1230

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 7, JULY 2013

Monitoring Integrity Using Limited Local Memory

Yuki Kinebuchi, Shakeel Butt, Vinod Ganapathy, Liviu Iftode, and Tatsuo Nakajima

Abstract—System integrity monitors, such as rootkit detectors,
rely critically on the ability to fetch and inspect pages containing
code and data of a target system under study. To avoid being
infected by malicious or compromised targets, state-of-the-art
system integrity monitors rely on virtualization technology to
set up a tamper-proof execution environment. Consequently, the
virtualization infrastructure is part of the trusted computing base.
However, modern virtual machine monitors are complex entities,
with large code bases that are difficult to verify. In this paper, we
present a new machine architecture called limited local memory
(LLM), which we use to set up an alternative tamper-proof execu-
tion environment for system integrity monitors. This architecture
builds upon recent trends in multicore chip design to equip each
processing core with access to a small, private memory area.
We show that the features of the LLM architecture, combined
with a novel secure paging mechanism, suffice to bootstrap a
tamper-proof execution environment without support for hard-
ware virtualization. We demonstrate the utility of this architecture
by building a rootkit detector that leverages the key features of
LLM. This rootkit detector can safely inspect a target operating
system without itself becoming the victim of infection.

Index Terms—Local memory, multicore, system integrity.

I. INTRODUCTION

N recent years, there has been extensive research on ap-

plying virtual machine technology to problems in security.
This research has been fueled both by the wide availability of
virtualization, such as in the cloud infrastructure, and the at-
tractive security guarantees provided by virtual machine moni-
tors (VMMs). VMMs implement a software layer that virtual-
izes system resources (the iypervisor) so that the operation of
one virtual machine does not affect the resources used by an-
other. This feature allows a security monitor to be easily iso-

Manuscript received March 08, 2012; revised July 18, 2012, October 25,
2012, and January 25, 2013; accepted May 18, 2013. Date of publication June
04, 2013; date of current version June 21, 2013. This work was supported in
part by the National Science Foundation under Grants CNS-0831268, CNS-
0915394, and CNS-1117711. Early versions of this paper were presented at
the 16th Pacific Rim International Symposium on Dependable Computing, De-
cember 2010, and the IEEE 27th International Conference on Embedded and
Real-Time Computing Systems and Applications, August 2011. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Miodrag Potkonjak.

Y. Kinebuchi was with the Distributed and Ubiquitous Computing Labora-
tory, Department of Computer Science and Engineering, Waseda University,
3-4-1 Ohkubo, Shinjuku-ku, Tokyo, Japan. He is now with Nvidia Japan ATT
New Tower, Tokyo 107-0052, Japan (e-mail: yukikine@gmail.com).

S. Butt, V. Ganapathy, and L. Iftode are with the Department of Computer
Science, Rutgers University, Piscataway, NJ 08854 USA. (e-mail: shakeelb@cs.
rutgers.edu; vinodg@cs.rutgers.edu; iftode@cs.rutgers.edu).

T. Nakajima is with the Distributed and Ubiquitous Computing Laboratory,
Department of Computer Science and Engineering, Waseda University, 3-4-1
Ohkubo, Shinjuku-ku, Tokyo, Japan (e-mail: tatsuo@dcl.info.waseda.ac.jp).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2013.2266095

lated from the system under study (the farget), in order to re-
main tamper-proof and function effectively. Such isolation is
central to the architecture of system integrity monitors that in-
spect the code and data of a potentially compromised target. For
instance, rootkit detectors (e.g., [39], [56], [41], [9], [40], [5],
[21], [26], [20], [9],[34], [47]) must be able to monitor a target
operating system for malicious changes that affect the integrity
of its code and data without exposing themselves to attack. Con-
temporary techniques to achieve isolation use VMMs to execute
the rootkit detector and the target operating system within dif-
ferent virtual machines (VMs). Hence, VMMs must be part of
the trusted computing base (TCB).

However, VMMSs represent a software-centric solution to
the problem of isolation. As with any other software layer,
they are also prone to the pitfalls of the software development
process. Modern VMM s contain thousands of lines of code and
exploitable vulnerabilities are routinely reported in them [15],
[16], [18], [17], [3], [27], [44]. For instance, in the Xen VMM
(v4.1), the hardware virtualizing layer (i.e., the Xen hyper-
visor) alone accounts for approximately 150 K lines of code.
In addition, a privileged VM that is used for administrative
purposes (i.e., dom0) runs a software stack with a full-fledged
operating system, including drivers for virtual devices and
user-level utilities, which constitute several million lines of
code. The TCB of the Xen VMM includes both the hypervisor
and the dom0 VM. It is no longer reasonable to assume that
such commodity VMMs can be easily verified, which is one
of the requirements for an entity that constitutes the TCB [4].
A compromised VMM completely subverts the security of the
system, exposing the virtual machines on that platform to a
variety of threats (e.g., see [31], [28]).

The primary reason behind the large code base in VMMs
is that virtualization is used to solve multiple problems: better
resource utilization, fault isolation, better management, safe
sharing of resources, replaying, debugging, and providing
isolation to security tools. More recently, virtualization has be-
come the driving force behind the multimillion cloud industry.
More vendors are joining the wagon of cloud business and are
competing for more features and functionalities. These trends
together have increased the size of the TCB in general purpose
VMM solutions, such as Xen, KVM, VMWare and HyperV.

The growing complexity of VMMs has motivated researchers
to consider solutions that reduce the amount of code in the
TCB. Some researchers have focused on developing tailored
VMMs for specific tasks (instead of aiming to be general pur-
pose) in an effort to reduce the size of the TCB (e.g., TrustVisor
[36], SecVisor [47] and BitVisor [48]). Researchers have also
tried to rearchitect the design of VMMs [50] and disaggregate
commodity VMMs to implement privilege separation [37],
[11] therby reducing the size of the TCB. The net effect of
these efforts is that the TCB size reduces to the order of a
few thousand lines of code. Nevertheless, this TCB still has to

1556-6013/$31.00 © 2013 IEEE

KINEBUCHI et al.: MONITORING INTEGRITY USING LIMITED LOCAL MEMORY

interact with untrusted code to handle VM-Exits, hypercalls
or emulate privileged instructions. A number of vulnerability
reports in commodity VMMs [15], [16], [18], [17], [3], [27],
[44] have demonstrated that even these interactions can be
exploited maliciously.

More recently, researchers have proposed a hardware-centric
approach, NoHype [28], [29], to provide a cloud computing
environment that leverages emerging hardware features to iso-
late “virtual machines” running on the same physical machine.
While NoHype provides several attractive security benefits,
such as the ability to isolate mutually untrusted virtual machines
from each other, it does not allow virtual machines to inspect
the memory of each other, a feature that is necessary for the
implementation of security monitors such as rootkit detectors.
In this paper, our focus is on hardware-centric solutions to the
problem of isolating security tools from monitored vulnerable
VMs.

We developed a hardware-centric approach to establish a
tamper-proof environment for security monitors without using
virtualization. Our main contribution is in showing that a
modest amount of hardware support allows security monitors
to securely inspect the state of a target system. In a manner
akin to VMMs, our approach isolates security monitors from
the target system, which may be compromised or malicious.
However, it does so (1) by making minor enhancements to
a multicore hardware with core local memory; and (2) by
executing the code in TCB without direct interaction with the
monitored system (e.g., via VM-EXits).

We propose and study a novel hardware architecture, called
limited local memory (LLM), that isolates security monitors
from target operating systems, while also providing monitors
the ability to inspect the target’s state. LLM is inspired by the
recent efforts of the major multicore vendors [23], [22], [38]
to equip each processing core with local storage in addition to
shared main memory. We show that the LLM architecture can
successfully play the isolation functionality of the VMM by en-
abling tamper-proof execution of system integrity monitors.

An LLM-based machine extends a standard multicore ma-
chine by adding local memory to each core [23], [22], [38] and
by allowing one core to become privileged (see Fig. 1). In the
spirit of virtualization, we refer to this privileged core as core0
and every other core as a coreU. Core0 has the ability to freeze
the execution of coreU processors, returning control to itself.
While coreUs can access each other’s local memory, core0 has
exclusive access to its local memory.

We show that these features enable LLM to set up a tamper-
proof execution environment for system integrity monitors. We
illustrate this fact by implementing a rootkit detector on an LLM
machine. The rootkit detector itself executes on core0 (which
runs its own kernel, and is part of the TCB) to monitor the ex-
ecution of the operating system executing on coreUs (i.e., the
target operating system). The rootkit detector shares the main
memory with the target kernel, and is therefore able to inspect
it for the presence of rootkits.

Despite sharing main memory with the target, we show that
an LLM-based rootkit detector can remain untampered even in
the presence of rootkits that infect the target. We achieve this
goal using a novel secure paging mechanism, which ensures
that: (1) all code execution and data access on core0 (which

1231

runs the rootkit detector) happens only from its local memory;
and (2) all code and data pages stored in shared main memory
are first authenticated before they are paged into core(’s local
memory. These two properties allow the secure paging mecha-
nism to prevent attacks directed at the rootkit detector itself.

LLM reduces the size of TCB to around 10KLOC, which is

comparable to TCB reduced virtualization based solutions, spe-
cialized hypervisors (e.g., TrustVisor [36], SecVisor [47] and
BitVisor [48]) and minimal hypervisor (e.g., Nova [50]). The
major advantage of LLM over these virtualization-based sys-
tems is that the code that runs as TCB has no direct interaction
with the monitored operating system. In the virtualization based
systems, the TCB code has to handle directly many events from
the monitored operating system like VM-Exits, hypercalls and
emulation of privileged instructions, hence, they have a narrow
window of possible vulnerabilities.

In summary, the main contributions of this paper are:

* LLM architecture and secure paging. We present the lim-
ited local memory (LLM) architecture and describe its key
features. We demonstrate that LLM, when combined with
our secure paging mechanism, can enable tamper-proof ex-
ecution of system integrity monitors. The key advantage
of the LLM architecture is that it enables secure execution
of system integrity monitors without support for hardware
virtualization.

* Rootkit detection using LLM. We demonstrate the utility
of the LLM architecture by building a rootkit detector that
leverages the key features of LLM. We show that the de-
tector can safely inspect code and data of a potentially com-
promised operating system without itself being infected by
rootkits. We also show that the rootkit detector can operate
in parallel with the target, thereby enabling low-overhead
detection.

II. THE LLM ARCHITECTURE

The two key features of the LLM architecture are
that: (1) each processor core is equipped with local memory,
and (2) one processor core can be made privileged. In this
section, we discuss each of these features, and prior work that
inspired these features in LLM.

The use of local memory in LLM architecture is inspired
by prior work on on-chip local memory [43], [7], [42], [8],
[52],[38],[23], [22]. On-chip local memory has previously been
proposed as a mechanism to provide predictable program be-
havior, especially in real-time systems. Their use is primarily
motivated by the increasing gap in the speed of processors and
main memory. While the use of caches can reduce this gap, the
adaptive and dynamic behavior of caches can introduce unpre-
dictable program behavior, making them hard to use in real-
time systems. Consequently, computer architects have explored
the use of local memory to address this problem. Commercial
processors equipped with such local memory include ColdFire
MCF5249, PowerPC 440, MPC5554, ARM 940, ARM 946E-2
and AT91M40400 [43], [7]. The most popular models of local
memory proposed in the literature fall into two categories: cache
locking [42], [8], [52] and scratchpad [7]. In cache-lock-based
local memory, hardware support is leveraged to control the con-
tents of the cache. Data that must be cache-resident is loaded

1232
/ Shared main memory /
Memory bus
Local Local Local
Mem Mem Mem

| Core0 I [CoreU] [Coreu]

Fig. 1. LLM extends a standard multicore machine by adding local memory to
each core. One core, called core0, is privileged, in that it can halt the execution
of the other cores, which are also called coreUs. Core0’s execution cannot be
halted by coreUs. Each coreU can access the local memory of other coreUs,
possibly with additional latency. Core0’s local memory cannot be accessed from
coreUs.

into the cache, and the cache replacement policy is disabled. In
contrast, in scratchpad local memory, software has fine-grained
control over the contents of local memory, which is addressable
through the physical address space. Puaut and Pais [43] pro-
vide a good comparison of these two techniques in different sce-
narios. LLM’s local memory model is similar to the proposals
on scratchpad local memory.

More recently, with the advent of multicore systems and
the rapid increase in the number of cores per chip, researchers
have begun to face scalability problems in implementing cache
coherence techniques. Consequently, computer architects are
once again exploring the design space of per-core local memory
to address this scalability problem. For example, in the RP1
processor announced by Hitachi [38], each core is equipped
with 152 KB of local memory. The Intel’s single-chip cloud
computer (SCC) [22], [23], a research multicore processor, also
equips each core with its own private off-chip DRAM [24, Page
52]. The difference between Hitachi’s RP1 and Intel’s SCC is
that, in RP1, each core can access local memory of other cores
with additional latency, making it akin to NUMA architecture,
while in SCC, the local memory of each core is private. LLM’s
local memory architecture is directly inspired by both Hitachi’s
RP1 and Intel’s SCC.

In addition to local memory, LLM designates one processor
core, called core0, to be privileged. Core0’s privilege is twofold.
First, core0 can reset or halt other processors. Second, core0 s
local memory is not accessible to other cores.

In LLM, core0 is selected at boot time among all available
cores across all multicore processors in the system using an ex-
tended bootstrap processor (BSP) selection algorithm [25]. In a
traditional multicore multiprocessor system, the bootstrap pro-
cessor (BSP) selection algorithm is executed to select the first
core (or processor) to initialize the system. After initializing the
system and operating system, the BSP signals to other cores (or
processors) through inter processor interrupts (IPIs), to start ex-
ecution. In the LLM architecture, we have incorporated the se-
lection of core0 with the BSP selection process. The core se-
lected by the BSP algorithm is designated as core0 by setting a
hardware bit associated with that core. Once this bit is set, only
core0 has the privilege to clear it and relinquish its privilege. The
local memory of core0 is protected from access by other cores.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 7, JULY 2013

Core0 is responsible for loading the target operating system on
the coreU processors.

As we will describe in Section III, these features of coreQ
together with our secure paging mechanism allow the LLM
architecture to bootstrap a tamper-proof execution environment
for system integrity monitors. Intuitively, core0Q acts as the
hardware root of trust: first it acquires control of the machine
during the boot time, then loads the secure paging mechanism
into its limited local memory area before initializing the rest
of the system. The monitor is entirely executed by core0 from
its local memory. A secure paging mechanism allows coreQ
to check the integrity of the monitor each time its pages are
loaded from shared main memory into its local memory. As
other cores cannot access core0’s local memory, they cannot
tamper with the execution of the integrity monitor, which can
then securely oversee the integrity of code and data accessed by
the coreUs. If the monitor detects an integrity violation, either
to its own code or data or to that of the target, it can instruct
core0 to halt the execution of the coreUs and raise an alert.

The design of LLM closely resembles existing multicore ar-
chitectures (e.g., the Hitachi RP1 and Intel’s SSC). We did so in
the interest of deployability — as proposed in this paper, LLM
can be implemented with only minor changes to these existing
architectures. We made a conscious design choice of avoiding
more complex design features that could potentially add utility
to security monitoring at the cost of increasing the complexity of
the underlying micro-architecture. For example, in LLM, core0
cannot access the internal register state of coreU. While this
limits the ability of LLM to detect certain classes of attacks (see
Section IV), we believe that the simpler resulting design of LLM
lends itself to easy deployability.

III. INTEGRITY MONITORS USING LLM

In this section, we present the design of an integrity mon-
itor that leverages the key features of the LLM architecture. We
begin by stating the problem, defining the threat model and iden-
tifying the trusted computing base (TCB). Throughout, we focus
on the mechanisms used by an LLM-enabled integrity monitor,
which we consider the core contribution of this paper, and not
on the policies used to detect integrity violations.

A. Goal

The goal of an integrity monitor is to oversee the execution
of a target by inspecting its code and data. For this paper, we
will assume that the target is an operating system whose code
and data may be compromised by malicious software, such as
rootkits. We only focus on mechanisms to protect operating
system integrity because integrity monitors for user-space ap-
plications can be bootstrapped using an integrity-protected oper-
ating system. Moreover, the design of user-space integrity mon-
itors is substantially similar to the operating system integrity
monitors that we describe in this paper. The integrity monitor
must be able to inspect the target for malicious software without
itself becoming a victim of compromise. If it detects that the
target has been compromised, it must be able to halt the execu-
tion of the target and take appropriate action, e.g., report an alert
to the end-user or an audit log. We do not consider the goal of
recovering the target from compromise.

KINEBUCHI et al.: MONITORING INTEGRITY USING LIMITED LOCAL MEMORY

B. Machine Setup

To monitor the integrity of a target operating system, we re-
quire an LLM machine to be set up as follows:

+ the integrity monitor executes on core0. The monitor’s
execution environment includes an operating system that
controls core0 (henceforth called the monitor operating
system) and a user-space program that encodes the target’s
integrity policy that must be applied to its code and data.

« the target operating system executes on coreUs.

This setup requires the LLM machine to execute two oper-
ating systems: a monitor operating system executing on core0,
and the target executing on coreUs. In contrast, in a typical
multicore machine, all cores execute the same operating system
image. To enable this setup, core0 is first initialized during
boot time, when the monitor operating system and the integrity
monitor are loaded. Subsequently, the monitor operating system
initializes the coreUs and loads the target operating system
on these cores. The sequence is reversed during shutdown,
when core0 terminates the target and halts the cores before
itself halting execution. We defer the details of this setup to
Sections III-E and V.

C. Threat Model and TCB

Having described the goal and the machine setup, we can
now define the threat model and the TCB. We assume that the
target operating system is vulnerable to attack and that its code
and data may be compromised in malicious ways. Although the
security monitor executes code and accesses data from core0’s
local memory, which is not accessible to the target, due to the
limited size of the local memory, the shared main memory may
have to be used for paging. When residing in the shared memory,
these pages of the monitor are accessible to and may be mali-
ciously modified by the target. The monitor must therefore be
able to detect the attacker’s attempts to modify its own code and
data i.e., it must have the ability to inspect its own code and data
and halt execution in case integrity is compromised (it does so
using secure paging).

In detecting these threats, we trust the following entities,
which constitute our TCB:

* the LLM hardware platform. We trust that the hardware
is implemented correctly in that: (1) core0 has the ability
to halt the execution of the coreUs, while coreUs cannot
reboot core0. A consequence is that core0 should first
acquire control when the system is booted; and (2) the
local memory of core0 is private (cannot be accessed from
coreUs).

* the BIOS and bootloader. We trust the BIOS and boot-
loader to correctly load the secure pager and its associated
data structures into core0’s local memory at startup, where
they will reside until machine shutdown.

* the monitor operating system and its user processes. We
trust that the operating system and user processes exe-
cuting on core0 are themselves not malicious. Because
core0 may use the shared main memory as a backing store
for its pages, the monitor operating system and its user pro-
cesses may themselves be infected while paged out. We do
allow such attacks within our threat model and detect such

1233

attacks using the secure paging mechanism; we only re-
quire that the monitor operating system and its processes
be clean at boot time.

To provide the security assurances that we discuss in
Section IV, the above components, which constitute the TCB,
must function correctly and without compromise for the life-
time of the system.

An attacker can violate our assumption that the monitor op-
erating system and its processes are trusted by directly modi-
fying pages on disk before the machine is booted (so that a com-
promised operating system is loaded at boot time). We assume
that such attacks can be detected using trusted computing tech-
nology (e.g., trusted boot and attesting integrity of code at boot
time using a TPM). Alternatively, the machine can be securely
booted over the network or using a LiveCD containing an un-
compromised operating system. We do not discuss such attacks
in this paper in further detail.

D. Bootstrap Process

The monitor starts operation when the machine is first booted
and continues to execute until the machine is shut down. During
boot up, the bootloader loads the secure paging mechanism and
initializes it in core(0’s local memory. The secure pager boot-
straps a tamper-proof environment for the monitor operating
system and its user processes. Secure paging is described in fur-
ther detail in Section III-E. In addition to installing the secure
pager, the bootloader also copies into core(0’s local memory sev-
eral other data pages that remain resident there for the lifetime
of the system (we describe this in detail in Section III-E). The
rest of the code and data of the monitor operating system are
loaded into the shared main memory. Then, the monitor oper-
ating system initializes its user processes that will check the in-
tegrity of the target. At this point, the monitor is initialized and
can load the target operating system on the remaining cores.

The procedure of booting the target operating system on
coreUs is similar to booting it on a traditional multicore ma-
chine, except that the target is initialized on the coreUs by
the monitor rather than by the bootloader. In order to boot on
an LLM machine, a minor change is required to commodity
operating systems. Specifically, it must be modified to avoid
allocating its data structures in the portion of the shared main
memory that stores the monitor operating system’s code and
data. The purpose of this change is to prevent the monitor from
raising an alert when an uncompromised target inadvertently
uses pages utilized by the monitor operating system. However,
in case rootkits that compromise the target modify this memory
region, they will be detected by the monitor’s secure paging
mechanism.

In summary, the bootstrap process proceeds as follows:

(1) On system boot, core0 is selected, and starts executing
the BIOS.

The BIOS loads bootloader into memory and starts ex-
ecuting the bootloader.

The bootloader loads the secure pager part of monitor
OS into core0’s local memory and the remainder of the
monitor OS into shared memory. Then, it starts exe-
cuting monitor OS, whose entry point must be in local
memory.

2)
3)

1234

(4) The monitor OS sets up the page table to allow code and
data pages to be accessed only from local memory.

(5) The monitor OS loads the target operating system in
the shared memory, and signals the coreUs to start exe-
cuting it.

E. Monitor Operation

We now discuss the operation of the monitor during two dif-
ferent scenarios: (1) during normal operation, when it monitors
an uncompromised target operating system; and (2) during at-
tack, when it detects either that its own code and data pages
have been corrupted, or that the target’s integrity policy has been
violated.

1) Normal Execution and Secure Paging: Once startup is
complete, the monitor oversees the execution of the target. Be-
cause the monitor and the target share the main memory, the
monitor is vulnerable to attacks from a compromised target. To
avoid such attacks, the monitor’s execution environment is set
up to satisfy the following three invariants:

e [LOCALCODE]—Ensures local code execution. A code

page can be executed by core0 only from its local memory.
In case the monitor’s code to be executed resides in the
shared main memory, as described earlier, it must first be
brought into core0’s local memory.

e [LOCALDATA]—Ensures local data access. A data page
belonging to the monitor must first be brought into core0
local memory before it can be accessed

* [AUTHLOAD]|—Verifies integrity before loading. The in-
tegrity of code and data pages belonging to the monitor
must first be verified before they are brought into core0
local memory.

The enforcement of all three invariants is the responsibility
of the secure paging mechanism, which is implemented within
the monitor operating system. During startup, the bootloader
loads the code of the secure pager into core(0’s local memory
area. The secure pager also contains precomputed hash values
for the monitor’s code and read-only data pages (a whitelist).
The memory pages containing the code of the secure pager and
these hash values remain resident in core0’s local memory for
the lifetime of the system, i.e., they are never paged out into
main memory or to disk.

The monitor operating system revokes permissions to exe-
cute, read or write code and data pages of the monitor when
they reside in the shared main memory by suitably setting per-
mission bits in the monitor operating system’s page table en-
tries. Therefore, any attempt to access these pages results in a
fault that is handled by the secure pager. The secure pager han-
dles this page fault by bringing the page from the shared main
memory into the local memory only after computing the hash of
the page and checking it against the whitelist. If there is a match,
the page is loaded into local memory and the corresponding ac-
cess is turned on. If there is no match, the secure pager triggers
an alert.

Because core0 local memory has limited size, pages may
need to be evicted as the monitor operates. Before eviction,
the secure pager must compute the hash of the selected page

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 7, JULY 2013

and store it in the local memory. Then, the secure pager re-
vokes the access permissions for this page so that further ac-
cesses from core0 will trigger a page fault. In the absence of
malicious target that may modify the monitor code, the monitor
page does not change while residing in shared main memory,
and hence, the hash values will match next time the secure pager
attempts to load this page into the local memory as a result of a
legitimate core(access. The secure pager’s authenticated load
facility (computing and comparing hashes) is inspired by the
techniques implemented in prior work on Patagonix [34] and
SecVisor [47]. Fig. 3 summarizes the secure paging mechanism.

In order to enable secure paging, several code and data pages
must remain resident in core0’s local memory for the lifetime
of the system:

 the code of the monitor operating system’s secure paging
mechanism. This includes code responsible for hashing
pages loaded from shared main memory, comparing these
hashes against saved values, and terminating execution of
coreUs if an integrity violation is detected;

* hash values of the code and data of the monitor oper-
ating system and its user processes. Some of these hash
values are precomputed (e.g., those for code and static data
pages) while others are computed dynamically by the se-
cure paging mechanism itself when performing pageouts.

* the monitor operating system’s data structures that are di-
rectly accessed by the hardware. These include data pages
that store its page tables and interrupt vector tables. Typi-
cally, only an active root page table, and second and third-
level page tables need to be resident in local memory; any
other page tables that are not directly accessed by hardware
can be swapped out to shared main memory and can them-
selves be verified by the secure paging mechanism.

2) Execution Under Attack: During normal operation, the
secure paging mechanism checks the integrity of the monitor’s
code and data (for both the monitor operating system and its
user processes). The target can define its own integrity policies,
which are encoded within and enforced by the monitor’s user
processes by inspecting the target’s code and data pages stored
in shared memory.

The monitor raises an alert under one of these conditions:

(1) the monitors integrity is violated. The secure paging
mechanism can detect when a compromised target vi-
olated the integrity of the monitor’s code and data.

(2) the target s integrity policies are violated. A rootkit may
compromise the target operating system (e.g., by cor-
rupting the system call table or function pointers within
the kernel), thereby violating code or data integrity. If
supplied with a suitable policy, the monitor process that
checks the target’s memory pages will detect this in-
tegrity violation.

In each of these cases, core(issues an interprocessor interrupt
that will halt the execution of the coreUs, returning control to
itself. The target will therefore be halted, and will be unable to
make further changes to shared memory. The monitor operating
system will then acquire control of a peripheral device, such as
the console, a serial port, or the hard disk, to emit diagnostic in-
formation, which may include a warning on the console, as well
as a snapshot of shared main memory (for forensic purposes).

KINEBUCHI et al.: MONITORING INTEGRITY USING LIMITED LOCAL MEMORY

Shared main memory

Monitor code
and data

Target code and data

Local
Mem

Local
Mem

[CoreU [CoreU] [CoreU] |
J

| |
|
%

Controlled by the target

Controlled by
the monitor

|

|
-
o

Fig. 2. Configuration of an LLM machine just after startup is complete and
during normal operation of the system. Core0 executes the monitor operating
system and its processes from its local memory. The target executes on coreUs
and controls the peripheral devices. Core0 acquires control over peripherals only
when it detects an integrity violation. Main memory is shared by the monitor
and target operating systems.

At this point, the end-user can take appropriate actions, which
may include restarting the machine or cleaning up the infection.
We leave exploration of postcompromise user actions for future
work.

F. Device Control

In our prototype system, all devices are controlled by the
target operating system; this includes the disk, monitor and all
input devices. The monitor operating system does not control
any device during the course of normal operation. When the
monitor detects that the target’s integrity has been violated,
it freezes the execution of coreUs and acquires control of an
output device (e.g., the screen or a serial port) to notify the
end-user about the violation. During startup, the bootloader
loads all the code and data of the monitor operating system
and its user applications into shared memory, thereby obviating
the need to access persistent storage devices over the course of
normal operation. To achieve this goal, the monitor operating
system must offer minimal functionality; in our implementa-
tion, we use xv6 [13] as the monitor operating system. Fig. 2
depicts the configuration of an LLM machine after startup is
complete.

IV. SECURITY ANALYSIS

We analyze the security of an LLM-based integrity monitor
based on: (1) its ability to protect itself from integrity violations;
and (2) its ability to protect the target.

A. Ability to Protect Itself

The ability of an LLM-based integrity monitor to protect
its own integrity from an infected target is predicated on the
LoCALCODE, LOCALDATA and AUTHLOAD invariants. We first
discuss how enforcing these invariants ensures the integrity of
the monitor and then analyze the enforcement of the invariants.

The invariants LOCALCODE and LOCALDATA ensure that the
code and data accessed by coreO (both the monitor operating
system and its user processes) are not visible to the target, and

1235

Local memory of core0

Pager Resident code
1> hashes <=1 and data
Check hash : Store hash
and load and evict

———————m e

Shared main memory

\ JII\)

T T
Monitor OS and Target OS and
processes processes

Fig. 3. Secure paging mechanism. The pager is loaded into core0’s local
memory by the bootloader during startup. The code of the pager and the
pages containing a whitelist of hashes remain resident in local memory until
the machine is shut down. (1) When core0 needs to access a page that is not
available in local memory, it results in a page fault, which is handled by the
secure pager. The secure pager hashes the corresponding shared memory page,
checks the hash against stored values, and loads the page if it has not been
modified. (2) When a page must be evicted from local memory, the secure
pager computes its hash before paging it out to the shared main memory.

hence, not visible to rootkits that may infect the target. More-
over, the invariant AUTHLOAD ensures that the monitor only ex-
ecutes approved code, as determined by a whitelist of hashes
that is resident in core0’s local memory. AUTHLOAD also en-
sures that the hash of a code or data page evicted from local
memory is computed during eviction and checked when the
page is loaded again into local memory.

The invariants themselves are enforced by the secure pager,
which is never paged out of core0’s local memory, and hence,
cannot be accessed or modified by the untrusted target. There-
fore, the security of the system is bootstrapped at startup when
the bootloader initializes coreQ. At this time, it loads into core(’s
local memory pages containing the secure pager and a precom-
puted whitelist with the hashes of the monitor’s code and static
data pages. These pages reside in core0 local memory until the
machine is shut down. The privilege granted to core0 means that
its execution cannot be halted or altered by coreUs, which exe-
cute the target. Core0 does not interact with peripheral devices,
which are controlled by the target until it detects an integrity vi-
olation. In this case, core0 halts coreUs before acquiring control
over an output device to emit diagnostics.

Consequently, LOCALCODE, LOCALDATA and AUTHLOAD
are enforced for the lifetime of the system, together ensuring
that core0 only executes approved code and reads approved
data, which guarantees a tamper-proof execution environment
for the monitor.

While the three invariants protect the infegrity of the monitor
from an infected target, its confidentiality may still be compro-
mised by the target. For example, if the monitor uses a secret key
to securely transmit diagnostic information outside the system
and stores this key in shared main memory, it would be visible to
the target. Although we have not attempted to protect the confi-
dentiality of the monitor’s code and data pages in our prototype

1236

implementation, this goal can be achieved using a simple modi-
fication to the secure paging mechanism. When the secure pager
is first loaded into core0’s local memory, it could generate a se-
cret key that also resides in core0’s local memory for the lifetime
of the system. The secure pager could be modified to use this key
to encrypt the monitor’s code and data pages when they reside
in shared main memory. When core0 attempts to access an en-
crypted code or data page, the secure pager brings it into local
memory, decrypts it, and checks its integrity as before. Since the
monitor’s pages are stored encrypted when in main memory, this
modification also protects its confidentiality.

Finally, a malicious target may also attempt to inflict avail-
ability attacks on the monitor. For instance, if the machine is
equipped with a programmable memory controller, the target
could maliciously slow down or deny the secure pager from ac-
cessing the monitor’s pages in shared main memory. The mon-
itor could detect such availability attacks using timeouts, and
pause the target operating system if it suspects an attack. How-
ever, we have not implemented any defenses against such at-
tacks in the monitor of our prototype.

B. Ability to Protect the Target

An LLM-based integrity monitor oversees target execution
to enforce target-specified integrity policies. Its ability to pro-
tect the target from attack depends on the nature of these poli-
cies. The policies must themselves be specified as properties
that can be checked by viewing the target’s memory pages (as
is standard for rootkit detection tools [5], [39], [9], [41], [21],
[40], [26]). In doing so, the policies may leverage knowledge
about the target’s data structures and data layout. For example,
in a Linux-based target, the monitor could use data structure
type definitions and addresses of root symbols as specified in
the target’s System.map file, which suffice to traverse all dy-
namic data structures at runtime. As another example, the target
may execute its own anti-virus tools to monitor and protect
its user processes from malware infection. However, malware
may target the anti-virus itself, thereby undermining the secu-
rity of the target. An LLM-based integrity monitor can oversee
the integrity of code and data pages of the target’s anti-virus
tools, thereby improving overall system security. As can be
seen from these examples, the target can supply a variety of in-
tegrity policies to LLM’s integrity monitor, which enforces (or
checks) them. These policies themselves are not the focus of our
work and we elide a detailed discussion of the space of enforce-
able policies (although we discuss several example policies for
rootkit detection in Section VI). Instead, we focus our attention
on the core ability of our LLM-based mechanisms to oversee
the target’s attack surface.

When the monitor detects an integrity violation, we leverage
coreQ’s ability to halt coreUs by sending an interprocess inter-
rupt to these cores. Control then returns to core0, which subse-
quently acquires control over an output device to emit suitable
diagnostic information. The execution of the target can be re-
sumed only via another interprocess interrupt from core0.

In our current design, the LLM architecture provides the
monitor running on core(the ability to inspect the contents of
shared memory and the local memories of coreUs. However,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 7, JULY 2013

the monitor cannot access the register state of coreUs. The
inability of core0 to inspect the registers of coreUs leads to two
shortcomings:

(1) Inability to detect attacks on register state. A rootkit can

attempt to bypass the integrity monitor by directly at-
tacking coreU registers, which are not visible to core0.
As an example, consider the following memory shad-
owing attack, which maliciously modifies the cr3 reg-
ister that stores a pointer to the current page table. A
rootkit can create a malicious shadow copy of the oper-
ating system at another location in shared memory, and
make cr3 point to page table of this operating system.
In effect, this attack creates two copies of the operating
system—the malicious shadow copy, which actually ex-
ecutes on coreUs, and the original benign copy, which
does not execute, but simply resides in shared memory.
The rootkit can also create the illusion that the original
operating system is executing by periodically mirroring
benign changes to its data structures. This attack can fool
the monitor that executes on core0, which cannot access
cr3 and hence, has no way of determining whether the
code and data that it inspects, i.e., that of the original
copy, actually executes on the coreU processors.
While such a hypothetical attack can bypass our system
integrity monitor, it may also be possible for the mon-
itor to employ heuristics to detect such memory shad-
owing attacks. For example, it could employ techniques
to discover data structures in raw memory pages that
it believes are unused by the operating system [14]. If
the monitor identifies several “free” memory pages with
data structures that are substantially similar to those of
the operating system, it can conclude that a memory
shadowing attack is possibly underway.

(2) Inability to cleanly checkpoint target system. When
core0 detects that an attack is underway, it halts the
execution of coreUs. However, the operating system
on the coreU may be in the process of performing a
critical operation (e.g., writeback of a vital file system
data structure) when core0 halts its execution. Because
core0 does not have access to coreU registers, it cannot
cleanly checkpoint the target system. As a result, the
target operating system may be unable to reboot, or may
lose important data when it is restarted.

It is not possible to trust any data manipulated by a
rootkit-infected operating system, and it is highly desir-
able to reinstall a clean operating system post infection.
However, there are still cases where users may want to
retrieve information from a corrupted system. Although
LLM does not offer support for checkpointing, it may
be possible to periodically checkpoint and backup per-
sistent storage devices so that users can still recover
some of their data after an infection has been detected.
Future work could consider alternative techniques to
checkpoint the target operating system so that users can
still recover their (possibly corrupted) data from the
checkpoint. This checkpoint could also include addi-
tional information, such as register state of the target,
so that users can infer the state of the target when it

KINEBUCHI et al.: MONITORING INTEGRITY USING LIMITED LOCAL MEMORY

was halted, thereby providing forensic evidence of the
potential cause of infection.

V. IMPLEMENTATION

We created a prototype that implements the ideas discussed so
far to set up a tamper-proof monitoring environment. Because
LLM hardware is not currently available, we emulated its core
features using the QEMU system emulator (qemu-kvm-0.12.5).
Our prototype executes a Linux-2.6.26-based target on this
hardware in conjunction with a monitor based on the xv6
operating system (revision 4) [13]. In this section, we focus on
the details of our platform, and the changes that we made to
xv6 and Linux. In the next section, we present a rootkit detector
that leverages this tamper-proof environment.

Our emulated hardware platform is a 32-bit x86 machine with
four processing cores: one core0 and three symmetric coreUs.
The system is configured with 1 GB of physical address space.
Core0 is configured to have 548 KB of local memory. We use the
first 800 MB of the physical address space for our Linux-based
target and its processes and the remaining 200 MB for the mon-
itor operating system and its processes. Physical addresses in the
range 0x32000000—0x32089000 accessed by core0 resolve its
local memory, while the other addresses resolve to shared main
memory.

To build the monitor operating system, we chose xv6, an in-
structional operating system from MIT. Our choice of xv6 was
motivated by its minimal functionality and small code size (see
Fig. 4), features that are essential to ensure that code in the TCB
is easily verifiable. We made a number of changes and additions
to xv6 to make it suitable as a monitor operating system for our
LLM-based platform.

(1) We modified xv6’s page fault handling mechanism. The
original version of xv6 is a minimal operating system,
which does not handle page faults from user space pro-
cesses (i.e., it expects all pages to fit in main memory
and paging to disk is not supported). We changed this
mechanism so that a page fault generated by the process
bring in the faulting page from shared main memory into
core-local memory.

We added code to implement the secure paging mecha-
nism. When xv6 receives a page fault, the secure pager
calculates a SHA-1 hash value of the page, and checks
it for a match against a whitelist stored in local memory
before bringing it in the local memory.

We added code to load the target operating system. This
code is invoked at the end of the startup process, once
the rest of the monitor has been initialized.

We modified its memory allocation code to: (1) allocate
xv6 page tables and kernel stacks within the physical
address range corresponding to core-local memory to
make them inaccessible to the target operating system;
these data structures remain resident in core-local
memory and are never “swapped” out into shared main
memory; (2) allocate memory for its user processes in
shared main memory.

We configured the size of core-local memory (548 KB) for
our hardware platform by studying the memory footprint of the

2)

)

4)

1237

Entity SLOC
Unmodified xv6 (revision 4) 8688
Changes to xv6 404
Secure pager 592
SHA-1 (from RFC 3174) 539
OS loader (loads target) 146
Total additions/modifications to xv6 1681

Fig. 4. Lines of code added to or modified in xv6 (revision 4) to create the
monitor operating system.

xv6 operating system and its processes. The code of an unmodi-
fied xv6 kernel itself occupies approximately 54 KB, while xv6
enhanced with our secure paging mechanism occupies approxi-
mately 84 KB. Due to its relatively small memory footprint, this
code resides completely within core-local memory. Aside from
84 KB for the kernel itself, we budgeted the space in core-local
memory as follows:

* 256 KB for xv6’s page tables and kernel stacks;

* 128 KB to buffer pages swapped-in from shared memory;

+ 80 KB to store a whitelist of hashes of pages swapped in

from shared memory. Each hash is a 20 byte SHA-1 digest
of'a memory page. The size of this hash table can be modi-
fied, but we chose this size to accommodate hashes for code
and data pages of the monitor that are stored in shared main
memory. On our prototype, the monitor’s code and data oc-
cupy 16 MB on shared main memory (i.e., 4000 physical
memory pages), so 80 KB suffices to store their hashes.

In our prototype, all of the above pages are allocated and
remain resident within core-local memory, thereby remaining
hidden from other cores. We calculate the hashes of the mon-
itor’s main memory pages at the end of initialization and store
them in core(’s local memory. As discussed above, the mon-
itor’s user processes are managed in shared main memory. We
use a RAM file system as the root file system to manage these
user processes, which are stored as binary executables. When
we load this binary for execution, the request is translated into
a memory access. This access initially causes a page fault (be-
cause the page is located in main memory, rather than in the
local memory), thereby triggering the secure paging mechanism
to bring the corresponding pages into local memory.

We also had to make minor changes to configure Linux to
boot as our target operating system. First, we configured it to
allocate its data structures in the first 800 MB of shared main
memory. By doing so, it avoids using the shared pages that con-
tain monitor code and data during normal operation (though a
rootkit’s attempts to use these pages will be detected by the se-
cure pager). Second, Linux typically assumes that it is the sole
operating system running on the hardware platform. This as-
sumption is violated in our platform because xv6 loads Linux,
and is already executing on the system when Linux boots. Con-
sequently, we had to modify Linux to only boot on three cores
(the coreUs) of our platform, and reset the local APIC (advanced
programmable interrupt controller) for the boot core, i.e., the
first coreU processor that loads and initializes Linux.

VI. CASE STUDY: ROOTKIT DETECTION

Rootkits accomplish their malicious goals by modifying the
code and control data of a victim operating system. Recent
work [6] has also demonstrated stealthy forms of rootkits that

1238

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 7, JULY 2013

Rootkit Attack description Integrity policy

adore Hide malicious user-space files and running processes by mod- | Continuously check that the system call table remains
ifying entries in system call table to point to malicious code. unchanged after target has initialized.

knark Similar to adore Similar to adore

adore-ng Achieves same goal as adore, but does so by hooking a | Check that kernel function pointers remain unchanged
lookup function pointer (proc_iops.lookup) contained in | after initialization.
the inode operation table of the /proc directory.

hideme Hide malicious processes by modifying pidhash and | Traverse the list of active processes (obtained via

pidmap, which are data structures of the /proc file system
that store the PIDs of active processes. Diagnostic tools rely on
these data structures to enlist processes on the system.

init_task on Linux) and check that the PID of
each entry has a corresponding entry in pidhash and
pidmap.

pmap-hide [21]

Similar to hideme

Similar to hideme

enyelkm

Modify dispatch code kernel that is invoked in response to
a system call. The dispatcher is modified to invoke attacker-
defined code instead. Achieves same functionality as adore
and adore-ng without modifying the system call table or
function pointers.

Check the SHA-1 digest of Linux’s text section.

Fig. 5. Summary of rootkits detected using our approach. This figure also shows the integrity policies used to detect the rootkits.

achieve their malicious goals by only modifying noncontrol
kernel data, without ever executing malicious kernel-mode
code. In response to these threats, a wide variety of rootkit
detection techniques have been developed (e.g., [39], [56],
[41], [9], [40], [5], [21], [26], [20], [9], [34], [47]). We focus on
rootkit detection techniques that operate by fetching the target’s
pages and checking that they satisfy a prespecified integrity
policy (e.g., [40], [21], [41], [26], [9D).

In the LLM architecture, the integrity policy checker is im-
plemented as a user-space process that executes within the mon-
itor. The integrity policy can be a desirable property that must
always be enforced (e.g., state-based control flow integrity [41],
or SBCFI, which requires function pointer targets to be ap-
proved kernel code) or can be a domain-specific property sup-
plied by a security analyst (e.g., a data structure invariant that
must be satisfied by kernel linked lists [40]). Depending on the
integrity policy, the monitor may require various levels of un-
derstanding of the semantics of the target. For example, consider
an integrity policy that requires the target code and static data
pages to remain unmodified. Such a policy can be enforced with
minimal semantic understanding of the target: it simply suffices
to provide the integrity policy checker with the list of pages
that must be checked along with a list of hashes over the con-
tents of these pages. More complex policies may require intri-
cate knowledge of the target operating system’s data structures
and data layout. SBCFI [41] and Gibraltar [5], for instance, re-
quire the monitor to traverse the target’s kernel data structures.
To do so, the monitor process must have a list of entry points into
the target (e.g., the target’s System.map file) and data structure
type declarations of the target. It can use this information to re-
cursively traverse the target’s dynamic data structures.

We considered the rootkits shown in Fig. 5 (unless otherwise
mentioned, obtained from PacketStorm [2]) to evaluate LLM-
based rootkit detection. Some of these rootkits were meant for
older versions of the Linux kernel, so we ported their function-
ality to Linux-2.6.26, our target kernel. In each case, we were
able to successfully detect the rootkit with the corresponding
policy shown in Fig. 5.

We also evaluated the ability of the monitor to defend itself
from a rootkit-infected target. We wrote a rootkit that attempts to
compromise the monitor by corrupting its code and data stored
in shared main memory using memset to write a specific value

to a monitor code/data page. The secure pager was successfully
able to detect this modification when the page was next accessed
by core0. The SHA-1 hash of the page did not match the value
saved in local memory, thereby triggering the secure pager to
raise an alert.

We evaluated the performance impact of our LLM-based
rootkit detector using the UnixBench 5.1.2 suite [51]. We con-
ducted experiments with two configurations of this workload
to measure overhead. In the first experiment, we configured
UnixBench to run on three cores, and executed it within our
target (a modified Linux-2.6.26 kernel), which itself ran on
the three coreUs within our QEMU-based LLM emulator.
The xv6-based monitor executes a user-process that ran every
one second to scan code and data pages of the target. We also
executed the same workload configuration on Linux-2.6.26,
which ran on a four-core SMP emulated by QEMU. Except
for core-local memory and a privileged core, the configuration
of this SMP was identical in all aspects to our LLM platform.
These results are reported in Fig. 6(a). In the second set of ex-
periments, we repeated the same steps above, but the workload
was configured to use four cores. Therefore, in the case of the
LLM machine, where only three cores are available for normal
operation (the coreUs), the workload caused contention for
cores. These results appear in Fig. 6(b). We believe that the two
configurations above are representative of the situation where
the machine is lightly loaded, and there is no contention for
processing cores, and the situation where the workload causes
contention for processing cores, respectively. We therefore ex-
pect to see similar results even for an LLM machine equipped
with a larger number of processing cores.

All experiments were conducted with QEMU executing on
our host machine: a Dell Optiplex 755, with an Intel Core2 Quad
Q6600 2.4 GHz CPU, with 2 GB memory running Linux 2.6.32.
To minimize errors in our performance measurements, we re-
moved unintended migrations of QEMU threads between the
cores of our host machine using the schedtool utility.

Fig. 6 presents the results of our evaluation, averaged over
five runs of the experiment (standard deviations are also
shown). Each bar in the figure presents the performance of the
UnixBench executing on LLM relative to the same benchmark
configuration executing on a 4-core SMP machine. As our
results show, the benefit of executing a rootkit detector on a

KINEBUCHI et al.: MONITORING INTEGRITY USING LIMITED LOCAL MEMORY

dedicated core is clear. When there is no contention for cores
(Fig. 6(a)) the performance of the target is not affected in
most cases, and induces a 4% overhead in the worst case. This
small overhead can possibly be attributed to contention on the
memory bus. In fact, we saw minor speedups in a few cases,
which can be attributed to anomalies introduced by measuring
performance within an emulated platform running on host
hardware. When there is contention for cores (Fig. 6(b)), the
performance degradation observed is roughly proportional
to what one would expect with one fewer core, i.e., perfor-
mance degrades by approximately up to one-fourths on LLM
hardware.

The performance overheads of an LLM-based monitor are
comparable to those of systems that are equipped with a dedi-
cated coprocessor that fetches and inspects the target’s memory
(e.g., [39], [5]). Unlike systems that use virtual machine tech-
nology to inspect the target’s memory, LLM and coprocessor-
based systems have the advantage of not inducing any additional
overhead on the normal execution of the target when there is no
contention for processing cores. In contrast, virtualization based
systems typically impose some performance overheads on the
execution of the target, mainly because of the need to emulate
traps in the target operating system within the hypervisor. Tech-
niques such as paravirtualization (e.g., as used in Xen) and hard-
ware support for virtualization can potentially be used to ame-
liorate such performance overheads and make them comparable
to those observed in LLM.

VII. RELATED WORK

A. Isolating System Integrity Monitors

There is much prior work on developing isolation architec-
tures for system integrity monitors. The main requirement of
such architectures is the ability to set up a tamper-proof envi-
ronment within which to execute the monitor. Researchers have
explored the use of both virtualization and hardware support to
enable such an environment.

Chen and Noble [10] were among the first to describe the
advantages of using virtualization for security. Subsequently,
Garfinkel and Rosenblum [20] developed virtual machine in-
trospection (VMI), a technique to isolate security monitors from
the target being monitored. In VMI, the target runs within a vir-
tual machine (VM), while the monitor executes within another
VM and observes the target VM. Garfinkel and Rosenblum also
demonstrated the use of VMI to detect a rootkit-infected target.
Since being proposed, numerous works have leveraged VMI for
security, and several APIs [55], [53] have been implemented to
ease the task of writing VMI-based security monitors. Monitors
canuse VMI to provide a number of security services, including
enforcing code integrity (e.g., [34], [47]), control-flow integrity
[41], [49] and domain-specific integrity properties of dynami-
cally-allocated data structures (e.g., [40], [21], [41]).

In contrast to these works, which execute the monitor and the
target in different virtual machines, and hence different virtual
address spaces, the LLM architecture executes the monitor and
the target on the same physical machine, albeit on different pro-
cessing cores. In VMI, the monitor and the target are isolated
via address space protection enforced by the hypervisor, while

1239

in LLM, the monitor is protected via a combination of the fea-
tures of LLM hardware and the secure paging mechanism.

The main advantage of LLM over VMI is that it eliminates
the need for hardware virtualization. This is important because
commodity VMMs are often complex, resulting in a large TCB.
For example, the Xen hypervisor (v4.1) has approximately
150 K lines of code, and domO and supporting libraries, which
are also part of the TCB, can contain as much as 1.5 million
lines of code [37]. This complexity can introduce numerous
bugs into the TCB, as is evidenced by recent reports of vulner-
abilities in the hypervisor and domO [15], [16], [18], [17], [3],
[27], [44], which can in turn be exploited to hide malware from
the monitor [31].

B. Reducing the TCB: Software-Centric Solutions

The large size of the TCB in modern VMMs, coupled with
the discovery of vulnerabilities in them, has led to research
on securing hypervisors from attack, and on techniques to re-
duce the size of the TCB of VMMs. IBM’s sHype project uses
trusted hardware to improve the assurance of the hypervisor
[46], while HyperSafe [54] provides control-flow integrity guar-
antees within the hypervisor using a hardware technique called
nonbypassable memory lockdown.

The Flicker [35] and TrustVisor [36] projects seek to reduce
the size of the TCB by leveraging trusted hardware available
on commodity processors [19], [12]. They set up an execution
environment within which security-sensitive code blocks can
execute without being tampered by malicious code. These
techniques can significantly reduce the size of the TCB—to
a few hundred lines of code in the case of Flicker, and to
about 6300 lines in the case of TrustVisor. However, both
these projects explicitly aim to protect the execution of small
security-sensitive code blocks (e.g., portions of an application
that deal with sensitive data) in malicious environments. They
also place restrictions on the content of this code, e.g., these
code blocks must execute with interrupts disabled.

While Flicker and TrustVisor aim to protect the execution of
small blocks of code, there have also been efforts to improve the
trustworthiness of VMMs by reducing the amount of privileged
code in them. An example of such an effort is the Nova project
[50], which proposed an architecture where the hypervisor is a
few thousand lines of code, thereby bringing it within the realm
of formal verification [32]. While Nova proposes a new hyper-
visor, the Xen disaggregation [37] and Xoar [11] projects work
with a commodity VMM (Xen), and identify opportunities to
reduce its TCB by employing privilege separation.

The main point of difference between these projects and LLM
is that the above projects adopt a software-centric approach, i.e.,
the task of isolating the security monitor is entrusted entirely to
a software layer and this layer has to interact with the monitored
system for handling VM-Exits, hypercalls and emulating priv-
ileged operations. In contrast, LLM relies on a hardware-cen-
tric approach, using local memory to isolate the security mon-
itor from an untrusted target and security monitor runs indepen-
dently of the monitored system. When the security monitor does
not fit within local memory, it employs secure paging to verify
that the monitor has not been tampered.

1240 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 7, JULY 2013

1.1

1.05
0.85
1 0.8
| 0.7
0.95 |
0.
’ | 0.6
0.85 - — =l 0.6
+@

©
o

3

=]
©
o

&g © o S & > NN o~
KL 4 & & '\ R4 0 1% &
% o &) & Q 9 Q Q \ o & v o @ 8 Q Q & & \ (°
& &b s @ 5‘ & \o° xe" K"} & 8“6 oq"b c,o‘\ 2 655 & & &L ke'“ &
o
& &°
& &
4‘ <
(@ (W]

Fig. 6. Performance evaluation with the UnixBench 5.1.2 benchmark suite. The graphs show the performance of each benchmark running within Linux on
an LLM machine relative to their performance within Linux on an SMP machine (i.e., LLM performance/ SMP performance). (a) Results with workload
configured to run on three cores. (b) Results with workload configured to run on four cores. (Note: The labels looper-1 and looper-8 denote the
commands “Looper ./multi.sh 1” and “looper ./multi.sh 8,” respectively. The label £stime-a denotes “fstime -b 1K -m 2K,” fstime-b denotes
“fstime -b 256 -m 500,” and fstime-c denotes “fstime -b 4K -m 8K.” Other labels denote the standard ways to execute the corresponding benchmarks

in UnixBench.)

Software-centric approaches have the benefit of being able to
run on commodity hardware. However, they also suffer from the
pitfalls of software evolution, i.e., the software-based TCB must
be verified for correctness as it is modified over time to add new
features. In contrast, a hardware-centric approach relies mainly
on the correctness of hardware mechanisms (e.g., the properties
of core0) to ensure security. Hardware verification techniques
do not have to deal with the complexities of software (e.g., infi-
nite state, pointers), thereby leading us to conjecture that it may
be easier to formally verify a hardware-centric approach than a
software-centric approach, although we have not attempted such
verification of the LLM architecture ourselves.

C. Reducing the TCB: Hardware-Centric Solutions

Researchers have explored the use of hardware support to
isolate the target from the monitor. Efforts to do so include se-
cure coprocessors [56], [39] and the use of NICs such as the
Myrinet PCl intelligent network cards [5], [1]. These techniques
operate by physically isolating the monitor from the target (e.g.,
by executing the monitor on a coprocessor or another phys-
ical machine) and using hardware support on the target ma-
chine to fetch memory pages via DMA. Because the target is
not involved in the memory transfer, the monitor can still detect
stealthy malware. However, Rutkowska has shown that such
hardware-based RAM acquisition can be bypassed on AMD
processors [45]. The attack operates by corrupting the memory
map of the memory controller (the northbridge), thereby re-
turning attacker-defined values in response to the monitor’s re-
quests for the target’s memory pages.

The work most closely aligned in goals with LLM is the No-
Hype project [28], [29], which proposes a hardware architecture
and software stack that provides many of the same the benefits
of virtualization. Like LLM, NoHype also leverages multicore
hardware to isolate virtual machines from each other. In No-
Hype, each VM executes on a dedicated processing core (pos-
sibly multiple cores) and is isolated from the VMs executing on
other cores. NoHype partitions the physical main memory of the

machine so that each VM can only access the partition assigned
to it. It also configures I/O devices so as to give each VM dedi-
cated access to a virtualized I/O device.

Although similar to LLM in its goals of eliminating the need
for virtualization while using hardware support to provide iso-
lation, the NoHype architecture cannot directly be used to con-
struct system integrity monitors. Because NoHype partitions
physical memory between VMs, it is not possible for one VM
to inspect the memory pages of another. Although a privileged
software layer exists in NoHype, it can only start and terminate
other VMs and access devices, but cannot inspect their memory
contents. This is acceptable for the NoHype architecture, be-
cause its main goal is to remove attacks that may result as a
consequence of VM multitenancy in a virtualized environment
(the NoHype paper provides a detailed survey of such threats).
In contrast, an LLM-based monitor has access to all of shared
memory, thereby facilitating memory introspection.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents LLM, a hardware-centric approach to
ensure tamper-proof execution of system integrity monitors.
LLM-based monitors can enforce code and data integrity in
a target operating system without themselves being infected
by compromised or malicious targets. The unique features of
the LLM-hardware combined with the secure paging mecha-
nism proposed in this paper allow such integrity monitoring
without support for virtualization. We demonstrated the utility
of the LLM architecture by using it to build a rootkit detector
that inspects a target operating system while itself remaining
untampered by rootkits.

As presented in this paper, LLM allows security monitors to
be isolated without support for virtualization. Nevertheless, we
do not claim that the LLM architecture can serve as a substitute
for virtualization. On the one hand, LLM’s features make iso-
lation a first-class, hardware-level primitive. On the other hand,
hardware-centric solutions (e.g., NoHype and LLM) cannot cur-
rently support other useful features of virtualization, such as VM

KINEBUCHI et al.: MONITORING INTEGRITY USING LIMITED LOCAL MEMORY

checkpointing and migration, which can readily be implemented
in software-centric solutions (i.e., VMMs), and are critical in
cloud-based environments.

In future work, we plan incorporate a recovery mechanism in
the monitor operating system. Our current prototype does not
handle recovery in case of attacks against monitor. Upon de-
tecting attacks, the monitor operating system halts the system
and emit diagnostic information. This may potentially impact
the availability of the system. Designing a recovery mechanism
with very limited memory and the knowledge of semantics of
target operating system will likely introduce new challenges.

A combination of hardware and software-based techniques
can possibly offer the best of both worlds, and this is an ap-
proach that we also propose to explore in future work. We plan
to explore how an LLM-based security monitor executing on
core(can ensure the integrity of a VMM executing on coreUs.
In such an architecture, the VMM can itself implement integrity
checking for its VMs (e.g., by implementing rootkit detection)
and the LLM-based monitor ensure the integrity of the VMM’s
code and data, (e.g., by checking for the presence of hyper-
visor-level rootkits [31]) while itself remaining isolated from
the VMM.

REFERENCES

[1] Myricom: Pioneering High Performance Computing [Online]. Avail-
able: www.myri.com

[2] Packet Storm [Online]. Available: http://packetstormsecurity.org/
UNIX/penetration/rootkits/

[3] Xbox 360 Hypervisor Privilege Escalation Vulnerability 2007 [On-
line]. Available: www.h-online.com/security/news/item/Xbox-360-
hack-was-the-real-deal-732391.html

[4] J.P. Anderson, Computer Security Technology Planning Study Deputy
for Command and Management Systems, L. G. Hanscom Field, Bed-
ford, MA, Tech. Rep. ESD-TR-73-51, 1972, vol. II.

[5] A.Baliga, V. Ganapathy, and L. Iftode, “Detecting kernel-level rootkits
using data structure invariants,” I[EEE Trans. Depend. Secure Comput.,
vol. 8, no. 5, pp. 670-684, Sep./Oct. 2011.

[6] A. Baliga, P. Kamat, and L. Iftode, “Lurking in the shadows: Identi-
fying systemic threats to kernel data,” in Proc. IEEE Symp. Security
and Privacy, 2007, pp. 246-251.

[7] R. Banakar, S. Steinke, B. s. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: A design alternative for cache on-chip memory
in embedded systems,” in Proc. Tenth Int. Symp. Hardware/Software
Codesign (CODES), 2002, pp. 7378, ACM.

[8] M. Campoy, A. Perles Ivars, and J. V. Busquets Mataix, “Static use
of locking caches in multitask preemptive real-time systems,” in Proc.
IEEE/IEE Real-Time Embedded Syst. Workshop (Satellite of the IEEE
Real-Time Syst. Symp., 2001.

[9] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang, “Map-
ping kernel objects to enable systematic integrity checking,” in Proc.
ACM Conf. Comput. and Commun. Security, 2009, pp. 555-565.

[10] P. M. Chen and B. Noble, “When virtual is better than real,” in Proc.
Workshop on Hot Topics in Operating Syst., 2001.

[11] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan, P.
Loscocco, and A. Warfield, “Breaking up is hard to do: Security and
functionality in a commodity hypervisor,” in Proc. SOSP, Oct. 2011,
pp. 189-202.

[12] LaGrande Technology Preliminary Architecture Specification, Intel
Corporation, Intel Publication no. D52212, 2006.

[13] R. Cox, M. F. Kaashoek, and R. T. Morris, Xv6, A Simple Unix-Like
Teaching Operating System [Online]. Available: pdos.csail.mit.edu/6.
828/xv6

[14] A. Cozzie, F. Stratton, H. Xue, and S. T. King, “Digging for data struc-
tures,” in Proc. ACM/USENIX Symp. on Operating Systems Design and
Implementation (OSDI), 2008, pp. 255-266.

[15] Xen Guest Root can Escape to Domain 0 Through Pygrub, CVE-2007-
4993.

1241

[16] Multiple Integer Overflows in Libext2fs in E2fsprogs, CVE-2007-
5497.

[17] Directory Traversal Vulnerability in the Shared Folders Feature for
Vmware, CVE-2008-0923.

[18] Buffer Overflow in the Backend of XenSource Xen Para Virtualized
Frame Buffer, CVE-2008-1943.

[19] AMDG64 Virtualization: Secure Virtual Machine Architecture Refer-
ence Manual Advanced Micro Devices, AMD Publication 33047 rev.
3.01, 2005.

[20] T. Garfinkel and M. Rosenblum, “A virtual machine introspection
based architecture for intrusion detection,” in Proc. Network and
Distr. Syst. Security Symp., 2003.

[21] O.S.Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel, “Ensuring
operating system kernel integrity with OSck,” in Proc. 16th Conf. Ar-
chitectural Support for Programming Languages and Operating Syst.,
2011, pp. 279-290.

[22] The SCC Platform Overview — Intel Research, 2010 [Online].
Available: techresearch.intel.com/spaw2/uploads/files/SCC_Plat-
form_Overview.pdf

[23] The SCC Programmer’s Guide Revision 0.61 — Intel Research, 2010
[Online]. Available: techresearch.intel.com/spaw2/uploads/files/SC-
CProgrammersGuide.pdf

[24] “Single chip cloud computer: An experimental many-core pro-
cessor from Intel labs,” in Proc. Intel Labs Single-Chip Cloud
Comput. Symp., 2010 [Online]. Available: communities.intel.com/
servlet/JiveServlet/downloadBody/5075-102-1-8132/SCC_Sympos-
sium_Mar162010_GML _final.pdf

[25] M. Jayakumar, Bootstrap Processor Selection Architecture in SMP
System, Aug. 2000.

[26] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
VMM-based ‘out-of-the-box’ semantic view reconstruction,” in Proc.
14th ACM Conf. Comput. and Commun. Security, 2007, vol. 13, no. 2,
12 pages.

[27] K. Kortchinsky, “Hacking 3d (and breaking out of vmware),” in
BlackHat US4, 2009.

[28] E.Keller, J. Szefer, J. Rexford, and R. Lee, “Nohype: Virtualized cloud
infrastructure without the virtualization,” in Proc. Int. Symp. Comput.
Architecture, 2010, pp. 350-361.

[29] E.Keller, J. Szefer, J. Rexford, and R. Lee, “Eliminating the hypervisor
attack surface for a more secure cloud,” in Proc. ACM Conf. Comput.
and Commun. Security, 2011, pp. 401-412.

[30] Y. Kinebuchi, T. Nakajima, V. Ganapathy, and L. Iftode, “Core-local
memory assisted protection (fast abstract),” in Proc. 16th Pacific Rim
Int. Symp. Dependable Computing, Dec. 2010, pp. 233-234.

[31] S. King, P. Chen, Y. Wang, C. Verblowski, H. J. Wang, and J. R.
Lorch, “Subvirt: Implementing malware with virtual machines,” in
Proc. IEEE Symp. Security and Privacy, 2006, pp. 314-327.

[32] G.Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H.
Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in Proc. ACM Symp. on Operating Systems Principles (SOSP), Oct.
2009, pp. 207-220.

[33] N. Li, Y. Kinebuchi, and T. Nakajima, “Enhancing security of em-
bedded Linux on a multi-core processor,” in Proc. IEEE 27th Int. Conf.
Embedded and Real-time Computing Syst. and Applicat., Aug. 2011,
pp. 117-121.

[34] L. Litty, H. A. Lagar-Cavilla, and D. Lie, “Hypervisor support for iden-
tifying covertly executing binaries,” in Proc. 17th USENIX Security
Symp., 2008, pp. 243-258.

[35] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki, “Flicker: An
execution infrastructure for TCB minimization,” in Proc. Eur. Conf.
Comput. Syst., 2008, pp. 315-328.

[36] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A.
Perrig, “TrustVisor: Efficient TCB reduction and attestation,” in Proc.
IEEE Symp. Security and Privacy, May 2010, pp. 143—158.

[37] D. Murray, G. Milos, and S. Hand, “Improving Xen security through
disaggregation,” in Proc. ACM Intl. Conf. on Virtual Execution Envi-
ronments (VEE), Mar. 2008, pp. 151-160.

[38] O. Nishii, I. Nonomura, Y. Yoshida, K. Hayase, S. Shibahara, Y. Tsuji-
moto, M. Takada, and T. Hattori, “Design of a 90 nm 4-CPU 4320 mips
SoC with individually managed frequency and 2.4 GB/s multi-master
on-chip interconnect,” in Proc. IEEE Asian Solid-State Circuits Conf.,
2007, pp. 18-21.

[39] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot: A
coprocessor-based kernel runtime integrity monitor,” in Proc. USENIX
Security Symp., 2004, pp. 179-194.

1242

[40] N. L. Petroni, T. Fraser, A. Walters, and W. A. Arbaugh, “An architec-
ture for specification-based detection of semantic integrity violations
in kernel dynamic data,” in Proc. USENIX Security Symp., 2006, pp.
289-304.

[41] N. L. Petroni and M. Hicks, “Automated detection of persistent kernel
control-flow attacks,” in Proc. ACM Conf. Comput. and Commun. Se-
curity, 2007, pp. 103—115.

[42] 1. Puaut and D. Decotigny, “Low-complexity algorithms for static
cache locking in multitasking hard real-time systems,” in Proc. 23rd
IEEE Real-Time Syst. Symp., 2002 (RTSS 2002), pp. 114-123.

[43] 1. Puaut and C. Pais, “Scratchpad memories vs locked caches in hard
real-time systems: A quantitative comparison,” in Proc. DATE, 2007,
pp. 1484—1489.

[44] R. Wojtczuk, “Subverting the Xen hypervisor,” in Proc. BlackHat USA,
2008.

[45] J. Rutkowska, “Beyond the CPU: Defeating hardware based RAM ac-
quisition, Part I: AMD case,” in Proc. Blackhat Conf., 2007.

[46] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, J. Griffin, and
S. Berger, sHype: Secure Hypervisor Approach to Trusted Virtualized
Systems, IBM Research, Tech. Rep. RC23511, 2005.

[47] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A tiny hyper-
visor to provide lifetime kernel code integrity for commodity OSes,”
in Proc. 21st ACM Symp. Operating Syst. Principles, 2007.

[48] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T.
Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba,
Y. Shinjo, and K. Kato, “Bitvisor: A thin hypervisor for enforcing i/o
device security,” in Proc. VEE, 2009, pp. 121-130.

[49] A. Srivastava and J. Giffin, “Efficient monitoring of untrusted kernel-
mode execution,” in Proc. Networked and Distributed Syst. Security
Symp., 2011.

[50] U. Steinberg and B. Kauer, “NOVA: A microhypervisor-based secure
virtualization architecture,” in Proc. ACM Eurosys, Apr. 2010, pp.
209-222.

[51] Byte-Unixbench: A Unix Benchmark Suite, [Online]. Available: http://
code.google.com/p/byte-unixbench

[52] X. Vera, B. Lisper, and J. Xue, “Data cache locking for higher program
predictability,” in Proc. 2003 ACM SIGMETRICS Int. Conf. Measure-
ment and Modeling of Comput. Syst. (SIGMETRICS ’03), 2003, pp.
272-282, ACM.

[53] VMsafe Partner Program, VMWare [Online]. Available: www.
vmware.com/go/vmsafe

[54] Z. Wang and X. Jang, “Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in Proc. IEEE Symp. Secu-
rity and Privacy, 2010, pp. 380-395.

[55] Xenaccess— A Virtual Machine Introspection Library for Xen [Online].
Available: code.google.com/p/xenaccess

[56] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer, “Secure
coprocessor-based intrusion detection,” in Proc. 10th ACM SIGOPS
Eur. Workshop: Beyond the PC, 2002, pp. 239-242.

Yuki Kinebuchi received the Ph.D. degree in
computer science and engineering from Waseda

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 7, JULY 2013

Shakeel Butt is a Ph.D. candidate in the Department
of Computer Science at Rutgers University. He pre-
viously completed an undergraduate degree from the
National University of Computer and Emerging Sci-
ences, Lahore, Pakistan. He has done research on se-
curity issues in operating systems, cloud computing,
and device drivers. Starting August 2013, he will be
a research scientist at NVidia, Inc.

Vinod Ganapathy is an Associate Professor of Com-
puter Science at Rutgers University. He received the
B.Tech. degree in computer science and engineering
from IIT Bombay, in 2001, and the Ph.D. degree in
computer science from the University of Wisconsin-
Madison, in 2007. His research interests are in com-
puter security and privacy, software engineering, mo-
bile systems, and virtualization.

Liviu Iftode is a Professor of Computer Science at
Rutgers University. He received the Ph.D. degree
in computer science from Princeton University, in
1998. His research interests are in operating systems,
distributed systems, systems security, mobile and
pervasive computing, and vehicular computing and
networking.

Tatsuo Nakajima is a professor with the Department
of Computer Science and Engineering in Waseda
University. His research interests are distributed
systems, embedded systems, ubiquitous computing,
and interaction design. Currently, his group is
working on four topics. The first topic is to develop
a virtualization layer for multicore processor-based
embedded systems. The second topic is to develop
ambient media that are new media to help human
decision making. The third topic is to develop a
crowdsourcing/crowdfunding services to exploit

University, where he was advised by Prof. Tatsuo human computation. The last topic is to develop a design framework for
Nakajima. His research interests are in operating developing gameful services with embedding fictional stories to motivate to
systems, system virtualization, security, system achieve a sustainable society.

architectures, and embedded systems. He currently

works for NVidia Japan.

