives to the total number of triggered checks.
Figure 12 plots the false negative rate as a function of p;
for different values of m. This figure shows that reducing the
value of p; increases the false negative rate.

2We observed similar trends for optimization 2 by varying p», but omit
those charts because of space constraints.



6. Related Work

We focus our discussion to four categories of related work
on runtime techniques for data monitoring.

e Applications of Transactions and Transactional Memory.
The use of transactions to monitor data integrity was first
suggested by the relational database community [44, 36].
The idea was to use the transaction machinery implemented
by database systems to additionally check data consistency
when the database is modified. Recent work has adapted
these ideas to isolate and recover from faults in software by
creating custom implementations of transactions and specu-
lative execution mechanisms [41, 29].

With advances in transactional memory, researchers have
begun to explore similar applications using hardware and
software support for transactional memory [37, 14, 26, 19,
18]. Harris and Peyton Jones [37] and Birgisson et al. [14]
explored the use of STM systems to monitor data struc-
ture accesses. Harris and Peyton Jones used an STM system
for Haskell to monitor programmer-specified data invariants,
while Birgisson et al. used an STM for Java to enforce autho-
rization policies on data accesses. Both these systems rely
on STM extensions for specific languages and are inappli-
cable to the general case of monitoring applications writ-
ten in low-level languages. Although compiler support for
STMs may make these techniques applicable to low-level
languages (e.g., [11]), prior work suggests that STMs im-
pose significant runtime overheads, suggesting that an STM-
based approach may not be a practical option to build an
“always-on” data structure monitor [16]. TxInt addresses
this problem by migrating to HTM systems, which mitigate
the overhead of maintaining and updating read/write sets.
However, as discussed in the body of this paper, leveraging
HTM hardware to monitor data structures involves overcom-
ing several challenges unique to HTM systems.

Researchers have also made the case for deconstructing
HTM systems, and reusing HTM hardware for applications
beyond concurrency control [26, 19]. In particular, the posi-
tion paper Hill ez al. [26] describes the use of HTM machin-
ery to implement a data watchpoint framework. Although
the ideas outlined in that paper are similar to those adopted
by TxInt, our work explores the challenges of building a data
structure integrity monitor using the basic watchpoint frame-
work outlined in that paper.

e Runtime Instrumentation and Monitoring Environments.
A number of debugging aids use specialized runtime envi-
ronments or program instrumentation to localize the source
of programming errors that lead to corrupted data struc-
tures [34, 7, 42, 28, 38, 8]. The most popular of these tools
is Valgrind [42], which provides a flexible framework for
heavyweight dynamic analysis. Valgrind is ideally suited to
detect common errors such as memory leaks and dangling
pointers. However, it uses dynamic binary recompilation
and therefore imposes significant performance overheads,
making it impractical for use as an “always-on” tool. It is

Rutgers University DCS-TR-662, December 2009

12

also not easy to extend Valgrind to monitor programmer-
specified data structure properties, of the kind discussed in
this paper. Other tools such as HeapMD [7], Purify [38] and
SWAT [8] instrument the program being analyzed to monitor
the heap for specialized classes of data structure corruptions,
such as memory leaks and dangling pointers. Although ef-
fective at achieving their goal, these tools cannot readily
be extended to monitor arbitrary data structure properties.
Moreover, with the exception of SWAT, the instrumentation
introduced by these tools generally imposes a significant
runtime overhead. SWAT, in particular, is noteworthy in its
use of a sampling framework [6] to reduce the overhead
introduced by instrumentation. As discussed in this paper,
TxInt also employs sampling to reduce runtime overheads
that result from the limitations of HTM systems.

Recent work has proposed the use of the garbage col-
lector to monitor data structure properties [4]. This frame-
work, called GC-Assertions, piggybacks on the garbage col-
lector to traverse the heap and enforce programmer-specified
properties on heap data structures with low runtime over-
head. Unlike TxInt, however, the GC-Assertions framework
does not allow a programmer to specify when data structure
checks must be triggered; rather they are triggered automat-
ically during garbage collection. As a result, GC-Assertions
may be unsuitable to monitor data structure invariants, which
may temporarily be violated as a data structure is modified.
GC-Assertions is also not applicable to low-level languages,
such as C/C++, which use manual memory management.

e Hardware-assisted Monitoring. A number of recent sys-
tems have proposed hardware extensions to detect data
structure corruptions, particularly memory errors that com-
promise security (e.g., [33, 32, 9, 27, 20]). Among these,
the iWatcher system [33] is particularly noteworthy, be-
cause it allows a programmer to specify watchpoints on
data structures and efficiently monitor properties on these
data structures. Like TxInt, iWatcher also leverages hard-
ware designed for an entirely different purpose (thread-level
speculation). TxInt and iWatcher may possibly be used in
conjunction on a platform that supports both thread-level
speculation and transactional memory.

e Rootkit Detection Tools. Rootkits have recently evolved
to achieve malicious goals by affecting the integrity of ker-
nel data structures; Figure 1(c) presented an example of one
such rootkit. To counter such rootkits, researchers have pro-
posed detection tools that periodically (and asynchronously)
scan the contents of kernel memory, and verify that ker-
nel data structures satisfy consistency properties or invari-
ants [43, 13, 31, 30]. Like GC-Assertions, these tools do not
allow a programmer to specify when data structures must be
checked. They may thus report false positives when a data
structure is in a temporary state of flux as it is being modi-
fied. Although we have only applied TxInt to user-space ap-
plications thus far, we plan to investigate whether the use of



TxInt to kernel-mode code can detect rootkits without the
above shortcoming.

References

[1] Clam antivirus. http://www.clamav.net.

[2] Memcached: A distributed memory object caching system.
http://www.danga.com/memcached.

[3] ClamAV multiple vulnerabilities, December 2007. Secunia
Advisories — SA28117.

[4] E. Aftandilian and S. Z. Guyer. GC Assertions: Using the
garbage collector to check heap properties. In PLDI, 2009.

[5] A. V. Aho and M. J. Corasick. Efficient string matching: An
aid to bibliographic search. In Comm. ACM, 1975.

[6] M. Arnold and B. G. Ryder. A framework for reducing the
cost of instrumented code. In PLDI, 2001.

[7] T. Chilimbi and V. Ganapathy. HeapMD: Identifying heap-
based bugs using anomaly detection. In ASPLOS, 2006.

[8] T. Chilimbi and M. Hauswirth. Low-overhead memory leak
detection using adaptive statistical profiling. In ASPLOS,
2004.

[9] J. R. Crandall and F. T. Chong. Minos: Control data attack
prevention orthogonal to memory model. In ISCA, 2004.

[10] B. Demsky and M. Rinard. Automatic detection and repair of
errors in data structures. In OOPSLA, 2003.

[11] A. Adi-Tabatabai ef al.. Compiler and runtime support for
efficient software transactional memory. In PLDI, 2006.

[12] A. Baliga et al.. Lurking in the shadows: Identifying systemic
threats to kernel data. In IEEE Oakland, 2007.

[13] A. Baliga et al.. Automatic inference and enforcement of
kernel data structure invariants. In ACSAC, 2008.

[14] A. Birgisson et al.. Enforcing authorization policies using
transactional memory introspection. In CCS, 2008.

[15] A. Yip et al.. Improving application security with data flow
assertions. In SOSP, 2009.

[16] C. Cascaval et al.. Software transactional memory: Why is it
only a research toy? Comm. of the ACM, 2008.

[17] J. Bobba et al.. TokenTM: Efficient execution of large trans-
actions with hardware transactional memory. In ISCA, 2008.

[18] J. Bobba et al.. StealthTest: Low overhead online software
testing using transactional memory. In PACT, 2009.

[19] J. Chung et al.. ASeD: Availability, security, and debugging
using transactional memory (poster). In SPAA, 2008.

[20] J. Devietti et al.. Hardbound: Architectural support for spatial
safety of the C programming language. In ASPLOS, 2008.

[21] K. E. Moore et al.. LogTM: Log-based transactional memory.
In HPCA, 2007.

[22] L. Ceze et al.. Bulk disambiguation of speculative threads in
multiprocessors. In ISCA, 2006.

[23] L. Hammond et al.. Transactional memory coherence and
consistency. In ISCA, 2004.

[24] L. Yen et al.. LogTM-SE: Decoupling hardware transactional
memory from caches. In HPCA, 2007.

[25] M. D. Ernst et al.. The Daikon system for dynamic detection
of likely invariants. Sci. Comp. Prog., 2007.

[26] M. D. Hill et al.. A case for deconstructing hardware transac-
tional memory systems. In UW-Madison Computer Sciences
Technical Report CS-TR-2007-1594, 2007.

[27] M. Dalton et al.. Raksha: A flexible information flow archi-

Rutgers University DCS-TR-662, December 2009

13

tecture for software security. In ISCA, 2007.

[28] M. Kharbutli et al.. Comprehensively and efficiently protect-
ing the heap. In ASPLOS, 2006.

[29] M. Locasto et al.. From STEM to SEAD: Speculative execu-
tion for automated defense. In USENIX ATC, 2007.

[30] N. L. Petroni et al.. An architecture for specification-based
detection of semantic integrity violations in kernel dynamic
data. In USENIX Security, 2006.

[31] N. Petroni et al.. Copilot: A coprocessor-based kernel runtime
integrity monitor. In USENIX Security, 2006.

[32] P. Zhou et al.. AccMon: Automatically detecting memory-
related bugs via program counter-based invariants. In MI-
CRO, 2004.

[33] P. Zhou et al.. iWatcher: Efficient architectural support for
software debugging. In ISCA, 2004.

[34] R. Shetty et al.. HeapMon: A low overhead, automatic and
programmable memory bug detector. In /st IBM PAC2 Con-
ference, 2004.

[35] R. Wahbe et al.. Efficient software-based fault isolation. In
SOSP, 1993.

[36] M. Hammer and D. McLeod. A framework for data base
semantic integrity. In ICSE, 1976.

[37] T. Harris and S. Peyton-Jones. Transactional memory with
data invariants. In TRANSACT, 2006.

[38] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In Winter USENIX Conference, 1992.

[39] M. Herlihy and J. E. B. Moss. Transactional support for lock
free data structures. In ISCA, 1993.

[40] J. R. Larus and R. Rajwar. Transactional Memory. Synthesis
Lectures on Computer Architecture. Morgan Claypool, 2006.

[41] A. Lenharth, V. Adve, and S. T. King. Recovery domains: An
organizing principle for recoverable operating systems. In
ASPLOS, 2009.

[42] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In PLDI, 2007.

[43] N. L. Petroni and M. W. Hicks. Automated detection of
persistent kernel control-flow attacks. In CCS, 2007.

[44] M. Stonebraker. Implementation of integrity constraints and
views by query modification. In SIGMOD ICMD, 1975.


http://www.clamav.net
http://www.danga.com/memcached

	Introduction
	Motivation and System Overview
	Hardware Transactional Memory
	The Design and Implementation of TxInt
	HTM Changes to Support TxInt
	Implementation in LogTM-SE
	TxInt's Data Structure Monitor
	Design Enhancements to Improve Performance

	Evaluation
	ClamAV
	Memcached
	Process Scheduling Microbenchmark

	Related Work

