Position Paper: The Case for JavaScript Transactions

Mohan Dhawan Chung-chieh Shan Vinod Ganapathy

Rutgers University

Abstract

Modern Web applications combine and use JavaScript-based
content from multiple untrusted sources. Without proper iso-
lation, such content can compromise the security and privacy
of these Web applications. Prior techniques for isolating un-
trusted JavaScript code do so by restricting dangerous con-
structs and inlining security checks into third-party code.

This paper makes the case that JavaScript must be ex-
tended to make isolation a language-level primitive. We pro-
pose to extend the language using a new fransaction construct
that allows a Web application to speculatively execute un-
trusted code and isolate the changes and effects it performs.
The Web application can then inspect these speculative ac-
tions and commit them only if they comply with the applica-
tion’s security policies. We discuss use-cases that can benefit
from JavaScript support for transactions, present a formaliza-
tion of JavaScript transactions and conclude with implemen-
tation considerations.

1. Introduction

Modern Web applications combine and use content from mul-
tiple, untrusted third parties. For example, host Web sites,
such as iGoogle, Facebook or Blogger, include third-party
code in the form of widgets and advertisements. This third-
party code consists largely of JavaScript and HTML content
that can be embedded easily in Web pages. As a second exam-
ple, Web applications increasingly use third-party JavaScript
libraries to simplify code development.

We focus on isolating Web applications (especially host
Web sites) from untrusted, third-party JavaScript code. One
way to achieve this goal is for Web applications to embed
such content within a <frame> element. However, such isola-
tion is too rigid, and hinders the Web application from easily
using features provided by the third-party JavaScript code,
such as libraries. Thus, it is more common for the Web ap-
plication to include third-party content using a <script> ele-
ment. This approach includes third-party code into the same
browser sandbox as the Web application itself, and enables
the creation of rich Web applications, such as mashups. How-
ever, this approach also exposes the Web application to the
third-party code, which may be malicious, thereby introduc-
ing a security hole. For example, the widget in Figure 1, if
included in a Web application using a <script> element, can
snoop key strokes intended for that application.

Untrusted third-party JavaScript code can potentially be
vetted to reveal malicious content, e.g., using static code anal-
ysis, but such analysis can be defeated by JavaScript con-
structs, such as eval, that allow for code generation on the
fly. Moreover, the code can be obfuscated, which further com-
plicates its analysis. Subsetting and rewriting have recently

1. function keylogger(e) {

2 document .images[0].src =

3. "http://evil.com/logger?key="+ e.keyCode;

4. }

5. document.body.addEventListener("keyup", keylogger, false);

Figure 1. A JavaScript widget that logs keystrokes.

1. var z = transaction {

2. function keylogger(e) {

3. document .images[0].src =

4. "http://evil.com/logger?key="+ e.keyCode;

5.

6. document .body.addEventListener("keyup", keylogger, false);
7.}

8. do { // Introspection block, which encodes security policy
9. if (z.isSuspended()) {
10. if(z.getCause() .match("addEventListener"))
11. alert("A script adding an event handler");
12. else
13. performAction(z); // perform requested operation
14. z = z.resume();
15. }

16. } while(z.isSuspended());
17. z.commit();

Figure 2. Isolating the widget in Figure 1.

emerged as popular solutions to address these problems. Sub-
setting defines a restricted subset of JavaScript, one that ex-
cludes hard-to-reason constructs such as eval, thereby mak-
ing third-party code easier to analyze. This approach has
been popularized in AdSafe [5] and FBJS [6], among others
(e.g., [11, 14]). In contrast, rewriting techniques as employed
by Caja [14] and others (e.g., [18, 10, 21]) allow the inser-
tion of inline checks that constrain the runtime behavior of the
code. Caja also defines and operates on a subset of JavaScript.
In this paper, we propose a new approach to the problem
of isolating untrusted JavaScript content in Web applications.
We propose to extend the JavaScript language with a new
transaction construct, which can be used to speculatively ex-
ecute JavaScript code. In essence, the transaction construct
creates a sandbox such that code executing within the transac-
tion cannot modify data outside the sandbox unless the trans-
action is committed. However, code outside the sandbox can
inspect the changes speculatively made by the transaction. A
Web application can isolate third-party code, such as a library
or a widget, by enclosing it within a transaction, and inspect
the changes made by this code before committing them.
Figure 2 illustrates the use of the transaction construct
to isolate the untrusted widget from Figure 1. This figure
shows how a host application can include the untrusted wid-
get using a transaction in lines 1-7.! The transaction itself is a
JavaScript object, and the host application can apply policies
to inspect or commit the transaction using API calls exported
by the transaction object (e.g., getCause, resume and commit).

!'The third-party code would typically be included using a script tag. We
support this model as well (see Section 4). However, for ease of exposition,
examples in this paper will inline the third-party code.

The policies themselves are written in JavaScript, as shown in
lines 8—16 of this example.

However, there are several challenges that must be over-
come to add transactions to JavaScript. These challenges stem
primarily from the interaction of JavaScript with the browser,
such as modifications to the DOM [1] and AJAX requests
(i.e., XMLHttpRequest). Such interactions often constitute
side-effects, i.e., actions that cannot be undone by aborting a
transaction, and call for additional mechanisms. We propose
a novel JavaScript suspend/resume mechanism to handle such
side-effects. When code running within a transaction causes
control to transfer beyond the purview of the transaction ma-
chinery, e.g., calls document .write, the transaction suspends.
A suspended transaction indicates that an action with side ef-
fects has been requested, which must inspected by the host
Web application’s security policy before being allowed. For
example, the transaction in Figure 2 suspends when it calls
addEventListener on line 6, and transfers control to the in-
trospection code in lines 8—16, which encodes the security
policy. In this case, the policy allows the third-party code to
perform all actions except adding an event listener. When the
transaction completes, its actions are committed on line 17.

2. Motivating Examples

This section presents two examples that further illustrate the
use of transactions to isolate third-party code.

2.1 [Illustrating JavaScript Suspend/Resume

Consider the code in lines 2—6 of Figure 3. This code opens
a pop-up window with a pre-defined URL pointing to an
untrusted Web site. If this code is part of a widget or a library
included by a Web application, the pop-up could also redirect
the parent window by modifying its location property. Such
behavior can turn an unsuspecting client into the victim of a
drive-by download attack.

Figure 3 shows how the Web application can restrict the
behavior of this code using transactions. When the code
within the transaction executes, it in turn calls window.open
on line 3. Successful execution of this call would open the
pop-up window. However, because the code executes within
a transaction, the call suspends, creates a JavaScript object z
denoting the suspended transaction, and transfers control to
the code following the transaction (line 8). This code, called
the introspection block, encodes the policy: it examines why
the transaction suspended and reacts accordingly. (The intro-
spection block appears in a do...while loop because a trans-
action may suspend several times.)

The policy encoded by this introspection block disal-
lows all pop-ups with URLSs not in a whitelist. The function
performAction, which is called on line 13, is supplied by
the Web application and performs the action that caused the
transaction to suspend. The z.resume() call on line 15 re-
sumes the transaction from where it was suspended. When
the transaction completes, control passes to the introspec-
tion block. Because the transaction is no longer suspended,
the loop terminates, so the application executes z.commit (),
which commits the changes made by the transaction.

1. var z = transaction {

2 function openPopup(url) {

3 var win = window.open(url, "WindowName",

4. "resizable=yes, scrollbars=yes, status=yes");
5. }

6 openPopup ("http://www.untrusted.com");

7. %

8. do { // Introspection block with security policy

9. if (z.isSuspended()) {

10. if((z.getObject() instanceof Window) &&

11. z.getCause() .match("open") &&

12. isWhiteListedDomain(z.getArgs()[0]1)) {

13. performAction(z); // perform requested operation
14. }

15 z = z.resume();

}
17. } while (z.isSuspended());
18. z.commit();

Figure 3. Limiting pop-ups with transactions.

This example illustrates the suspend/resume feature. Code
that either modifies the DOM or sends AJAX requests sus-
pends if executed within a transaction, causing control to
transfer to the introspection block, where the policy filters the
action. The actual DOM modification or XMLHttpRequest iS
performed by the introspection block (in the performAction
function) on behalf of the transaction. This situation is analo-
gous to a user-space process executing a system call to access
a device, thereby trapping into the operating system, which
then accesses the device on behalf of the user-space process.

The suspend/resume feature also extends to nested trans-
actions in a natural way. Consider a situation where a host-
ing Web application includes code from adagency.com. In
turn, this code may itself include code from an untrusted
fourth-party, ad-delegate.com, and so on. In this case, the
hosting Web application can use an outer transaction to iso-
late code from adagency.com, which in turn can use an in-
ner transaction to isolate code from ad-delegate.com. If
ad-delegate. com attempts to issue an AJAX request (or mod-
ify the DOM), the inner transaction suspends, and “traps”
into the introspection code provided by adagency.com. If
this code chooses to execute the AJAX request on behalf of
ad-delegate.com’s code, the request traps to the outer intro-
spection block, which in turn applies its own security policy
to the AJAX request. In effect, the AJAX request executes
successfully only if it is allowed by the security policies at
each level of nesting.

The ability to suspend and resume transactions can also be
used to prioritize requests made by third-party code. Modern
Web applications extensively use AJAX requests to fetch
both code and data over the network. When a hosting Web
application includes third-party code in the form of a widget
or an advertisement, the latter’s AJAX requests are queued
along with the host’s requests. However, the host application
may wish to remain responsive under network latency and
bandwidth constraints, and may wish to issue its own AJAX
requests before third parties’. The host application can easily
prioritize requests in this way by executing third-party code in
a transaction, where AJAX requests suspend the transaction.
The host’s introspection policy can then wait until the host has
no AJAX request pending, and only then issue the third-party
request and resume the transaction. A similar policy can also

1. <button id="Search™ onclick="doSearch()™

2. <script>

3. var z = transaction {

4. // includes code from adnetwork.com/insert-ad.js
5. // which can modify the global variable ’searchUrl’
6. };

7. do { // Introspection block with security policy
8. var ws = z.getWriteSet();

9. if (!ws.checkMembership(window, "searchUrl"))
10. if (z.isSuspended()) performAction(z);

11. else z.commit();

12. if (z.isSuspended()) z = z.resume();
13. } while(z.isSuspended());
14. var doSearch = function() {

15. var searchBox = document.nodes.SearchBox.value;
16. var searchStr = searchUrl + searchBox;
17. document.location.assign(searchStr);

18. } </script>
Figure 4. A snippet of JavaScript code adapted from
www.wsj.com. The policy examines the transaction’s write
set before committing it.

be used to abort slow to load because their AJAX requests
take too long to complete.

2.2 TIllustrating Transaction Read/Write Sets

Figure 4 shows a code snippet from www.wsj.com (adapted
from [4]). This snippet includes code from an advertiser
(adnetwork.com/insert-ad. js). The code defines a search
form with a button, which executes the doSearch function
when clicked. In turn, the execution of this function causes
a redirection to a URL obtained by concatenating the query
obtained from the search form with searchUrl. However,
a study by Google [17] showed that first-tier advertising
agencies (such as adnetwork) could delegate to other agen-
cies, which in turn could result in the execution of code
that redefines the global searchUrl variable. If the code in
insert-ad.js executes within a <script> tag in the same
browser sandbox as the code from www.wsj.com, then re-
defining searchUrl can result in the user being redirected
to a malicious website.

Figure 4 shows how transactions can be used to contain
the effects of the code included from adnetwork.com. The
introspection block checks whether the transaction tried to
modify the sensitive searchUrl variable, and performs ac-
tions on behalf of the transaction only if searchUrl has not
been modified (line 10). Changes made within the transac-
tion are committed to memory only if the untrusted code
completes execution without modifying the searchUrl vari-
able (line 11). To support the enforcement of such policies,
JavaScript transactions maintain read/write sets, which track
the set of memory locations accessed/modified by the trans-
action. The read/write sets are exposed at the language level
by an API (e.g., z.getWriteSet), thereby allowing security
policies to inspect their contents (e.g., checkMembership).

3. A Lambda Calculus with Transactions

To explain concisely and formally how transactions underpin
the motivating examples above, we present a call-by-value
lambda calculus with transactions and specify its operational
semantics [7]. The essential idea is to use the evaluation
context to delimit transactions and isolate them from external
resources [8].

3.1 Formalization

The syntax of our core language is defined by the following
grammar. A value V is a special case of an expression M.

Expressions M :=n|{|x|Ax. M| M+M | MM | RW{M}
| commit M | introspect M (x.M)(x.M)
| new M | read M | write MM
| suspend M | resume MM

Values Vi=n|l|Ax. M
| RW{V} | RW{C[suspend V]}
Contexts C:=o|C+M|V+C|CM|VC

| commit C | introspect C(x.M)(x.M)
| new C | read C | write CM | write VC
| suspend C | resume CM | resume VC

Metacontexts D ::= 0O | DIRW{C}]

Here we assume integer constants n (for illustration), an in-
finite supply of heap locations ¢, and lexically scoped vari-
ables x.

A read/write set RW consists of the read set R and the write
set W. Whereas R is a relation between locations and values,
W is a partial function from locations to values. For exam-
ple, suppose that the global heap comprises three locations
€1, 42, €3, containing 10, 20, 30 respectively. The global write
set is then {¢; — 10, £, — 20, {3 — 30}. Suppose now that a
transaction reads 10 from ¢, writes 25 to ¢, reads 30 from ¢3,
writes 35 to {3, reads the new value 25 back from ¢,, and ini-
tializes a new heap location ¢4 to 45. Then, the global write
set stays the same, but the read set of the transaction changes
from the empty set to {£; — 10, {3 — 30}, and the write set
of the transaction changes from the empty set to {£, — 25,
€3 = 35, 54 [45}

A context C is a special case of an expression in which a
subexpression next to be evaluated is replaced by a hole 0.
Roughly speaking, whereas a read/write set represents the
heap state of an ongoing transaction (akin to the contents
of private pages in the address space of a thread), a context
represents the control state of an ongoing transaction (akin
to the sequence of activation frames on the execution stack
of a thread). Whereas many operational semantics (including
Maffeis et al.’s for JavaScript [9]) leave control state implicit
in contextual or congruence rules, we make it explicit so as
to specify how transactions suspend. We write C[M] for the
expression obtained by replacing the hole in C with M. For
example, if C = 00 then C[Ax. x] = (Ax. x)0.

A transaction expression RW{M} is formed by delimit-
ing an (untrusted) expression M with a read/write set RW
(initially empty). This formation is similar to how, in a typ-
ical language with exception handling, a try-expression is
formed by delimiting an expression with a handler. The de-
limiter is akin to the boundary between a user process and
an OS kernel. In particular, if the expression M is actually a
value V, then the transaction is finished; if M has the form
C[suspend V1], then the transaction is suspended. These are
the two cases of transaction expressions that are values.

A metacontext D is a sequence of pairs of read/write
sets RW and contexts C, which are the heap states and control

Din; + na]
where 7 is the sum of n; and n,
D[(Ax. M)V]
D[RW{C[commit R"W'{M}]}]
where W = Write(W, W)
Dlintrospect (RW{M}) (x;.My) (x2.M3)] ~ D[(x; — V)M;]
where M = Vandi=1or M = C[suspend V] and i = 2

~» D[n]

~ D[(x = V)M]
~ D[RW"{C[0]}]

D[RW{C[new V]}] ~> D[RW'{C[{]}]
where ¢ is fresh and W’ = Write(W, {{ — V})
D[RW/{CJread ¢]}] ~ D[R'W{C[V]}]

where V = W(€) and R” = R if W(¢) is defined,
V =Read(D, £) and R’ = R U {€£ — V} otherwise
D[RW({C|[write £ V1}] ~ D[RW{C[V]}]
where W = Write(W, {£ — V})

D[resume (RW{C[suspend V]}) V'] ~> D[RW{C[V']}]

Figure 5. The transition relation ~».

states of a sequence of nested ongoing transactions. A meta-
context is also an expression in which a subexpression next
to be evaluated is replaced by a hole O0.

To manipulate read/write sets, we define two auxiliary
functions. The partial function Read maps a metacontext and
a location to a value, by looking up the location in the meta-
context’s read/write sets:

14¢4 if W(¢) is defined,
Read(D[RW{C}],¢) =) it W).IS e
Read(D,) otherwise.
The function Write combines two write sets W and W’ into
one, preferring entries in W’ over those in W:

, e
Write(W, W/Y(&) = {W &) iftw s defined,
W(€) otherwise.

Finally, in Figure 5, we define a (small-step) transition
relation ~» between machine states. A machine state is just
a transaction expression RW{M}; thus, we treat the entire
machine as executing a top-level transaction (whose read set
does not matter). In the transitions, we write (x — V)M to
denote the (capture-avoiding) substitution of V for x in M.
The transition relation so defined is patently deterministic
modulo the renaming of locations and variables. We denote
the transitive closure of ~» by ~»™.

The introspect facility defined here is very simple: it only
lets a policy observe whether a transaction is finished or sus-
pended, and with what value. In our proposed implementa-
tion, transaction objects feature JavaScript methods that pro-
vide access to their read/write sets. These methods can be
used, for example, to see if the transaction has read any sen-
sitive information, e.g., cookies, that should not be leaked.

More generally, the model of locations and variables in our
lambda calculus is much simpler than JavaScript’s, which in-
volves, for example, looking up variables along scope chains
and properties along prototype chains. These complications

can be modeled without any fundamental difficulty—either
using the Read and Write functions defined above, or by writ-
ing a JavaScript interpreter in our lambda calculus.

3.2 Examples

To illustrate the transition relation, we present some small ex-
ample programs. For clarity, we write var x = M;; M, to ab-
breviate the expression (Ax. M>)M;. To express loops (which
typical policies are), we also write function f(x) M to abbre-
viate the value

Ax. (Ay. var f = Ax. yyx; Ax. M)(Ay. var f = Ax. yyx; Ax. M)x.
The latter abbreviation has the crucial property that

DI[(function f(x) M)V]
~* D[(f + function f(x) M)(x — V)M].

Take for example the policy P;, defined as the value
function p(7) introspectz (r. r) (a. p(resumet(a + 1))).

Ignoring the use of resume for the moment, suppose we
apply this policy to the trivial transaction {}{{{3 + 4} (that is,
the expression 3 + 4 delimited by an empty read set and an
empty write set). This transaction immediately finishes with
the result 7, which is observed by the policy due to (r. r):

(HHP1(AHH3 + 4D}
~ {HHPIGHHTH)
~* {H{}{introspect ({H{}{7})
(r.r)
(a. Pi(resumet(a + 1)))}

~ ({7}

Suppose that ¢ is a location shared between the host ap-
plication and the contained transaction. Even if the transac-
tion reads and writes ¢ in the course of its computation, as
long as the policy does not commit the transaction—which
P, does not—the changes will not be reflected in the global
write set. For example, the transaction below increments the
content of £ and returns the result.

Hvarl =new 1; Pi({}{}{write(read + 1)})}
Hvarl =¢; Py({}{{}{write [(read [+ 1)})}
HP1({({Hwrite £ (read € + 1)})}
HP1({€ = TH{}{write £(1 + 1))}
HP1({€ - 1H{}{write £2})}
HP1({€ = THE — 2){2})}
Hintrospect ({€ — 1}{€ — 2}{2})

(r.r)

(a. Pi(resumet(a + 1)))}

+

{
{ 1
{ 1
{ 1
{ 1
{ 1
{ 1

$¢¢ded

~ ({0 112}

The finished transaction has the read set {€ > 1} and the write
set {¢ — 2}. They are discarded by introspect in the policy,
even though the result 2 of the transaction, computed using
them, is retained.

To allow the transaction’s write set to take global effect,
the policy must commit the transaction explicitly, as in the

following policy P;.

function p(¢) introspect ¢
(r. varz = commitz; r)
(a. p(resumet(a + 1)))

(The variable z above is just to receive the dummy result O
returned by commit.) Applying P, to the same transaction
modifies £ globally to 2:

{H{Hvarl=new 1; P,({}{{write [(read [+ 1)})}
~* {}{€ — 1Hintrospect ({¢ — 1}H{{ — 2}{2})
(r.var z = commit
({€ = THE - 2H2});
r)
(a. Py(resumet(a + 1)))}
~ {H{€ — 1}{varz=commit({f — 1}{£ — 2}{2}); 2}
~ {Hf+— 2}varz=0; 2}
~ {}{¢ - 2}2}

Hence, we have no rollback operation—to roll back a trans-
action is simply to never commit it.

Finally, we illustrate the use of suspend and resume using
the transaction

T = varz = write £ (suspend (read ¢));
write € (suspend (read ¢)).

Twice in a row, this transaction sends the content of ¢ to the
host as a request and puts the host’s response back into £. The
policies P, and P, above implement an integer incrementa-
tion service, so applying P or P; to T increments the content
of £ twice in a row:

{He = THPLI(AHHT D}
{H{¢ — 1}H{introspect T’ (r.r) (a. P1(resume T’ (a+1)))}
{Hf — 1}{P(resume T’ (1 + 1))}
{{€ — 1}{Pi(resume T’ 2)}
{Ht > 1H{P1({€ — 1}{}{varz = write £2;
write £ (suspend (read ¢))})}
T UHE = THP (€ - 1} — 2Hwrite £ 3})}
M- 1H3)

where T’ is short for {€ — 1}{}{var z = write £ (suspend 1);
write € (suspend (read ¢))}.

4. Implementation Considerations

In this section, we outline some practical problems that
must be addressed in a browser-based implementation of
JavaScript transactions.

Modifying the <script> tag. The code snippets used earlier
in the paper showed how inline scripts could be isolated us-
ing transactions, i.e., the JavaScript code to be isolated was
available in its entirety, and could be included within the
transaction construct. However, third-party scripts are often
included using a <script> tag whose src attribute specifies
the URL from which the code must be fetched. For example,
the code on lines 4 and 5 in Figure 4 would be fetched us-
ing <script src="adnetwork.com/insert-ad.js">. In such

var corefunc = getFunctionBody(core.toString());
var morefunc = getFunctionBody (more.toString());
var calfunc = getFunctionBody(calendar.toString());
var e = eval; // indirect eval
var z = transaction {

e(corefunc); e(morefunc); e(calfunc);
}; // Introspection code goes here.

Figure 6. Ensuring script execution in the global scope.

cases, the browser fetches the script code from the URL and
executes it as soon as the code has been fetched over the net-
work. Since the <script> tag is HTML code, it cannot di-
rectly be placed within a JavaScript transaction.

To ensure that code fetched using a <script> tag exe-
cutes within a transaction, we propose to add a new txfunc
attribute to the <script> tag. The idea is to convert the
fetched script into a JavaScript function object, and then ex-
ecute this function within a JavaScript transaction. For the
example in Figure 4, the code would be fetched as <script

src="adnetwork.com/insert-ad. js" txfunc="adcode">, which

will encapsulate the code from insert-ad. js within a func-
tion adcode. The function adcode can then be invoked within
a JavaScript transaction.

While seemingly straightforward, the above modification
to the <script> tag introduces an additional complication.
When a script is included in a Web application using a
<script> tag, the JavaScript code in the script executes in
the scope defined by the Web application, i.e., the global
scope. However, the modification to the <script> tag de-
scribed above causes the fetched code to execute in the scope
of the function specified in the txfunc attribute. This prob-
lem becomes apparent when scripts are included using multi-
ple <script> tags, and each script defines/modifies variables
that are used by others. For example, consider the code snip-
pet shown below, which uses two files from the Mootools
library [2] and a third calendar script that uses functions de-
fined by this library. The functions and variables defined in
each of these <script> tags would be defined in the corre-
sponding functions defined in the txfunc tags, and would not
be visible in the global scope, thereby breaking functionality.

<script src="mootools-1.2.4-core.js" txfunc="core"></script>
<script src="mootools-1.2.4.2-more.js" txfunc="more"></script>
<script src="calendar-v1.0.1.js" txfunc="calendar"></script>

This problem can be solved by first extracting the code of
each of the txfunc functions and executing them in the global
scope within the transaction. Figure 6 illustrates the code to
achieve this. The getFunctionBody function extracts the code
of the function, which is then executed using an indirect eval
within the transaction. The use of an indirect eval is crucial—
the ECMAScript standard specifies that indirect evals are
executed in the global scope. However, note that any changes
to the global scope made within the transaction will only
appear in its write set unless the transaction commits.
Executing event handlers in transactions. Event handlers
are callbacks that execute when specific events, such as
mouse clicks, happen. JavaScript code enclosed in a trans-
action may define event handlers that are added to the global
scope when the transaction commits. Because these event
handlers are defined by the (potentially untrusted) JavaScript

code, their execution must be subject to the same security
policy as the transaction. However, an event handler can also
execute after the transaction that defined it has completed ex-
ecution. The original execution context of the transaction that
defined it may no longer be available when the event handler
is triggered.

To ensure that the execution of an event handler is moni-
tored using the same security policy of the transaction that
defines it, we create a wrapper around the event handler.
The goal of the wrapper is to execute the handler within
a transaction, and associate the same security policy with
that transaction. That is, suppose that a transaction defines
an onClick handler named clickhand. In the introspection
block of this transaction, we include code that does the fol-
lowing: (1) create a function tx_clickhand, which wraps
clickhand in a transaction; (2) associate the same introspec-
tion block with tx_clickhand; and (3) register tx_clickhand
as the onClick handler. Therefore, tx_clickhand is triggered
when the onClick event happens, which in turn ensures that
the execution of the event handling code is subject to the same
security policy as the transaction that defined it.

5. Related Work

We are not aware of prior work on JavaScript transactions.
Our discussion of related work focuses on the use of transac-
tions for security/reliability and on recent work on restricting
untrusted JavaScript code.

Restricting untrusted JavaScript code. Several recent re-
search projects and commercial efforts have investigated tech-
niques to restrict the execution of untrusted JavaScript code.
Notable commercial efforts include ADSafe [5], FBIS [6] and
Caja [14], which define subsets of JavaScript that are easier
to reason about using static analysis. The work of Maffeis et
al. [12, 9, 11] formalizes and presents a security analysis of
such language subsetting techniques. Other research projects,
including BrowserShield [18], CoreScript [21], and the works
of Phung er al. [15] and Maffeis et al. [10], propose to rewrite
untrusted JavaScript code to insert runtime checks and wrap-
pers that restrict the behavior of the code.

As discussed in Section 1, we propose an alternative
approach—that of extending the language with transactions.
Since our approach provides isolation by extending JavaScript,
rather than subsetting or rewriting, it supports the execution
of unmodified JavaScript and does not place any restrictions
on the constructs that third-party code can use.

Our work is most closely related to ConScript [13], which
proposes an aspect-oriented approach to restrict the execu-
tion of untrusted JavaScript code. Like our work, ConScript
also enhances the JavaScript language and supporting HTML
tags (e.g., <script>) to specify policies that govern the exe-
cution of third-party code. However, unlike our work, which
specifies policies at the granularity of data accesses, e.g., us-
ing the transactions read/write sets, ConScript’s policies are
specified at the granularity of functions, which serve as point-
cuts. A second difference is that our work proposes specula-
tive execution of JavaScript, whereas ConScript inlines policy
checks with the execution of the code that it monitors. Further

research is needed to determine whether these two techniques
compare in their ability to enforce security policies on un-
trusted code execution.

Using transactions for security. Transactions and specula-
tive execution mechanisms have previously been used to im-
prove software security and reliability (e.g., [19, 16, 3]). How-
ever, the work most closely related to ours is the one by Sun
et al. [20] on one-way isolation. This work describes a sand-
boxing mechanism that allows isolated execution of untrusted
code. As in our work, code within the sandbox cannot modify
the state of code outside, but the reverse is possible. How-
ever, their work focused on implementing such a sandbox at
the granularity of OS-level artifacts, such as processes and
files. In contrast, this paper discussed a similar approach but
applied it to the problem of isolating JavaScript code. Accord-
ingly, their work is realized by making changes to the OS,
whereas ours requires changes to the JavaScript interpreter.

References

[1] Document object model. http://www.w3.o0rg/DOM.

[2] Mootools—a compact JavaScript framework. http://mootools.net.

[3] A. Birgisson, M. Dhawan, U. Erlingsson, V. Ganapathy, and L. Iftode.
Enforcing authorization policies using transactional memory intro-
spection. In ACM CCS, 2008.

[4] R. Chugh, J. Meister, R. Jhala, and S. Lerner. Staged information flow
in JavaScript. In ACM SIGPLAN PLDI, 2009.

[5] D. Crockford. ADsafe - Making JavaScript safe for advertising. http:
//adsafe.org.

[6] Facebook. FBJS - Facebook developerwiki. 2007.

[7]1 M. Felleisen. The Calculi of A,-CS Conversion: A Syntactic Theory
of Control and State in Imperative Higher-Order Programming Lan-
guages. PhD thesis, Comp. Sci. Dept., Indiana Univ., 1987.

[8] O. Kiselyov, C-C. Shan, and A. Sabry. Delimited dynamic binding. In
ICFP, pages 26-37, 2006.

[9] S. Mafteis, J. C. Mitchell, and A. Taly. An operational semantics for
JavaScript. In APLAS, October 2008.

[10] S. Maffeis, J. C. Mitchell, and A. Taly. Isolating JavaScript with filters,
rewriting and wrappers. In ESORICS, 2009.

[11] S.Mafteis, J. C. Mitchell, and A. Taly. Object capabilities and isolation
of untrusted Web applications. In IEEE S&P, 2010.

[12] S. Maffeis and A. Taly. Language based isolation of untrusted
JavaScript. In IEEE CSF, 2009.

[13] L. Meyerovich and B. Livshits. Conscript: Specifying and enforcing
fine-grained security policies for JavaScript in the browser. In IEEE
S&P, 2010.

[14] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe
active content in sanitized JavaScript. 2008. Manuscript.

[15] P. Phung, D. Sands, and A. Chudnov. Lightweight self-protecting
JavaScript. In ASIACCS, 2009.

[16] D.E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and E. Witchel.
Operating systems transactions. In ACM SOSP, 2009.

[17] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu.
The ghost in the browser analysis of web-based malware. In First Hot-
Bots workshop, 2007.

[18] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir.
Browsershield: Vulnerability-driven filtering of dynamic html. ACM
Trans. Web, 1(3):11, 2007.

[19] M. L. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with
disaster: Surviving misbehaved kernel extensions. In OSDI, 1996.

[20] W. Sun, Z. Liang, R. Sekar, and V. N. Venkatakrishnan. One-way isola-
tion: An effective approach for realizing safe execution environments.
In NDSS, 2005.

[21] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instrumentation
for browser security. In ACM POPL, 2007.

http://www.w3.org/DOM
http://mootools.net
http://adsafe.org
http://adsafe.org

	Introduction
	Motivating Examples
	Illustrating JavaScript Suspend/Resume
	Illustrating Transaction Read/Write Sets

	A Lambda Calculus with Transactions
	Formalization
	Examples

	Implementation Considerations
	Related Work

