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ABSTRACT

Smart personal devices equipped with a wide range of sen-
sors and peripherals can potentially be misused in various
environments. They can be used to exfiltrate sensitive in-
formation from enterprises and federal offices or be used
to smuggle unauthorized information into classrooms and
examination halls. One way to prevent these situations is
to regulate how smart devices are used in such restricted
spaces. In this paper, we present an approach that robustly
achieves this goal for ARM TrustZone-based personal de-
vices. In our approach, restricted space hosts use remote
memory operations to analyze and regulate guest devices
within the restricted space. We show that the ARM Trust-
Zone allows our approach to obtain strong security guaran-
tees while only requiring a small trusted computing base to
execute on guest devices.

1. INTRODUCTION

Smart personal computing devices, such as phones, tablets,
glasses, watches, health monitors and other embedded de-
vices have become an integral part of our daily lives. We
carry these devices as we go, and expect them to connect
and work with the environments that we visit.

While the increasing capability of smart devices and uni-
versal connectivity are generally desirable trends, there are
also environments where these trends may be misused. In
enterprise settings and federal institutions, for instance, ma-
licious personal devices can be used to exfiltrate sensitive
information to the outside world. In examination settings,
smart devices may be used to infiltrate unauthorized infor-
mation [5] or surreptiously collude with peers [36] and cheat
on the exam. Even in less stringent social settings, smart de-
vices may be used to record pictures, videos or conversations
that could compromise privacy. We therefore need to regu-
late the use of smart devices in such restricted spaces.

Society currently relies on a number of ad hoc methods for
policy enforcement in restricted spaces. In the most stringent
settings, such as in federal institutions, employees may be re-
quired to place their personal devices in Faraday cages and
undergo physical checks before entering restricted spaces. In
corporate settings, employees often use separate devices for
work and personal computing needs. Personal devices are
not permitted to connect to the corporate network, and em-
ployees are implicitly, or by contract, forbidden from storing
corporate data on personal devices. In examination settings,
proctors ensure that students do not use unauthorized elec-
tronic equipment. Other examples in less formal settings
include restaurants that prevent patrons from wearing smart
glasses [33], or privacy-conscious individuals who may re-
quest owners to refrain from using their devices.

We posit that such ad hoc methods alone will prove inad-
equate given our increasing reliance on smart devices. For
example, it is not possible to ask an individual with prescrip-
tion smart glasses (or other assistive health device) to refrain
from using the device in the restricted space. The right so-
Iution would be to allow the glass to be used as a vision cor-
rector, but regulate the use of its peripherals, such as cam-
era, microphone, or WiFi. A general method to regulate the
use of smart devices in restricted spaces would benefit both
the hosts who own or control the restricted space and guests
who use smart devices. Hosts will have greater assurance
that smart devices used in their spaces conform to their us-
age policies. On the other hand, guests can benefit from and
be more open about their use of smart devices in the host’s
restricted space.!

Prior research projects (e.g., [14, 25, 35, 38, 43, 44]) and
enterprise-grade mobile-device management (MDM) solu-
tions to address this problem (e.g., Samsung Knox [45], Mi-

"'We only consider overt use of guest devices. Covert use must still
be addressed using other methods, such as physical checks.



crosoft Intune [34] and Blackberry EMM [12]) have typi-
cally assumed that guest devices are benign. In these solu-
tions, the guest device is outfitted with a security-enhanced
software stack that is designed to accept and enforce poli-
cies supplied by restricted space hosts. A host must trust
the software running on a guest device to correctly enforce
its policies, and generally has no means to obtain guarantees
that a guest device is policy-compliant. Clearly, a malicious
guest device with a suitably-modified software stack can eas-
ily bypass policy enforcement.

Our vision is to enable restricted space hosts to enforce us-
age policies on guest devices with provable security guaran-
tees. Simultaneously, we also wish to reduce the amount of
trusted policy-enforcement code (i.e., the size of the security-
enhanced software stack) that needs to execute on guest de-
vices. To that end, we make the following advances:

(D Use of trusted hardware. We leverage the ARM Trust-
Zone [3] on guest devices to offer provable security guaran-
tees. In particular, a guest device can use the ARM Trust-
Zone to produce verification tokens, which are unforgeable
cryptographic entities that establish to a host that the guest is
policy-compliant. Malicious guest devices, which may have
violated the host’s policies in the restricted space, will not
be able to provide such a proof, and can therefore be appre-
hended by the host. Devices that use the ARM TrustZone
are now commercially available and widely deployed [8],
and our approach applies to these devices.

(2 Remote memory operations. We use host-initiated re-
mote memory operations as the core method to regulate guest
devices. In this approach, a host decides usage policies that
govern how guest devices must be regulated within the re-
stricted space. For example, the host may require certain pe-
ripherals on the guest device (e.g., camera, WiFi or 3G/4G)
be disabled in the restricted space. The host sends these poli-
cies to the guest device, where a trusted policy-enforcement
mechanism applies these policies by reading or modifying
device memory.

The principal benefit of using remote memory operations
as an API for policy enforcement is that it considerably sim-

plifies the design and implementation of the policy-enforcement

mechanism, while still offering hosts fine-grained control
over guest devices. Remote memory operations also give
hosts that use our approach the unique ability to scan guest
devices for kernel-level malware. Combined with the ARM
TrustZone, which helps bootstrap trust in the guest’s policy-
enforcement code, our approach offers hosts an end-to-end
assurance that guest devices are policy-compliant.

(@ Secure device checkpointing. The downside to enforc-
ing policies by modifying device memory is that changes to
the guest device are ephemeral, and can be undone with a
simple reboot of the guest device. We therefore introduce
REM-suspend, a secure checkpointing scheme to ensure that
a guest device remains “tethered” to the host’s policies even
across device reboots and other power-down events.

@ Vetting for guest device privacy and security. The ad-
vances above benefit hosts, but guests may be uncomfort-
able with the possibility of hosts accessing and modifying
raw memory on their devices. If access to raw guest device
memory is not mediated, malicious hosts may be able to use
this access to compromise the guest’s privacy and security.
For example, the host can reading sensitive and private app
data from devices and install malicious snooping software
(e.g., keyloggers) on the guest device. We therefore mediate
the host’s access to the guest device by introducing a vet-
ting service. The vetting service is trusted and configurable
by guests, and allows them to check the safety of the host’s
memory operations before performing them on the devices.
The vetting service ameliorates guests’ privacy and security
concerns and restricts the extent to which hosts can control
their devices.

We built and evaluated a prototype to show the benefits
of our approach. We show that a small policy-enforcing
code base running on guest devices offers hosts fine-grained
policy-based control over the devices. We also show that a
vetting service with a few simple sanity checks allows guests
to ensure the safety of the host’s remote memory operations.

2. RESTRICTED SPACES

We provide an overview of the restricted space model,
motivate some features of our enforcement mechanism, and
describe our threat model. Because our mechanism relies on
the ARM TrustZone, we begin by introducing its features.

2.1 Background on the ARM TrustZone

The TrustZone is a set of security enhancements to chipsets
based on the ARM architecture. These enhancements cover
the processor, memory and peripherals. With TrustZone,
the processor can execute instructions in one of two secu-
rity modes at any given time, a normal world and a secure
world. A third monitor mode facilitates switching between
the normal and the secure worlds. The secure and normal
worlds have their own address spaces and different privi-
leges. The processor can switch from the normal world to
the secure world via an instruction called the secure mon-
itor call (smc). When an Smc instruction is invoked from
the normal world, the processor context switches to the se-
cure world (via monitor mode) and freezes execution of the
normal world.

The ARM TrustZone can partition memory into two por-
tions, with one portion being exclusively reserved for the
secure world. It also allows individual peripherals to be as-
signed to the secure world. For these peripherals, hardware
interrupts are directly routed to and handled by the secure
world. While the normal world cannot access peripherals or
memory assigned to the secure world, the secure world en-
joys unrestricted access to all memory and peripherals on the
device. It can therefore access the code and data of the nor-
mal world. The secure world can execute arbitrary software,
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Guest devices are equipped with ARM TrustZone and execute compo-
nents of the policy enforcement mechanism in the secure world (SW).
The details of this mechanism appear in Section 4. At check-in, the
host’s policy server leverages the secure world to remotely inspect and
modify normal world (NW) memory.

Figure 1: An overview of the entities of our restricted space model and the setup of guest devices.

ranging from simple applications to an entire operating sys-
tem (OS).

A device with ARM TrustZone boots up in the secure
world. After the secure world has initialized, it switches to
the normal world and boots the OS there. Most TrustZone-
enabled devices are configured to execute a secure boot se-
quence that incorporates cryptographic checks into the se-
cure world boot process [3, §5.2.2]. For example, the de-
vice vendor could sign the code with its private key, and the
vendor’s code in the boot ROM would verify this signature
using the vendor’s public key. These checks ensure that the
integrity of the boot-time code in the secure world has not
been compromised, e.g., by reflashing the image on persis-
tent storage. Most vendors lock down the secure world via
secure boot, thereby ensuring that it cannot be modified by
end-users. This feature allows hosts to trust software exe-
cuting in the secure world and treat it as part of the trusted
computing base (TCB). In this paper, we assume that guest
devices use secure boot.

2.2 Entering and Exiting Restricted Spaces

Check-in. When a guest enters a restricted space, he checks
in each of his devices during entry (Figure 1). During check-
in, the guest device communicates with the host’s policy
server for the following tasks:

@ Authentication. The first step is for the host and the
guest to mutually identify each other. We assume that both

the guest and the host have cryptographic credentials (e.g., pub-

lic/private key pairs) that can be validated via a trusted third
party, such as a certifying authority. The host and the guest
mutually authenticate each other’s credentials in the standard
way, as is done during SSL/TLS handshakes.

The host’s policies are enforced by a mechanism that ex-
ecutes in the secure world of the guest device. We rely on
TrustZone’s secure boot sequence to prevent unauthorized

modifications to this code. Note that the end-user’s usual
work environment on the device, e.g., the traditional An-
droid, iOS or Windows environment with apps, executes in
the normal world (and is untrusted). We expect the secure
world software running the mechanisms proposed in this pa-
per to be created and distributed by trusted entities, such as
device vendors, and execute in isolation on guest devices.

(2 Host remotely reads guest state. The host requests the
guest device for a snapshot of its normal world memory and
CPU register state. The secure world on the device fulfills
this request (after it has been cleared by the vetting service)
and sends it to the host. The secure world also sends a
cryptographic checksum of this data to prevent unauthorized
modifications during transit.

The host uses raw memory pages from the device in two
ways. First, it scans memory pages to ensure that the nor-
mal world kernel is free of malicious software. A clean nor-
mal world kernel can bootstrap additional user-level secu-
rity mechanisms, e.g., an antivirus to detect malicious user-
level apps. Second, it extracts the normal world’s configu-
ration information. This includes the kernel version, the list
of peripherals supported, memory addresses of various de-
vice drivers for peripherals and the state of these peripherals
e.g., whether a certain peripheral is enabled and its settings.
The host can also checkpoint the configuration for restora-
tion at check-out.

(3 Host remotely modifies guest state. The host modifies
the guest device to conform to its restricted usage policies.
The host’s restrictions on a guest device depend on what it
perceives as potential risks. Cameras and microphones on
guest devices are perhaps the most obvious ways to violate
the host’s confidentiality because they can be used to photo-
graph confidential documents or record sensitive meetings.
Networking and storage peripherals such as WiFi, 3G/4G,
Bluetooth and detachable storage dongles can work in con-
cert with other peripherals to exfiltrate sensitive information.



Dually, guest devices can also be used to infiltrate unautho-
rized information into restricted spaces, e.g., students can
cheat on exams by using their devices to communicate with
the outside world.

The host controls peripherals on guest devices by creating
a set of updates to the device’s normal world memory and
requesting the secure world to apply them. For example,
one way to disable a peripheral is to unlink its driver from
the device’s normal world kernel (details in Section 3). The
secure world applies these updates after using the vetting
service to ensure the safety of the requested updates.

We assume that it is the host’s responsibility to ensure that
the memory modifications are not easily bypassable. For ex-
ample, they may be undone if the user of the guest device can
directly modify kernel memory, e.g., by dynamically loading
kernel modules or using /dev/kmem in the normal world.
The host must inspect the guest device’s snapshot for con-
figurations that could lead to such attacks, and disallow the
use of such devices in the restricted space.

In steps 2) and @), the secure world performs the host’s
read and write operations only if they are approved by the
vetting service. Guests can configure the vetting service to
suit their security and privacy goals. If the vetting service
deems an operation unsafe, device check-in is aborted and
the device is left unmodified. The guest cannot use the de-
vice in the restricted space because its security and privacy
goals conflict with the host’s usage policies.

(@ Host obtains verification token from guest. After the
guest device state has been modified, its secure world pro-
duces a verification token to be transmitted to the host. The
verification token is a cryptographic checksum over the mem-
ory locations that were modified. The token is unforgeable
in that only the secure world can re-create its value as long
as the host’s memory updates have not been altered, and any
malicious attempts to modify the token can be detected by
the secure world and the host.

At any point when the device is in the restricted space, the
host can request the device to send it the verification token.
The secure world on the device computes this token afresh,
and transmits it to the host,” which compares this freshly-
computed token with the one obtained during check-in. It
can use this comparison to ensure that the guest has not al-
tered the normal world memory updates from the previous
step. The verification token is ephemeral, and can be com-
puted afresh by the guest only within an expiration period.
The token expires upon device check-out or if the device is
powered off, thereby ensuring that end-users cannot undo
the host’s memory updates by simply rebooting the device.
In Section 4.4, we describe restricted space-mode (REM)
suspend, a special protocol that suspends the device while

This assumes that the host’s policy still allows communication be-
tween the host and the guest. If all of the guest’s peripherals are dis-
abled, the host must physically access the guest to visually obtain
the fresh token.

allowing the verification token and the host’s memory up-
dates to persist.

Check-out. Once checked-in, the guest device can freely
avail of the facilities of the restricted space under the policies
of the host. For example, in Figure 1, the smart glass and
watch can pair with the smart phone via Bluetooth, while
the smart phone can use the host’s WiFi access point. When
the guest checks-out, two tasks must be accomplished:

(D Host checks guest state. The host requests the guest to
send the verification token to ensure that the device is policy-
compliant. The token may not match the value obtained
from the device at check-in if the host’s memory modifica-
tions have been maliciously altered or if the end-user chose
to consciously bypass REM-suspend and reboot the device.
It is not possible to differentiate between these cases, and
the host’s policy to deal with mismatches depends upon the
sensitivity of the restricted environment. For example, in a
federal setting, detailed device forensics may be necessary.
As previously discussed, hosts can request the verification
token from the device at any time when it is in the restricted
space. Hosts can use this feature to frequently check the ver-
ification token to narrow the timeframe of the violation.

) Restoring guest state. To restore the state of the de-
vice, the end-user simply performs a traditional device re-
boot. The host only modifies the memory of the device, and
not persistent storage. Rebooting therefore undoes all the
memory modifications performed by the host and boots the
device from an unmodified version of the kernel in persis-
tent storage. Alternatively, the host can restore the state of
the device’s peripherals from a checkpoint created at check-
in. The main challenge here is to ensure consistency be-
tween the state of a peripheral and the view of the peripheral
from the perspective of user-level apps. For example, when
the 3G interface is disabled, an app loses network connec-
tivity. However, because we only modify memory and do
not actually reset the peripheral, the 3G card may have ac-
cumulated packets, which the app may no longer be able to
process when the kernel state is restored. Mechanisms such
as shadow drivers [52] can possibly enable such “hot swaps”
of kernel state and avoid a device reboot.

2.3 Threat Model

We now summarize our threat model. From the host’s
perspective, the guest device’s normal world is untrusted.
However, the host trusts device manufacturers and vendors
to equip the secure world with TrustZone’s secure boot pro-
tocol. This allows the host to establish trust in the secure
world, which contains the policy-enforcement code. It is
the host’s responsibility to inspect the normal world mem-
ory snapshot to determine whether it is malicious, contains
known exploitable vulnerabilities, or allows guests to bypass
its memory modifications. From the guest device’s perspec-
tive, the host may attempt to violate its security and privacy
by accessing and modifying normal world memory. The



guest relies on the vetting service, which it trusts, to de-
termine the safety of the host’s remote memory operations.
Guests must keep their devices powered-on or use REM-
suspend to ensure that verification tokens persist during their
stay in the restricted space.

Out-of-Scope Threats. The guest device’s normal world
may contain zero-day vulnerabilities, such as a new buffer
overflow in the kernel. The host may not be aware of this
vulnerability, but a malicious guest may have a successful
exploit that allows the host’s policies to be bypassed. While
such threats are out of scope, the host may require the guest’s
normal world to run a fortified software stack (e.g., Samsung
Knox [8] or MOCFI [21]) that implements defenses for com-
mon classes of attacks. The host can check this requirement
during the inspection phase. A malicious guest device may
also launch a denial-of-service attack, which will prevent the
host from communicating with the secure world on the guest
device. Such attacks can be readily detected by the host,
which can prevent the device from checking-in. We also do
not consider physical attacks whereby an adversarial guest
attempts to bypass the host’s memory updates by modify-
ing the contents of the device’s memory chip using external
methods.

We restrict ourselves to guest devices that use the ARM
TrustZone. It may still be possible for hosts to enforce usage
policies on non-TrustZone devices using other means (see
Section 7). However, it is not possible to provide strong se-
curity guarantees without trust rooted in hardware. While
such “legacy” devices are still pervasive today, modern de-
vices are outfitted with the TrustZone, and data from Sam-
sung [8] indicates that millions of ARM TrustZone devices
are already deployed. We hypothesize that in the future,
hosts will have to contend with fewer legacy guest devices
than they do today.

Finally, we only consider overt uses of guest devices in re-
stricted spaces. Covert uses, where a guest stealthily smug-
gles a device into the restricted space without check-in and
carefully avoids an electronic footprint (e.g., by shielding the
device from the host’s WiFi access points), must still be ad-
dressed with traditional physical security methods.

3. REMOTE MEMORY OPERATIONS

We now discuss how hosts can use remote memory read
and write operations to analyze and control guest devices.

Analysis of Guest Devices. A host can analyze memory
snapshots of a guest’s normal world kernel to determine its
configuration and scan it for kernel malware (also called
kernel-level rootkits).

(@ Retrieving configuration information. The host can

determine the kernel version by inspecting code pages, thereby

also allowing it to check if the guest has applied recom-
mended security patches. The host can compare a hash of
each kernel code page against a whitelist, e.g., of code pages

in approved Android distributions, to ensure that the normal
world is free of malicious kernel code [31, 47]. Additionally,
the host can ensure that the kernel is configured to disal-
low well-known attack surfaces, e.g., access to /dev/kmem
and dynamic module loading. Finally, the host can iden-
tify addresses at which functions of a peripheral’s driver are
loaded, where they are hooked into the kernel and the ad-
dresses that store memory-mapped peripheral settings. To
do so, it can use the recursive memory snapshot traversal
technique described below. The host can use this informa-
tion to design the set of memory updates that reconfigure the
device to make it policy-compliant.

@ Detecting malicious data modifications. Rootkits can
achieve malicious goals by modifying key kernel data struc-
tures [10, 39, 40]. The attack surface exposed by kernel data
structures is vast. For instance, a rootkit could inject a device
driver in kernel memory and modify kernel function point-
ers to invoke methods from this driver. Other examples of
data structures that can be misused include process lists, en-
tropy pools used by the kernel’s random number generator,
and access control structures [10, 39].

We now describe a generic approach, developed in prior
work [9, 15, 19, 26, 40], that hosts can use to detect such ma-
licious data modifications by analyzing the normal world’s
memory snapshot. The main idea is to recursively traverse
the memory snapshot and reconstruct a view of the kernel’s
data structures, and use this view to reason about the in-
tegrity of kernel data. We assume that the host has access
to the type declarations of the data structures used by the
guest device’s normal world kernel, e.g., the sizes, layouts,
and fields of every data structure. The host obtains this in-
formation from trusted repositories using the kernel version,
extracted as discussed earlier.

Snapshot traversal starts from well-known entrypoints into
the system’s memory, e.g., the addresses of the entities in
System.map. When the traversal process encounters a pointer,
it fetches the memory object referenced by the pointer and
recurses until all objects have been fetched. Having recon-
structed a view of kernel data structures, the host can then
determine whether they have been maliciously modified. For
example, it could check that function pointers in the kernel
point to functions defined in the kernel’s code space [40].
Similarly, the host can check that the kernel’s data structures
satisfy invariants that typically hold in an uncompromised
kernel [9]. We do not further elaborate on specific rootkit
detection policies because they are orthogonal to our focus.

A rootkit-infected OS kernel can be reliably diagnosed
only by externally observing its code and data, e.g., using
memory snapshots as already discussed. Prior techniques
that enforce policies on guest devices using security-enhanced,
policy-enforcing normal world kernels (e.g., [12, 14, 25, 34,
35, 38, 43—-45]) can also benefit from our approach to estab-
lish normal world kernel integrity to hosts.

We have restricted our discussion to an analysis of the nor-
mal world’s kernel memory snapshot. In theory, it is possi-
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a dummy driver.

Figure 2: Uninstalling peripheral device drivers using re-
mote write operations to kernel memory.

ble for a host to also request and analyze the normal world’s
user-space memory, e.g., for malicious apps that reside in
memory or on the file system. However, in practice, user-
space memory may contain sensitive information stored in
apps, which guests may be unwilling to share with hosts. For
example, guests can configure their vetting service to mark
as UNSAFE host requests to fetch user-space memory pages
(see Section 5).

To ensure user-space security, hosts can leverage the nor-
mal world kernel after establishing that it is benign, e.g., us-
ing the snapshot traversal methods described above. The

host can require the normal world kernel to execute a mutually-

agreed-upon anti-malware app in user-space. At check-in,
the host scans the process list in the device’s kernel memory
snapshot to ensure that an anti-malware is executing. This
app can check user-space memory and the file-system for
malicious activity. At check-out, it can ensure that the same
app is still executing by comparing its process identifier to
the value obtained at check-in,® thereby ensuring that the
anti-malware app was active for the duration of the guest’s
stay.

Control over Guest Device Peripherals. Hosts can control
the availability and configuration of peripherals on guest de-
vices via remote memory updates to the devices. After an-
alyzing the guest’s memory snapshot, hosts prepare a set of
memory updates to control various peripherals on guest de-
vices. These updates can be used to simply uninstall periph-
erals that may be misused violate the host’s policies. Our
overall approach to controlling peripherals is to update pe-
ripheral device drivers. On modern OSes, each peripheral
has an interface within the kernel. This interface consists of
a set of function pointers that are normally set to point to
the corresponding functions within the peripheral’s device
driver, which communicates with the peripheral.

We adopted two broad strategies to update device drivers:

3The security of this scheme is based on the fact that PIDs on UNIX
systems are, for all practical purposes, unique on a given system.
For example, while they can be recycled, it requires a large counter
to wrap around.

@ Nullifying interfaces (Figure 2(a)). This approach sim-
ply sets the function pointers in the peripheral’s interface to
NULL. If the kernel checks these pointers prior to invoking
the functions, it will simply return an error code to the appli-
cation saying that the device is not installed. This approach
has the advantage of only involving simple writes to the ker-
nel (NULL bytes to certain addresses), which can easily be
validated as safe if the guest so wishes. However, we found
in our evaluation (Section 6) that this approach can crash the
device if the kernel expects non-NULL pointers.

@ Dummy drivers (Figure 2(b)). In this approach, the
host writes a dummy driver for the peripheral and links it
with the kernel in place of the original driver. If the dummy
driver simply return a suitable error code rather than com-
municating with the peripheral, it has the effect of unin-
stalling the peripheral. The error code is usually bubbled
up to and handled by user apps. Some apps may not be pro-
grammed to handle such errors, so an alternative approach
could be for the dummy driver to return synthetic periph-
eral data instead of error codes [11]. Dummy drivers can
also offer fine-grained peripheral control. For example, with
3G/4G, it may be undesirable to simply uninstall the modem
to disable voice messaging because it also prevents the guest
from making emergency calls. The host can avoid this by
designing a dummy driver that allows calls to emergency
numbers alone, while disabling others. In this approach,
the host introduces new driver code into the guest. From
the guest’s perspective, this code is untrusted and must be
safety-checked by the vetting service.

4. POLICY ENFORCEMENT MECHANISM

We now present the design of our policy enforcement mech-
anism, which executes in the guest’s secure world. The host
must establish a channel to communicate with the guest’s
secure world. This channel must be integrity-protected from
adversaries, including the guest’s untrusted normal world.
One way to set up such a channel is to configure the secure
world to exclusively control a communications peripheral,
say WiFi, and connect to the host without involving the nor-
mal world. Thus, the secure world must also execute the
code necessary to support this peripheral. For peripherals
such as WiFi, this would require several thousand lines of
code from the networking stack to run in the secure work.

Our design aims to minimize the functionality that is im-
plemented in the secure world. In our design, the normal
world is assigned all peripherals on the guest device and
therefore controls all external communication from the de-
vice. It establishes the communication channel between the
secure world and the host. All messages transmitted on the
channel are integrity-protected by the message sender using
cryptographic checksums. The secure world itself provides
support for just four key operations: mutual authentication
(Section 4.1), remote memory operations (Section 4.2), veri-
fication tokens (Section 4.3), and REM-suspend (Section 4.4).
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@ The host communicates with the UT app on the guest and sends requests
to perform remote memory operations. (2) The UI app uses the vetting
service to determine the safety of the request. 3) If determined to be safe,
the UI app forwards this request to the supporting kernel module. (4) The
kernel module invokes the secure world by performing a world switch.
(® The secure world performs the requested memory operations on the
normal world memory on behalf of the host. The components in the normal
world (the UI app and kernel module) are untrusted. We rely on ARM
TrustZone’s secure boot to establish trust in the secure world.

Figure 3: Guest device setup showing components of the
policy enforcement mechanism.

Guest devices are therefore set up as shown in Figure 3.
Within the normal world, the end-user’s interface is a user-
level app (called the UI app) that allows him to interact with
the host for device check-in and check-out. The app inter-
acts with the components in the secure world via a kernel
module. The host sends a request to perform remote mem-
ory operations on the guest device to the app. The app de-
termines the safety of this request using the vetting service
(Section 5), and forwards the request to the kernel module,
which invokes sSmc to world switch into secure world. The
components of the secure world then perform the request
and communicate any return values to the host via the Ul
app. All messages include a message-authentication code
computed using a key established during the mutual authen-
tication step.

We do not place any restrictions on how the host and guest
device communicate. Thus, the host’s policy server could
be hosted on the cloud and communicate with the guest de-
vice over WiFi or 3G/4G. Alternatively, the host could in-
stall physical scanners at a kiosk or on the entry-way to the
restricted space. Guest devices would use Bluetooth, NFC,
or USB to pair with the scanner and use it to communicate
with the host.

The core mechanisms that run in the secure world of the
guest device have two key features. They are policy-agnostic
in that the same mechanisms can be used to enforce a vari-
ety of host policies. The narrow read/write interface is also
platform-agnostic, and allows the same mechanisms to work
irrespective of whether the normal world runs Android, i0S
or Windows. This approach shifts complex device analysis
and policy formulation tasks to the hosts. Hosts would natu-

Let host’s public/private keypair be PubKeyH, PrivKeyH.

Let guest’s public/private keypair be PubKeyG, PrivKeyG.

1. Guest — Host: PubKeyG, Certificate(PubKeyG)

2. Host — Guest: PubKeyH, Certificate(PubKeyH)

3. Guest and host verify Certificate(PubKeyH) and Certifi-
cate(PubKeyG)

4. Host — Guest: M, EnCprivkeyn(M) (i.e., host signs M),
where M is ENCpupkeyc(ks, timestamp)

5. Guest verifies host’s digital signature, decrypts M to obtain
ks, and checks timestamp

Figure 4: Mutual authentication and establishment of & ;.

rally need to have separate modules to analyze and formulate
memory updates for various normal world OSes.

4.1 Authentication

The host and guest device begin by mutually authenticat-
ing each other (Figure 4). We assume that both the host and
the guest device have public/private key pairs with digital
certificates issued by a certifying authority. The guest device
stores its private key PrivKeyG in its secure world, thereby
protecting it from the untrusted normal world.

Authentication is akin to SSL/TLS handshakes. The host
and the guest exchange public keys and validate the cer-
tificates of these keys with the issuing authority. The host
then computes a session key kg, which is then transmitted
to the client over an secure channel. Note that k, is only
used to protect the integrity of messages transmitted between
the guest and the host and not their secrecy. The key k; is
stored in secure world memory, and is invisible to the normal
world. It persists across REM-suspends of the guest device,
but is erased from memory if the device is rebooted.

4.2 Remote Memory Operations

Remote Reads. During check-in the host typically requests
the guest to send raw memory pages from the normal world
for analysis. The UI app receives this request and performs a
world switch to complete the request. The world switch sus-
pends the UI app and transfers control to the secure world.
Each request is a set (or range) of virtual memory addresses
of pages that must be sent to the host. The host also includes
a message-authentication code, a SHA1-based HMAC in our
case, with the request. The HMAC is computed on the body
of the request using the key k negotiated during authentica-
tion.

The secure world checks the integrity of the request using
the HMAC. This step is necessary to ensure that the request
was not maliciously modified by the untrusted components
in the normal world. The secure world then translates each
virtual page address in the request to a physical page address
by consulting the page table in the normal world kernel. In
this case, the page table will correspond to the suspended
context in the normal world, i.e., that of the UI app, into
which the running kernel is also mapped. It then creates a
local copy of the contents of this physical page from the nor-
mal world, and computes an HMAC over the page (again us-



ing k). The page and its HMAC are then copied to a buffer
in the normal world, from where they can be transmitted to
the host by the UI app. The host checks the HMAC and
uses the page for analysis. This process could be iterative,
with the host requesting more pages from the guest device
based upon the results of the analysis of the memory pages
received up to that point.

Both the host and the secure world are isolated from the
normal world, which is untrusted. We only rely on the nor-
mal world kernel to facilitate communication between the
host and the secure world. Moreover, both the host and the
secure world use HMACs to protect the integrity of mes-
sages transmitted via the normal world. The normal world
may drop messages and cause a denial-of-service attack; how-
ever, such attacks are outside our threat model (see Sec-
tion 2.3). The host can therefore reliably obtain the memory
pages of the normal world to enable the kinds of analyses
described in Section 3. Communication between the host
and the secure world is not confidential and is therefore not
encrypted.* Thus, a malicious normal world kernel can po-
tentially snoop on the requests from the host to fetch pages
and attempt to remove the infection to avoid detection. How-
ever, this would have the desirable side-effect of cleaning the
guest device at check-in.

Remote Writes. The host reconfigures the guest by modify-
ing the running state of the normal world kernel via remote
memory updates. The host sends the guest a set of triples
(vaddr;, val;, old-val;) together with an HMAC of this re-
quest. The normal world conveys this message to the secure
world, which verifies its integrity using the HMAC. For each
virtual address vaddr; (which refers to a memory location in
the virtual address space of the UI app) in the request, the
secure world ensures that the current value at the address
matches old-val;. If all the old-val; values match, the secure
world replaces their values with val;; else the entire opera-
tion is aborted.

Because the normal world is frozen during the course of
this operation, the entire update is atomic with respect to the
normal world. When a remote write operation succeeds, the
secure world computes and returns a verification token to the
host. If not, it returns an ABORT error code denoting failure.

The host’s memory update request is aborted if the value
stored at vaddr; does not match old-val;. This design feature
is required because the host’s remote read and write opera-
tions do not happen as an atomic unit. The host remotely
reads pages copied from the normal world’s memory, ana-
lyzes them and creates remote write request using this anal-
ysis. During this time, the normal world kernel continues
to execute, and may have updated the value at the address
vaddr;.

“The host and guest could communicate over SSL/TLS, but this
channel on the guest ends at the UI app, which runs in the normal
world.

If the memory update is aborted, the host repeats the op-
eration until it succeeds. That is, it refetches pages from the
guest, analyzes them, and creates a fresh update. In theory, it
is possible that the host’s memory updates will abort ad in-
finitum. However, for the setting that we consider, aborts are
rare in practice. This is because our write operations modify
the addresses of peripheral device driver hooks. Operating
systems typically do not change the values of device driver
hooks after they have been initialized at system boot.

In theory, a remote memory write can also abort if the vir-
tual address vaddr; referenced in the request is not mapped
to a physical page in memory, i.e., if the corresponding page
has been swapped out to persistent storage. In practice, how-
ever, we restrict remote writes to kernel data pages that are
resident in physical memory, as is the case with device drivers
and pages that store data structures of peripherals. Thus, we
do not observe ABORTSs due to a failure to resolve vaddr;s.

It is possible to completely avoid such problems by de-
signing the both the read and write operations to complete
within a single world switch. During this time, the normal
world remains frozen and cannot change the view of mem-
ory exported to the host. The read and write operations will
therefore happen as an atomic unit from the normal world’s
perspective. However, in this case, the secure world must
have the ability to directly communicate with the host. As
previously discussed, we decided against this design because
it has the unfortunate consequence of bloating the function-
ality to be implemented in the secure world. Thus, we make
the practical design tradeoff of minimizing the functional-
ity of the secure world while allowing the rare remote write
failure to happen.

4.3 Verification Tokens

The host receives a verification token from the secure world
upon successful completion of a remote write operation that
updates normal world memory. A verification token VTOK[r]
is the value r||MemState||HMACy_ [r||MemState] where Mem-
State is (vaddry, valy)|| ... ||{(vaddry, val,), the set of vaddr;
modified by the remote write, and the new values val; at
these locations. The token VTOK[r] is parameterized by a
random nonce r. This nonce can either be provided by the
host together with the remote write request, or can be gener-
ated by the secure world.

Verification tokens allow the host to determine whether
the guest attempted to revert the host’s memory updates,
either maliciously or by turning off the guest device. To
do so, the host obtains a verification token VTOK[7 creckin ]
upon completion of check-in, and stores this token for val-
idation. During checkout, the host requests a validation to-
ken VTOK[7 checkout] from the guest over the same virtual
memory addresses. The secure world accesses each of these
memory addresses and computes the verification token with
Tcheckout @S the nonce. The host can compare the verifi-
cation tokens VTOK[7 checkin ] and VTOK[7 checkout ] to deter-



mine whether there were any changes to the values stored at
these memory addresses.

The nonces 7 checkin AN 7 checkowt €nsure the freshness of
VTOK[7 checkin] and VTOK[7 checkout]. The use of kg to com-
pute the HMAC in the verification token ensures that the to-
ken is only valid for a specific device and for the duration of
the session, i.e., until check-out or until the device is pow-
ered off, whichever comes earlier. Because k; is only stored
in secure world memory, it is ephemeral and unreadable to
the normal world. Any attempts to undo the host’s memory
updates performed at check-in will thus be detected by the
host.

4.4 Restricted Space Mode (REM) Suspend

If a guest device is rebooted, the host’s updates to de-
vice memory are undone and k; is erased from secure world
memory, thereby ending the session. However, it is some-
times necessary to suspend the device in the restricted space,
e.g., to conserve battery power. We design REM-suspend to
handle such cases and allow the session key kg to persist
when the device is woken.

The ARM TrustZone allows a device to be configured to
route certain interrupts to the secure world [3]. We route and
handle power-button presses and low-battery events in the
secure world by prompting the user to specify whether to
REM-suspend the device. When a guest device is checked
into a restricted space, we configure the default power-down
option to be REM-suspend; the default reverts to the tra-
ditional power-down sequence when the device checks out.
The user can consciously choose to bypass REM-suspend, in
which case the device shuts down the traditional way, thus
ending the session. The same happens if the device shuts
down due to other causes, e.g., power loss caused by remov-
ing the device’s battery.

When the guest device REM-suspends, the secure world
checkpoints normal world memory, which contains the host’s
updates, and the key kg, which are both restored when the
device is woken up. The main challenge is to protect the
confidentiality of k. The device user is untrusted, and can
read the contents of persistent storage on the device; ks must
thus be stored encrypted with a key that is not available to
the device user.

We achieve this goal using a feature of the ARM Trust-
Zone that provisions each device with a statistically-unique
one-time programmable secret key, which we will refer to as
Kpev. Kpey is located in an on-SoC cryptographic accelera-
tor, and accessible only to secure world software [3, §6.3.1].
Kpey cannot be read or changed outside the secure world,
other bus masters or the JTAG [29]. Kpe, allows confiden-
tial data to be encrypted and bound to the device, and has
previously been used in other research [16, 46]. Note that
Kpev is not the same as PrivKeyG, the device’s private key.

In REM-suspend, the secure world first checkpoints nor-
mal world memory and CPU registers, and suspends the ex-
ecution of the normal world. It sets a bit Brgym to record

that the device is REM-suspended. It stores the checkpoint
and Bgrgu, together with an HMAC of these values under
ks on the device’s persistent storage. The untrusted device
user does not know Kp,, and therefore cannot forge the en-
crypted value of k5. The HMACs under k; protect the in-
tegrity of the normal world checkpoint and Brgpm.

When the device is woken up, the secure world uses Brem
to check if the device is REM-suspended. If so, it uses
Kpev to retrieve kg, verifies the integrity of the normal world
checkpoint and Brgy using their HMACS, and starts the nor-
mal world from this checkpoint. The device resumes execu-
tion under the same session, and can continue to produce
verification tokens if requested by the host.

5. GUEST PRIVACY AND SECURITY

We built a vetting service trusted by guests to determine
the safety of a host’s request. We built it as a cloud-based
server, to which the guest device forwards the host’s mem-
ory updates together with a copy of its normal world mem-
ory image (via the UI app). We assume that the device and
the vetting service have authenticated each other as in Fig-
ure 4 or use SSL/TLS to obtain a communication channel
with end-to-end confidentiality and integrity guarantees. It
may also be possible to implement vetting within the secure
world itself. However, we chose not to do so to avoid bloat-
ing the secure world.

The vetting server checks the host’s requests against its
safety policies and returns a SAFE or UNSAFE response to
the device. The response is bound with a random nonce
and an HMAC to the original request in the standard way
to prevent replay attacks. The secure world performs the
operations only if the response is SAFE. Guests can config-
ure the vetting server with domain-specific policies to deter-
mine safety. Our prototype vetting service, which we built
as a plugin to the Hex-Rays IDA toolkit [1], analyzes mem-
ory images and checks for the following safety policies. Al-
though simple and based on conservative whitelisting, in our
experiments, the policies could prove safety without raising
false positives.

Read-safety. For each request to read from address vaddr;,
we return SAFE only if vaddr; falls in a pre-determined range
of virtual addresses. In our prototype, acceptable address
ranges only include pages that contain kernel code and ker-
nel data structures. The vetting server returns UNSAFE if
the read request attempts to fetch any addresses from kernel
buffers that store user app data, or virtual address ranges that
lie in app user-space memory.

Write-safety. Our prototype currently only allows write re-
quests to NULLify peripheral interfaces or install dummy
drivers that disable peripherals. We use the following safety
policy for dummy drivers. For each function f implemented
in the dummy driver, consider its counterpart f,,;, from the
original driver, which the vetting service obtains from the



[ Component Name [ LOC ]
Secure World (TCB)
Memory manager 1,381
Authentication 1,285
Memory ops. & verif. tokens 305
REM-suspend 609
SHAT+HMAC 861
X509 877
RSA 2,307
Normal World
Kernel module 93
Ul app 72

Figure 5: Sizes of components executing on the guest.

device’s memory image. We return SAFE only if the func-
tion f is identical to fo.4, Oor f’s body consists of a sin-
gle return statement that returns a valid error code (e.g., -
ENOMEM). We define an error code as being valid for f if
and only if the same error code is returned along at least one
path in f,.4. The intuition behind this safety check is that
f does not modify the memory state of the device or intro-
duce new and possibly buggy code, but returns an error code
that is acceptable to the kernel and client user apps. For more
complex dummy drivers that introduce new code, the vetting
service could employ a traditional malware detector or more
complex program analyses to scan this code for safety.

6. IMPLEMENTATION AND EVALUATION

We implemented our policy enforcement mechanism atop
a Freescale 1.MX53 Quick Start Board as our guest device.
This TrustZone-enabled board has a IGHz ARM Cortex A8
processor with 1GB DDR3 RAM. We chose this board as
the guest device because it offers open, programmable ac-
cess to the secure world. In contrast, the vendors of most

commercially-available TrustZone-enabled devices today lock

down the secure world and prevent any modifications to it. A
small part of main memory is reserved for exclusive use by
the secure world. On our i.MX53 board, we assigned the se-
cure world 256MB of memory, although it may be possible
to reduce this with future optimizations. The normal world
runs Android 2.3.4 atop Linux kernel version 2.6.35.3.

We built a bare-metal runtime environment for the se-
cure world, just enough to support the components shown
in Figure 3. This environment has a memory manager, and
a handler to parse and process commands received from the
host via the normal world. To implement cryptographic op-
erations, we used components from an off-the-shelf library
called PolarSSL (v1.3.9) [2]. Excluding the cryptography
library, our secure world consists of about 3,500 lines of C
code, including about 250 lines of inline assembly.

Figure 5 shows the sizes of various components. We used
PolarSSL’s implementation of SHA1 and HMACs, RSA and
X500 certificates. As shown in Figure 5, the files implement-
ing these components alone comprise only about 4,000 lines
of code. In addition to these secure world components, we
built the kernel module and the UI app (written as a native
daemon) for the normal world, comprising 165 lines of code.
We implemented a host policy server that authenticates guest
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Peripheral Method Used | Bytes modi- | Device
(see Figure 2) fied or added | used

USB (webcam) | NULLification 104 1.MX353

USB (webcam) | Dummy driver 302 1.MX53
Camera NULLification 140 Nexus
Camera Dummy driver 212 Nexus
WiFi Dummy driver 338 Nexus
3G (Data) Dummy driver 252 Nexus
3G (Voice) Dummy driver 224 Nexus
Microphone Dummy driver 184 Nexus
Bluetooth Dummy driver 132 Nexus

Figure 6: Peripherals uninstalled using remote write op-
erations to a guest device.

devices, and performs remote memory operations. We con-
ducted experiments to showcase the utility of remote reads
and writes to enforce the host’s policies on the guest. The
guest and the host communicate over WiFi.

Guest Device Analysis. To illustrate the power of remote
memory read operations to perform device analysis, we wrote
a simple rootkit that infects the guest’s normal world kernel
by hooking its system call table. In particular, it replaces the
entry for the close system call to instead point to a malicious
function injected into the kernel. The malicious functional-
ity ensures that if the process invoking close calls it with
a magic number, then the process is elevated to root. Al-
though simple in its operation, Petroni and Hicks [40] show
that over 95% of all rootkits that modify kernel data operate
this way.

We were able to detect this rootkit on the host by remotely
reading and analyzing the guest’s memory pages. We re-
motely read pages containing the init, text and data sections
of kernel memory. Our analyzer, a 48 line Python script,
reads the addresses in the system call table from memory,
and compares these entries with addresses in System.map.
If the address is not included, e.g., as happens if the en-
try for the close system call is modified, it raises an error.
For more sophisticated rootkits that modify arbitrary kernel
data structures, the host can use complex detection algo-
rithms [9, 15, 40] based on the recursive snapshot traversal
method outlined in Section 3.

For the above experiment, it took the secure world 54 sec-
onds to create an HMAC over the memory pages that were
sent to the host (9.2MB in total). It takes under a second
to copy data from the normal world to the secure world and
vice versa. It may be possible to accelerate the performance
of the HMAC implementation using floating point registers
and hardware acceleration, but we have not done so in our
prototype.

Guest Device Control. We evaluated the host’s ability to
dynamically reconfigure a guest device via remote memory
write operations. For this experiment, we attempted to dis-
able a number of peripherals from the guest device. How-
ever, the .MX53 board only supports a bare-minimum num-
ber of peripherals. As proof-of-concept, we therefore tested



USB MobileWebCam Camera ZOOM FX Retrica Candy Camera HD Camera Ultra
Pass;ve APPERRMSG APPERRMSG ANDROIDERRMSG APPERRMSG ANDROIDERRMSG
Active APPERRMSG APPERRMSG APPERRMSG APPERRMSG APPERRMSG

Camera Camera for Android Camera MX Camera ZOOM FX HD Camera for Android HD Camera Ultra
Passive ANDROIDERRMSG APPERRMSG APPERRMSG ANDROIDERRMSG ANDROIDERRMSG
Active BLANKSCREEN APPERRMSG ANDROIDERRMSG BLANKSCREEN BLANKSCREEN

WiFi Spotify Play Store YouTube Chrome Browser Facebook
Pass_lve LosSTCONN LoSTCONN LoSTCONN LoSTCONN LoSTCONN
Active LoSTCONN LoSsTCONN LoSTCONN LoSTCONN LoSTCONN

3G (Data) Spotify Play Store YouTube Chrome Browser Facebook
Passive LosTCONN LosTCONN LosTCONN LosTCONN LosTCONN
Active LoSTCONN LoSTCONN LoSTCONN LoSTCONN LoSTCONN

3G (Voice) Default call application
Passive ApPERRMsG: Unable to place a call
Active AppERRMsG: Unable to place a call

Microphone Audio Recorder Easy Voice Recorder | Smart Voice Recorder | Sound and Voice Recorder Voice Recorder

Passive APPERRMSG APPERRMSG APPERRMSG APPERRMSG APPERRMSG
Active EMPTYFILE EMPTYFILE EMPTYFILE EMPTYFILE EMPTYFILE

We use Passive to denote experiments in which the user app was not running when the peripheral’s driver was replaced with a dummy, and the app
was started after this replacement. We use Active to denote experiments in which the peripheral’s driver was replaced with a dummy even as the
client app was executing. (I) APPERRMsG denotes the situation where the user app starts normally, but an error message box is displayed within the
app after it starts up; ) BLANKSCREEN denotes a situation where the user app displayed a blank screen; (3) LosTCONN denotes a situation where the
user app loses network connection; (4) EMPTYFILE denotes a sitution where no error message is displayed, but the sound file that is created is empty;
(5 ANDROIDERRMSG denotes the situation where the user app fails to start (in the passive setting) or a running app crashes (in the active setting), and

the Android runtime system displays an error.

Figure 7: Results of robustness experiments for user apps.

the effectiveness of remote writes on a Samsung Galaxy Nexus
smart phone with a Texas Instruments OMAP 4460 chipset.
This chipset has a 1.2GHz dual-core ARM Cortex-A9 pro-
cessor with 1GB of RAM, and runs Android 4.3 atop Linux
kernel version 3.0.72. This device has a rich set of periph-
erals, but its chipset comes with TrustZone locked down,
i.e., the secure world is not accessible to third-party pro-
grammers. We therefore performed remote writes by mod-
ifying memory using a kernel module in its (normal world)
OS. Thus, while remote writes to this device do not enjoy the
security properties described in Section 4, they allow us to
evaluate the ability to uninstall a variety of peripherals from
a running guest device.

Figure 6 shows the set of peripherals that we uninstalled,
the method used to uninstall the peripheral (from Section 3),
the size of the write operation (i.e., the number of bytes that
we had to modify/introduce in the kernel), and whether the
operation was performed on the 1.MX53 or the Nexus. We
were able to uninstall the USB on the i.MX53 and the cam-
era on the phone by NULLifying the peripheral interface. For
other peripherals, we introduced dummy drivers designed
according to the safety criterion from Section 5. We also
used dummy drivers for the USB and the camera to compare
the size of the write operations. In this case, the size of the
write includes both the bytes modified in the peripheral inter-
face and the dummy driver functions. For the 3G interface,
we considered two cases: that of disabling only 3G data and
that of only disabling calls. Our experiment shows it is pos-
sible to uninstall peripherals without crashing the OS by just
modifying a few hundred bytes of memory on the running
device.

Installing a dummy driver disables the peripheral, but how
does it affect the user app that is using the peripheral? To
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answer this question, we conducted two sets of experiments
involving a number of client user apps that leverage the pe-
ripherals shown in Figure 6. In the first set of experiments,
which we call the passive setting, we start with a configura-
tion where the client app is not executing, replace the device
driver of the peripheral with a dummy, and then start the app.
In the second set of experiments, called the active setting, we
replace the peripheral’s device driver with the dummy as the
client app that uses the peripheral is executing.

Figure 7 shows the results of our experiments. For both
the passive and active settings, we observe that in most cases,
the user app displays a suitable error message or changes its
behavior by displaying a blank screen or creating an empty
audio file. In some cases, particularly in the passive setting,
the app fails to start when the driver is replaced, and the
Android runtime displays an error that it is unable to start
the app.

7. RELATED WORK AND ALTERNATIVES

TrustZone Support. A number of projects have used Trust-
Zone to build novel security applications. TrustDump [51]
is a TrustZone-based mechanism to reliably acquire memory
pages from the normal world of a device (Android LiME [24]
and similar tools [23, 50, 53] do so too, but without the
security offered by TrustZone). While similar in spirit to
remote reads, TrustDump’s focus is to be an alternative to
virtualized memory introspection solutions for malware de-
tection. Unlike our work, TrustDump is not concerned with
restricted spaces, authenticating the host, or remotely con-
figuring guest devices.

Samsung Knox [8] and SPROBES [22] leverage TrustZone
to protect the normal world in real-time from kernel-level



rootkits. These projects harden the normal world kernel by
making it perform a world switch when it attempts to per-
form certain sensitive operations to kernel data. A reference
monitor in the secure world checks these operations, thereby
preventing rootkits. In our work, remote reads allow the host
to detect infected devices, but we do not attempt to provide
real-time protection from malware. Our work can also lever-
age Knox to enhance the security of the normal world (Sec-
tion 2.3).

TrustZone has also been used to improve the security of

user applications. Microsoft’s TLR [46] and Nokia’s ObC [30]

use TrustZone to provide a secure execution environment
for user apps, even in the presence of a compromised ker-
nel. Other applications include ensuring trustworthy sen-
sor readings from peripherals [32] and securing mobile pay-
ments [42].

Enterprise Security. With the growing “bring your own de-
vice” (BYOD) trend, a number of research projects and en-
terprise MDM products (e.g., [12, 34, 45]) have developed
security solutions that enable multiple persona (e.g., [6, 14,
25]) or enforce mandatory access control policies on smart
devices (e.g., [14, 25, 48, 54]). Prior work has also ex-
plored context-based access control and techniques for re-
stricted space objects to push usage policies onto guest de-
vices (e.g., [17, 35, 37, 38, 43, 44]).

These projects tend to use one of two techniques. One is to
require guest devices to run a software stack enhanced with a
policy enforcement mechanism. For instance, ASM [25] in-
troduces a set of security hooks in Android, which consult a
security policy (installed as an app) that can be used to create
multiple persona on a device. Each persona is customized
with a view of apps and peripherals that it can use. Another
approach is to require virtualized guest devices [4, 6, 18, 20].
In this approach, a trusted hypervisor on the guest device en-
forces isolation between virtual machines implementing dif-
ferent persona.

The main benefit of these techniques over our work is the
greater app-level control that they provide. For example,
they can be used to selectively block sensitive audio and blur
faces by directly applying policies to the corresponding user
apps [28, 44]. These techniques are able to do so because
they have a level of semantic visibility into app-level behav-
ior that is difficult to achieve at the level of raw memory
operations.

On the other hand, our approach enjoys two main benefits
over prior work. First, our approach simplifies the design of
the trusted policy-enforcing code that runs on guest devices
to a TCB of just a few thousand lines of code. In contrast,
security-enhanced OSes and virtualized solutions required
hundreds of thousands of lines of trusted policy-enforcement
code to execute on guest devices. Prior research has inves-
tigated ways to reduce the TCB, e.g., by creating small hy-
pervisors [49]. However, the extent to which such work on
small hypervisors applies to smart devices is unclear, given
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that any such hypervisor must support a variety of different
virtualization modes, guest quirks, and hardware features on
a diverse set of personal devices.

The second benefit of our approach is that it provides se-
curity guarantees that are rooted in trusted hardware. Prior
projects have generally trusted guest devices to correctly im-
plement the host’s policies. This trust can easily be violated
by a guest running a maliciously-modified OS or hypervi-
sor. It is also not possible for a host to obtain guarantees that
the policy was enforced for the duration of the guest’s stay in
the restricted space. We leverage the TrustZone to offer such
guarantees using verification tokens and REM-suspend.

Other Hardware Interfaces. Hardware interfaces for re-
mote memory operations were originally investigated for the
server world to perform remote DMA as a means to bypass
the performance overheads of the TCP/IP stack [7, 27]. This
work has since been repurposed to perform kernel malware
detection [41] and remote repair [13]. These systems use
a PCI-based co-processor on guests via which the host can
remotely transfer and modify memory pages on the guest.

On personal devices, the closest equivalent to such a hard-
ware interface is the IEEE 1394 (Firewire), which is avail-
able on some laptops. However, it is not currently available
on smaller form-factor devices. Another possibility is to use
the JTAG interface [29], which allows read/write access to
memory and CPU registers via a few dedicated pins on the
chipset. However, the JTAG is primarily used for debugging
and is not easily accessible on consumer devices. One draw-
back of repurposing these hardware interfaces is that they
cannot authenticate the credentials of the host that initiates
the memory operation. Moreover, to use these hardware in-
terfaces on guest devices, the host needs physical access to
plug into them. Thus, these interfaces are best used when
the guest can physically authenticate the host and trust it to
be benign.

8. CONCLUDING REMARKS

This paper develops mechanisms that allow hosts to ana-
lyze and regulate ARM TrustZone-based guest devices us-
ing remote memory operations. These mechanisms can be
implemented with only a small amount of trusted code run-
ning on guest devices. The use of the TrustZone allows
our approach to provide strong guarantees of guest policy-
compliance to hosts. Our vetting service allows guests to
identify conflicts between their privacy goals and the hosts’
usage policies.

While this paper demonstrates technical feasibility of our
approach, questions about its adoptability in real-world set-
tings remain to be answered. For example, we can imag-
ine our solution to be readily applicable in settings such as
federal or corporate offices and examination halls, where re-
stricted spaces are clearly demarcated and the expectations
on guest device usage are clearly outlined. Will it be equally
palatable in less stringent settings, such as social gatherings



or restaurants? A meaningful answer to this question will
require a study of issues such as user-perception and will-
ingness to allow their devices to be remotely analyzed and
controlled by hosts. We hope to pursue these questions in
follow-on research.
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