
Transcript: Speculative Execution of Untrusted JavaScript Code

Mohan Dhawan
Rutgers University

Chung-chieh Shan
Rutgers University

Vinod Ganapathy
Rutgers University

Abstract
Transcript is a system that enhances JavaScript with

support for speculative execution. It introduces a new
transaction construct, which hosting Web applications
can use to demarcate regions that contain untrusted guest
code. Actions performed within a transaction are logged
and considered speculative until they are examined by
the host and committed. Uncommitted actions sim-
ply do not take and cannot affect the host in any way.
Transcript therefore provides hosting Web applications
with powerful mechanisms to mediate the actions of un-
trusted guests and also cleanly recover from the effects
of security-violating guest code.

This paper describes the design of Transcript and its
implementation in Firefox. Our exposition focuses on
the novel features introduced by Transcript to support
transactions, including a suspend/resume mechanism for
JavaScript and support for speculative DOM updates.
Our evaluation presents case studies showing that Tran-
script can be used to enforce powerful security policies
on untrusted JavaScript code, and reports its performance
on real-world applications and microbenchmarks.

1 Introduction
The client-side of modern Web applications routinely
contains JavaScript code in the form of advertisements,
games, and libraries that may be developed by untrusted
third parties. To include such third-party code (the
guest), the author of such a Web application (the host)
must choose to (a) place the guest code in its own pro-
tection domain (e.g., an iframe) or (b) include the guest
in the same protection domain as the host. The first
approach isolates the guest from the host, but has the
downside of offering limited means for guest/host inter-
action. Any communication between the guest and the
host must happen via explicit postMessage commands be-
tween the corresponding iframes. The second approach
eases guest/host interaction, but also exposes the host to
malicious guests. Hosts must therefore employ protec-
tion mechanisms to confine the actions of guest code.
This paper addresses the problem of designing such pro-
tection mechanisms.

One way to protect against untrusted guests is to use
JavaScript reference monitors. Reference monitors me-
diate the action of guest code as it executes and ensure
that any accesses by the guest to the host’s data struc-

tures conform to the host’s security policies. Examples
of reference monitors include Caja [34], object capabil-
ities [29], inlined reference monitors [16, 40, 47], ob-
ject wrappers [28], and aspect-oriented policy enforce-
ment [32]. Some reference monitors also require the
guest code to be written in safe subsets of JavaScript
(e.g., Caja). The main purpose of these reference moni-
tors is to provide access control to the host’s objects.

This paper proposes a novel approach to construct
JavaScript reference monitors using speculative exe-
cution. The main idea is to extend JavaScript with
a new transaction construct, within which hosts can
speculatively execute guest code that contains arbitrary
JavaScript constructs. In addition to enforcing access
control policies, reference monitors that use specula-
tive execution allow hosts to cleanly recover from the
security-violating actions of guest code. When a host de-
tects an offending guest, it simply chooses not to commit
the transaction corresponding to the guest. Such an ap-
proach neutralizes any data and DOM modifications ini-
tiated earlier by the guest, without having to undo them
explicitly.

To motivate the need for recovery, consider the exam-
ple of a Web-based word processor that hosts a third-
party widget to display advertisements (see Figure 1).
During an editing session, this widget scans the docu-
ment for specific keywords and displays advertisements
relevant to the text that the user has entered. Such a wid-
get may modify the host in several ways to achieve its
functionality, e.g., it could install event handlers to dis-
play advertisements when the user places the mouse over
specific phrases in the text. However, as an untrusted
guest, this widget may also contain malicious function-
ality, e.g., it could implement a clickjacking attack by
overlaying the editor with transparent HTML elements
pointing to malicious sites.

Traditional reference monitors can detect and prevent
such attacks. However, such reference monitors typically
only enforce access control policies, and would have let
the guest modify the host’s heap and DOM (such as to
install innocuous event handlers) until the attack is de-
tected. When such a reference monitor reports an at-
tack, the end-user faces one of two unpalatable options:
(a) close the editing session and start afresh; or (b) con-
tinue with the tainted editing session. In the former case,
the end-user loses unsaved work. In the latter case, the

1

(1) <script type="text/javascript">

(2) var editor = new Editor(); initialize(editor);

(3) var builtins = [], tocommit = true;

(4) for(var prop in Editor.prototype) builtins[prop] = prop;

(5) var tx = transaction { Guest code: Lines 6–9

(6) Editor.prototype.getKeywords = function(content) {...}

...

(7) var elem = document.getElementById("editBox");

(8) elem.addEventListener("mouseover", displayAds, false);

...

(9) document.write(‘<div style="opacity:0.0; z-index:0; ... size/loc params">

 Evil Link </div>’);

(10) };

(11) do { Introspection block (iblock): Lines 11–27

(12) var arg = tx.getArgs(); var obj = tx.getObject();

(13) var rs = tx.getReadSet(); var ws = tx.getWriteSet();

(14) for(var i in builtins) {

(15) if (ws.checkMembership(Editor.prototype, builtins[i])) tocommit = false;

(16) } ... /* definition of ‘IsClickJacked’ to go here */

(17) if (IsClickJacked(tx.getTxDocument())) tocommit = false;

(18) ... /* more policy checks go here */

(19) switch(tx.getCause()) {

(20) case "addEventListener":

(21) var txHandler = MakeTxHandler(arg[1]);

(22) obj.addEventListener(arg[0], txHandler, arg[2]); break;

(23) case "write": WriteToTxDOM(obj, arg[0]); break; ... /* more cases */

(24) default: break;

(25) }; tx = tx.resume();

(26) } while(tx.isSuspended());

(27) if (tocommit) tx.commit();

(28) ... /* rest of the Host Web application’s code */

(29) </script>

Figure 1: Motivating example. This example shows how a hosting Web application can mediate untrusted guest code (lines 6–9). The intro-
spection block (lines 11–27) enforces the host’s security policies on the actions performed by the guest. To ease exposition, (a) this example omits
variable hiding, a concept introduced in Section 3.2, which ensures that the guest cannot tamper with sensitive host variables such as tx, tocommit
and builtins; (b) we inlined the guest code from http://untrusted.com/guest.js in lines 6–9. Section 5.4 explains how the host can use
transactions to mediate guests included using a <script> tag.

editing session is subject to the unknown and possibly
undesirable effects of the heap and DOM changes that
the widget initiated before being flagged as malicious.
In our example, the event handlers registered by the ma-
licious widget may also implement undesirable function-
ality and should be removed when the widget’s clickjack-
ing attempt is detected.

Speculative execution allows reference monitors to de-
tect and recover from malicious guests. In our example,
the host would speculatively execute the untrusted wid-
get by enclosing it within a transaction. When the attack
is detected, the host simply discards all changes initiated
by the widget. The end-user can proceed with the editing
session without losing unsaved work, and with the assur-
ance that the host is unaffected by the malicious widget.

This paper describes Transcript, a speculative execu-
tion system for JavaScript with several novel features:
(1) JavaScript transactions. Transcript allows hosting
Web applications to speculatively execute guests by en-
closing them in transactions. Transcript maintains read
and write sets for each transaction to record the ob-
jects that are accessed and modified by the corresponding
guest. These sets are exposed as properties of a transac-
tion object in JavaScript. Changes to a JavaScript object
made by the guest are visible within the transaction, but
any accesses to that object from code outside the transac-
tion return the unmodified object. The host can inspect
such speculative changes made by the guest and deter-
mine whether they conform to its security policies. The
host must explicity commit these changes in order for
them to take effect; uncommitted changes simply do not
take and need not be undone explicitly.
(2) Transaction suspend/resume. Guest code may at-
tempt operations outside the purview of the JavaScript
interpreter. In a browser, these external operations in-
clude AJAX calls that send network requests, such as
XMLHttpRequest. Transcript introduces a suspend and re-
sume mechanism that affords unprecedented flexibility to

mediate external operations. Whenever a guest attempts
an external operation, Transcript suspends it and passes
control to the host. Depending on its security policy,
the host can perform the action on behalf of the guest,
perform a different action unbeknownst to the guest, or
buffer up and simulate the action, before resuming this or
another suspended transaction.
(3) Speculative DOM updates. Because JavaScript
interacts heavily with the DOM, Transcript provides a
speculative DOM subsystem, which ensures that DOM
changes requested by a guest will also be speculative.
Together with support for JavaScript transactions, Tran-
script’s DOM subsystem allows hosts to cleanly recover
from attacks by malicious guests.

Transcript provides these features without restricting
or modifying guest code in any way. This allows ref-
erence monitors based on Transcript to mediate the ac-
tions of legacy libraries and applications that contain
constructs that are often disallowed in safe JavaScript
subsets [13, 18, 28, 30, 34] (e.g., eval, this and with).

We have implemented a prototype of Transcript by
adding these features to Firefox’s JavaScript interpreter.
We evaluated our prototype by using it to build reference
monitors to mediate several guests, the largest of which
was a jQuery-based application containing about 7, 500
lines of code. Our results show that Transcript is expres-
sive and effective at isolating untrusted guests. On aver-
age, the use of Transcript increased the load time of these
guests by only 0.16 seconds.

2 Overview of Transcript
We provide a high-level overview of Transcript in ac-
tion by further elaborating on the example introduced
in Section 1. Suppose that the word processor hosts
the untrusted widget using a <script> tag, as follows:
<script src="http://untrusted.com/guest.js">. In Fig-
ure 1, lines 6–9 show a snippet from guest.js, which dis-
plays advertisements relevant to keywords entered in the

2

editor. Line 6 registers a function to scan for keywords
in the editor window by adding it to the prototype of the
Editor object. Lines 7 and 8 show the widget register-
ing an event handler to display advertisements on certain
mouse events. While lines 6–8 encode the core func-
tionality related to displaying advertisements, line 9 im-
plements a clickjacking attack by creating a transparent
<div> element, placed suitably on the editor with a link
to an evil URL.

When hosting such a guest, the word processor must
protect itself from attacks by defining and enforcing a
suitable set of security policies. These may include poli-
cies to prevent prototype hijacks [39], clickjacking at-
tacks, drive-by downloads, stealing cookies, snooping on
keystrokes, etc. Further, if an attack is detected and pre-
vented, it should not adversely affect normal operation
of the word processor. We now illustrate how the word
processor can use Transcript to achieve such protection
and cleanly recover from attempted attacks.

The host protects itself by embedding the guest in a
transaction construct (line 5) and specifies its security
policy (lines 11–27). When the transaction executes,
Transcript records all reads and writes to JavaScript ob-
jects in per-transaction read/write sets. Any attempts by
the guest to modify the host’s JavaScript objects (e.g., on
line 6) are speculative; i.e., these changes are visible only
to the guest itself and do not modify the host’s view of
the JavaScript heap. To ensure that DOM modifications
by the guest are also speculative, Transcript’s DOM sub-
system clones the host’s DOM at the start of the transac-
tion and resolves all references to DOM objects within
a transaction to the cloned DOM. Thus, references to
document within the guest resolve to the cloned DOM.

When the guest performs DOM operations, such as
those on lines 7–9, and other external operations, such as
XMLHttpRequest, Transcript suspends the transaction and
passes control to the host. This situation is akin to a
system call in a user-space program causing a trap into
the operating system. Suspension allows hosts to me-
diate external operations as soon as the guest attempts
them. When a transaction suspends or completes execu-
tion, Transcript creates a transaction object in JavaScript
to denote the completed or suspended transaction. In
Figure 1, the variable tx refers to the transaction object.
Transcript then passes control to the host at the program
point that syntactically follows the transaction. There,
the host implements an introspection block (or iblock) to
enforce its security policy and perform operations on be-
half of a suspended transaction.

Transaction objects. A transaction object records the
state of a suspended or completed transaction. It stores
the read and write sets of the transaction and the list
of activation records on the call stack of the transaction
when it was suspended. It provides builtin methods, such
as getReadSet and getWriteSet shown in Figure 1, that the

host can invoke to access read and write sets, observe the
actions of the guest, and make policy decisions.

When a guest tries to perform an external operation
and thus suspends, the resulting transaction object may
contain arguments passed to the operation. For example,
a transaction that suspends due to an attempt to mod-
ify the DOM, such as the call document.write on line 9,
will contain the DOM object referenced in the operation
(document), the name of the method that caused the sus-
pension (write), and the arguments passed to the method.
(Recall that Transcript’s DOM subsystem ensures that
document referenced within the transaction will point to
the cloned DOM.) The host can access these arguments
using builtin methods of the transaction object, such as
getArgs, getObject and getCause. These arguments are
analogous to system-call arguments passed from a user-
space program to the operating system. Depending on its
security policy, the host can either perform the operation
on behalf of the guest, simulate the effect of performing
it, defer the operation for later, or not perform it at all.

The host can resume a suspended transaction using
the transaction object’s builtin resumemethod. Transcript
then uses the activation records stored in the transaction
object to restore the call stack, and resumes control at the
program point following the instruction that caused the
transaction to suspend (akin to resumption of program
execution following a system call). Transactions can sus-
pend an arbitrary number of times until they complete
execution. The builtin isSuspended method determines
whether the transaction is suspended or has completed.

A completed transaction can be committed using the
builtin commit method. This method copies the contents
of the write set to the corresponding objects on the host’s
heap, thereby publishing the changes made by the guest.
It also synchronizes the host’s DOM with the cloned ver-
sion that contains any DOM modifications made by the
guest. A completed transaction’s call stack is empty, so
attempts to resume a completed transaction will have no
effect. Note that Transcript does not define an explicit
abort operation. This is because the host can simply dis-
card changes made by a transaction by choosing not to
commit them. If the transaction object is not referenced
anymore, it will be garbage-collected.

Introspection blocks. When a transaction suspends or
completes, Transcript passes control to the instruction
that syntactically follows the transaction in the code of
the host. At this point, the host can check the guest’s ac-
tions by encoding its security policies in an iblock. The
iblock in Figure 1 spans lines 11–27 and has two log-
ical parts: a host-specific part that encodes the host’s
security policies (lines 14–18), and a mandatory part
that performs operations on behalf of suspended guests
(lines 19–25).

The iblock in Figure 1 illustrates two policies:

(1) Lines 14–15 detect prototype hijacking attempts on

3

the Editor object. To do so, they check the transaction’s
write set for attempted redefinitions of builtin methods
and fields of the Editor object.
(2) Line 17 detects clickjacking attempts by checking
the DOM for the presence of any transparent HTML
elements introduced by the guest. (The body of
IsClickJacked, which implements the check, is omitted
for brevity).

The body of the switch statement encodes the manda-
tory part of the iblock and implements two key function-
alities, which are further explained in Section 3.1:

(1) Lines 20–22 create and attach an event handler to
the cloned DOM when the guest suspends on line 8.
The MakeTxHandler function creates a new wrapped han-
dler, by enclosing the guest’s event handler (displayAds)
within a transaction construct. Doing so ensures that the
execution of any event handlers registered by the guest
is also speculative, and mediated by the host’s security
policies. The iblock then attaches the event handler to
the corresponding element (elem) in the cloned DOM.
(2) Line 23 speculatively executes the DOM modifi-
cations requested when the guest suspends on line 9.
The WriteToTxDOM function invokes the write call on obj,
which points to the document object in the cloned DOM.

If a transaction does not commit because of a policy
violation, the host’s DOM and JavaScript objects will
remain unaffected by the guest’s modifications. For in-
stance, when the host in Figure 1 aborts the guest after it
detects the clickjacking attempt, the host’s DOM will not
contain any remnants of the guest’s actions (such as event
handlers registered by the guest). The host’s JavaScript
objects, such as Editor, are also unaffected. Specula-
tively executing guests therefore allows hosts to cleanly
recover from attack attempts.

Iblocks offer hosts the option to postpone external op-
erations. For example, a host may wish to defer all net-
work requests from an untrusted advertisement until the
end of the transaction. It can do so using an iblock that
buffers these requests when they suspend, and thereafter
resume the transaction; the buffered requests can be pro-
cessed after the transaction has completed. Such post-
ponement will not affect the guest if the buffered requests
are asynchronous, e.g., XMLHttpRequest.

Because a transaction may suspend several times, the
iblock is structured as a loop, whose body executes each
time the transaction suspends and once when the transac-
tion completes. This way, the same policy checks apply
whether the transaction suspended or completed.

3 Design of Transcript
We now describe the design of Transcript’s mechanisms
using Figure 2, which summarizes the workflow of a
Transcript-enhanced host. The figure shows the opera-
tion of the Transcript runtime system at key points dur-

ing the execution of the host, which has confined a guest
akin to the one in Figure 1 using a transaction.

When a transaction begins execution, Transcript first
provides the transaction with its private copy of the host’s
DOM tree. It does so by cloning the current state of
the host’s DOM, including any event handlers associ-
ated with the nodes of the DOM (¬ in Figure 2). When
a guest references nodes in the host’s DOM, Transcript
redirects these references to the corresponding nodes in
the transaction’s private copy of the DOM.

Next, the Transcript runtime pushes a transaction de-
limiter on the JavaScript call stack. Transcript places the
activation records of methods invoked within the trans-
action above this delimiter. It also records the locations
of JavaScript objects accessed/modified within the trans-
action in read/write sets. If the transaction executes an
external operation, the runtime suspends the transaction.
To do so, it creates a transaction object and (a) initializes
the object with the transaction’s read/write sets; (b) pops
all the activation records on the JavaScript call stack un-
til the topmost transaction delimiter; (c) stores these ac-
tivation records in the transaction object; (d) saves the
program counter; and (e) sets the program counter to im-
mediately after the end of the transaction, i.e., the start of
the iblock (steps and ® in Figure 2).

The iblock logically extends from the end of the trans-
action to the last resume or commit call on the transaction
object (e.g., lines 11–27 in Figure 1). The iblock can ac-
cess the transaction object and its read/write sets to make
policy decisions. If the iblock invokes resume on a sus-
pended transaction, the Transcript runtime (a) pushes a
transaction delimiter on the current JavaScript call stack;
(b) pushes the activation records saved in the transaction
object; and (c) restores the program counter to its saved
value. Execution therefore resumes from the statement
following the external operation (see ¯ and °). If the
iblock invokes commit instead, the Transcript runtime up-
dates the JavaScript heap using the values in the transac-
tion object’s write set. The commit operation also replaces
the host’s DOM with the cloned DOM (step ±).

The Transcript runtime behaves in the same way even
when transactions are nested: Transcript pushes a new
delimiter on the JavaScript call stack for each level of
nesting encountered at runtime. Each suspend opera-
tion only pops activation records until the topmost de-
limiter on the stack. Nesting is important when a guest
itself wishes to confine code that it does not trust. This
situation arises when a host includes a guest from a
first-tier advertising agency (1sttier.com), which itself
includes code from a second-tier agency (2ndtier.com).
Whether the host confines the advertisement using an
outer transaction, 1sttier.com may itself confine code
from 2ndtier.com using an inner transaction using its own
security policies. If code from 2ndtier.com attempts to
modify the DOM, that call suspends and traps to the
iblock defined by 1sttier.com. If this iblock attempts

4

... // Code of the host
tx = transaction {

 ...
 node.addEventListener(...);

 ...
};
do {

 ...

 tx = tx.resume();

 ...

} while(tx.isSuspended());

tx.commit();

... // Rest of the host

Host including a guest

1

Introspection block

Transcript runtime
system

2

3 4

5

6

Guest

(a) Locations of traps/returns to/from Transcript.

Transaction object tx

tx’s write
set + Heaporig Heapnew

2 3

4 5
Transaction object tx

JavaScript runtime

Transcript runtime system

6

Speculative DOM

DOMorig DOMTX

1

DOMTX
3 4 -

DOMTX

wrapped
handler

+

DOMTX DOMnew

6

Host’s stack

call stack
Guest’s

…
Host’s stack

…

Host
…

resume
Host

call stack
Guest’s

…

Clone

addEventListener

Replace

DOMTX
R/W sets call stack

Guest’s

DOMTX
R/W sets call stack

Guest’s

(b) Corresponding actions within the Transcript runtime system for a trap/return.

Figure 2: Workflow of a Transcript-enhanced host. Part (a) of the figure shows a host enclosing a guest within a transaction, while part (b)
shows the JavaScript runtime and the DOM subsystem. The labels ¬-± in the figure show: ¬ the host’s DOM being cloned at the start of the
transaction, the host’s call stack before a call that suspends the transaction, ® the call stack after suspension, ¯ the host’s call stack when the
transaction is about to resume; the speculative DOM has been updated with the requested changes, ° the host’s call stack just after resumption,
± shows the transaction committing, which copies all speculative changes to the host’s DOM and JavaScript heap. The thick lines on the call stacks
denote transaction delimiters. Arrows show control transfer from the transaction to the iblock and back.

to modify the DOM on behalf of 2ndtier.com, the outer
transaction suspends in turn and passes control to the
host’s iblock. In effect, the DOM modification succeeds
only if it is permitted at each level of nesting.

3.1 Components of an iblock
As discussed in Section 2, an iblock consists of two
parts: a host-specific part, which codifies the host’s poli-
cies to confine guests, and a mandatory part, which con-
tains functionality that is generic to all hosts. In our
implementation, we have encoded the second part as a
JavaScript library (libTranscript) that can simply be in-
cluded into the iblock of a host.1 This mandatory part im-
plements two functionalities: gluing execution contexts
and generating wrappers for event handlers.

3.1.1 Gluing execution contexts
Guests often use document.write or similar calls to
modify the host’s DOM, as shown on line 9 of Fig-
ure 1. When such guests execute within a transac-
tion, the document.write call traps to the iblock, which
must complete the call on behalf of the guest and ren-
der the HTML in the cloned DOM. However, the
HTML code in document.write may contain scripts,
e.g., document.write(’<script src=code.js>’). The exe-
cution of code.js, having been triggered by the guest,
must then be mediated by the same security policy that
governs the guest.

Thus, code.js should be executed in the same context
as the transaction where the guest executes. To achieve
this goal, the mandatory part of the iblock encapsulates
the content of code.js into a function and uses a builtin

1The body of the switch statement in Figure 1 shows a snippet
from this JavaScript library. Figure 7 illustrates an iblock that simply
includes and invokes functions from the library.

glueresume method of the transaction object to instruct
the Transcript runtime to invoke this function when it re-
sumes the suspended transaction. The net effect is sim-
ilar to fetching and inlining the content of code.js into
the transaction. We call this operation gluing, because it
glues the code in code.js to that of the guest.

To implement gluing, the iblock must recognize that
the document.write includes additional scripts. This in
turn requires the iblock to parse the HTML argument
to document.write. We therefore exposed the browser’s
HTML parser through a new document.parse API to al-
low HTML (and CSS) parsing in iblocks. This API ac-
cepts a HTML string argument, such as the argument to
document.write, and parses it to recognize <script> ele-
ments and other HTML content. It also recognizes inline
event-handler registrations, so that they can be wrapped
as described in Section 3.1.2. When the iblock invokes
document.parse (in Figure 1, it is invoked within the call
to WriteToTxDOM on line 23), the parser creates new func-
tions that contain code in <script> elements. It returns
these functions to the host’s iblock, which can then in-
voke them by gluing. The parser also renders other (non-
script) HTML content in the cloned DOM.

Guest operations involving innerHTML are handled sim-
larly. Transcript suspends a guest that attempts an
innerHTML operation, parses the new HTML code for any
scripts, and glues their execution into the guest’s context.

3.1.2 Generating wrappers for event handlers
Guests executing within a transaction may attempt to
register functions to handle asynchronous events. For
example, line 8 in Figure 1 registers displayAds as an
onMouseOver handler. Because displayAds is guest code, it
is important to associate it with the iblock for the trans-
action that registered it and to subject it to the same pol-

5

(1) var tx = transaction { ... //code that suspends ...

(2) for (var x in this) {

(3) if (this[x] instanceof Tx obj) txref = this[x];

(4) }; txref.getWriteSet = function() { };

(5) }

Figure 3: A guest that implements a reference leak. The tx object
is created and attached to this when the guest suspends on line 1.

icy checks. Transcript does so by creating a new func-
tion tx displayAds that wraps displayAds within a trans-
action guarded by the same iblock, and registering tx -
displayAds as the event handler for the onMouseOver event.

To this end, the mandatory part of the iblock in-
cludes creating wrappers (such as tx displayAds) for
event handlers. When the guest executes a state-
ment such as elem.addEventListener(...), it would trap
to the iblock, which can then examine the argu-
ments to this call and create a wrapper for the event
handler. Guests can alternatively use document.write
calls to register event handlers e.g., document.write
(’<div onMouseOver="displayAds();">’). In this case,
the iblock recognizes that a new event handler is be-
ing registered by parsing the HTML argument of the
document.write call (using the document.parse API) when
it suspends, and wraps the call. Our wrapper generator
deals with all the event handling models currently sup-
ported by Firefox [46]. We refer readers interested in the
details to Appendix A.

Besides event handlers, JavaScript supports other con-
structs for asynchronous execution: AJAX callbacks
(i.e., XMLHttpRequest), which execute upon receiving
network events, and features such as setTimeOut and
setInterval that trigger code execution based upon timer
events. The mandatory part of the iblock also handles
these constructs by wrapping callbacks as just described.

3.2 Hiding sensitive variables
The iblock of a transaction checks the guest’s actions
against the host’s policies. These policies are themselves
encoded in JavaScript, and may use methods and vari-
ables (e.g., tx, tocommit and builtins in Figure 1) that
must be protected from the guest. Without precautions,
the guest can use JavaScript’s extensive reflection capa-
bilities to tamper with these sensitive variables. Figure 3
presents an example of one such attack, a reference leak,
where the malicious guest obtains a reference to the tx
object by enumerating the properties of the this object,
and redefines the method tx.getWriteSet speculatively.
As presented, the example in Figure 1 is vulnerable to
such a reference leak.

To protect such sensitive variables, we adopt a defense
called variable hiding that eliminates the possibility of
leaks by construction. This technique mandates that
guests be placed outside the scope of the iblock’s vari-
ables, such as tx. The basic idea is to place the guest and
the iblock in separate, lexically scoped functions, so that

variables such as tx, tocommit and builtins are not acces-
sible to the guest. By so hiding sensitive variables from
the guest, this defense prevents reference leaks. Figure 7
illustrates this defense with a code snippet, after intro-
ducing some more details of our implementation.

4 Security Assurances
Transcript’s ability to protect hosts from untrusted guests
depends on two factors: (a) the assurance that a guest
cannot subvert Transcript’s mechanisms, i.e., the robust-
ness of the trusted computing base; and (b) host-specific
policies used to confine guests.

4.1 Trusted computing base
Transcript’s trusted computing base (TCB) consists of
the runtime component implemented in the browser and
the mandatory part of the host’s iblock. The TCB pro-
vides the following security properties: (a) complete me-
diation, i.e., control over all JavaScript and external op-
erations performed by a guest; and (b) isolation, i.e., the
ability to confine the effects of the guest.

(1) Complete mediation. The Transcript runtime and
the mandatory part of the host’s iblock together ensure
complete mediation of guest execution. The runtime:
(a) records all guest accesses to the host’s JavaScript
heap in the corresponding transaction’s read/write sets;
(b) causes a trap to the host’s iblock when the guest at-
tempts an external operation; and (c) redirects all guest
references to the host’s DOM to the cloned DOM. The
mandatory part of the iblock, consisting of wrapper gen-
erators and the HTML parser, ensures that any additional
code fetched by the guest or scheduled for later execution
(e.g., event handlers and callbacks for XMLHttpRequest)
will itself be enclosed within transactions mediated by
the same iblock. This process recurs so that the host’s
policies mediate all guest code, even event handlers in-
stalled by callbacks of event handlers.
(2) Isolation. Transcript isolates guest operations using
speculative execution. It records changes to the host’s
JavaScript heap within the guest transaction’s write set,
and changes to the host’s DOM within the cloned DOM.
The host then has the opportunity to review these spec-
ulative changes within its iblock and ensure that they
conform to its security policies. Observe that a sus-
pended/completed transaction may provide the host with
references to objects modified by the guest, e.g., in Fig-
ure 1, a reference to elem is passed to the iblock via the
getObject API. Speculative execution ensures that if the
transaction has not yet been committed, then accesses to
the object’s methods and fields via this reference will still
resolve to their values at the beginning of the transaction.
Thus, for instance, a call to the toString method of the
elem object in the iblock of Figure 1 would still work as
intended if even if the guest had redefined this method
within the transaction. Note that variables hidden from

6

the guest cannot even be speculatively modified, thereby
automatically isolating them from the guest.

Together, the above properties ensure the following
invariant: At the point when a transaction suspends or
completes execution and is awaiting inspection by the
host’s iblock, none of the host’s JavaScript objects or its
DOM would have been modified by the guest. Further,
host variables hidden from the guest will not be modified
even after the transaction has committed. Overall, exe-
cuting a transaction never incurs any side effect, and any
side effect that would be incurred by committing a trans-
action can be first vetted by inspecting the transaction.

4.2 Best practices for host policies
Hosts can import the speculative changes made by a
guest after inspecting them against their security policies.
Even though complete mediation and isolated execution
ensure that the core mechanisms of Transcript cannot be
subverted by guest execution (i.e., they ensure that all of
the guest’s speculative actions will be available for in-
spection by the host), the ability of the host to isolate
itself from the guest ultimately depends on its policies.

Host policies are necessarily domain-specific and have
to be written manually in our current prototype. Though
our experiments (Section 6.4) suggest that the effort re-
quired to write policies in Transcript is comparable to
that required in other systems, writing policies is admit-
tedly a difficult exercise. Further research is needed to
develop tools for policy authors to debug/verify the com-
pleteness of their policies. Nevertheless, we outline a set
of “best practices” below to avoid common pitfalls.
(1) Use whitelisting. Iblocks should employ a whitelist
that specifies host objects that can legitimately be modi-
fied by the guest and reject attempts to modify objects
outside the whitelist. This guideline may cause false
positives if the whitelist is not comprehensive. For ex-
ample, both window.location and window.location.href
can be used to change the location field of the host,
but a whitelist that includes only one will reject guests
that modify guest location using the other. Neverthe-
less, whitelisting allows hosts to be conservative when
allowing guests to modify their objects. The following
two guidelines are subsumed if whitelisting is employed,
but should be followed if it is not convenient to write a
whitelist-based policy.
(2) Validate global objects and caller arguments. A
guest executing in a transaction can speculatively mod-
ify any objects visible in its scope. These may in-
clude host-defined global variables, as well as arguments
passed to functions currently on the call stack (e.g., via
arguments.callee.caller). The host must therefore check
whether any of its objects that are visible to the guest
appear in the write set of the transaction, and vet these
changes against its security policy.
Our prototype implementation provides a library of util-

API Description
getReadSet Exports transaction’s read set to JavaScript.
getWriteSet Exports transaction’s write set to JavaScript.
getTxDocument Returns a reference to the speculative document object.
isSuspended Returns true if the transaction is suspended.
getCause Returns cause of a transaction suspend.
getObject Returns object reference on which a suspension was invoked.
getArgs Returns set of arguments involved in a transaction suspend.
resume Resumes suspended transaction.
glueresume Resumes suspended transaction and glues execution contexts.
isDOMConflict Checks for conflicts between the host’s and cloned DOM.
isHeapConflict Checks for conflicts between the host and guest heaps.
commit Commits changes to host’s JavaScript heap and DOM.

Figure 4: Key functions in the API to access transaction objects.

ities that policy authors can use to detect modifications
to objects that are in-scope. This library implements
modifGlobals, modifCallers and modifNatives, which an
iblock author can use to obtain a list of host-defined
globals, caller arguments and native objects (e.g., String,
Object, Array) that the guest has speculatively modified.
These utilities can ease the burden of writing iblocks.
As an example, the following snippet included in an
iblock would reject guests that inspect and modify argu-
ments on the call stack: if (modifCallers(tx).length !=
0) tocommit = false;, where tx is the transaction object.
(3) Defend against prototype hijacks and type
forgery. A malicious guest can redefine builtin object
properties to implement prototype hijacking and type
forgery attacks. For example, a guest can redefine the
toString and valueOf methods of an object to return en-
tities of arbitrary type. If the host commits the transac-
tion despite this redefinition, it will be vulnerable to type
forgery when it subsequently invokes these methods.
The host’s iblocks must therefore include code to check
the write set for redefinitions of builtin methods such
as toString and valueOf or attempts to modify an ob-
ject via its prototype field. We include this guideline as
a best practice rather than including it as a defense in
the mandatory part of the iblock because there may be
domain-specific scenarios where violations are accept-
able, e.g., in Figure 1, where the host allows limited mod-
ifications to the Editor object via its prototype field.

5 Implementation in Firefox
We implemented Transcript by modifying Firefox (ver-
sion 3.7a4pre). Overall, our prototype adds or modifies
about 6,400 lines of code in the browser. The bulk of
this section describes Transcript’s enhancements to Spi-
derMonkey (the JavaScript interpreter used by Firefox)
(Section 5.1) and its support for speculative DOM up-
dates (Section 5.2). We also discuss Transcript’s support
for conflict detection (Section 5.3) and the need to mod-
ify the <script> tag (Section 5.4).

5.1 Enhancements to SpiderMonkey
Our prototype enhances SpiderMonkey in five ways:
(1) Transaction objects. We added a new class of
JavaScript objects to denote transactions. This object
stores a pointer to the read/write sets, activation records

7

of the transaction, and to the cloned DOM. It implements
the builtin methods shown in Figure 4.
(2) A transaction keyword. We added a transaction
keyword to the syntax of JavaScript. When the
Transcript-enhanced JavaScript parser encounters this
keyword, it (a) compiles the body of the transaction into
an anonymous function; (b) inserts a new instruction,
JSOP BEGIN TX, into the generated bytecode to signify
the start of a transaction; and (c) inserts code to invoke
the anonymous function. The transaction ends when the
anonymous function completes execution. Finally, the
anonymous function returns a transaction object when it
suspends or completes execution.
(3) Read/write sets. Transcript adds read/write set-
manipulation to the interpretation of several JavaScript
bytecode instructions. We enhanced the interpreter so
that each bytecode instruction that accesses or modifies
JavaScript objects additionally checks whether its execu-
tion is within a transaction (i.e., if an unfinished JSOP -
BEGIN TX was previously encountered in the bytecode
stream). If so, the execution of the instruction also logs
an identifier denoting the JavaScript object (or property)
accessed/modified in its read/write sets, which we im-
plemented using hash tables. We used SpiderMonkey’s
identifiers for JavaScript objects; references using aliases
to the same object will return the same identifier.
(4) Suspend. We modified the interpreter’s implemen-
tation of bytecode instructions that perform external op-
erations and register event handlers to suspend when ex-
ecuted within a transaction. The suspend operation and
the built-in resume function of transaction objects are im-
plemented as shown in Figure 2. We also introduced a
suspend construct that allows hosts to customize transac-
tion suspension. Hosts can include this construct within
a transaction (before including guest code) to register
custom suspension points. The call suspend [obj.foo]
suspends the transaction when it invokes foo (if it is a
method) or attempts to read from or write to the property
foo of obj.
(5) Garbage Collection. We interfaced the JavaScript
interpreter with the garbage collector to traverse and
mark all heap objects that are reachable from live trans-
action objects. This avoids any inadvertent garbage col-
lection of objects still reachable from suspended transac-
tions that could be resumed in the future.

Integrating these changes into a legacy JavaScript in-
terpreter proved to be a challenging exercise. We refer
interested readers to Appendix B for a description of how
our implementation addressed one such challenge, non-
tail recursive calls in SpiderMonkey.

5.2 Supporting speculative DOM updates
Transcript provides each executing transaction with its
private copy of the host’s document structure and uses

this copy to record all DOM changes made by guest code.
This section presents notable details of the implementa-
tion of Transcript’s DOM subsystem.

Transcript constructs a replica of the host’s DOM
when it encounters a JSOP BEGIN TX instruction in the
bytecode stream. It clones nodes in the host’s DOM
tree, and iterates over each node in the host’s DOM to
copy references to any event handlers and dynamically-
attached JavaScript properties associated with the node.
If a guest attempts to modify an event handler associ-
ated with a node, the reference is rewritten to point to the
function object in the transaction’s write set.

Crom [33] also implemented DOM cloning for spec-
ulative execution (albeit not for the purpose of mediat-
ing untrusted code). Unlike Crom, which implemented
DOM cloning as a JavaScript library, Transcript im-
plements cloning in the browser itself. This feature
simplifies several issues that Crom’s designers faced
(e.g., cloning DOM-level 2 event handlers) and also al-
lows efficient cloning.

When a guest references a DOM node within a trans-
action, Transcript transparently redirects this reference
to the cloned DOM. It achieves this goal by modifying
the browser to tag each node in the host’s DOM with a
unique identifier (uid). During cloning, Transcript as-
signs each node in the cloned DOM the same uid as its
counterpart in the host’s DOM. When the guest attempts
to access a DOM node, Transcript retrieves the uid of the
node and walks the cloned DOM for a match. We defined
a getElementByUID API on the document object to return a
node with a given uid.

If the guest’s operations conform to the host’s poli-
cies, the host commits the transaction, upon which Tran-
script replaces the host’s DOM with the transaction’s
copy of the DOM, thereby making the guest’s specula-
tive changes visible to the host.

5.3 Conflict detection
When a host decides to commit a transaction, Transcript
will replace the host’s DOM with the guest’s DOM. Ob-
jects on the host’s heap are also overwritten using the
write set of the guest’s transaction. During replacement,
care must be taken to ensure that the host’s state is con-
sistent with the guest’s state. Consider, for instance, a
guest that performs an appendChild operation on a DOM
node (say node N). This operation causes a new node to
be added to the cloned DOM, and also suspends the guest
transaction. However, the host may delete node N before
resuming the transaction; upon resumption, the guest
continues to update a stale copy of the DOM (i.e., the
cloned version). When the transaction commits, the re-
moved DOM node will be added to the host’s DOM.

Transcript adds the isDOMConflict and isHeapConflict
APIs to the transaction object, which allow host devel-
opers to register conflict detection policies. When in-
voked in the host’s iblock, the isDOMConflict API in-

8

(1) function hasParent(txNode) {

(2) var parent = txNode.parentNode;

(3) if (document.getElementByUID(parent.uid) != null) return true;

(4) else return false;

(5) } ...

(6) var isAllowed = tx.isDOMConflict(hasParent); // tx is the transaction object

Figure 5: Example showing conflict detection.

vokes the conflict detection policy on each DOM node
speculatively modified within the transaction (using the
transaction’s write set to identify nodes that were mod-
ified). The isHeapConflict API likewise checks that the
state of the host’s heap matches the state of the guest’s
heap at the start of the transaction. The snippet in Fig-
ure 5 shows one example of such a conflict detection
policy (using isDOMConflict) encoded in the host’s iblock
that verifies that each node speculatively modified by the
guest (txNode) has a parent in the host’s DOM.

While Transcript provides the core mechanisms to de-
tect transaction conflicts, it does not dictate any policies
to resolve them. The host must resolve such conflicts
within the application-specific part of its iblocks.

5.4 The <script> tag
The examples presented thus far show hosts including
guest code by inlining it within a transaction. How-
ever, hosts typically include guests using <script>

tags, e.g., <script src="http://untrusted.com/guest.js>.
Transcript also supports code inclusion using <script>
tags. To do so, it extends the <script> tag so that
the fetched code can be encapsulated in a function
rather than run immediately. The host applica-
tion can use the modified <script> tag as: <script

src="http://untrusted.com/guest.js" func="foobar">.
This tag encapsulates the code in foobar, which the host
can then invoke within a transaction.

By itself, this modification unfortunately affects the
scope chain in which the fetched code is executed.
JavaScript code included using a <script> tag expects
to be executed in the global scope of the host, but the
modified <script> tag would put the fetched code in
the scope of the function specified in the func attribute
(e.g., foobar).

We addressed this problem using a key property of
eval. The ECMAScript standard [8, Section 10.4.2]
specifies that an indirect eval (i.e., via a reference to the
eval function) is executed in the global scope. We there-
fore extracted the body of the compiled function foobar
and executed it using an indirect eval call within a trans-
action (see Figure 7). This transformation allowed all
variables and functions declared in the function foobar to
be speculatively attached to the host’s global scope.

6 Evaluation
We evaluated four aspects of Transcript. First, we stud-
ied the applicability of Transcript to confine real-world
guests. In Section 6.1, we show how Transcript con-
fined five guests, which varied in size from about 1,400 to

Benchmark Size (LoC) <script> tags
(1) JavaScript Menu [6] 1,417 1
(2) Picture Puzzle [38] 1,709 3
(3) GoogieSpell [36] 2,671 4
(4) GreyBox [37] 2,338 7
(5) Color Picker [5] 7,543 6

Figure 6: Guest benchmarks. We used transactions to isolate each
of these benchmarks from a simple hosting Web page.

(1) <script src="jsMenu.js" func="menu"></script>

(2) <script src="libTranscript.js></script>

(3) <script>(function () {

(4) var to commit = true, e = eval; // indirect eval

(5) var tx = transaction { e(getFunctionBody(menu));}

(6) do { ... <application-specific-policies> ...

(7) processDOMEvents(tx);

(8) tx = tx.resume();

(9) } while(tx.isSuspended());

(10) if(to commit) tx.commit();

(11) })(); </script>

Figure 7: Confining JavaScript Menu. This figure illustrates sev-
eral concepts: (a) lines 1 and 5 demonstrate the enhanced <script>
tag and the host’s use of indirect eval to include the guest, which
is compiled into a function (called menu; line 1) (Section 5.4).
getFunctionBody extracts the code of the function menu; (b) line 3
implements variable hiding (Section 3.2), making tx invisible to the
guest; (c) our supporting library libTranscript (line 2) implements
processDOMEvents (called on line 7). This function processes the
guest’s DOM operations that trap into the iblock.

7,500 lines of code. Second, we show in Section 6.2 that
a host that uses Transcript can protect itself and recover
gracefully from malicious and buggy guests. Third, we
report a performance evaluation of Transcript in Sec-
tion 6.3. Last, in Section 6.4, we study the complexity
of writing policies for Transcript.

6.1 Case studies on guest benchmarks
To evaluate Transcript’s applicability to confine real-
world guests, we experimented with five JavaScript ap-
plications, shown in Figure 6. For each guest benchmark
in Figure 6, we played the role of a host developer at-
tempting to include the guest into the host, i.e., we cre-
ated a Web page and included the code of the guest into
the page using <script> tags. Most of the guests were
implemented in several files; the <script> column in Fig-
ure 6 shows the number of <script> tags that we had to
use to include the guest into the host. We briefly describe
the guest benchmarks and the domain-specific policies
that were implemented for each iblock.
(1) JavaScript Menu is a standalone widget that im-
plements pull-down menus. Figure 7 shows how
we confined JavaScript Menu using Transcript. The
iblock for JavaScript menu enforced a security policy
that disallowed the guest from accessing the network
(XMLHttpRequest) or domain cookies.
JavaScript Menu makes extensive use of document.write
to build menus, with several of these calls used to reg-
ister event handlers, as shown in the snippet in Fig-
ure 8 (event handler registrations are shown in bold font).
Each document.write call causes the transaction to sus-
pend and pass control to the iblock. The iblock uses
document.parse to (a) parse the arguments to identify the
HTML element(s) being created; (b) identify whether

9

(1) document.write("<" + blInfo.divType + ’ id="’ + mName);

(2) document.write(’" class="’ + mClass + ’" ’);

(3) document.write(setStyle(blInfo.divType, blInfo.fontSize, ... , "inherit"));

(4) document.write(’ onclick="’ + mAction + ’" ’);

(5) ... // more code elided ...

(6) document.write(’onmouseover="popMenu(’+mLevel+",’"+mName+"’,’"+mPopup+"’"+’);" ’);
(7) document.write(’onmouseout="setColorPassive(’ + "’" + mName + "’" + ’);">’);

Figure 8: Code from JavaScript Menu.

any event handlers are being registered and wrap them;
and (c) write the resulting HTML into the transaction’s
speculative DOM.
(2) Picture Puzzle uses the drag-and-drop features pro-
vided by the AJS JavaScript library [2] to build an ap-
plication that prompts the user to arrange jumbled pieces
of a picture within a 3 × 3 grid (we adapted this bench-
mark from [38]). We ran the benchmark within a transac-
tion and enforced a domain-specific security policy that
prevented the transaction from committing its changes
if it attempted to install a handler to capture the user’s
keystrokes (e.g., any event with onkey as a substring).
(3) GoogieSpell extends the AJS library to provide a
spell-checking service. When a user clicks the “check
spelling” button, GoogieSpell sends an XMLHttpRequest to
a third-party server to fetch suggestions for misspelled
words. We created a transactional version of Goo-
gieSpell, whose iblock implemented a domain-specific
policy that prevents an XMLHttpRequest once the bench-
mark has read domain cookies or if the target URL of
XMLHttpRequest does not appear on a whitelist.2

(4) GreyBox is content-display application that also ex-
tends the AJS library. It can be used to display exter-
nal pages, build image galleries, receive file uploads and
even show video or Flash content. The application cre-
ates an <iframe> to load new content. Our transactional
version of the GreyBox application encoded a domain-
specific iblock policy that only allowed the creation of
<iframe>s to whitelisted URLs.
(5) Color Picker builds upon the popular jQuery li-
brary [4] and lets an end-user pick a color by moving
sliders depicting the intensities of red, blue and green.
We executed the entire benchmark (including all the sup-
porting jQuery libraries) as a transaction and encoded
an iblock that disallowed modifications to the innerHTML
property of arbitrary <div> nodes.
However, for this guest, it turns out that an iblock that
disallows any changes to the sensitive innerHTML property
of any <div> element is overly restrictive. This is be-
cause Color Picker modified the innerHTML property of a
<div> element that it created. We therefore loosened our
policy into a history-based policy that let the benchmark
change innerHTML properties of <div> elements that it cre-
ated. The iblock determines whether a <div> element was
created by the transaction by querying its write set. The

2Such cross-origin resource sharing permits cross-site
XMLHttpRequests, and is supported by Firefox-3.5 and higher [35].

relevant snippet from the iblock is shown below; the tx
variable denotes the transaction:

(1) var ws = tx.getWriteSet(); ...

(2) if (tx.getCause().match("innerHTML") && ws.checkMembership(tx.getObject(), "*")

&& !(tx.getObject() instanceof HTMLBodyElement))

(3) // perform action on behalf of untrusted code

6.2 Fault injection and recovery
To evaluate how Transcript can help hosts detect and re-
cover from attacks, we performed a set of fault-injection
experiments on a real Web application that allows in-
tegration of untrusted guest code. We used the Bigace
Web content management system [3] running on our Web
server as the host, and created a Web site that mashed
content from Bigace with content provided by untrusted
guests (each guest was included into the mashup using
the <script> tag). We wrote guests that emulated known
attacks and studied host behavior when the host (1) di-
rectly included the guest in its protection domain; and
(2) used Transcript to isolate the guest.

Our experiments show that with appropriate iblock
policies, speculative execution ensured clean recovery;
neither the JavaScript heap nor the DOM of the host was
affected by the misbehaving guest.
(1) Misplaced event handler. JavaScript provides a
preventDefault method that suppresses the default ac-
tion normally taken by the browser as a result of the
event. For example, the default action on clicking a link
is to fetch the page corresponding to the URL referenced
in the link. Several sites use preventDefault to encode
domain-specific actions instead, e.g., displaying a popup
when a link is clicked.
In this experiment, we created a buggy guest that dis-
plays an advertisement within a <div> element. This
guest mistakenly registers an onClick event handler that
uses preventDefault with the document object instead of
with the <div> element. The result of including this guest
directly into the host’s protection domain is that all hy-
perlinks on the Web page are rendered unresponsive. We
then modified the host to isolate the guest using a pol-
icy that disallows a transaction to commit if it attempts
to register an onClick handler with the document object.
This prevented the advertisement from being displayed,
i.e., the <div> element containing the misbehaving guest
was not even created, but otherwise allowed the host to
function correctly. JavaScript reference monitors pro-
posed in prior work can prevent the registration of the
onClick handler, but leave the div element of the misbe-
having guest on the host’s Web page.
(2) Prototype hijacking. We implemented a proto-
type hijacking attack by writing a guest that set the
Array.prototype.slice function to null. To illustrate the
ill-effects of this attack, we modified the host to in-
clude two popular (and benign) widgets, namely Twitter
[7] and AddThis [1], in addition to the malicious guest.
The prototype hijacking attack prevented both the benign

10

Figure 9: Performance of guest benchmarks. This chart com-
pares the time to load the unmodified version of each guest benchmark
against the time to load the transactional version in the two variants of
Transcript. On average, Transcript (JS only) increases the load time by
just 0.11s, while Transcript (full) increases the load time by 0.16s.

widgets from functioning properly.
However, when the malicious guest is enclosed within
a transaction whose iblock prevents a commit if it de-
tects prototype hijacking attacks, the host and both be-
nign widgets worked normally. We further inspected the
transaction’s write set and verified that none of the heap
operations attributed to the malicious guest were actu-
ally applied to the host. Although traditional JavaScript
reference monitors can detect and prevent prototype hi-
jacking attacks by blocking further <script> execution,
they do not allow the hosts to cleanly recover from all
heap changes.
(3) Oversized advertisement. We created a guest that
displayed an interactive JavaScript advertisement within
a <div> element. In an unprotected host, this advertise-
ment expands to occupy the full screen on a mouseover
event, i.e., the guest registered a misbehaving event-
handler that modifies the size of the <div>. We modified
the host to isolate this guest using a transaction and an
iblock that prevents a commit if the size of the <div> el-
ement increased beyond a pre-specified limit. With this
policy, we observed that the host could successfully pre-
vent the undesired <div> modification by discarding the
speculative DOM and JavaScript heap changes made by
the event handler executing within the transaction.

6.3 Performance
We measured the overhead imposed by Transcript both
using guest benchmarks, to estimate the overall cost of
using transactions, and with microbenchmarks, to under-
stand the impact on specific JavaScript operations. All
experiments were performed with Firefox v3.7a4pre on
a 2.33Ghz Intel Core2 Duo machine with 3GB RAM and
running Ubuntu 7.10. We turned off JavaScript JIT com-
pilation support in the browser during these experiments.

6.3.1 Guest benchmarks

To evaluate the overall performance impact of Transcript,
we measured the increase in the load time of each guest

benchmark. Recall that each benchmark is included in
the Web page using a set of <script> tags; the version that
uses Transcript executes the corresponding JavaScript
code within a single transaction using modified <script>
tags. The onload event fires at the end of the document
loading process, i.e., when all scripts have completed ex-
ecution. We therefore measured the time elapsed from
the moment the page is loaded in the browser to the fir-
ing of the onload event.

To separately assess the impact of speculatively exe-
cuting JavaScript and DOM operations, each experiment
involved executing the benchmarks on two separate vari-
ants of Transcript, namely Transcript (full) which sup-
ports both speculative DOM and JavaScript operations
and Transcript (JS only) which only supports specula-
tive JavaScript operations (and therefore does not isolate
DOM operations of the guest). Figure 9 presents the re-
sults averaged over 25 runs of this experiment. On aver-
age, Transcript (JS only) increased load time by just 0.11
seconds while Transcript (full) increased the load time by
0.16 seconds. These overheads are typically impercepti-
ble to end users. Only the Color Picker benchmark had
above-average overheads. This was because (a) the guest
heavily interacted with the DOM, causing frequent sus-
pension of its transaction; and (b) the guest had several
Array operations that referenced the length of the array.
Each such operation triggered a traversal of read/write
sets to calculate the array length.

Note that Transcript only degrades performance
of JavaScript code executing within transactions
(i.e., guests). The performance of code executing outside
transactions (i.e., hosts) is not affected by our prototype.

6.3.2 Microbenchmarks

We further dissected the performance of Transcript using
microbenchmarks designed to stress specific functional-
ities. We used three sets of microbenchmarks: function
calls, event dispatchers, and the Sunspider suite. In our
experiments, we executed each microbenchmark within
a transaction whose iblock simply permitted all actions
and resumed the transaction without enforcing additional
security policies, and compared its performance against
the non-transactional version.

Function calls. We devised a set of microbenchmarks
(Figure 10) that stress the performance of Transcript’s
function call-handling code. Each benchmark invoked
the code in the first column of Figure 10 10, 000 times.

Recall that Transcript suspends on function calls that
cause external operations and for certain native func-
tion calls, such as eval. Each suspend operation requires
Transcript to save the state of the transaction, execute the
iblock, and restore the transaction state upon the execu-
tion of a resume call. Most of the benchmarks in Fig-
ure 10 trigger a suspension, which induces significant
overheads. In particular, addEventListener had an over-

11

Microbenchmark Overhead
Native Functions

(1) eval("1") 6.69×
(2) eval("if (true)true;false") 6.87×
(3) fn.call(this, i) 1.89×

External operations
(4) getElementById("checkbox") 6.78×
(5) getElementsByTagName("input") 6.89×
(6) createElement("div") 3.69×
(7) createEvent("MouseEvents") 3.82×
(8) addEventListener("click", clk, false) 26.51×
(9) dispatchEvent(evt) 1.20×
(10) document.write("Hi") 1.26×
(11) document.write("<script>x=1;</script>") 2.01×

Figure 10: Performance of function call microbenchmarks.
Note: The call to document.write on line 11 invokes gluing of the
<script>’s execution context (Section 3.1.1) when it suspends, while
call to document.write on line 10 only suspends.

Overhead
Event name Normalized Raw Delay (µs)
(1) Drag Event (drag) 1.71× 97
(2) Keyboard Event (keypress) 1.16× 150
(3) Message Event (message) 1.17× 85
(4) Mouse Event (click) 1.54× 86
(5) Mouse Event (mouseover) 2.05× 88
(6) Mutation Event (DOMAttrModified) 2.14× 88
(7) UI Event (overflow) 1.97× 61

Figure 11: Performance of event dispatch microbenchmarks.

head of 26.51×. The bulk of the overhead was induced by
code in the iblock that generates wrappers for the event
handler registered using addEventListener.

User events. A JavaScript application executing within
a transaction may dispatch user events, such as mouse
clicks and key presses, which must be processed by the
event handler associated with the relevant DOM node.
The promptness with which events are dispatched typi-
cally affects end-user experience.

To measure the impact of transactions on this aspect of
browser performance, we devised a set of microbench-
marks that dispatched events and measured the delay in
handling them (Figure 11). Each microbenchmark used
JavaScript code to simulate user actions, such as clicking
on a checkbox, hovering and moving the mouse, pressing
keys, and events such as drag, message, DOMAttrModified
and overflow. In each case, code that generated and dis-
patched the event executed as a transaction with an iblock
that allowed all actions. To measure performance, we
executed this code 1,000 times and compared its perfor-
mance against a native event dispatcher.

Figure 11 presents the results, which show the nor-
malized overhead as well as the raw delay to process a
single event. As this figure shows, although the normal-
ized overheads range from 16% to 114%, the raw delays
average about 94 microseconds, which is imperceptible
to end users.

SunSpider. Finally, we also tested Transcript with the
SunSpider JavaScript benchmark suite by executing each
of its benchmarks within a transaction. This benchmark
suite reported an average overhead of 3.94× across all
benchmarks. In particular, we observed high overheads
for benchmarks that had tight loops operating over many
array elements. The overhead primarily stems from hav-

Policy T-LOC C-LOC Policy T-LOC C-LOC
Conscript-#1 7 2 Conscript-#2 5 6
Conscript-#3 6 3 Conscript-#4 9 7
Conscript-#5 9 9 Conscript-#6 5 8
Conscript-#7 7 5 Conscript-#8 5 6
Conscript-#10 9 16 Conscript-#11 12 17
Conscript-#12 5 4 Conscript-#13 4 6
Conscript-#14 3 5 Conscript-#15 6 7
Conscript-#16 6 4 Conscript-#17 7 5

Figure 12: Policy complexity. Comparing policies in Transcript
(T-LOC) and Conscript (C-LOC). Policies are numbered as in the Con-
script paper [32]. We omitted Conscript-#9 because it is IE-specific.

ing to consult the write set for every read operation and
updating the read set itself even though the iblock’s per-
missive security policy did not consult read/write sets.

6.4 Complexity of policies
To study the complexity of writing security policies
in Transcript, we compared the number of lines of
code needed to write policies in Transcript and in Con-
script [32], the work most closely related to ours. We
considered the policies discussed in the Conscript paper
and wrote equivalent policies in Transcript; Figure 12
compares the source lines of code (counting number
of semi-colons) of policies in Transcript and Conscript.
This figure shows that the programming effort required
to encode policies in both systems is comparable.

7 Related Work
This paper builds upon the idea of extending JavaScript
with transactions, which was proposed in a recent po-
sition paper [14]. While that paper focused on the se-
mantics of the extended language, this paper is the first
to report the design and implementation of a complete
speculative execution system for JavaScript.

There is much prior work in the broad area of isolat-
ing untrusted guests. Transcript is unique because it al-
lows hosts to recover cleanly and easily from the effects
of malicious or buggy guests (Figure 13). In exchange
for requiring no modification to the guest, Transcript re-
quires modifications both to the host (i.e., the server side)
and to the browser (i.e., the client side) to enhance the
JavaScript language.

Language restriction. Several projects have defined
subsets of JavaScript that omit dynamic constructs, such
as eval, with and this, to make JavaScript amenable to
static code inspection [13, 18, 20, 34]. However, safe
subsets of JavaScript are non-trivial to design [19, 27,
29, 30], and also restrict code developers from using ar-
bitrary constructs of the language in their applications.
Transcript places no such restrictions on guest code.

Static analysis. Despite the dynamic nature of
JavaScript, there have been a few efforts at statically
analyzing JavaScript code. Gatekeeper [20] presents a
static analysis to validate widgets written in a subset of
JavaScript. It does so by matching widget source code
against a database of patterns denoting unsafe program-
ming practices. Guha et al. [21] developed static tech-

12

System Recovery
Unrestricted

guest
Unmodified

browser
Policy

coverage
Transcript 3 3 7 Heap + DOM
Conscript [32] 7 7 7 Heap + DOM
AdJail [25] 7 3 3 DOM(1)

Caja [34] 7 7 3 Heap + DOM
Wrappers [28, 29, 31] 7 3(2) 3 Heap + DOM
Info. flow [12] 7 3 3 Heap
IRMs [40, 42, 47] 7 3 3 Heap + DOM
Subsetting [13, 18, 29] 7 7 3 Static policies(3)

Figure 13: Techniques to confine untrusted guests. (1) Adjail exe-
cutes guests in a separate <iframe> from the host and disallows guests
from executing in the host’s context. (2) Some wrapper-based solu-
tions [28] do restrict JavaScript constructs allowed in guests. (3) Sub-
setting is a static technique and its policies are not enforced at runtime.

niques to improve AJAX security. Their work uses static
analysis to enhance a server-side proxy with models of
AJAX computation on the client. The proxy then en-
sures that AJAX requests from the client conform to
these models.

Chugh et al. [12] developed a staged information-flow
tracking framework for JavaScript to protect hosts from
untrusted guests. Its static analysis identifies constraints
on host variables that can be read or written by guests.
It validates these constraints on code loaded at runtime
via eval or <script> tags, and rejects it if it violates these
constraints. Unlike Transcript, which tracks changes to
both the heap and DOM, Chugh et al.’s work only tracks
changes to the heap.

Object capabilities, wrappers, and code rewriting.
Object capability and wrapper-based solutions (e.g., [28,
29, 31]) create wrapped versions of JavaScript objects to
be protected, and ensure that they can only be accessed
by code that has the capabilities to do so. In contrast
to these techniques, which provide isolation by requiring
the host’s objects to be wrapped, Transcript wraps guest
code using transactions, and mediates its actions with the
host via iblocks. The research literature has also devel-
oped solutions to inline runtime checks into untrusted
guests. These techniques include BrowserShield [42],
CoreScript [47], and the work of Phung et al. [40]. Un-
like these works, Transcript simply wraps untrusted code
in a transaction, and does not modify it. These works
also do not explicitly address recovery.

Aspect-oriented policy enforcement. Aspect-
oriented programming (AOP) techniques have pre-
viously been used to enforce cross-cutting security
policies [9, 15, 17]. Among the AOP-based frameworks
for JavaScript [22, 32], our work is most closely related
to Conscript [32], which uses runtime aspect-weaving
to enforce policies on untrusted guests. Both Conscript
and Transcript require changes to the browser to support
their policy enforcement mechanisms. However, unlike
Transcript, Conscript does not address recovery from
malicious guests, and also requires guests to be written
in a subset of JavaScript. While recovery may also be
possible in hosts that use Conscript, the hosts would
have to encode these recovery policies explicitly. In
contrast, hosts that use Transcript can simply discard the

speculative changes made by a policy-violating guest.

Browser-based sandboxing. Both BEEP [24] and
MashupOS [45] enhance the browser with new HTML
constructs. BEEP’s constructs allow the browser to
detect script-injection attacks, while MashupOS pro-
vides sandboxing constructs to improve the security of
client-side mashups. While Transcript requires modified
<script> tags as well, it provides the ability to specula-
tively execute and observe the actions of untrusted code,
which neither BEEP nor MashupOS provide.

AdJail aims to protect hosts from malicious advertise-
ments [25]. It confines advertisements by executing them
in a separate <iframe>, and uses postMessage to allow the
<iframe> to communicate with the host. Hosts use access
control policies to determine the set of DOM modifica-
tions allowed by an advertisement. AdJail is effective at
confining advertisements, which cannot affect the host’s
heap. However, it is unclear whether this approach will
work well in scenarios where hosts and guests need to
interact extensively, e.g., in the case where the guest is a
library that the host wishes to use.

Blueprint [26] and Virtual Browser [11] confine guests
by setting up a virtual environment for their execu-
tion. This environment is itself written in JavaScript and
parses HTML and script content, thereby mediating the
execution of guests on unmodified browsers. However,
unlike Transcript, they do not address recovery.

Using transactions for security. Transactions and
speculative execution mechanisms have previously been
used to improve software security and reliability
(e.g., [10, 23, 41, 43]) and Web browser perfor-
mance [33]. The work most closely related to Transcript
is the one by Sun et al. [44] on one-way isolation. This
work describes a sandboxing mechanism that allows iso-
lated execution of untrusted code. As in Transcript, code
within the sandbox cannot modify the state of code out-
side, but the reverse is possible. However, their work
focused on implementing such a sandbox at the granu-
larity of OS-level artifacts, such as processes and files.
In contrast, Transcript applies a similar approach to the
problem of isolating JavaScript code. Our work therefore
required several new contributions, such as the ability to
suspend/resume transactions and wrap event handlers.

8 Conclusion
Our research shows that extending JavaScript with sup-
port for transactions allows hosting Web applications to
speculatively execute and enforce security policies on
untrusted guests. Speculative execution allows hosts
to cleanly and easily recover from the effects of mali-
cious and misbehaving guests. In building Transcript, we
made several contributions, including suspend/resume
for JavaScript, support for speculative DOM updates,
and novel strategies to implement transactions in com-
modity JavaScript interpreters.

13

References

[1] Addthis. http://www.addthis.com/.
[2] AJS: The ultra lightweight JavaScript library. http://orangoo.

com/labs/AJS/.
[3] BIGACE web content management system. http://www.bigace.

de/.
[4] jQuery: The write less, do more, JavaScript library. http://jquery.

com.
[5] Jquery UI slider plugin. http://jqueryui.com/demos/slider.
[6] JavaScript widgets/menu. http://jswidgets.sourceforge.net.
[7] Twitter/profile widget. http://twitter.com/about/resources/

widgets/widget profile.
[8] ECMAScript language spec., ECMA-262, 5th edition, Dec 2009.
[9] L. Bauer, J. Ligatti, and D. Walker. Composing security policies

with Polymer. In ACM PLDI, 2005.
[10] A. Birgisson, M. Dhawan, U. Erlingsson, V. Ganapathy, and

L. Iftode. Enforcing authorization policies using transactional
memory introspection. In ACM CCS, 2008.

[11] Y. Cao, Z. Li, V. Rastogi, and Y. Chen. Virtual browser: a Web-
level sandbox to secure third-party JavaScript without sacrificing
functionality (poster). In ACM CCS, 2010.

[12] R. Chugh, J. Meister, R. Jhala, and S. Lerner. Staged information
flow in JavaScript. In ACM SIGPLAN PLDI, 2009.

[13] D. Crockford. ADsafe - Making JavaScript safe for advertising.
http://adsafe.org.

[14] M. Dhawan, C.-C Shan, and V. Ganapathy. Position paper: The
case for JavaScript transactions. In 5th ACM SIGPLAN PLAS
Workshop, June 2010.

[15] Ú. Erlingsson. The Inlined Reference Monitor Approach to Secu-
rity Policy Enforcement. PhD thesis, Cornell University, 2004.

[16] U. Erlingsson, B. Livshits, and Y. Xie. End-to-end Web applica-
tion security. In HotOS, 2007.

[17] D. Evans and A. Twyman. Flexible policy-directed code safety.
In IEEE S&P, 1999.

[18] Facebook. FBJS - Facebook developerwiki. 2007.
[19] M. Finifter, J. Weinberger, and A. Barth. Preventing capability

leaks in secure JavaScript subsets. In NDSS, 2010.
[20] S. Guarnieri and B. Livshits. GateKeeper: Mostly static enforce-

ment of security and reliability policies for JavaScript code. In
USENIX Security, 2009.

[21] A. Guha, S. Krishnamurthi, and T. Jim. Using static analysis for
Ajax intrusion detection. In WWW, 2009.

[22] H. Washizaki et al.. AOJS: Aspect-oriented JavaScript program-
ming framework for Web development. In Intl. wkshp. Aspects,
components, and patterns for infrastructure software, 2009.

[23] S. Jana, V. Shmatikov, and D. Porter. TxBox: Building secure,
efficient sandboxes with system transactions. In IEEE S&P, 2011.

[24] T. Jim, N. Swamy, and M. Hicks. Defeating script injection at-
tacks with browser-enforced embedded policies. In WWW, 2007.

[25] M. T. Louw, K. T. Ganesh, and V.N. Venkatakrishnan. Adjail:
Practical enforcement of confidentiality and integrity policies on
Web advertisements. In USENIX Security Symposium, 2010.

[26] M. Ter Louw and V. N. Venkatakrishnan. Blueprint: Robust pre-
vention of cross-site scripting attacks for existing browsers. In
IEEE S&P, 2009.

[27] S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics
for JavaScript. In APLAS, October 2008.

[28] S. Maffeis, J. C. Mitchell, and A. Taly. Isolating JavaScript with
filters, rewriting and wrappers. In ESORICS, 2009.

[29] S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities and
isolation of untrusted Web applications. In IEEE S&P, 2010.

[30] S. Maffeis and A. Taly. Language based isolation of untrusted
JavaScript. In IEEE CSF, 2009.

[31] L. Meyerovich, A. Porter Felt, and M. S. Miller. Object views:
Fine-grained sharing in browsers. In WWW, 2010.

[32] L. Meyerovich and B. Livshits. Conscript: Specifying and
enforcing fine-grained security policies for JavaScript in the
browser. In IEEE S&P, 2010.

[33] J. Mickens, J. Elson, J. Howell, and J. Lorch. Crom: Faster Web
browsing using speculative execution. In NSDI, 2010.

[34] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja:
Safe active content in sanitized JavaScript. 2008. Manuscript.

[35] Mozilla Developer Center. HTTP access control. http://
developer.mozilla.org/En/HTTP access control.

[36] Orangoo-Labs. GoogieSpell: Gmail like spell checker for your
own application. http://orangoo.com/labs/GoogieSpell.

[37] Orangoo-Labs. GreyBox: A popup window that doesn’t suck.
http://orangoo.com/labs/GreyBox.

[38] Orangoo-Labs. Sortable list widget. http://orangoo.com/AJS/
examples/sortable list.html.

[39] S. Di Paola and G. Fedon. Subverting Ajax: Next generation
vulnerabilities in 2.0 Web applications. In 23rd Chaos Commu-
nication Congress, 2006.

[40] P. Phung, D. Sands, and A. Chudnov. Lightweight self-protecting
JavaScript. In ASIACCS, 2009.

[41] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and
E. Witchel. Operating systems transactions. In ACM SOSP, 2009.

[42] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir.
Browsershield: Vulnerability-driven filtering of dynamic HTML.
ACM Trans. Web, 1(3):11, 2007.

[43] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
with disaster: Surviving misbehaved kernel extensions. In OSDI,
1996.

[44] W. Sun, Z. Liang, R. Sekar, and V. N. Venkatakrishnan. One-
way isolation: An effective approach for realizing safe execution
environments. In NDSS, 2005.

[45] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and
communication abstractions for web browsers in MashupOS. In
ACM SOSP, 2007.

[46] WWW-Consortium. Document object model events, Nov 2000.
http://www.w3.org/TR/DOM-Level-2-Events/events.html.

[47] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instru-
mentation for browser security. In ACM POPL, 2007.

All URLs were last accessed on February 26, 2011.

A Event-handler Wrapper Generators
This section describes the implementation of the event
handler wrapper generator, which is included in the
mandatory part of a host’s iblock. Firefox currently sup-
ports three event-handling models [46]. For each model,
the goal of the wrapper generator is to obtain a reference
to the handler being registered, and wrap it suitably. We
describe the three models briefly and discuss how Tran-
script obtains a reference to the handler in each case.
(1) The DOM-level 0/Traditional model registers an
event handler for a DOM node, e.g., a <div> element,
as follows: node.onclick = clkhandler. Here node rep-
resents the <div> element and clkhandler is registered as
a handler for onclick events. Transcript modifies the in-
terpreter to suspend transactions that change properties
containing event handlers, such as onclick and onload.
Once the transaction suspends, the iblock obtains a ref-
erence to clkhandler.
(2) The DOM-level 0/Inline model registers an event
handler using code such as: document.write("<div

onclick="/*handler code*/>"), which sets an attribute
(e.g., onclick) of the DOM node. Transcript handles such
cases by suspending the execution of document.write.

14

(1) tx clkhandler = function(evt) {

(2) evttx = transaction { node.evtH (evt); } iblock func (evttx);

(3) }

Figure 14: Generating wrapped event handlers.

The argument to this call is HTML code, which the trans-
action’s iblock parses to obtain a reference to the event
handler.
(3) The DOM-level 2 model registers an event
handler as follows: node.addEventListener("click",

clkhandler, false). Transcript suspends the execution of
addEventListener, thereby allowing the iblock to obtain a
reference to clkhandler.

In addition to obtaining a reference to the event han-
dler, the iblock also obtains a reference to node, which
is the DOM node for which the handler was being
registered. The iblock then initializes a new property
node.evtH with clkhandler, and defines a new function
tx clkhandler as shown in Figure 14, which it registers
as the event handler. Here, iblock func is a function
that contains the iblock itself, while evt is a JavaScript
object that the browser uses to denote the event. As
a result of this transformation, tx clkhandler is invoked
when the onclick event is triggered, which then executes
clkhandler within a transaction, thereby allowing Tran-
script to mediate its operation as well.

B Non-tail-recursive Interpreters
A key challenge in enhancing a legacy JavaScript inter-
preter, such as SpiderMonkey, with support for transac-
tions is in how the interpreter uses recursion. To sup-
port the suspend/resume mechanism for switching con-
trol flow between a transaction and its iblock, the inter-
preter must not accumulate any activation records in its
native stack (e.g., the C++ stack, for SpiderMonkey) be-
tween when a transaction starts and when it suspends. In
particular, the interpreter must not represent JavaScript
function calls by C++ function calls. The same issue
also arises when a compiler or JIT interpreter is used to
turn JavaScript code into machine code.

To illustrate this point, consider SpiderMonkey, which
implements the bytecode interpreter in C++. The main
entry point to the bytecode interpreter is the C++ func-
tion JS interpret, which maintains the JavaScript stack
as a linked list of activation records, each of which is
a C++ structure. When one function calls another in
JavaScript, the JS interpret function does not call itself
in C++; instead, it adds a new activation record to the
front of the linked list and continues with the same byte-
code interpreter loop as before. Similarly, when a func-
tion returns to another in JavaScript, JS interpret does
not return in C++; instead, it removes an old activation
record from the front of the linked list and continues with
the same bytecode interpreter loop as before. For the

(1) function f() { document.body.appendChild(...); }

(2) var tx = transaction { f(); }

(3) g(tx);

(a) Problematic code for an interpreter with non-tail recursion.

call to JS interpret

Native (C++) stack

tx delimiter
JavaScript stack

main program

(b) When the main JavaScript program starts the transaction, the C++
function JS interpret grows the JavaScript stack but does not call itself,
so the native stack does not grow.

call to JS interpret

Native (C++) stack

call to f

JavaScript stack

tx delimiter
main program

re
m

ov
ed

(c) When the transaction suspends, the interpreter removes activation
records from the front of the JavaScript stack, up to and including the
(youngest) transaction delimiter.

call to JS interpret

Native (C++) stack

call to g

JavaScript stack

main program

.

.

.
read set
write set

call to f

tx delimiter

transaction

object

(d) Before resuming the transaction, the main program may invoke other
functions, say g.

call to JS interpret

Native (C++) stack

call to f

JavaScript stack

tx delimiter
call to g

main program

re
in

st
at

ed

(e) When the transaction is resumed, its activation records are reinstated
onto the front of the JavaScript stack.

call to JS interpret

call to JS interpret

Native (C++) stack

call to f

JavaScript stack

tx delimiter
main program

to

re
m

ov
e

(f) If JS interpret were to implement JavaScript function calls by call-
ing itself recursively (as happens in the implementation of certain con-
structs, such as eval), an older call to JS interpret (the lower one in
this diagram) would need to return before a younger one does. Control
flow in C++ is not flexible enough to enable this.

Figure 15: Native versus JavaScript call stacks. The implementa-
tion of suspend/resume relies on an interpreter without non-tail recur-
sion.

most part, SpiderMonkey does not represent JavaScript
calls by C++ calls.

The fact that SpiderMonkey does not represent
JavaScript calls by native calls helps us add transactions
to it without making invasive changes, as the follow-
ing example illustrates. Suppose a transaction invokes
a function f that suspends for some reason, e.g., in Fig-
ure 15(a), the function f calls appendChild. If the C++
call to JS interpret that executes the transaction were not
same as the one that executes the called function f, then

15

the former, although older, would have to return before
the latter returns. As detailed in Figure 15, the former has
to return when suspending the transaction, whereas the
latter has to return when resuming the transaction. Even
exception handling in C++ does not allow such control
flow.

Unfortunately, JS interpret in SpiderMonkey does
call itself in a few situations. For example, it handles
JavaScript’s eval in this way, and the problem of the
C++ stack in Figure 15(f) does arise if we replace the
document.body.appendChild(...) of Figure 15(a) by eval
("document.body.appendChild(...)"). One way to solve
this problem requires applying the continuation-passing-
style transformation to the interpreter to put it into tail
form, i.e., convert all recursive calls to JS interpret to
tail calls. However, this transformation is invasive, espe-
cially if done manually on legacy interpreters.

Transcript uses a less invasive mechanism to enable
suspend/resume in SpiderMonkey. This mechanism is
similar in functionality to gluing (see Section 3.1.1), and
we explain it with an example. Consider the eval con-
struct, whose functionality is to parse its input string,
compile it into bytecode, and then execute the bytecode
as usual. Because only the last step, i.e., that of execut-
ing the bytecode, can suspend, we simply changed the
behavior of eval so that, if invoked inside a transaction,
it suspends the transaction right away. The iblock of the
transaction can then compile the string into bytecode and
include the bytecode into the execution of the transac-
tion. This is achieved by adding a new activation record
to the front of the transaction’s JavaScript stack and mod-
ifying the program counter to execute this code when the
transaction resumes. When the suspended transaction re-
sumes, it transfers control to the evaled code, which can
freely suspend. Besides eval, our current Transcript pro-
totype also implements gluing for document.write (as dis-
cussed in Section 3.1.1) and JavaScript builtins call and
apply, which make non-tail recursive calls to JS inter-
pret.

16

