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Abstract

Self-service Cloud Computing (SSC) [5] is a recently-
proposed model that empowers clients of public cloud
platforms in two ways. First, it improves the security
and privacy of client data by preventing cloud operators
from snooping on or modifying client VMs. Second, it
provides clients the flexibility to deploy services, such
as VM introspection-based tools, on their own VMs.
SSC achieves these goals by modifying the hypervisor
privilege model.

This paper focuses on the unique challenges in-
volved in building a control plane for an SSC-based
cloud platform. The control plane is the layer that fa-
cilitates interaction between hosts in the cloud infras-
tructure as well as between the client and the cloud. We
describe a number of novel features in SSC’s control
plane, such as its ability to allow specification of VM
dependencies, flexible deployment of network middle-
boxes, and new VM migration protocols. We report on
our design and implementation of SSC’s control plane,
and present experimental evaluation of services imple-
mented atop the control plane.

1. Introduction

In recent years, an increasing number of enterprises
have migrated their applications to the cloud. Migrating
applications to the cloud offers enterprises a number of
attractive benefits, such as freeing them from procuring
computing infrastructure, allowing elasticity in the use
of computing resources, and offloading a number of
management and maintenance tasks to cloud providers.

In this paper, we are interested in public cloud infras-
tructures, such as Amazon EC2 and Microsoft Azure.
Despite their apparent popularity, many enterprises
hesitate to migrate their applications to such infrastruc-
tures, opting instead to use private or in-house cloud
offerings. Doing so often negates many of the benefits

that public cloud computing has to offer, e.g., in an in-
house cloud platform, the enterprise must still procure
and manage the infrastructure.

We see two main reasons why enterprises are often
reluctant to use public cloud infrastructures. The first is
security and privacy of client data. Enterprises that host
sensitive or proprietary data (e.g., banks and pharma-
ceutical industries) may wish to protect this data from
outsiders. On public cloud infrastructures, the provider
controls the virtual machine (VM) management inter-
face. This management interface typically has the priv-
ileges to inspect the state of individual VMs hosted on
the cloud. For example, it can inspect the memory con-
tents and network traffic of all the work VMs hosted
on the platform. Thus, sensitive client data is vulnera-
ble to attacks by malicious cloud operators or exploits
directed against vulnerabilities in the management in-
terface [9–14, 16].

The second reason is the inability of clients to flexi-
bly control their VMs. Delegating management of VMs
to the cloud provider can reduce operating costs in
some cases. But it also has the disadvantage of mak-
ing the cloud provider responsible for services that are
available to the enterprise client. For example, a client
may wish to use a custom network intrusion detection
system (NIDS) or a memory introspection service on
its VMs. It is often unusual for public cloud providers
to deploy custom services for individual clients. In the
unlikely case that this does happen, each client request
to configure or modify these services must go through
the cloud provider.

These two problems have garnered significant inter-
est and a number of recently-proposed solutions ad-
dress one or both of the problems [7, 18, 29, 36, 37].
Our focus is on a recent solution called Self-service
Cloud (SSC) Computing [5]. SSC aims to address both
the problems discussed above by modifying the priv-
ilege model of the hypervisor. Traditional hypervisors
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endow the management VM (henceforth called dom0)
with unrestricted privileges over client VMs. In con-
trast, an SSC hypervisor employs privilege separation
to offer two kinds of management VMs: (1) a deprivi-
leged system-wide management domain, used by cloud
operators, and (2) per-client management domains,
used by clients to administer and manage their own
VMs. This new privilege model, discussed in further
detail in Section 2, simultaneously prevents cloud op-
erators from snooping on or modifying client VM state,
and allows clients to flexibly control their own VMs.

The original SSC paper [5] studiedthe aforemen-
tioned privilege model within the hypervisor, and de-
veloped protocols to operate VMs on such a hypervisor.
The main technical contribution of the present paper is
the design and implementation of the control plane of
the SSC platform. The control plane facilitates the in-
teraction between hosts in the cloud infrastructure as
well as between the client and the cloud. It presents a
unified administrative interface to clients, and transpar-
ently manages all of a client’s VMs running across dif-
ferent hosts on the cloud. Simultaneously, it also pro-
tects clients from the cloud by preserving SSC’s twin
objectives of security/privacy and flexible VM control.

SSC’s control plane includes several novel features
not usually seen in contemporary cloud infrastruc-
tures:
(1) Specifying VM dependencies. SSC’s privilege
model allows clients to create VMs that have privileges
over other VMs. For example, a client can create a
memory introspection VM that has the privileges to in-
spect the memory contents of a work VM for malware
infection (e.g., [1, 20, 23, 24]). SSC’s control plane
presents an enhanced dashboard interface via which
clients can specify inter-VM dependencies (e.g., that
the work VM depends on the memory introspection
VM). SSC’s control plane uses these dependencies to
automatically determine how VMs must be placed on
individual hosts. Thus, the memory introspection VM,
for instance, will be co-located on the same host as the
work VM(s) that it monitors.
(2) Flexible middlebox deployment. Existing cloud in-
frastructures do not offer a flexible way to deploy net-
work middleboxes. SSC’s control plane offers clients
the flexibility of plumbing the I/O path of the work
VMs, thereby allowing easy deployment of networked
services, such as NIDS, trace anonymization services,
and network metering. Clients simply specify VM de-

pendencies using the interface described above, and the
control plane automatically configures the I/O path to
enable middlebox placement.
(3) New VM migration protocols. VM migration is
an essential component of elastic cloud infrastructures.
Contemporary VM migration tools focus on migrat-
ing individual VMs from one host to another. In SSC,
VM migration must respect inter-VM dependencies.
SSC’s control plane includes algorithms to safely mi-
grate VMs in the presence of inter-VM dependencies.

2. The Self-service Cloud Platform
In this section, we present background material on the
SSC platform and motivate the need for a control plane.

2.1 Threat Model

SSC uses a practical threat model that we believe ap-
plies well in the real world. Similar threat models have
also been adopted in other related projects [18, 29, 37].

In SSC, the cloud provider is assumed to be an
entity such as Amazon, Microsoft, or Rackspace, and is
trusted. The client believes that the cloud provider has a
vested interest to protect its reputation, and that it will
not deliberately compromise the security and privacy
of the client’s code and data. The threat model also
assumes that physical machines on the cloud platform
are equipped with trusted hardware (i.e., TPM) and
IOMMU units to enable I/O virtualization.

Thus, SSC assumes that the cloud provider will sup-
ply a trusted computing base (TCB) equipped with
a hypervisor that implements the privilege model de-
scribed in Section 2.2. The original SSC paper included
TPM-based protocols that would allow the client to ver-
ify the contents of the TCB before starting its VMs on
the platform. SSC’s TCB also consists of various com-
ponents in its control plane. We defer a detailed discus-
sion of these components to Section 4.

On the other hand, cloud operators, who may in-
clude human administrators employed by the cloud
provider, are untrusted. By extension, we assume that
all actions originating from the cloud platform’s dom0,
including relaying I/O on behalf of client VMs, are un-
trusted. Note that even if cloud operators are not overtly
malicious in intent, dom0 may contain remotely-exploitable
vulnerabilities. SSC’s threat model protects the secu-
rity of client VMs against the effects of such exploits
as well.

One of the key implications of this threat model is
that SSC cannot defend against attacks launched by the
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VM Tasks
Platform-wide VMs, i.e., one instance per physical machine

Sdom0 Manages hardware and executes device drivers.
(Un)Pauses and schedules client VMs. Manages I/O
quotas.

domB Creates new VMs in response to client requests. Virtual-
izes the TPM and interacts with physical TPM.

Per-client VMs, i.e., at least one instance per client
Udom0 Administrative interface for all of the client’s VMs. Del-

egates privileges over UdomUs to SDs. Hosts client’s
SSL private keys for secure communication with client.

UdomU The client’s work VM, possibly multiple UdomUs per
client.

SD Service domains, each performing a specific adminis-
trative task over designated UdomUs. Possibly multiple
SDs per client.

Figure 1. Various VMs on an SSC platform.

cloud provider itself. This may include denial of ser-
vice attacks, e.g., failure to schedule the client’s VMs
for execution, or explicit monitoring of the client’s
activities, e.g., via government subpoenas. Protecting
against such threats may require heavyweight crypto-
graphic techniques.

2.2 Components of SSC

The hypervisor on an SSC platform uses privilege sep-
aration to partition the responsibilities traditionally en-
trusted with dom0 to two new kinds of administra-
tive domains (see Figure 1). Sdom0, short for System-
dom0, manages the resources of the physical platform,
schedules VMs for execution, and manages I/O quo-
tas. Sdom0 also executes the device drivers that con-
trol the physical hardware of the machine. Each phys-
ical platform is equipped with one Sdom0 instance.
Each client gets its own Udom0 instance, short for
User-dom0, which the client can use to monitor and
control its VMs executing on that physical platform.
While Sdom0 holds the privileges to pause/unpause
client VMs, access their read-only state (e.g., number
of vCPUs assigned or their RAM allocation), and man-
age their virtual I/O operations, the hypervisor disal-
lows Sdom0 from mapping the memory and vCPU reg-
isters of any of the client’s VMs (i.e., Udom0, UdomUs
and SDs, introduced below).

Aside from these administrative domains, each plat-
form also hosts the client’s work VMs, called Udo-
mUs. Each client’s Udom0 has the privileges to ad-
minister that client’s UdomUs. For example, it can map
the memory of a UdomU, a feature that can be used to
implement memory introspection tools, such as rootkit

detectors. Likewise, Udom0 can set I/O backends for
the UdomU, thereby intercepting the I/O path of the
UdomU. This feature can be used to implement intru-
sion detection by inspecting I/O traffic.

Although Udom0 has the privileges to perform
the aforementioned tasks, SSC’s design aims to keep
Udom0 stateless for the most part. Thus, SSC also
supports service domains (SDs), which can perform
these administrative tasks on client VMs. An SD can
be started by the Udom0, which delegates specific priv-
ileges over a target UdomU (or a set of UdomUs) to the
SD. For example, Udom0 can create a rootkit detection
SD, and give it privileges to map the memory contents
of all the client’s UdomUs on that platform.

All physical hardware on the platform is controlled
by Sdom0. Thus, all I/O performed by a client’s VMs is
ultimately relayed to and performed by Sdom0. By our
threat model, Sdom0 is potentially malicious and can
therefore inspect/modify the client’s I/O traffic. How-
ever, clients can still protect their I/O traffic via inter-
ception. For example, the Udom0 could set a UdomU’s
storage and network I/O backends to be an SD that en-
crypts all outgoing traffic. Thus, I/O from the UdomU
first traverses the SD, which encrypts the traffic before
relaying it to the Sdom0, which is therefore unable to
inspect the traffic.

The final component of SSC is a platform-wide do-
main builder (domB). The sole responsibility of domB
is to create VMs in response to client requests. Building
a VM on a platform requires accessing the VM’s mem-
ory and registers onto the physical platform. Because
this task is privacy-sensitive, it cannot be performed by
Sdom0 although it involves mapping the client VM’s
state onto the physical platform. The TCB therefore in-
cludes domB, which is entrusted with this responsibil-
ity. DomB also interacts with the TPM, and hosts the
code to virtualize the TPM for individual clients [4].

A client session to create VM instances on an SSC
platform begins with a request to create a Udom0 in-
stance. As discussed above, Udom0 instances are state-
less for the most part, and it is therefore possible to
use off-the-shelf OS distributions to create Udom0s.
Udom0 creation happens via a protocol (described in
the original paper [5]) that also installs the client’s SSL
private key in its memory. Note that Udom0 memory
is inaccessible to Sdom0, thereby protecting the pri-
vate key from cloud operators. This key enables an
SSL handshake with the client, thereby allowing the
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creation of an encrypted communication channel. The
client then transmits future requests for VM creations
(e.g., UdomUs and SDs) via this channel to Udom0,
which then creates these VMs for the client on the
physical host.

3. The Need for a New Control Plane for SSC
The control plane of traditional cloud platforms is re-
sponsible for monitoring resource usage of individual
hosts, and suitably placing or migrating client VMs us-
ing the cloud provider’s load balancing policies. It is
also responsible for deciding where any client-chosen
services offered by the cloud provider (e.g., an intrusion
detection service) will be placed on the network. Exam-
ples of such software include VMWare’s vCloud, Ama-
zon Web Services, OpenStack, OpenNebula, Cloud-
Stack, and Eucalyptus.

The control plane of an SSC-based cloud platform
must have two key features:
(1) Allowing clients to specify inter-VM dependen-
cies. By introducing per-client administrative domains
(Udom0s), SSC gives clients the ability to create SDs
that can have specific administrative privileges over
UdomUs, and the ability to interpose on their I/O paths.
Thus, clients must be able to specify how the VMs that
they propose to create are inter-related. For example,
a client may wish to specify that an SD that he cre-
ates has the privileges to map the memory of one of
its UdomUs. A consequence of this dependency is that
these two VMs, i.e., the SD and the UdomU, must re-
side on the same physical host. Likewise, the client
can specify that an SD is to serve as the network mid-
dlebox for a collection of UdomUs. The control plane
must respect this dependency in placing VMs, ensuring
that all outgoing and incoming network connections to
any UdomU in that collection will first traverse the SD.
This invariant must be maintained even if any of the
UdomUs or the SD itself are migrated.

While traditional control planes do support middle-
boxes, the key difference is that these middleboxes are
offered as services by the cloud provider. Both client-
defined middleboxes and privileged SDs are unique to
the SSC platform. The control plane of an SSC plat-
form must be aware of and enforce these dependencies
during execution.
(2) Presenting a unified administrative interface to
the client. On SSC, each platform that hosts a client
VM must also have a Udom0 instance executing on

it. This is because the Udom0 hosts the client’s SSL
private keys, which are required for the SSL handshake
with the client, as described in Section 2.2.

Naı̈vely using traditional control plane software with
such a setup can lead to security holes. For example, a
client may strategically create VMs in a manner that
forces the cloud provider to place them on different
physical hosts e.g., by creating a large number of VMs
that place large resource demands on individual hosts.
The client could leverage the fact that there is a Udom0
instance on each physical platform that executes at
least one of the client’s VMs to estimate the number
of physical hosts in the cloud, or to map the cloud
provider’s network topology.

SSC’s control plane must provide the illusion of a
single administrative interface to the client, while hid-
ing the presence of individual Udom0 instances. The
control plane must suitably relay administrative opera-
tions from this interface to the corresponding Udom0
instances. It is also responsible for transparently han-
dling VM migrations across hosts.

4. SSC’s Control Plane

The control plane of most traditional cloud platforms
has three key components. First is a platform-wide
cloud controller. This component has a global view
of the provider’s infrastructure, and is tasked with al-
locating resources to clients elastically, provisioning
and scheduling virtual machines. Cloud providers may
choose to partition their infrastructure into multiple
zones for fault tolerance and scalability, and execute
multiple instances of cloud controllers in each zone.
Second is a per-host node controller. This component
typically executes as a daemon within dom0, and in-
teracts with the hypervisor on the platform to monitor
local resource consumption, and reports these statistics
to the cloud controller. The third is a dashboard, which
is the interface via which clients interact with the cloud.
Each client’s dashboard instance reports the state of the
client’s slice of the cloud, e.g., the number of VMs ex-
ecuting, the resources consumed, and the current bill.

4.1 Components of SSC’s Control Plane

SSC’s control plane functionally enhances each of the
components discussed above and introduces new pro-
tocols for inter-component communication. It intro-
duces new client-centric features, such as the ability to
specify relationships among VMs and manage client-

4



(1) Clients interact with the dashboard frontend to specify VM
dependencies and to provide VM images to the cloud. All client
communication with the dashboard happens over SSL.
(2) The dashboard frontend communicates with the Cloud Con-
troller and provides it with inter-VM dependencies and the VM
configurations requested by the client.
(3) The Cloud Controller communicates with the dashboard
backend to provide VM placements. This may be in response
to client requests to create VMs or to initiate VM migration for
load balancing.
(4) The Node Controller periodically communicates with the
Cloud Controller to provide diagnostic information about indi-
vidual cloud nodes.
(5) The dashboard backend communicates with the Sdom0s
of individual hosts to create client meta-domains on the host
(i.e., the Udom0), as well as to initiate VM migration.
(6) Once a Udom0 is created on a host, the client communicates
with it via the dashboard frontend. This happens via SSL, and
is used to create new UdomUs and SDs as well as to configure
and operate them. The client remains oblivious to the number of
physical hosts used to execute its VMs, and is presented with the
illusion of communicating with a single administrative interface.
The dashboard routes requests to Udom0s of relevant hosts.

Figure 2. Components of the control plane and their in-
teractions. Communications labeled with shaded circles are
secured by SSL.

deployed middleboxes. From the cloud provider’s per-
spective, the new features include VM migration pro-
tocols, and the ability to provision resources while re-
specting client VM dependencies. Figure 2 summarizes
the components of the control plane, and their interac-
tions.

(1) Cloud Controller. SSC allows clients to specify
inter-VM dependencies (discussed in more detail in
Section 5). These dependencies may imply that certain
VMs must be co-located on the same physical host.
They may also specify how the I/O path of a client’s
work VM must be routed through the cloud. For exam-

ple, an SD that serves as the back-end for a UdomU
must lie on the I/O path of that UdomU, irrespective of
the machines on which the SD and UdomU are sched-
uled for execution.

The cloud controller must accept these specifications
from the client (via the dashboard) and produce a VM
placement satisfying these specifications. In doing so,
it has to account for the current load on various hosts
on the network and the resource requirements of the
client’s VMs. The cloud controller’s scheduler there-
fore solves a constraint satisfaction problem, and pro-
duces a placement decision that is then communicated
back to the dashboard. The dashboard interacts with in-
dividual hosts to schedule VMs for execution.

The cloud controller initiates VM migrations. Based
upon the resource usage information received from
node controllers, the cloud controller may decide that a
client’s VMs need to be migrated for load balancing. It
produces a new VM placement and communicates this
to the dashboard. The dashboard then communicates
with the source and target hosts to initiate the actual
migration of the VMs.

The client never directly interacts with the cloud
controller, nor does the cloud controller interact with
the client’s VMs. It simply produces VM placement
decisions and communicates them with the dashboard.
The client only trusts the cloud controller to produce a
fair VM placement decision. Violation of this trust can
potentially lead to denial of service attacks, which are
outside SSC’s threat model.
(2) Node Controller. A node controller executes as
a daemon within an individual platform’s Sdom0. It
can therefore monitor the resource utilization on the
host and control VM scheduling, but cannot create user
VMs (done by domB) or read/modify individual client
VMs.

The client never interacts directly with the node con-
troller. In fact, as an entity that executes within the
Sdom0, it is untrusted. The node controller cannot com-
promise the security of client VMs in any manner be-
sides launching denial of service attacks by failing to
schedule the VM for execution, or by reporting false
resource utilization to the cloud controller, thereby trig-
gering frequent VM migrations.
(3) Dashboard. In SSC, the dashboard serves as the
layer between the client and the cloud platform and has
two responsibilities: to interact with the client, and to
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interface with various components of the cloud plat-
form. Accordingly, we logically split the dashboard
into a frontend and a backend, as shown in Figure 2.

The dashboard frontend is an interface presented to
the client via which it can enter VM images to be
booted, and specify inter-VM dependencies. The fron-
tend communicates any inter-VM dependencies spec-
ified by the client to the cloud controller, which uses
this information to create a placement decision. How-
ever, the contents of the VM images itself are never
passed to the cloud controller. The dashboard directly
passes these images to the end hosts via an SSL channel
(whose setup we discuss in Section 4.2).

The dashboard backend orchestrates all communica-
tion between components of the cloud platform on be-
half of the client. It obtains placement decisions from
the cloud controller and transmits the client’s VM im-
ages to the hosts on which they must be created. All
communication between the dashboard and the end
hosts is secured by the aforementioned SSL channel to
protect it from any network snooping attacks launched
by malicious cloud operators.

Because the dashboard handles sensitive informa-
tion (client VM images), it is part of the TCB. While
it is possible to implement the dashboard in any man-
ner that allows the client to trust it, we chose to imple-
ment the dashboard itself as a VM that executes atop
an SSC hypervisor. We assume that the cloud provider
will dedicate a set of physical hosts simply to execute
dashboard VMs for its clients. We call this machine the
dashboard host. Each new client gets a dashboard VM
instance that executes as a Udom0 on the SSC hypervi-
sor. This ensures that even the cloud operator on these
physical hosts cannot tamper with the execution of the
client’s dashboard VM instance.

4.2 Overall Operation of the Control Plane

A client begins its interaction with an SSC platform
by first requesting a dashboard VM instance. During
the creation of this VM instance, the client configures
it so that the client can communicate with with the
dashboard VM via SSL. It then provides VM images
to this dashboard instance over the SSL channel, which
then starts the VMs on physical cloud hosts on behalf
of the client. In this section, we present and analyze the
protocols that are used for these steps.
Dashboard Creation and Operation. A client creates
a dashboard VM instance using the protocol shown in

1. client→ Sdom0 : nTPM, EncAIK(freshSym||nSSL),
Sigclient

2. Sdom0→ domB : C D(nTPM,
EncAIK(freshSym||nSSL), Sigclient)

3. domB→ client : TPMSign(nTPM||PCR), ML
4. domB→ Sdom0 : Schedule the dashboard for execution
5. DashVM→ client : nSSL
6. client→ DashVM : EncfreshSym(SSLpriv)
7. client↔ DashVM : SSL handshake

Figure 3. Protocol to create a dashboard VM instance.

Figure 3. It communicates with the “cloud provider,”
in this case the Sdom0 VM of the dashboard host. The
first message of the protocol consists of a nonce (nTPM),
together with a piece of ciphertext (freshSym||nSSL)
encrypted using the AIK public key of the TPM of the
dashboard host.1 Here freshSym is a fresh symmetric
key produced by the client, while nSSL is a nonce; we
explain their roles below. The client also digitally signs
the entire message (denoted in Figure 3 as Sigclient).

The Sdom0 of the dashboard host communicates
these parameters to its domB via the C DB
command, which is a new hypercall to the underly-
ing hypervisor. This command instructs domB to use
the VM image used by the cloud provider for dash-
board VMs, and create an instance of the VM for the
client. DomB does so after verifying the client’s dig-
ital signature. In this step, domB also communicates
with the TPM to decrypt the message encrypted un-
der its AIK public key, and places freshSym and nSSL
in the newly-created dashboard VM instance. Because
the dashboard host executes an SSC hypervisor, the
contents of this dashboard VM instance are not acces-
sible to Sdom0, which therefore cannot read freshSym
and nSSL.

At this point, the client can verify that the dash-
board VM has been created correctly. DomB sends a
digitally-signed measurement from the TPM, contain-
ing the contents of its PCR registers and nTPM, together
with the measurement list (as is standard in TPM-based
attestation protocols [4, 28]). We assume that cloud
provider will make the measurements of dashboard VM
instances publicly-available. This is a reasonable as-
sumption because the dashboard VM does not contain
any proprietary code or data. All information propri-

1 We assume that the TPM is virtualized [4], and that the corre-
sponding vTPM drivers execute in the dashboard host’s domB.
Thus, the AIK public key used in this message is that of the vir-
tual TPM instance allocated to this client. We assume that the client
interacts with the cloud out of band to obtain this AIK public key.
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etary to the cloud provider is in other components of the
platform, such as the cloud controller. The dashboard
VM simply encodes the protocols discussed in this pa-
per to interact with the client as well as with com-
ponents of the cloud’s control plane. Thus, the cloud
provider can even make the code of the dashboard VM
available for public audit.

In the last two steps of the protocol, the dashboard
VM instance interacts with the client to obtain the pri-
vate key portion of the client’s SSL key pair (SSLPriv).
This key is used in the SSL handshake between the
client and the dashboard VM, thereby allowing the
establishment of an SSL channel between the two.
The dashboard VM sends the nonce nSSL to the client,
who sends in turn SSLPriv encrypted under freshSym,
which is known only to the dashboard VM. This allows
the dashboard VM to retrieve SSLPriv.

The protocol is designed to prevent attacks whereby
a malicious cloud operator attempts to impersonate the
client to start a dashboard VM instance as the client.
The use of freshSym in the protocol ensures that the
dashboard VM that is created has a secret value known
only to the client. Two key features of SSC prevent the
cloud operator from learning the value of freshSym:
(a) the fact that the ciphertext sent in the first message
can only be decrypted by the TPM (via domB), and
(b) the fact that Sdom0 cannot obtain values stored in
the memory of a dashboard VM instance. These fea-
tures together allow the client to bootstrap the SSL
handshake in a secure fashion. Finally, the nonces
nTPM and nSSL prevent attempts by a malicious cloud
provider to replay the protocol.
Creation and Operation of Client VMs. Once the dash-
board VM is set up using the protocol discussed above,
the client can create its VMs. It provides these VM im-
ages via the SSL channel to the dashboard. However, to
boot these VMs on a physical host, the dashboard VM
must still communicate with the Sdom0 on that host,
which is untrusted.

To protect client VMs, which may contain sensitive
code and data, from untrusted Sdom0s, we require that
the first client VM that is booted on a physical plat-
form be its Udom0. This is also the case during cloud
controller-initiated VM migration, where client VM in-
stances are moved from a source host to a target host
that does not have any of the client’s VMs. As dis-
cussed in Section 2.2, Udom0 is a stateless adminis-
trative interface for the client. It could therefore run a

standard OS distribution, and not contain any sensitive
client code or data. As a result, its image can be pro-
vided to the Sdom0 on the physical host. The dashboard
does so on behalf of the client. The protocol to start a
Udom0 on a host resembles Figure 3, with the major
difference that the Udom0 image is also supplied in the
first step. The original SSC paper [5] provides the steps
of this protocol together with a security analysis, and
we elide a description in this paper. The Udom0 can
then accept VM images from the dashboard to create
UdomUs and SDs on the physical host.

Note that the client never interacts directly with the
Udom0. Rather, the dashboard VM serves as a trusted
intermediary. The dashboard presents the client with
the illusion of a unified administrative interface, regard-
less of the number of Udom0 instances executing on
various physical hosts. The dashboard interfaces with
each of the physical hosts to start VMs and verifies
TPM measurements after the VMs boot. The only vir-
tual TPM key that is exposed to the client is the AIK
public key of the dashboard host.

5. Specifying Inter-VM Dependencies

Clients on an SSC platform can use SDs to imple-
ment middleboxes offering novel security and system
services. These middleboxes can either hold specific
privileges over the client’s VMs, or serve as their I/O
backends. SDs can also serve as I/O backends for other
SDs, allowing services to be composed flexibly (Fig-
ure 6 presents an example).

SSC’s control plane provides a language (Figure 4)
for clients to specify such inter-VM dependencies. The
client specifies these dependencies via the dashboard,
which forwards it to the cloud controller. SSC’s control
plane allows two kinds of inter-VM dependencies:

(1) G P dependencies. This rule allows
the client to specify that an SD must have specific
privileges over a UdomU. These privileges may in-
clude mapping the user- or kernel-level memory of the
UdomU, or reading vCPU registers. In the example
program shown in Figure 5, memscan vm is given the
privileges to map the kernel memory of webserver vm,
e.g., to detect rootkit infections.

This dependency implicitly places a co-location con-
straint. The SD and the UdomU must be started on the
same physical node. This is required because the oper-
ations to assign privilege (e.g., mapping memory) are
local to a node’s hypervisor and can only be performed
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Program := (Decl;)∗ (Init;)∗ (VMDep;)∗
Decl := VM vm // vm is a variable, VM is a keyword

Init := vm.name = String; vm.image = VM image
VMDep := GrantRule | BackRule

GrantRule := G P(sd, udomu, PrivType)
BackRule := S BE(backvm, frontvm, Device, Location)
PrivType := U M | K M | CPU

Device := S | N | . . .
Location := M C |M C

Figure 4. Language used to specify VM dependencies.

VM webserver vm; // Client’s Web server
VM empDB vm; // Client’s employee database
VM memscan vm; // Memory introspection SD
VM enc vm; // SSL proxy for the employee DB
VM Snort vm; // SD running the Snort NIDS

webserver vm.name = “MyWebServer”;
webserver vm.image = ApacheVM.img;
empDB vm.name = . . .; empDB vm.image = . . .;
memscan vm.name = . . .; memscan vm.image = . . .;
enc vm.name = . . .; enc vm.image = . . .;
Snort vm.name = . . .; Snort vm.image = . . .;

G P(memscan vm, webserver vm, K M);
S BE(Snort vm, webserver vm, N, M C);
S BE(enc vm, empDB vm, N, M C);

Figure 5. Example inter-VM dependency specification.

when both the SD and the UdomU run atop the same
hypervisor.
(2) S B dependencies. This rule specifies
that one VM must serve as the I/O backend for an-
other VM for a specific device type (we currently sup-
port storage and network devices). It also allows the
client to specify whether the two VMs must be co-
located (M C), or whether the cloud con-
troller can possibly place them on different physical
hosts (M C).

For example, a network back-end SD that runs an en-
cryption/decryption service for a client’s UdomU must
ideally be colocated on the same physical host as the
UdomU. This is necessary to protect the secrecy of
the client’s data before it reaches the device drivers
hosted in Sdom0. If on the other hand, the client is not
concerned about the secrecy of his network traffic, but
wishes only to check for intrusions, the SD that per-
forms network intrusion detection can potentially be
placed on another machine, provided that all inbound
traffic traverses the SD first before being routed to the
UdomU.

Figure 5 presents an example of such a scenario. The
client specifies that the network traffic to webserver vm
must be checked using Snort. The client does not con-
sider the traffic to and from the Web server to be sen-
sitive, so it may potentially be exposed to the cloud
provider. However, any interactions with its employee
records database empDB vm must happen over SSL.
The enc vm SD serves as the network I/O backend for
the empDB vm database, encrypting all outgoing traf-
fic and decrypting all incoming traffic, while residing
on the same host as empDB vm.

Note that on traditional cloud platforms, customers
usually do not control how their VMs are placed.
Rather, the cloud controller determines VM placements
based upon the global state of the cloud platform, the
configurations requested by the client, and the cloud
provider’s load balancing policies. However, SSC’s
control plane gives clients some control over how their
VMs are placed. For example, a client can specify that
a rootkit detection SD that inspects the memory of its
UdomUs must be placed on the same physical host as
the UdomUs.

The cloud controller’s scheduling algorithm uses
these requests as additional constraints. It processes
the entire program specified by the client to determine
VM placements. For example, consider the dependen-
cies shown in Figure 6. The client has a webserver vm
that receives data over an encrypted channel. The client
dedicates the enc vm VM to handle encryption and de-
cryption, while memscan vm scans the kernel memory
of webserver vm. Additionally, the client has specified
that all packet headers destined for the webserver vm
must be inspected by firewall vm. These rules imply
that memscan vm, webserver vm and enc vm must be
colocated on the same machine. However, firewall vm,
which only inspects packet headers and is set as the
backend for enc vm, can be located on a different host.

In general, it is possible to depict these dependen-
cies as a VM dependency graph, as shown in Fig-
ure 6. In this graph, an edge vm1→vm2 depicts that
vm1 either serves as the backend for vm2 or that vm1
has privileges over vm2. Edges are also annotated
with M C or M C to denote co-
location constraints.

In some cases, it may not be possible to resolve the
client’s VM dependencies, given hardware constraints
or the current load on the cloud infrastructure. In such
cases, the client is suitably notified, so that it can mod-
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G P(memscan vm, webserver vm, K );
S BE(enc vm, webserver vm, N, M CL);
S BE(firewall vm, enc vm, N, M CL);

Figure 6. Example showing inter-VM dependencies that
require certain VMs to be co-located. We have elided VM
declarations and initializations for brevity. Also shown is the
VM dependency graph for this example.

ify the dependencies. The dashboard also performs cer-
tain sanity checks on the program input by the client.
For example, it checks to determine that the VM de-
pendency graph implied by the program is acyclic (the
acyclic property is required to make migration deci-
sions, as discussed in Section 6). In such cases, the
dashboard raises a warning, akin to a compile-time er-
ror, so that the client can correct the program.

Once the specifications are accepted, and the cloud
controller produces a placement, the dashboard or-
chestrates the actual setup of the VMs. For a pair
of dependent VMs vm1→vm2 that are located on the
same physical host, enforcing the dependencies is rel-
atively straightforward. In case they are dependent via
a G P, the dashboard simply instructs the
Udom0 to assign suitable privileges over vm2 to vm1.
Likewise, the dashboard can instruct Udom0 to set vm1
as the device backend for vm2 in case of a S B
dependency.

However, vm1 and vm2 could be located on different
physical hosts (S and T , respectively) if they related
via a S B(vm1, vm2, . . ., M C). In
this case, the dashboard configures switches on the net-
work to route traffic destined for vm2 via vm1. More
concretely, SSC uses the Open vSwitch [25] software
switch for this purpose. In this case, the dashboard in-
structs the Udom0s on S and T to create SDs on these
hosts running the Open vSwitch software. On S , traffic
from vm1 is sent to the Open vSwitch SD running on
that host, which routes it to the Open vSwitch SD on T
via a Generic Routing Encapsulation (GRE) tunnel. On
T , this Open vSwitch SD is configured to be the back-
end of vm2, thereby routing traffic to vm2. Outbound
traffic from vm2 is routed via vm1 in a similar fashion.
Figure 7 illustrates the setup using the VMs for Figure 6
as an example.

Figure 7. Open vSwitch setup showing the path followed
by inbound network traffic to the web server example from
Figure 6. Outbound network traffic follows the reverse path.
The Udom0 instances and the memscan vm instance on Host
B are not shown.

The co-location constraints implied by SSC’s inter-
VM dependencies can possibly be miused by mali-
cious clients to infer proprietary information about the
cloud platform using probe-response attacks. In such
attacks, the client provides a program with a sequence
of G P dependencies, requiring a certain
number of VMs (say, n VMs) to be co-located on the
same physical host. The client could repeatedly probe
the cloud with programs that successively increase the
value of n. When the cloud controller is no longer able
to accommodate the client’s requests, the client can use
this failed request to gain insight into the limitations
of the hardware configurations of the cloud platform’s
hosts or into the current load on the cloud.

Such threats are definitely a possibility, and we view
them as the cost of giving honest clients the flexibil-
ity to control VM placements to enable useful services.
Nevertheless, there are defenses that the cloud provider
could use to offset the impact of such threats. For ex-
ample, the provider could pre-designate a cluster of ma-
chines to be used for clients with larger-than-usual VM
co-location constraints, and try to satisfy the client’s
requests on this cluster. This would ensure that the ef-
fects of any probe-response attacks that give the client
insight into the provider’s proprietary details are con-
strained to that cluster alone.

Finally, recent work in cloud security has focused on
the possibility of attacks enabled by VM co-location,
enabling a variety of malicious goals (e.g., [27, 34]).
These results are not directly applicable in our setting,
because SSC allows a client to specify VM co-location
constraints for its own VMs. In contrast, the works
cited above require co-location of a victim VM with
the attacker’s VM. Does allowing malicious clients to
co-locate their own VMs on a host ease the possibility
of launching attacks on other VMs co-located on that
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host? We don’t know the answer to this question, but it
would be prudent to acknowledge that such attacks may
be possible. Exploring the full extent of such attacks is
beyond the scope of this paper.

6. VM Migration

Most cloud platforms employ live migration [8] to min-
imize VM downtimes during migration. Live migration
typically involves an iterative push phase and a stop-
and-copy phase. When the cloud controller initiates the
migration of a VM, the source host commences the it-
erative push phase, copying pages of the VM over to
the target host, even as the VM continues to deliver
service from the source. This phase has several itera-
tions, each of which pushes VM pages that have been
dirtied since the previous iteration. When the number
of dirty pages falls below a threshold, a stop-and-copy
phase pauses the VM on the source, copies over any
remaining dirty pages of the VM, and resumes the VM
on the target. Because the number of dirty pages is sig-
nificantly smaller than the size of the VM itself, live
migration usually has small downtimes (sub-second in
several cases).

In SSC, the decision to migrate is made by the cloud
controller, which produces a new VM placement and
communicates it to the dashboard. The dashboard co-
ordinates with the source and target hosts to actually
perform the migration. The decision to migrate a client
VM can also result in the migration of other VMs that
are related to it. When a UdomU is migrated, all the
SDs that service the UdomU and must be co-located
with it must also be migrated. The cloud controller uses
the dependencies supplied by the client when produc-
ing a new placement decision after migration.

Dependency specifications also implicitly dictate the
order in which VMs must be migrated. Consider the ex-
ample in Figure 6. Both memscan vm and enc vm must
be colocated when webserver vm is migrated. How-
ever, because memscan vm and enc vm service web-
server vm, they must both continue to work as long
as webserver vm does. During the stop-and-copy phase
of live migration, webserver vm must be paused before
memscan vm and enc vm are paused. Likewise, on the
target host, memscan vm and enc vm must be resumed
before webserver vm. In general, the order in which
VMs must be paused and resumed can be inferred using
the VM dependency graph, which must be acyclic. All

(1) Cloud controller decides to migrate a group of
M C VMs (vm1, vm2, . . ., vmn) from source S
to target T .

(2) Dashboard uses VM dependency graph to determine the
order in which VMs must be paused on S and resumed at
T .

(3) Dashboard checks whether client has a Udom0 instance
running on T . If not, starts it as described in Section 4.2,
and specifies order in which VMs received must be started.

(4) Dashboard requests Udom0 on S to initiate migration to T ,
and specifies the order in which to pause the VMs.

(5) Udom0 on S establishes an encrypted channel to commu-
nicate with Udom0 on T

(6) Udom0 on S iteratively pushes VM pages to T .
(7) Udom0 on S pauses VMs (stop-and-copy phase) and sends

VM pages to Udom0 on T .
(8) Dashboard obtains TPM measurements from domB on S ,

containing hashes of paused VMs.
(9) Dashboard identifies any May Colocate VM backends

with dependencies on (vm1, vm2, . . ., vmn), and instructs
switches to update network routes from these backends to
T instead of S .

(10) Udom0 on T resumes the VMs, and forwards TPM mea-
surements obtained from domB on T to dashboard.

(11) Dashboard checks the TPM measurements obtained from
S and T for equality. If not equal, raises security alert.

(12) Dashboard determines whether there are any remaining
client VM instances on S . If not, it initiates a shutdown
of the Udom0 on S .

Figure 8. Migrating a group of co-located VMs.

of a VM’s children in the graph must be paused before
it is paused (and the opposite order for resumption).

Figure 8 summarizes the steps followed during mi-
gration. The dashboard orchestrates migration and
checks TPM attestations when VMs resume after being
migrated. It also parses the VM dependency graph and
identifies the order in which VMs must be migrated
and paused. The actual task of copying VM pages is
carried out by the Udom0 of the source host. When a
set of co-located VMs with M C dependen-
cies is migrated from a source to a target, there may be
VMs with M C dependencies that must be
suitably updated. For example, switches on the cloud
must be updated so that traffic to and from firewall vm
are routed to the target machine to which the VMs web-
server vm, enc vm and memscan vm are migrated. In
SSC, this is accomplished by suitably modifying the
configurations of the Open vSwitch SDs running on
the machines that host these four VMs after migration.
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7. Evaluation

The main goal of our experimental evaluation is to un-
derstand the performance overhead introduced by the
components of SSC’s control plane. Other aspects of
SSC, such as the overheads involved in creating VMs
on an SSC hypervisor and executing system services as
SDs (rather than within dom0), were evaluated in the
original SSC paper. Those experiments showed that an
SSC-based platform was competitive with a traditional
Xen-based platform, and focused on evaluating over-
heads incurred on a single host. Performance overheads
imposed by SSC were under 5% for system services
implemented as SDs in most cases.

We conducted two classes of experiments:
(1) Networked services. SSC’s control plane allows
networked services to be implemented as SDs. We eval-
uate the cost of running these SDs both when they are
co-located with UdomUs and when they are on a dif-
ferent host.
(2) Migration. We evaluate the cost of migrating VMs
and report VM down times for various configurations
of the migration algorithm.

7.1 Networked Services

All hosts in our setup execute an SSC-based hyper-
visor, which we implemented by modifying the priv-
ilege model of the Xen-4.3 hypervisor. In all our ex-
periments, we compare the overheads of SSC by com-
paring the performance of a networked service imple-
mented as an SD against the same network service
implemented in a traditional setup (i.e., within dom0
executing on an unmodified Xen-4.3 hypervisor). The
hosts in our setup are Dell Poweredge R610 systems
equipped with 24GB RAM, eight 2.3GHz Xeon cores
with dual threads (16 concurrent executions), Fusion-
MPT SAS drives, and a Broadcom NetXtreme II gi-
gabit NIC. All virtual machines in the experiments
(dom0, domU, Sdom0, Udom0, UdomU, SD, domB)
were configured to have 2GB RAM and 2 virtual CPUs.
Baseline Overhead. Our first experiment aims to eval-
uate the baseline overhead of running networked ser-
vices atop the SSC control plane. For this experiment,
we create a network SD netsd VM and set it as the
backend of a work VM udomu using S B(netsd,
udomu, N, M C). The SD netsd does no
additional processing on the packets that it receives,
and simply forwards them to udomu. (The remainder of

Figure 9. The network topologies used to evaluate the
baseline overhead of networked services executing atop
SSC. We only show the inbound network path. The outbound
path is symmetric.

Setup Throughput (Mbps) RTT (ms)
 configuration

Traditional 925.4±0.5 0.38±0
SSC 924.0±1.2 (0%) 0.62±0 (1.6×)

 configuration
Traditional 848.4±11.2 0.69±0

SSC 425.8±5.5 (49.8%) 1.6±0 (2.3×)

Figure 10. Baseline overhead of networked services.

this section talks about network SDs to achieve various
goals, and their overhead must be compared against this
baseline, which reports the best performance achiev-
able for a networked service implemented as an SD).
Under this setup, netsd may either be co-located on the
same host as udomu, or be located on a different host,
depending on the placement decision of the cloud con-
troller. Each setup results in a different network topol-
ogy, as illustrated in Figure 9. We evaluate both setups,
and use the keywords  and  to differ-
entiate the cases when netsd and udomu are co-located
or not. We compare these against a traditional setup,
where the networked service executes within dom0, ei-
ther on the same host or on a different host.

We dedicated a separate measurement host in the
same local network as our experimental infrastructure
to transmit and receive network packets to the udomu.
We measured the network throughput to udomu us-
ing the iperf3 [15] tool, and used ping to measure the
round-trip time (RTT) of network traffic to and from the
udomu. Our results report average over five executions
along with the standard deviations.

Figure 10 presents the results of our experiment. If
netsd is co-located with udomu, the throughput remains
unaffected. However, the RTT drops as a result of hav-
ing to traverse another element (netsd) on the path to
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the udomu. When netsd and udomu are on different
hosts, the RTT overhead increases to (2.7×) as a re-
sult of new network elements encountered in the path to
udomu. However, we observed that the throughput also
reduces to nearly 50% compared to the traditional non-
SSC-based setup. Upon further investigation, we found
that the reason for this is that the way Xen currently im-
plements support for backend network drivers prevents
concurrent bidirectional network transmission.

On Xen, dom0 executes the network driver (called
netback) that serves as the backend for all domU net-
work communication. Xen-4.3 uses only one kthread
in netback to process domU’s transmit and receive
queues [19]. The SSC hypervisor inherits this limita-
tion, and uses only one kthread in the netback drivers
of SDs that serve as backends for UdomUs. Thus,
if we consider the  configuration on a tradi-
tional Xen-based platform, where the functionality of
netsd executes within dom0, the network driver simply
receives inbound traffic from the measurement host,
and forwards it to the dom0 of the machine that hosts
udomu. In contrast, on an SSC-based platform, the net-
back driver within the Open vSwitch SD receives in-
bound traffic from the measurement host, forwards it to
netsd, receives traffic from netsd, and forwards this to
the Open vSwitch SD of the machine that hosts udomu
(as shown using the arrows in Figure 9). As a result,
even though the network hardware used in our experi-
ments supports concurrent bidirectional network band-
width of 1Gbps, the inability of the netback drivers to
support concurrent bidirectional transmission cuts the
throughput by approximately half.2

Network Access Control SD. Network access control
services (e.g., firewalls) are often the first layer of de-
fense in any operational network. Traditional network
access control services in the cloud, such as security
groups, allow clients to specify rules on network pack-
ets. However, security groups are quite restrictive and
only filter incoming packets. Our network access con-
trol SD is implemented as a middlebox that can be cus-
tomized by clients. In our implementation, we used a
set of rules that included a list of IP addresses and open

2 The throughput gap between the  case and the 
case in SSC allows a malicious client to infer whether netsd and
udomu are co-located. However, an enhanced implementation of
the netback driver in Xen, with separate kthreads to process trans-
mit and receive queues will address this attack (and improve net-
work throughput in the  case!)

Setup Throughput (Mbps)
 configuration

Traditional 925.1±0.7
SSC 923.2±1.6 (0%)
 configuration

Traditional 846.7±17.2
SSC 425.2±7.2 (49.7%)

Figure 11. Network Access Control Service.

ports for which packets should be accepted. The SD has
a M C dependency on the VM(s) it protects.

Figure 11 presents the performance of this SD, im-
plemented both in the traditional setting within dom0,
and atop SSC. The numbers here report overheads very
similar to the baseline, thereby showing that the extra
CPU processing overhead imposed by the SD is min-
imal. (RTT numbers were also similar to the baseline
numbers).
Trustworthy Network Metering. On traditional cloud
platforms, clients trust the cloud provider to correctly
charge them based upon the resources that they con-
sume. If a client has reason to believe that a cloud
provider is charging it for more than its share of
resources consumed, it cannot prove that the cloud
provider is cheating. What is therefore needed is a trust-
worthy service that performs resource accounting. Both
the cloud provider and the client must be able to access
the service and verify that the charges correspond to
the resource utilization of the client. Unfortunately, it
is impossible to design such a service on today’s cloud
platforms. Recent work [6] has investigated the possi-
bility of using nested virtualization to implement such
a service.

SSC allows the creation of such trustworthy re-
source accounting services. The key mechanism to do
so is SSC support for mutually-trusted service domains
(MTSDs), which were introduced in the original paper
on SSC [5]. MTSDs resemble SDs in all aspects but
two. First, unlike SDs, which are started and stopped
by the client, the cloud provider and the client collab-
orate to start or stop an MTSD. Second, although an
MTSD executes within a client’s meta-domain with
privileges to access other client VMs, a client cannot
tamper with or modify an MTSD once it has started.

MTSDs can be used to implement trustworthy net-
work metering as follows. The client and cloud provider
agree upon the software that will be used to account for
the client’s network bandwidth utilization. This meter-
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Setup Throughput (Mbps)
 configuration

Traditional 924.8±1.1
SSC 924.1±0.4 (0%)
 configuration

Traditional 845.4±11.1
SSC 424.3±3.1 (49.8%)

Figure 12. Trustworthy Network Metering Service.

ing software executes as an MTSD and serves as the
network backend for all of the client’s network-facing
VMs. The client and cloud provider can both verify
that the MTSD was started correctly (using TPM at-
testations), and the SSC hypervisor ensures that nei-
ther the cloud provider nor the client can tamper with
the MTSD once it has started execution. Thus, both
the cloud provider and the client can trust the network
bandwidth utilization reported by the MTSD.

Our network metering MTSD captures packets us-
ing the libpcap [33] library, simply counts the num-
ber of packets captured, and reports this number when
queried. Because it measures network bandwidth uti-
lization for all the client’s VMs, it must have a M C
dependency with all of them. Figure 12 shows the
impact of network metering service on the network
throughput of a single work VM (setup similar to Fig-
ure 9). As before, the additional overhead imposed over
the baseline is minimal.
Network Intrusion Detection. SSC allows clients to
deploy and configure customized network intrusion de-
tection systems as middleboxes. On traditional cloud
platforms, this is not possible. Rather, they are forced to
accept the offerings that the cloud provider has. More-
over, they cannot configure the placement of these mid-
dleboxes and must rely on the cloud provider to do so.

As an example, we used Snort to set up an intru-
sion detection system as a middlebox before our work
VMs. Snort uses libpcap[33] to capture network traffic.
Our setup uses the Stream5 preprocessor that performs
TCP reassembly and handles both TCP and UDP ses-
sions. We used the latest snapshot of signatures avail-
able from the Snort website in our setup. The Snort SD
has a May Colocate dependency on the UdomU(s) it
monitors. Figure 13 presents the results of our experi-
ments and shows that the overhead imposed by an SD
implementation of Snort is minimal.
VMWall service. VMWall [31] is a virtualized application-
level firewall. In the traditional setting, VMWall op-

Setup IDS
 configuration

Traditional 922.8±1.1
SSC 920.9±1.9 (0%)
 configuration

Traditional 841.2±14.2
SSC 422.6±7.1(49.7%)

Figure 13. Network intrusion detection (Snort) service.

Setup Time (µsec)
Traditional 1014±6

SSC 1688±31 (66%)

Figure 14. Time to establish a TCP connection in
VMWall.

erates as a daemon within dom0, and intercepts net-
work packets originating from the VM that it monitors.
It then performs memory introspection of the VM to
identify the process that is bound to the network con-
nection. VMWall permits the flow only if the process
belongs to a whitelist. Implemented as an SD, VMWall
serves as the network backend for the UdomU that it
monitors. It must also have the privileges to inspect
the memory of the UdomU, so that it can identify the
process from which the flow originates.

Our re-implementation of VMWall uses libvmi [23,
35] for memory introspection. Figure 14 presents the
results of our experimental evaluation of VMWall. We
measured the TCP connection setup time using a sim-
ple client/server setup. Compared to the traditional
setup, establishing a TCP connection with the VMWall
SD incurs an overhead of 66%. The main reason for
this overhead is that in the traditional setup, TCP con-
nections are established within dom0 itself. In SSC,
connection requests are forwarded from Sdom0 to the
VMWall SD, resulting in overhead.

7.2 Evaluating VM Migration

We measure the performance of VM migration using
two metrics: VM down time and overall migration time.
Recall from Section 6 that migration happens in two
phases, an iterative push phase, and a stop-and-copy
phase. The VM down time metric measures the time
taken by the stop-and-copy phase, while the overall mi-
gration time measures the time from the initialization of
VM migration to its completion.

We perform three sets of experiments to evaluate
VM migration. In the first experiment, we migrate a
single VM in SSC and compare it against migration
on a traditional Xen platform. In our second experi-

13



Setup Time (seconds)
Traditional 23.27±0.11

SSC 23.81±0.03 (2%)

Figure 15. Total migration time for one virtual machine.

# of VMs Sequential (seconds) Parallel (seconds)
2 47.29±0.18 27.91±0.16
4 128.89±0.76 57.78±0.49
(a) Udom0 configured to have 2 virtual CPUs.

# of VMs Sequential (seconds) Parallel (seconds)
2 47.41±0.29 28.01±0.26
4 103.96±0.20 39.21±0.50
(b) Udom0 configured to have 4 virtual CPUs.

Figure 16. Migrating multiple virtual machines using se-
quential and parallel migration policies.

ment, we consider the case in SSC where a group of co-
located VMs must be migrated together. In this experi-
ment, we evaluate the performance implications of two
migration policies. Third, we evaluate how the length
of a dependency chain in the VM dependency graph
affects the performance of migration. The first two ex-
periments report the overall migration time only, while
the third experiment explores VM down time in detail.
For all the experiments reported in this section, we as-
sume that the VMs to be migrated are 1GB in size, and
are configured with 1 virtual CPU. The setup is oth-
erwise identical to the one used in Section 7.1 except
when otherwise mentioned.
Migrating a Single VM. Figure 15 reports the time
to migrate a single VM from one host to another in a
traditional setting and on an SSC platform. The small
overhead (2%) in the SSC setting can be attributed to
the extra steps involved in migrating a VM in SSC,
in particular, setting up a Udom0 at the target host.
Note that because migration is live, the VM is still
operational on the source as it is being migrated to
the target. The down time in this case is approximately
100ms (as discussed in more detail in Section 7.2).
Migrating a Group of VMs. When a group of depen-
dent co-located VMs (vm1, vm2, . . ., vmn) is live mi-
grated from one host to another, there are two options
to implement iterative push. The first is to iteratively
push vm1, vm2, . . ., vmn sequentially. The second option
is to iteratively push all n VMs using the available par-
allelism in the underlying physical platform. The trade-
off is that while parallel migration approach can lead to
lower migration times, it can saturate the network link
and increase CPU utilization.

Chain length Down time (ms)
1 97±4
2 308±3
3 528±8
4 778±7

Figure 17. Down time for migrating VMs.

Figure 16(a) presents the overall time required to mi-
grate a group of 2 VMs and 4 VMs, respectively, us-
ing the sequential and parallel migration policies. Nat-
urally, the overall time to migrate using the parallel pol-
icy is smaller than for the sequential policy. We also
used the iftop utility to measure the peak network uti-
lization during VM migration. We found that with the
sequential policy network utilization never exceeded
40%, while for the parallel migration policy, peak net-
work utilization never exceeded 70%, even when four
VMs are migrated in parallel. For this experiment, the
Udom0 (which performs migration) is configured to
have 2 virtual CPUs and 2GB RAM, as discussed be-
fore.

To determine whether increasing the number of vir-
tual CPUs assigned to the Udom0 can increase network
utilization (and thereby reduce overall VM migration
time), we repeated the experiments with the Udom0
configured to have 4 virtual CPUs and 2 GB RAM. Fig-
ure 16(b) shows that in this case, the time to migrate 2
VMs remains relatively unchanged and so does the net-
work utilization (at 40%). When 4 VMs are migrated,
the Udom0 is able to exploit the underlying parallelism
in the host to complete migration faster. However, this
comes at a cost, and the network utilization of the host
shoots to 100%.
VM Downtime. Recall from Section 6 that dependent
co-located VMs are migrated in the order specified by
the VM dependency graph, i.e., all children of a VM
must be paused before it is paused, and vice versa
for resumption. Typically, this means that a client’s
UdomUs that are serviced by several SDs (which may
themselves be serviced by other SDs) must be paused
before the SDs, and must be resumed on the target host
only after all the SDs have been resumed. Thus, the
length of a dependency chain in this graph affects the
performance of the stop-and-copy phase.

To evaluate the down time of a UdomU serviced by
several SDs, we created dependency chains of vary-
ing length using the S B rule, i.e., we created
a chain of SDs sd1→sd2→. . .→sdn→udomu each of
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which was the backend for another. We migrated these
VMs from one host to another, and measured the down
time of the udomu. We only used the parallel migration
policy for this experiment. Figure 17 presents the result
of this experiment, showing the number of VMs in the
dependency chain. As expected, the result shows that
the down time increases with the length of this chain,
adding ∼200ms for each VM in the chain.

8. Related Work

Techniques based on Nested Virtualization. Turtles [2]
demonstrated that nested virtualization is possible with
relatively low overheads. Since then, nesting has been
implemented in popular virtualization platforms such
as KVM. A number of recent projects have exploited
this trend to provide many of the features that SSC
does.

CloudVisor [37] uses nesting to protect the con-
tents of user VMs from cloud operators. It does so
using a small bare-metal hypervisor atop which the
cloud’s hypervisor executes. The bare-metal hypervi-
sor only exports an encrypted view of the client’s VMs
to dom0. CloudVisor’s approach has the advantage of
presenting a small TCB and using strong cryptographic
techniques to protect security. However, it is unclear
whether CloudVisor can be extended to implement SD-
like services on client VMs.

XenBlanket [36] uses nesting to allow clients to im-
plement their own services on their VMs. XenBlanket
is a hypervisor-like layer that executes atop the cloud’s
hypervisor. The client can deploy SD-like services and
administer its VMs, all of which execute atop XenBlan-
ket. However, XenBlanket does not aim to protect the
security of client VMs from cloud operators.

It may be possible to achieve the goals of both
CloudVisor and XenBlanket using two levels of nest-
ing. However, research has shown that the overheads of
nesting grow exponentially with the number of nested
levels [17].
Techniques based on Software-defined Networking.
SDN technologies allow programmatic control over the
network’s control elements. Clients implement policies
using a high-level language, and SDN configures indi-
vidual network elements to enforce these policies. The
SDN-based effort most closely related to SSC is Cloud-
NaaS [3], which develops techniques allow clients to
flexibly introduce middleboxes. Recent work on SIM-

PLE [26] enhances this basic model to allow composi-
tion of middleboxes.

We view this line of work as being complementary to
SSC. SSC enables a number of new features that cannot
be implemented using SDN alone—protecting client
VMs from cloud operators, endowing SDs with specific
privileges over client VMs via G P, spec-
ifying rich inter-VM dependencies, and offering VM
dependency-aware migration policies. SSC currently
uses Open vSwitch-based VMs to suitably route traffic
to client VMs that have a network middlebox hosted
on a different physical machine. It may be possible to
leverage SDN technology to enable such routing.
Other Work Related to SSC. Aside from work in the
two broad areas discussed above, SSC is also related
more broadly to work on improving the client VM se-
curity in cloud environments. Efforts in this direction
include reducing the size of the cloud’s TCB (e.g., us-
ing tiny hypervisors [21, 30, 32] and hardware-only
techniques [18]). SSC takes a practical approach by
working with a commodity hypervisor. While this has
the implication of having a TCB of relatively large size,
it also ensures that popular hypervisor features, often
developed in response to customer demand, are sup-
ported by SSC. In taking this approach, SSC follows
the lead of the work by Murray et al. [22] and Xoar [7].

9. Summary

The SSC platform, originally introduced in prior work [5],
offers a new hypervisor privilege model that protects
client code and data from cloud operators while si-
multaneously giving clients greater and more flexible
control over their VMs running in the cloud. While the
original paper on SSC focused on the hypervisor priv-
ilege model, it left largely unaddressed the question of
how to build a distributed cloud computing platform
using such hypervisors.

This paper fills that gap, and presents the design and
implementation of SSC’s control plane. Novel features
of this control plane include giving clients the abil-
ity to specify inter-VM dependencies, allowing flexi-
ble placement of middleboxes, and new VM migration
protocols to support these features. With the control
plane in place, SSC can serve as an alternative to cur-
rent cloud platforms, giving clients greater security and
flexibility over their VMs in the cloud setting.
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