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Abstract
System integrity monitors, such as rootkit detectors, rely critically
on the ability to fetch and inspect pages containing code and data of
a target system under study. To avoid being infected by malicious
or compromised targets, state of the art system integrity monitors
rely on virtualization technology to set up a tamper-proof execu-
tion environment. Consequently, the virtualization infrastructure is
part of the trusted computing base. However, modern virtual ma-
chine monitors are complex entities, with large code bases that are
difficult to verify.

In this paper, we present a new machine architecture called lim-
ited local memory (LLM), which we leverage to set up an alterna-
tive tamper-proof execution environment for system integrity mon-
itors. This architecture leverages recent trends in multicore chip
design to equip each processing core with access to a small, pri-
vate memory area. We show that the features of the LLM archi-
tecture, combined with a novel secure paging mechanism, suffice
to bootstrap a tamper-proof execution environment without support
for hardware virtualization. We demonstrate the utility of this archi-
tecture by building a rootkit detector that leverages the key features
of LLM. This rootkit detector can safely inspect a target operating
system without itself becoming the victim of infection.

1. Introduction
In recent years, there has been extensive research on applying vir-
tual machine technology to problems in security. This research has
been fueled both by the wide availability of virtualization, such as
in the cloud infrastructure, and the attractive security guarantees
provided by virtual machine monitors (VMMs). VMMs implement
a software layer that virtualizes system resources (the hypervisor)
so that the operation of one virtual machine does not affect the
resources used by another. This feature allows a security moni-
tor to be easily isolated from the system under study (the target),
which allows the monitor to remain tamper-proof and function ef-
fectively. Such isolation is central to the architecture of system in-
tegrity monitors that inspect the code and data of a potentially com-
promised target. For instance, rootkit detectors (e.g., [PFMA04,
ZvDJ+02, PH07, CCL+09, PFWA06, BGI11, HDK+11, JWX07,
GR03, CCL+09, LLCL08, SLQP07]) must be able to monitor a
target operating system for malicious changes that affect the in-
tegrity of its code and data without exposing themselves to attack.
Contemporary techniques to achieve isolation use VMMs to exe-
cute the rootkit detector and target operating system within differ-

Figure 1. LLM extends a typical multi-core machine by adding a
privileged processing core (core0). Core0 has exclusive access to
a small private memory area (hence the name “limited local mem-
ory”). Physical addresses that fall within a certain range are di-
rected to the local memory area, while other addresses are directed
to shared main memory. Core0 can also stop the execution of the
other cores (coreU).

ent virtual machines (VMs). VMMs are therefore part of the trusted
computing base (TCB).

However, VMMs represent a software-centric solution to the
problem of isolation. As with any other software layer, they are
also prone to the pitfalls of the software development process. Mod-
ern VMMs contain thousands of lines of code and exploitable vul-
nerabilities are routinely reported in them [CVEa, CVEb, CVEd,
CVEc, Xbo07, K. 09, R. 08]. For instance, in the Xen VMM (v4.1),
the hardware virtualizing layer (i.e., the Xen hypervisor) alone ac-
counts for approximately 150K lines of code. In addition, a privi-
leged VM that is used for administrative purposes (i.e., dom0) runs
a software stack with a full-fledged operating system, including
drivers for virtual devices, and supporting user-level utilities, con-
stituting several million lines of code. The TCB of the Xen VMM
includes both the hypervisor and the dom0 VM. It is no longer rea-
sonable to assume that such commodity VMMs can be easily veri-
fied, as is one of the requirements for an entity that constitutes the
TCB [And72]. A compromised VMM completely subverts the se-
curity of the system, exposing the virtual machines on that platform
to a variety of threats (e.g., see [KCW+06a, KSRL10]).

The growing complexity of VMMs has motivated researchers to
consider solutions that reduce the amount of code in the TCB. Such
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research has focused on small hypervisors (e.g., TrustVisor[MLQ+10]
and Nova [SK10]) that may be amenable to formal verifica-
tion [KEH+09], on VMM disaggregation to implement privilege
separation for administrative VMs [MMH08a, CNZ+11], as well
as on hardware-based solutions that provide many of the benefits
of virtualization [KSRL10, KSRL11].

In this paper, our focus is on hardware-centric solutions to the
problem of isolating VMs. A recent example of such an effort
is the NoHype [KSRL10, KSRL11] project, which attempts to
provide a cloud computing environment that leverages emerging
hardware features to isolate “virtual machines” running on the
same physical machine. While NoHype provides several attractive
security benefits, such as the ability to isolate mutually untrusted
virtual machines from each other, it does not provide one virtual
machine the ability to inspect the memory of another, a feature that
is necessary for the implementation of security monitors such as
rootkit detectors.

Motivated by this line of research, we develop a hardware-
centric approach to establish a tamper-proof environment for se-
curity monitors without using virtualization. Our main contribution
is in showing that a modest amount of hardware support allows se-
curity monitors to securely inspect the state of a target system. In
a manner akin to VMMs, our approach isolates security monitors
from the target system under study, which may itself be compro-
mised or malicious. However, it does so (1) by making minor en-
hancements to commodity multi-core hardware; and (2) by adding
significantly less software to the TCB in comparison to VMMs.

We propose and study a novel hardware architecture, called
limited local memory (LLM), that isolates security monitors from
target operating systems, while also providing monitors the ability
to inspect the target’s state. LLM is inspired by recent efforts by
major multi-core vendors [Int10b, Int10a, NNY+07] to equip each
processing core with local storage that is addressable from that core
in addition to shared main memory. We demonstrate that the LLM
architecture can enable tamper-proof execution of system integrity
monitors without a VMM.

An LLM-based machine modifies a typical commodity multi-
core machine by adding a privileged processing core. In the spirit
of virtualization, we refer to this privileged core as core0 and ev-
ery other core as a coreU. Core0 has the ability to freeze the ex-
ecution of coreU processors, returning control to itself. Core0 is
also equipped with a small, private memory region that is acces-
sible only from that core (hence the name limited local memory).
Additionally, core0 can access shared main memory, which is also
accessible from coreUs. To achieve this goal, physical memory ac-
cess from core0 is modified so that when it generates an address
within a certain predefined range, that address resolves to core0’s
local memory area.

We show that these features enable LLM to set up a tamper-
proof execution environment for system integrity monitors. We
illustrate this fact by implementing a rootkit detector on an LLM
machine. The rootkit detector itself executes on core0 (which runs
its own kernel, and is part of the TCB) and monitors the execution
of the operating system executing on the coreUs (i.e., the target
operating system). The rootkit detector shares main memory with
the target kernel, and is therefore able to inspect its code and data
for the presence of rootkits.

Despite sharing main memory with the target, we show that
an LLM-based rootkit detector can remain untampered even in the
presence of rootkits that infect the target. We achieve this goal using
a novel secure paging mechanism which ensures that: (1) all code
execution and data access on core0 (which runs the rootkit detec-
tor) happens only from its local memory; and (2) all code and data
pages stored in shared main memory are first authenticated before
they are paged into core0’s local memory. These two properties al-

low the secure paging mechanism to prevent attacks directed at the
rootkit detector itself. Finally, LLM leverages multi-core hardware,
allowing the rootkit detector to operate on its own dedicated pro-
cessing core (core0), in parallel with the target kernel, providing
obvious performance benefits.

In summary, the main contributions of this paper are:

• LLM architecture and secure paging. We present the limited
local memory (LLM) architecture and describe its key features.
We demonstrate that LLM, when combined with our secure
paging mechanism can enable tamper-proof execution of sys-
tem integrity monitors. The key advantage of the LLM archi-
tecture is that it enables secure execution of system integrity
monitors without support for hardware virtualization.
• Rootkit detection using LLM. We demonstrate the utility of

the LLM architecture by building a rootkit detector that lever-
ages key features of LLM. We show that the detector can safely
inspect code and data of a potentially compromised operating
system without itself being infected by rootkits. We also show
that the rootkit detector can operate in parallel with the target
operating system, thereby enabling low-overhead detection.

The rest of this paper is organized as follows. Section 2 intro-
duces the basic features of the LLM architecture. Section 3 and 4
show that these features combined with secure paging can set up
a tamper-proof execution environment for an integrity monitor.
Section 5 describes our prototype implementation and Section 6
demonstrates its utility to detect rootkits. Section 7 discusses re-
lated work and Section 8 concludes.

2. The LLM Architecture
In a traditional multi-core machine, all cores are equally privileged.
Any core can reboot the other cores; this feature is used at boot
time, when one core loads the operating system and then proceeds
to initialize the other cores. It is also used to recover cores from
errors encountered during runtime (e.g., computations executing
infinite loops). On the Intel x86 architecture, rebooting is supported
as I and S inter-processor interrupts (IPI) that force a core
to restart from a specified address.

In LLM, one core (core0) is more privileged than the other
cores (coreUs) in two key ways. First, a coreU processor cannot
reboot the core0 processor. In contrast, core0 is allowed to reset
or halt other processors. As a consequence, core0 must be the
first processing core that is initialized at boot time, and the last
core that continues to execute before shutdown. This ensures that
core0 acquires control of the machine during bootup, and that
it is responsible for loading the operating system on the coreU
processors.

Second, core0 is given private access to a region of memory that
we call limited local memory. This memory is part of core0’s phys-
ical address space in that addresses within a certain range resolve to
the local memory region rather than to shared main memory. This
memory is local to core0 because it cannot be accessed by other
cores. It is limited in that its size is small (typically a few hundred
kilobytes; see Section 5) compared to the size of main memory.

As we will describe in Section 3, these features together with
our secure paging mechanism allow the LLM architecture to boot-
strap a tamper-proof execution environment for system integrity
monitors. Intuitively, core0 acts as the hardware root of trust, first
acquiring control of the machine during boot time, and loads the
secure paging mechanism into its limited local memory area before
initializing the rest of the system. The secure paging mechanism
allows core0 to securely load (on demand) the rest of the monitor
from shared main memory to its local memory. It checks the au-
thenticity of any code or data accessed by core0 before loading it
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into core0’s local memory area. The other cores cannot access this
memory and therefore cannot tamper with the execution of the in-
tegrity monitor, which can then oversee the integrity of code and
data accessed by the coreUs. If the monitor detects an integrity vi-
olation, either to its own code or data or to that of the target, it
instructs core0 to halt the execution of the coreUs and raises an
alert.

In equipping core0 with local memory, we were inspired by
recent efforts by hardware vendors in developing multi-core pro-
cessors with per-core local memory. For example, in the RP1 pro-
cessor recently announced by Hitachi [NNY+07], each core of the
RP1 is equipped with 152KB of local memory. The Intel’s single-
chip cloud computer (SCC) [Int10b, Int10a], a research multi-
core processor, also equips each core with its own private off-chip
DRAM [Int10c, Page 52]. The main motivation behind introduc-
ing local memory in these chips is improved performance for cer-
tain parallel processing tasks, where the local memory of each core
serves as a local storage area that can be accessed faster than main
memory. The Hitachi RP1 and Intel SCC differ from the LLM ar-
chitecture in that every core is equipped with local memory, and
in that all cores are equally privileged. Moreover, on the Hitachi
RP1, local memory is not private to each core and can be accessed
remotely by other cores (making this architecture akin to a non-
uniform memory access machine). Despite these differences, the
technology to equip cores with local memory exists, and we be-
lieve that the LLM architecture can be implemented with minor
modifications to these existing designs.

3. Integrity Monitors using LLM
In this section, we present the design of an integrity monitor that
leverages the key features of the LLM architecture. We begin by
stating the problem, defining the threat model and identifying the
trusted computing base (TCB).

3.1 Goal
The goal of an integrity monitor is to oversee the execution of a tar-
get by inspecting its code and data. For this paper, we will assume
that the target is an operating system whose code and data may be
compromised by malicious software, such as rootkits. We only fo-
cus on mechanisms to protect operating system integrity because
integrity monitors for user-space applications can be bootstrapped
using an integrity-protected operating system. Moreover, the design
of user-space integrity monitors is substantially similar to the oper-
ating system integrity monitors that we describe in this paper. The
integrity monitor must be able to inspect the target for malicious
software without itself becoming a victim of compromise. If it de-
tects that the target has been compromised, it must be able to halt
the execution of the target and take appropriate action, e.g., report
an alert to the end-user or an audit log. We do not consider the goal
of recovering the target from compromise.

Several such integrity monitors have been proposed in the
research literature (e.g., [PFMA04, ZvDJ+02, PH07, CCL+09,
PFWA06, BGI11, HDK+11, JWX07]). These include monitors that
check code integrity, control data integrity, as well as non-control
data integrity. While these monitors differ in the techniques that
they use to detect integrity violations and in the classes of attacks
that they can detect, they all rely on the ability to securely fetch
code and data pages of the target for inspection. The monitor must
first be able to fetch this code and data without the involvement of
the target (which may itself be infected by a rootkit) before apply-
ing its policies to detect integrity violations. The core contribution
of this paper is the set of mechanisms used by an LLM-enabled
integrity monitor to fetch code and data pages and not the policies
used to detect integrity violations. Although we present a proto-
type rootkit detector using LLM (Section 6), we emphasize that

LLM-enabled mechanisms can be used as the basis of any integrity
monitor that relies on securely fetching a target’s code and data
pages.

3.2 Machine setup
To monitor the integrity of a target operating system, we require an
LLM machine to be set up as follows:

• the integrity monitor executes on core0. The monitor’s execu-
tion environment includes an operating system that controls
core0 (henceforth called the monitor operating system) and a
user-space program that encodes the target’s integrity policy
that must be applied to its code and data.
• the target operating system executes on coreUs.

This setup requires the LLM machine to execute two operating
systems: a monitor operating system executing on core0, and the
target executing on coreUs. In contrast, in a typical multi-core
machine all cores execute the same operating system image. To
enable this setup, core0 is first initialized during boot time, which
loads the monitor operating system and the integrity monitor. In
turn, the monitor operating system initializes the coreUs and loads
the target operating system on these cores. The sequence is reversed
during shutdown, when core0 terminates the target and halts the
cores before itself halting execution. We defer the details of this
setup to Section 3.4 and Section 5.

3.3 Threat model and TCB
Having described the goal and the machine setup, we can now de-
fine the threat model and the TCB. We assume that the target oper-
ating system is vulnerable to attack and that its code and data may
be compromised in malicious ways. Although the security monitor
executes code and accesses data from core0’s local memory, which
is not accessible to the target, it may store pages in shared main
memory. These pages are accessible to and may be maliciously
modified by the target. The monitor must therefore be able to detect
the attacker’s attempts to modify its own code and data, in addition
to that of the target, i.e., it must have the ability to inspect its own
code and data and halt execution in case integrity is compromised
(it does so using secure paging).

In detecting these threats, we trust the following entities, which
constitute our TCB:

• the LLM hardware platform. We trust that the hardware is
implemented correctly in that: (1) core0 has the ability to halt
the execution of the coreUs, while coreUs cannot reboot core0.
A consequence is that core0 should first acquire control when
the system is booted; and (2) the local memory of core0 is
accessible only to that core.
• the BIOS and bootloader. We trust the BIOS and bootloader to

correctly load the secure pager and its associated data structures
into core0’s local memory at startup, where they will reside
until machine shutdown.
• the monitor operating system and its user processes. We trust

that the operating system and user processes executing on core0
are themselves not malicious. Note that because core0 shares
main memory with coreUs, which execute the target, the moni-
tor operating system and its user processes may themselves be
infected. We do allow such attacks within our threat model and
detect such attacks using the secure paging mechanism; we only
require that the monitor operating system and its processes to be
clean at boot time.
An attacker can violate our assumption that the monitor operat-
ing system and its processes are trusted by directly modifying
pages on disk before the machine is booted (so that a compro-
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Figure 2. Configuration of an LLM machine just after startup
is complete and during normal operation of the system. Core0
executes the monitor operating system and its processes from its
local memory. The target executes on coreUs and controls the
peripheral devices. Core0 acquires control over peripherals only
when it detects an integrity violation. Main memory is shared by
both the monitor and target operating systems.

mised operating system is loaded at boot time). We assume that
such attacks can be detected using trusted computing technol-
ogy (e.g., trusted boot and attesting integrity of code at boot
time using a TPM) and do not further discuss such attacks in
this paper.

3.4 Monitor operation
We now discuss the operation of the monitor during different
phases: (1) during startup; (2) during normal operation, when it
monitors an uncompromised target operating system; and (3) dur-
ing attack, when it detects either that its own code and data pages
have been corrupted, or that the target’s integrity policy has been
violated.

3.4.1 Startup
The monitor starts operation when the machine is first booted
and continues to execute until the machine is shut down. During
boot up, the bootloader loads the secure paging mechanism and
initializes it in core0’s local memory. The secure pager bootstraps
a tamper-proof environment for the monitor operating system and
its user processes. Secure paging is described in further detail
in Section 3.4.2. In addition to installing the secure pager, the
bootloader also copies into core0’s local memory several other data
pages that remain resident there for the lifetime of the system (we
describe this in detail in Section 3.4.2). The rest of the code and
data of the monitor operating system are loaded into shared main
memory. The monitor operating system then initializes its user
processes that will check the integrity of the target. At this point,
the monitor is initialized and can load the target operating system
on the remaining cores.

The procedure of booting the target operating system on coreUs
is similar to booting it on a traditional multi-core machine, except
that the target is initialized on the coreUs by the monitor rather than
by the bootloader. In order to boot on an LLM machine, a minor
change is required to commodity operating systems. Specifically, it
must be modified to avoid allocating its data structures in the por-
tion of the shared main memory that stores the monitor operating

system’s code and data. This purpose of this change is to prevent
the monitor from raising an alert when an uncompromised target
inadvertently uses pages utilized by the monitor operating system.
Note that this portion of memory is still accessible to the target. We
just require that it should just not be used during normal operation.
Rootkits that compromise the target may modify this memory re-
gion, in which case they will be detected by the monitor’s secure
paging mechanism.

In our prototype system, all devices are controlled by the target
operating system; this includes the disk, monitor and all input de-
vices. The monitor operating system does not control any device
during the course of normal operation. If it detects that the target’s
integrity has been violated, it freezes the execution of coreUs and
acquires control of an output device (e.g., the screen or a serial port)
to notify the end-user about the violation. During startup, the boot-
loader loads all the code and data of the monitor operating system
and its user applications into shared memory, thereby obviating the
need to access persistent storage devices over the course of nor-
mal operation. To achieve this goal, the monitor operating system
must offer minimal functionality; in our implementation, we use
xv6 [CKM] as the monitor operating system. Figure 2 depicts the
configuration of an LLM machine after startup is complete.

3.4.2 Normal execution and secure paging
Once startup is complete, the monitor oversees the execution of
the target. Because the monitor and the target share main memory,
the monitor is vulnerable to attacks from a compromised target. To
avoid such attacks, the monitor’s execution environment is set up
to satisfy the following three invariants:

• [LC] Local code execution. A code page to be exe-
cuted by core0 must first be loaded into its local memory. Be-
cause the monitor’s code may reside in shared main memory,
as described earlier, it must first be copied into local memory
before it can be executed on core0.
• [LD] Local data access. A data page belonging to the

monitor must first be loaded into core0 local memory before it
can be read or updated.
• [AL] Authenticate before loading. The authenticity of

code and data pages belonging to the monitor must first be
verified before they are loaded into core0 local memory.

The enforcement of all three invariants is the responsibility of
the secure paging mechanism, which is implemented within the
monitor operating system. During startup, the bootloader loads the
code of the secure pager into core0’s local memory area. The secure
pager also contains pre-computed hash values for the monitor’s
code and read-only data pages (a whitelist). The memory pages
containing the code of the secure pager and these hash values
remains resident in core0’s local memory for the lifetime of the
system, i.e., they are never paged out into main memory or to disk.

The bootloader revokes permissions to execute, read or write
code and data pages of the monitor that are loaded into shared
main memory by suitably setting permission bits in the monitor
operating system’s page table entries corresponding to these pages.
Any attempt to access these pages results in a fault that is handled
by the secure pager. In turn, the pager handles this page fault and
loads the page from shared main memory to the fault address. In
doing so, the pager also computes the hash of the page and checks
it against the whitelist stored in local memory. If there is a match,
the page is loaded into local memory and can be read, modified or
executed, as the case may be. If there is no match, it triggers an
alert (Section 3.4.3).

Because core0 local memory is limited in space, pages may
need to be evicted as the monitor operates. The secure pager han-
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Figure 3. The secure paging mechanism. The pager is loaded into
core0’s local memory by the bootloader during startup. The code
of the pager and the pages containing a whitelist of hashes remain
resident in local memory until the machine is shut down. (1) When
core0 needs to access a page that is not available in local memory, it
results in a page fault that is handled by the secure pager. It hashes
the corresponding shared memory page, checks the hash against
stored values, and loads the page only if it has not been modified.
(2) When a page must be evicted from local memory, the secure
pager computes its hash before copying its contents back to shared
main memory.

dles such evictions by selecting the page to be evicted, computing
the hash of that page and storing it in local memory, and copying
the contents of the page to shared main memory. The secure pager
revokes access permissions for this page so that an attempt to again
access this page will trigger a page fault. Under normal operation,
this page must not be modified when it is resident in shared main
memory, and the hash values must therefore match when the secure
pager handles the page fault and attempts to load this page into local
memory. The secure pager’s authenticated load facility (computing
and comparing hashes) is inspired by the techniques implemented
in prior work on Patagonix [LLCL08] and SecVisor [SLQP07].
Figure 3 summarizes the secure paging mechanism.

In order to enable secure paging, several code and data pages
must remain resident in core0’s local memory for the lifetime of
the system. These are pages containing:

• the code of the monitor operating system’s secure paging mech-
anism. This includes code responsible for hashing pages loaded
from shared main memory, comparing these hashes against
saved values, and terminating execution of coreUs if an in-
tegrity violation is detected;
• hash values of the code and data of the monitor operating sys-

tem and its user processes. Some of these hash values are pre-
computed (e.g., those for code and static data pages) while other
hash values are computed dynamically by the secure paging
mechanism itself.
• the monitor operating system’s data structures that are directly

accessed by the hardware. These include data pages that store
its page tables and interrupt vector tables. Typically, only an
active root page table, and second and third-level page tables
need to be resident in local memory; any other page tables that

are not directly accessed by hardware can be swapped out to
shared main memory and can themselves be verified by the
secure paging mechanism.

3.4.3 Execution under attack
During normal operation, the secure paging mechanism checks
the integrity of the monitor’s code and data (for both the monitor
operating system and its user processes). The target can define its
own integrity policies, which are encoded within and enforced by
the monitor’s user processes by fetching the target’s code and data
pages stored in shared memory.

The monitor raises an alert under one of these conditions:

1. the monitor’s integrity is violated. The secure paging mecha-
nism can detect attempts by a compromised target to violate the
integrity of the monitor’s code and data.

2. the target’s integrity policies are violated. A rootkit may com-
promise the target operating system (e.g., by corrupting the sys-
tem call table or function pointers within the kernel), thereby
violating code or data integrity. If supplied with a suitable pol-
icy, the monitor process that checks the target’s memory pages
will detect this integrity violation.

In each of these cases, core0 issues an inter-processor interrupt
that will halt the execution of the coreUs, returning control to
itself. The target will therefore be halted, and will be unable to
make further changes to shared memory. The monitor operating
system acquires control of a peripheral device, such as the console,
a serial port, or the hard disk, to emit diagnostic information, which
may include a warning on the console, as well as a snapshot of
shared main memory (for forensic purposes). At this point, the end-
user can take appropriate action, which may include restarting the
machine or cleaning up the infection. We leave exploration of post-
compromise user actions for future work.

3.5 Enforcing target integrity policies
As already discussed, the target can specify the integrity policies
that must be applied to its code and data pages. These policies are
encoded in a user process that executes on core0, and are checked
by fetching the corresponding pages from shared memory.

The monitor operating system implements an mread system call
that its user processes can use to inspect shared memory and encode
a wide variety of policies. This call is akin to the interface exported
by the XenAccess library [Xen] that allows a dom0 virtual machine
to easily access and inspect domU virtual machines. For instance,
the following call, when invoked within the monitor’s user process,
copies the contents of the target’s system call table into a local
buffer (buf) allocated in the user process’ address space.

mread((void *) buf,
(void *) TARGET_SYS_CALL_TABLE_ADDR,
SYS_CALL_TABLE_LEN * sizeof(unsigned long));

The monitor operating system also implements a halt coreu
system call that instructs core0 to halt the execution of coreUs; it
uses this call when it observes that the target’s integrity policy has
been violated.

We place no restrictions on the target’s integrity policies. For
example, a simple policy could check that the memory page that
stores the target’s system call table is not modified during normal
execution [PFMA04]. More complicated policies could enforce
custom invariants by traversing the target’s dynamically-allocated
data structures (e.g., to check that function pointers point to valid
code regions [PH07]) or to enforce invariants on non-control data
structures [BGI11, HDK+11, PFWA06]).
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4. Security Analysis
We analyze the security of an LLM-based integrity monitor along
two dimensions: (1) its ability to protect itself from integrity viola-
tions; and (2) its ability to protect the target; and

4.1 Ability to protect itself
The ability of an LLM-based integrity monitor to protect itself from
an infected target is predicated on the three invariants discussed in
Section 3.4.2. We first discuss how enforcing these invariants en-
sures the security of the monitor and then analyze the enforcement
of the invariants.

The invariants LC and LD ensure that the code
and data accessed by core0 (both the monitor operating system and
its user processes) are not visible to the the target, and hence not
visible to rootkits that infect the target. Moreover, the invariant
AL ensures that the monitor only executes approved code,
as determined by a whitelist of hashes that is resident in core0’s
local memory. AL also ensures that the hash of a code or
data page evicted from local memory is computed during eviction
and are checked when the page is loaded again into local memory.

The invariants themselves are enforced by the secure pager,
which is never paged out of core0’s local memory, and cannot be
accessed or modified by the untrusted target. The security of the
system is therefore bootstrapped at startup, when the bootloader
initializes core0 and places pages containing the secure pager and
a pre-computed whitelist, containing hashes of the monitor’s code
and static data pages into core0’s local memory, where they will
reside until the machine is shut down. The extra privilege granted
to core0 means that its execution cannot be halted or altered by
coreUs, which execute the target. Core0 does not interact with
peripheral devices, which are controlled by the target, unless it
detects an integrity violation, in which case it halts coreUs before
acquiring control over a device to emit diagnostics.

Consequently, LC, LD and AL are en-
forced for the lifetime of the system, together ensuring that that
core0 only executes approved code and reads approved data, and
hence ensuring a tamper-proof execution environment for the mon-
itor.

4.2 Ability to protect the target
An LLM-based integrity monitor oversees target execution to en-
force target-specified integrity policies. Its ability to protect the tar-
get from attack depends on the nature of these policies. The policies
must themselves be specified as properties that can be checked by
viewing the target’s memory pages (as is standard for rootkit detec-
tion tools [BGI11, PFMA04, CCL+09, PH07, HDK+11, PFWA06,
JWX07]). In doing so, the policies may leverage knowledge about
the target’s data structures and data layout. For example, in a
Linux-based target, the monitor could use data structure type def-
initions and addresses of root symbols as specified in the target’s
System.map file suffice to traverse all dynamic data structures at
runtime. Because integrity policies are supplied by the target, we
do not discuss them in further detail and instead focus our attention
on the core ability of our LLM-based mechanisms to oversee the
target’s attack surface.

When the monitor detects an integrity violation, we leverage
core0’s ability to halt coreUs by sending an inter-process interrupt
to these cores. Control then returns to core0, which acquires control
over a peripheral device to emit suitable diagnostic information.
The execution of the target can be resumed only via another inter-
process interrupt from core0.

The LLM architecture provides a monitor running on core0 the
ability to inspect the contents of shared memory. However, the
monitor cannot access the register state of coreUs. The inability
to inspect the registers of coreUs leads to two shortcomings:

1. In ability to detect attacks on register state. A rootkit can at-
tempt to bypass the integrity monitor by directly attacking
coreU registers, which are not visible to core0. As an exam-
ple, consider the following memory shadowing attack, which
maliciously modifies the cr3 register that stores a pointer to
the page table. A rootkit can create a malicious shadow copy of
the operating system at another location in shared memory, and
make cr3 point to the page table of this operating system. In
effect, this attack creates two copies of the operating system—
the malicious shadow copy, which actually executes on coreUs,
and the original benign copy, which does not execute, but sim-
ply resides in shared memory. The rootkit can create the illusion
that the original operating system is executing by periodically
mirroring benign changes to its data structures. The monitor,
which executes on core0, cannot access cr3 and has no way of
determining whether the code and data that it inspects, i.e., that
of the original copy, actually executes on the coreU processors.
While such a hypothetical attack can bypass our system in-
tegrity monitor, it may also be possible for the monitor to em-
ploy heuristics to detect such memory shadowing attacks. For
example, the could employ techniques to discover data struc-
tures in raw memory pages that it believes are unused by the op-
erating system [CSXK08]. If it identifies several “free” memory
pages with data structures that are substantially similar to those
in the operating system, it can detect that a memory shadowing
attack is possibly underway.

2. Inability to cleanly checkpoint target system. When core0 de-
tects that an attack is underway, it halts the execution of coreUs.
However, the operating system on the coreU may be in the pro-
cess of performing a critical operation (e.g., writeback of a vital
file system data structure) when core0 halts its execution. Be-
cause core0 does not have access to coreU registers, it cannot
cleanly checkpoint the target system. As a result, the target op-
erating system may be unable to reboot, or may lose important
data when it is restarted.
It is not possible to trust any data manipulated by a rootkit-
infected operating system, and it is highly desirable to reinstall
a clean operating system post infection. However, there are
still cases where users may want to retrieve information from
a corrupted system. Although LLM does not offer support for
checkpointing, it may be possible to periodically checkpoint
and backup persistent storage devices so that users can still
recover some of their data after an infection has been detected.

5. Implementation
We created a prototype that implements the ideas discussed so far
to set up a tamper-proof monitoring environment. Because LLM
hardware is not currently available, we emulated its core features
using the QEMU system emulator (qemu-kvm-0.12.5). Our proto-
type executes a Linux-2.6.26-based target on this hardware in con-
junction with a monitor based on the xv6 operating system (revision
4) [CKM]. In this section, we focus on the details of our platform,
and the changes that we made to xv6 and Linux. In the next sec-
tion, we present a rootkit detector that leverages this tamper-proof
environment.

Our emulated hardware platform is a 32-bit x86 machine with
four processing cores: one core0 and three symmetric coreUs. The
system is configured with 1GB of physical address space. Core0 is
configured to have 548KB of local memory. We use the first 800MB
of the physical address space for our Linux-based target and its
processes and the remaining 200MB for the monitor operating
system and its processes.

To build the monitor operating system, we chose xv6, an in-
structional operating system from MIT. Our choice of xv6 was mo-
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Entity SLOC
Unmodified xv6 (revision 4) 8688
Changes to xv6 404
Secure pager 592
SHA-1 (from RFC 3174) 539
OS loader (loads target) 146
Total additions/modifications to xv6 1681

Figure 4. Lines of code added to or modified in xv6 (revision 4) to
create the monitor operating system.

tivated by its minimal functionality and small code size (see Fig-
ure 4), features that are essential to ensure that code in the TCB
is easily verifiable. We made a number of changes and additions
to xv6 to make it suitable as a monitor operating system for our
LLM-based platform.

1. We modified xv6’s page fault handling mechanism. The orig-
inal version of xv6 is a minimal operating system, so it is not
designed to handle page faults from user space processes (i.e., it
expects all pages to fit in main memory and paging to disk is
not supported). We changed this mechanism so that a page fault
generated by the process instead swaps the corresponding code
page from shared main memory into core-local memory.

2. We added code to implement the secure paging mechanism.
When xv6 receives a trap entailed by accessing a page in the
shared memory, the secure pager attempts to copy the page to
the core-local memory. In doing so, it calculates a SHA-1 hash
value of the page, and checks it for a match against a whitelist
stored in local memory, and updates the monitor’s page table
entry to point to the local memory page instead.

3. We added code to load the target operating system. This code
is invoked at the end of the startup process, once the rest of the
monitor has been initialized.

4. We modified its memory allocation code to: (1) allocate xv6
page tables and kernel stacks within the physical address range
corresponding to core-local memory to make them inaccessible
to the target operating system. These data structures remain
resident in core-local memory and are not “swapped” out into
shared main memory; (2) allocate memory for its user processes
in shared main memory.

We configured the size of core-local memory (548KB) for our
hardware platform by studying the memory footprint of the xv6
operating system and its processes. The code of an unmodified xv6
kernel itself occupies approximately 54KB, while xv6 enhanced
with our secure paging mechanism occupies approximately 84KB.
Due to its relatively small memory footprint, this code resides com-
pletely within core-local memory. Aside from 84KB for the kernel
itself, we budgeted the space in core-local memory as follows:

• 256KB for xv6’s page tables and kernel stacks;
• 128KB to buffer pages swapped-in from shared main memory;
• 80KB to store a whitelist of hashes of pages swapped in from

shared memory. Each hash is a 20 byte SHA-1 digest of a
memory page. The size of this hash table can be modified, but
we chose this size to accommodate hashes for code and data
pages of the monitor that are stored in shared main memory.
On our prototype, the monitor’s code and data occupy 16MB
on shared main memory (i.e., 4000 physical memory pages), so
80KB suffices to store their hashes.

In our prototype, all of the above pages are allocated and remain
resident within core-local memory, thereby remaining hidden from
other cores. We calculate the hashes of the monitor’s main memory

pages at the end of initialization and store them in core0’s local
memory. As discussed above, the monitor’s user processes are
managed in shared main memory. We use a RAM file system as the
root file system to manage these user processes, which are stored
as binary executables on this file system. When we load this binary
for execution, the request is translated into a memory access. This
access initially causes a page fault (because the page is located in
main memory, rather than in local memory), thereby triggering the
secure paging mechanism to bring the corresponding pages into
local memory.

We also had to make minor changes to configure Linux to boot
as our target operating system. First, we configured it to allocate its
data structures in the first 800MB of shared main memory. By doing
so, it avoids using the shared pages that contain monitor code and
data during normal operation (though a rootkit’s attempts to use
these pages will be detected by the secure pager). Second, Linux
typically assumes that it is the sole operating system running on
the hardware platform. This assumption is violated in our platform
because xv6 loads Linux, and is already executing on the system
when Linux boots. Consequently, we had to modify it to only boot
on three cores (the coreUs) of our platform, and reset the local
APIC for the boot core, i.e., the first coreU processor that loads
and initializes Linux.

6. Case Study: Rootkit Detection
Rootkits accomplish their malicious goals by modifying the code
and data of a victim operating system. They vary widely in the at-
tack vectors used, and can range from simple rootkits that modify
the system call table to those that hijack control flow by inject-
ing malicious code and modifying function pointers in dynamically
allocated data structures. Recent work [BKI07] has also demon-
strated stealthy forms of rootkits that achieve their malicious goals
by only modifying non-control kernel data, without ever executing
malicious kernel-mode code.

In response to these threats, a wide variety of rootkit detection
techniques have been developed (e.g., [PFMA04, ZvDJ+02, PH07,
CCL+09, PFWA06, BGI11, HDK+11, JWX07, GR03, CCL+09,
LLCL08, SLQP07]). These techniques isolate themselves from
the infected operating system, typically using hypervisors. We fo-
cus on rootkit detection techniques that operate by fetching pages
from the target virtual machine and checking that they satisfy
a pre-specified integrity policy (e.g., [PFWA06, HDK+11, PH07,
JWX07, CCL+09]).

In the LLM architecture, the integrity policy checker is imple-
mented as a user-space process that executes within the monitor.
The integrity policy can be a desirable property that must always be
enforced (e.g., state-based control flow integrity [PH07], or SBCFI,
which requires function pointer targets to be approved kernel code)
or can be a domain-specific property supplied by a security ana-
lyst (e.g., a data structure invariant that must be satisfied by ker-
nel linked lists [PFWA06]). Depending on the integrity policy, the
monitor may require various levels of understanding of the seman-
tics of the target. For example, consider an integrity policy that re-
quires the target code and static data pages to remain unmodified.
Such a policy can be enforced with minimal semantic understand-
ing of the target: it simply suffices to provide the integrity policy
checker with the list of pages that must be checked along with a
list of hashes over the contents of these pages. More complex poli-
cies may require intricate knowledge of the target operating sys-
tem’s data structures and data layout. SBCFI [PH07] and Gibral-
tar [BGI11], for instance, require the monitor to traverse the target’s
kernel data structures. To do so, the monitor process must have a
list of entry points into the target (e.g., the target’s System.map
file) and data structure type declarations of the target. It can use
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this information to recursively traverse the target’s dynamic data
structures.

In the following examples, we illustrate LLM-based detection
of several previously-known rootkits. In keeping with the primary
contribution of this paper as being the LLM architecture, our main
goal is to illustrate the utility and flexibility of LLM’s mechanisms at
detecting rootkits, and not the specific policies used to detect them.
Our example policies below check simple invariants on specific
kernel data structures. An LLM-based detector can also be used
to implement more sophisticated integrity policies than the ones
illustrated below (e.g., SBCFI [PH07]).

6.1 Examples of rootkits detected
We considered the following rootkits (unless otherwise mentioned,
obtained from PacketStorm [pac]) for our evaluation. Some of these
rootkits were meant for older versions of the Linux kernel, so we
ported their functionality to Linux-2.6.26, our target kernel.

• adore is a rootkit that hides the presence of malicious user-
space files, directories and running processes. It also presents
an interface to the attacker to hide/unhide a file, directory or
process at runtime. It achieves this goal by modifying the entries
in the system call table to point to malicious code instead.
The monitor process that detects this rootkit enforces the con-
straint that the system call table of the target kernel should re-
main unmodified for the lifetime of the system. It enforces this
invariant by copying the contents of the system call table into its
own address space (in an array called systab init) when the
target is started. It then continuously compares the saved value
against the target’s current system call table (located at physical
address systab addr). The pseudocode below shows how this
is accomplished.

void *systab_init[SYSTAB_SIZE];
void *systab_curr[SYSTAB_SIZE];
mread(systab_init, systab_addr, sizeof(systab_init));
while (1) {
mread(systab_curr, systab_addr, sizeof(systab_curr));
for (i = 0; i < SYSTAB_SIZE; i++) {
if (systab_init[i] != systab_curr[i])
alert();

}
}

• knark also modifies entries in the system call table to achieve
its malicious goals, similar to adore. We were able to detect
knark using the same policy illustrated above.
• adore-ng accomplishes the same malicious goals as adore, but

does so by modifying function pointers in heap data structures
corresponding to Linux’s virtual file system. Specifically, it
hooks a lookup function pointer, which is contained in the inode
operation table of the /proc directory object, to instead point
to malicious code.
We wrote an integrity checker that detects this rootkit by ensur-
ing that the the corresponding function pointer (proc iops.lookup)
remains a constant for the lifetime of the target. Although we
only checked this function pointer as an illustrative example,
the monitor can be extended to implement a more sophisticated
policy that checks constancy of all kernel function pointers
(akin to SBCFI).
• hideme and pmap-hide [HDK+11] are rootkits that hides pro-

cesses by altering kernel data structures used by the /proc
file system. On Linux, each process is represented using a
task struct data structure, which appears as an entry of a
linked list that we call init task. Linux uses this linked list

to schedule processes for execution. Each process also has an
entry in two data structures used by the /proc file system: a
hashtable (pidhash) that stores the process identifiers of ac-
tive processes, and a bitmap (pidmap) that denotes which pro-
cess identifiers are currently taken. The hideme and pmap-hide
rootkits achieve their malicious goals by removing the entry
of a malicious process from the pidhash and pidmap data
structures, respectively. Because diagnostic tools use the /proc
filesystem, a running process can effectively be hidden from
these tools by modifying pidhash and pidmap.
We detected these rootkits using an integrity checker that tra-
versed the target’s linked list rooted at init task. We ensured
that the process identifier of each entry in this list had a corre-
sponding entry in pidhash and pidmap.
• enyelkm is a rootkit that modifies the dispatch code in the

kernel that is invoked in response to a system call (specifically
system call and sysenter entry handlers). The dispatcher
is modified to invoke attacker-defined code instead, thereby
achieving the same functionality as adore and adore-ng, but
without modifying the system call table or function pointers.
Our integrity checker uses a SHA-1 digest of Linux’s text sec-
tion to detect this attack, which modifies Linux’s text. Our
checker currently calculates a hash of the entire text section of
Linux; it could instead calculate and check hashes of individual
code pages as well (in a manner akin to the secure pager).

6.2 Detecting attacks against the monitor
We evaluated the ability of the monitor to defend itself from a
rootkit-infected target. We wrote a rootkit that attempts to compro-
mise the monitor by corrupting its code and data stored in shared
main memory by using memset to write a specific value to a mon-
itor code/data page. The secure pager was successfully able to de-
tect this modification when the page was next accessed by core0.
The SHA-1 hash of the page did not match the value saved in local
memory, thereby triggering the secure pager to raise an alert.

6.3 Performance evaluation
We evaluated the performance impact of our LLM-based rootkit de-
tector using the UnixBench 5.1.2 suite [UNI]. We conducted exper-
iments with two configurations of this workload to measure over-
head. In the first experiment, we configured UnixBench to run on
three cores, and executed it within our target (a modified Linux-
2.6.26 kernel), which itself ran on the three coreUs within our
QEMU-based LLM emulator. The xv6-based monitor executes a
user-process that ran every one second to scan code and data pages
of the target. We also executed the same workload configuration on
Linux-2.6.26, which ran on a four-core SMP emulated by QEMU.
Except for core-local memory and a privileged core, the configura-
tion of this SMP was identical in all aspects to our LLM platform.
These results are reported in Figure 5(a). In the second set of ex-
periments, we repeated the same steps above, but the workload was
configured to use four cores. Therefore, in the case of the LLM
machine, where only three cores are available for normal opera-
tion (the coreUs), the workload caused contention for cores. These
results appear in Figure 5(b).

All experiments were conducted with QEMU executing on our
host machine: a Dell Optiplex 755, with an Intel Core2 Quad
Q6600 2.4GHz CPU, with 2GB memory running Linux 2.6.32. To
minimize errors in our performance measurements, we removed
unintended migrations of QEMU threads between the cores of our
host machine using the schedtool utility.

Figure 5 presents the results of our evaluation, averaged over
five runs of the experiment (standard deviations are also shown).
Each bar in the figure presents the performance of the UnixBench
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(a) Results with workload configured to run on three cores. (b) Results with workload configured to run on four cores.

Note: The labels looper-1 and looper-8 denote the commands “looper ./multi.sh 1” and “looper ./multi.sh 8,” respectively.
The label fstime-a denotes “fstime -b 1K -m 2K,” fstime-b denotes “fstime -b 256 -m 500” and fstime-c denotes “fstime
-b 4K -m 8K”. Other labels denote the standard ways to execute the corresponding benchmarks in UnixBench.

Figure 5. Performance evaluation with the UnixBench 5.1.2 benchmark suite. The graphs show the performance of each benchmark running
within Linux on an LLM machine relative to their performance within Linux on an SMP machine (i.e., LLM per f ormance

S MP per f ormance ).

executing on LLM relative to the same benchmark configuration
executing on a 4-core SMP machine. As our results show, the bene-
fit of executing a rootkit detector on a dedicated core is clear. When
there is no contention for cores (Figure 5(a)) the performance of
the target is not affected in most cases, and induces a 4% overhead
in the worst case. In fact, we saw minor speedups in a few cases,
which can be attributed to anomalies introduced by measuring per-
formance within an emulated platform running on host hardware.
When there is contention for cores (Figure 5(b)), the performance
degradation observed is roughly proportional to what one would
expect with one fewer core, i.e., performance degrades by approxi-
mately up to one-fourths on LLM hardware.

7. Related Work
Isolating system integrity monitors. There is much prior work
on developing isolation architectures for system integrity monitors.
The main requirement of such architectures is the ability to set up
a tamper-proof environment within which to execute the monitor.
Researchers have explored the use of both virtualization and hard-
ware support to enable such an environment.

Chen and Noble [CN01] were among the first to describe
the advantages of using virtualization for security. Subsequently,
Garfinkel and Rosenblum [GR03] developed virtual machine in-
trospection (VMI), a technique to isolate security monitors from
the target being monitored. In VMI, the target runs within a vir-
tual machine (VM), while the monitor executes within another
VM and observes the target VM. Garfinkel and Rosenblum also
demonstrated the use of VMI to detect a rootkit-infected target.
Since being proposed, numerous works have leveraged VMI for
security, and several APIs [Xen, VMW] have been implemented
to ease the task of writing VMI-based security monitors. Monitors
can use VMI to provide a number of security services, including
enforcing code integrity (e.g., [LLCL08, SLQP07]), control-flow
integrity [PH07, SG11] and domain-specific integrity properties of
dynamically-allocated data structures (e.g., [PFWA06, HDK+11,
PH07]).

In contrast to these works, which execute the monitor and the
target in different virtual machines, and hence different virtual

address spaces, the LLM architecture executes the monitor and the
target on the same physical machine, albeit on different processing
cores. In VMI, the monitor and the target are isolated via address
space protection enforced by the hypervisor, while in LLM, the
monitor is protected via a combination of the features of LLM
hardware and the secure paging mechanism.

The main advantage of LLM over VMI is that it eliminates
the need for hardware virtualization. This is important because
commodity VMMs are often complex, resulting in a large TCB.
For example, the Xen hypervisor (v4.1) has approximately 150K
lines of code, and dom0 and supporting libraries, which are also
part of the TCB, can contain as much as 1.5 million lines of
code [MMH08b]. This complexity can introduce numerous bugs
into the TCB, as is evidenced by recent reports of vulnerabilities
in the hypervisor and dom0 [CVEa, CVEb, CVEd, CVEc, Xbo07,
K. 09, R. 08], which can in turn be exploited to hide malware from
the monitor [KCW+06a].

Reducing the TCB: Software-centric solutions. The large size of
the TCB in modern VMMs coupled with the discovery of vulner-
abilities in them has led to research on securing hypervisors from
attack, and on techniques to reduce the size of the TCB of VMMs.
IBM’s sHype project uses trusted hardware to improve the assur-
ance of the hypervisor [SVJ+05], while HyperSafe [WJ10] pro-
vides control-flow integrity guarantees within the hypervisor using
a hardware technique called non-bypassable memory lockdown.

The Flicker [MPP+08] and TrustVisor [MLQ+10] projects seek
to reduce the size of the TCB by leveraging trusted hardware
available on commodity processors [Dev05, Cor06]. They set up an
execution environment within which security-sensitive code blocks
can execute without being tampered by malicious code. These
techniques can significantly reduce the size of the TCB—to a few
hundred lines of code in the case of Flicker, and to about 6300 lines
in the case of TrustVisor. However, both these projects explicitly
aim to protect the execution of small security-sensitive code blocks
(e.g., portions of an application that deal with sensitive data) in
malicious environments. They also place restrictions on the content
of this code, e.g., these code blocks must execute with interrupts
disabled.
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While Flicker and TrustVisor aim to protect the execution of
small blocks of code, there have also been efforts to improve
the trustworthiness of VMMs by reducing the amount of privi-
leged code in them. An example of such an effort is the Nova
project [SK10], which proposed an architecture where the hyper-
visor is a few thousand lines of code, thereby bringing it within
the realm of formal verification [KEH+09]. While Nova pro-
poses a new hypervisor, the Xen disaggregation [MMH08a] and
Xoar [CNZ+11] projects work with a commodity VMM (Xen), and
identify opportunities to reduce its TCB by employing privilege
separation.

The main point of difference between these projects and LLM is
that the above projects adopt a software-centric approach, i.e., the
task of isolating the security monitor is entrusted entirely to a soft-
ware layer. In contrast, LLM relies on a hardware-centric approach,
using local memory to isolate the security monitor from an un-
trusted target. When the security monitor does not fit within local
memory, it employs secure paging to verify that the monitor has not
been tampered with.

Software-centric approaches have the benefit of being able to
run on commodity hardware. However, they also suffer from the
pitfalls of software evolution, i.e., the software-based TCB must
be verified for correctness as it is modified over time to add new
features. In contrast, a hardware-centric approach relies mainly on
the correctness of hardware mechanisms (e.g., the properties of
core0) to ensure security. Hardware verification techniques do not
have to deal with the complexities of software (e.g., infinite state,
pointers), thereby leading us to conjecture that it may be easier
to formally verify a hardware-centric approach than a software-
centric approach, although we have not attempted such verification
of the LLM architecture ourselves.

Reducing the TCB: Hardware-centric solutions. Researchers
have explored the use of hardware support to isolate the target from
the monitor. Efforts to do so include secure co-processors [ZvDJ+02,
PFMA04] and the use of NICs such as the Myrinet PCI intelli-
gent network cards [BGI11, myr]. These techniques operate by
physically isolating the monitor from the target (e.g., by executing
the monitor on a co-processor or another physical machine) and
using hardware support on the target machine to fetch memory
pages via DMA. Because the target is not involved in the memory
transfer, the monitor can still detect stealthy malware. However,
Rutkowska has shown that such hardware-based RAM acquisition
can be bypassed on AMD processors [Rut07]. The attack oper-
ates by corrupting the memory map of the memory controller (the
northbridge), thereby returning attacker-defined values in response
to the monitor’s requests for the target’s memory pages.

The work most closely aligned in goals with LLM is the No-
Hype project [KSRL10, KSRL11], which proposes a hardware ar-
chitecture and software stack that provides many of the same the
benefits of virtualization. Like LLM, NoHype also leverages multi-
core hardware to isolate virtual machines from each other. In No-
Hype, each VM executes on a dedicated processing core (possibly
multiple cores) and is isolated from the VMs executing on other
cores. NoHype partitions the physical main memory of the machine
so that each VM can only access the partition assigned to it. It also
configures I/O devices so as to give each VM dedicated access to a
virtualized I/O device.

Although similar to LLM in its goals of eliminating the need for
virtualization while using hardware support to provide isolation,
the NoHype architecture cannot directly be used to construct sys-
tem integrity monitors. Because NoHype partitions physical mem-
ory between VMs, it is not possible for one VM to inspect the mem-
ory pages of another. Although a privileged software layer exists in
NoHype, it can only start and terminate other VMs and access de-
vices, but cannot inspect their memory contents. This is acceptable

for the NoHype architecture, because its main goal is to remove at-
tacks that may result as a consequence of VM multi-tenancy in a
virtualized environment (the NoHype paper provides a detailed sur-
vey of such threats). In contrast, an LLM-based monitor has access
to all of shared memory, thereby facilitating memory introspection.

8. Conclusions and Future Work
This paper developed LLM, a hardware-centric approach to ensure
tamper-proof execution of system integrity monitors. LLM-based
monitors can enforce code and data integrity in a target operating
system without themselves being infected by compromised or mali-
cious targets. The unique features of the LLM-hardware combined
with a secure paging mechanism developed in this paper allow such
integrity monitoring without support for virtualization. We demon-
strated the utility of the LLM architecture by using it to build a
rootkit detector that inspects a target operating system while itself
remaining untampered by rootkits.

As presented in this paper, LLM allows security monitors to be
isolated without support for virtualization. Nevertheless, it is not
clear to us that the LLM architecture can serve as a substitute for
virtualization. On the one hand, LLM’s features make isolation a
first-class, hardware-level primitive. On the other hand, hardware-
centric solutions (e.g., NoHype and LLM) cannot currently support
useful features such as VM checkpointing and migration that can
readily be implemented in software-centric solutions (i.e., VMMs),
and are critical in cloud-based environments.

A combination of hardware and software-based techniques can
possibly offer the best of both worlds, and this is an approach that
we propose to explore in future work. We plan to explore how an
LLM-based security monitor executing on core0 can ensure the
integrity of a VMM executing on coreUs. In such an architecture,
the VMM can itself implement integrity checking for its VMs
(e.g., by implementing rootkit detection) while the LLM-based
monitor ensure the integrity of the VMM’s code and data, (e.g., by
checking for the presence of hypervisor-level rootkits [KCW+06b])
while itself remaining isolated from the VMM.
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