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ABSTRACT
To usefully query a location-based service, a mobile device
must typically present its own location in its query to the
server. This may not be acceptable to clients that wish to
protect the privacy of their location. This paper presents
the design and implementation of SybilQuery, a fully
decentralized and autonomous k-anonymity-based scheme
to privately query location-based services. SybilQuery is a
client-side tool that generates k − 1 Sybil queries for each
query by the client. The location-based server is presented
with a set of k queries and is unable to distinguish between
the client’s query and the Sybil queries, thereby achieving
k-anonymity. We tested our implementation of SybilQuery
on real mobility traces of approximately 500 cabs in the San
Francisco Bay area. Our experiments show that SybilQuery
can efficiently generate Sybil queries and that these queries
are indistinguishable from real queries.
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INTRODUCTION
Modern mobile devices contain global positioning systems
(GPS) that let these devices precisely determine their
location. Coupled with Internet connectivity via 3G and
WiFi, GPS helps transform these mobile devices to truly
ubiquitous devices that can make location-based queries.
A querying client device sends its location to a server,
which responds with answers specific to the client’s location.
Examples of such queries include real-time traffic queries,
e.g.,“how congested is the route from my home to my
office?” and points-of-interest queries, e.g.,“what are the
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restaurants close to my current location?” Several modern
devices, such as the iPhone, are pre-installed with query
interfaces to location-based services, such as Google Maps.

However, clients that wish to protect their privacy may
not want to reveal their current location to a location-
based server (LBS). Client location can be misused by
LBSs in ways that range from serious breaches of privacy,
such as spying on the client’s daily commuting patterns,
to simple annoyances, such as flooding the client with
location-based spam and advertising in response to a query.
Recent evidence suggests that privacy concerns can deter
the widespread use of LBSs. For example, EZPass RFID
tags have seen a low adoption rate due to privacy concerns
among drivers [10, 11]. Similarly, the New York City cab
drivers’ group called a strike upon the introduction of a plan
to fit all cabs with GPS tracking devices [36]. Such concerns
motivate the need for techniques that protect the privacy of
client location from LBSs.

Several prior techniques [1, 5, 8, 13, 14, 16, 17, 19, 23, 25,
34, 45] to protect the privacy of client location fall under the
broad umbrella of k-anonymity [39, 42]. In a k-anonymity-
based scheme, an LBS is unable to distinguish a querying
client from a group of at least k clients, where k is a security
parameter. For example, Spatial cloaking [19] is one such
scheme that sends cloaked regions (e.g., rectangular blocks)
containing at least k clients to the LBS. Unfortunately, most
previously proposed k-anonymity-based schemes require a
trusted third party, called an anonymizer that accepts and
forwards queries from a client to an LBS and ensures the
k-anonymity property. Because anonymizers must compute
cloaked regions for each client and process the LBS’
query results for these regions, they can cause performance
and scalability bottlenecks. In addition, most of these
schemes do not work for mobile clients. Recently proposed
alternatives to eliminate anonymizers include peer-to-peer
techniques [5, 16, 17] and protocols based on private
information retrieval (PIR) [15, 22]. Peer-to-peer techniques
rely on the participation of k peers to ensure k-anonymity,
in a manner akin to Crowds [37]. However, reliance on
peers restricts the autonomy of such systems. Techniques
based on PIR provide strong cryptographic guarantees, but
are currently computationally expensive.

This paper presents the design and implementation of Sybil-
Query, a fully decentralized and autonomous k-anonymity-
based system for location-based queries. SybilQuery is
a client-side tool that operates by synthetically generating
k−1 Sybil queries for each location-based query by a client.



Sybil queries contain locations that resemble the client’s
actual location. For example, Sybil queries for a real query
from a busy downtown area will also be from areas with
similar traffic conditions. SybilQuery sends these k queries
to the LBS, which is unable to identify the original query
from the synthetic queries, thereby ensuring k-anonymity
of the client’s location. SybilQuery’s design offers several
advantages:

(a) Performance. SybilQuery eliminates the need for
anonymizing servers, and the scalability and performance
bottlenecks associated with centralized designs. For exam-
ple, choosing higher values of k for better privacy leads to
greater computational overheads at the anonymizer [1, 34].
SybilQuery’s decentralized design offloads the computations
needed to achieve k-anonymity to the clients themselves.
Our experiments show that the costs of generating Sybil
queries at the client are negligible.
(b) Autonomy. In contrast to prior work where queries
generated by an anonymizer (or peer-to-peer techniques)
depend on other clients of the LBS, SybilQuery generates
Sybil queries autonomously. For example, cloaked regions
generated by spatial cloaking techniques [19] must have
at least k clients; this in turn depends on the geographic
distribution of clients [26].
(c) Ease of deployment. A decentralized and autonomous
design lends itself to easy deployment. Clients do not have
to rely on peer participation or on service providers to deploy
anonymizers in order to achieve k-anonymity. Unlike PIR-
based techniques, SybilQuery does not require any changes
to the LBS and only requires minor modifications to the
querying client. We have integrated SybilQuery with LBSs
such as Google Maps, Live Maps and Yahoo! Maps.

We have implemented a prototype of SybilQuery for vehic-
ular networking applications. Vehicles today are increas-
ingly being equipped with computing device having GPS
capability and internet connectivity, which makes vehicles
an interesting ubiquitous computing environment. Our
SybilQuery system takes as input a path to be followed by a
vehicle along which the vehicle may issue several queries to
LBSs. SybilQuery outputs k−1 Sybil paths that statistically
resemble the input path. The vehicle sends k queries when
it accesses an LBS—its actual location, as well as k − 1
waypoints derived from the Sybil paths. We evaluated
this prototype using real mobility traces of approximately
500 cabs in San Francisco [2]. We also conducted a user
study with 15 volunteers which confirmed that Sybil paths
produced by SybilQuery closely resemble real paths.

PROBLEM DEFINITION AND ASSUMPTIONS
An LBS is a database that stores a set of tuples < `, v >,
where `’s are geographic locations, e.g., represented using
latitudes/longitudes, and each v denotes value(s) associated
with location `, e.g., restaurants or current traffic conditions
at `. We consider a model in which mobile clients
periodically query the LBS as they move from a source to
a destination. Each query contains the current location of
the client, and the LBS returns the set of values associated
with that location.

The problem of privately querying an LBS is for a client
to issue location-based queries without revealing its current
location to an adversary. The SybilQuery system aims to
achieve this goal by sending k − 1 Sybil queries along with
each real query by the client. These queries contain locations
along k − 1 Sybil paths, which are synthetically generated
by SybilQuery. To prevent an adversary from identifying
the client’s actual location, SybilQuery must generate Sybil
paths (and thereby, Sybil queries) that closely resemble real
paths.

We make the following assumptions about the adversary:

(a) Adversary cannot access client’s identifiers. A fully-
constructed client query to the LBS logically consists of
three entities: (i) a network identifier, such as the IP address
of the client’s device that issues the location-based query;
(ii) an explicit user identifier, such as the user’s registered
account name at the LBS or an HTTP cookie; and (iii) the
client’s location, as may be obtained by the client using GPS.
We assume that the adversary does not have access to the
client’s network identifiers. To hide network identifiers from
the adversary, we assume that the client’s service provider
(e.g., the cellular provider) and local access points, which
know the client’s current location, do not collude with the
adversary (e.g., the LBS). We also assume that the LBS does
not require the user to send explicit user identifiers in order
to use the service. This is indeed a practical assumption
(and is also a standard assumption in prior work); several
popular LBSs, such as Google Maps, Microsoft Live Maps
and Yahoo! Maps, do not require a registered user or HTTP
cookies for a client to usefully query them. We further
assume that the adversary does not use the query content
to infer the client’s location. Thus, the adversary can only
observe the location field in each client query.
(b) Adversary could be active or passive. A passive
adversary can observe the contents of all location-based
queries as well as the responses received from the LBS. On
the other hand, an active adversary can modify responses
from the LBS as a way to compromise client privacy. For
example, consider an adversarial LBS that reports real-
time traffic information. Upon receiving a request for
traffic conditions at a particular location `, the LBS could
return false information, e.g., by reporting heavy traffic
at `. This response from the LBS may cause the client
to behave differently, e.g., take a detour to avoid heavy
traffic. The SybilQuery system must therefore respond
appropriately, e.g., by appropriately modifying the Sybil
queries to statistically match the real query.
(c) Statistical background knowledge. The adversary
could have access to global statistical knowledge, such
as the average traffic densities at different locations at
different times during the day. This information can
potentially be used to compromise client privacy. The
SybilQuery prototype can currently defend against several
such statistical background knowledge attacks, particularly
those that use knowledge about regional traffic. However,
because we cannot anticipate all such attacks, we have
designed SybilQuery to support an extensible architecture.
In particular, it can incorporate several statistical features
in its algorithm to generate Sybil paths, thereby making
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Figure 1: Basic design of SybilQuery.

the system robust to future attacks. SybilQuery however
cannot defend against adversarial LBSs that have targetted
background information about a specific client. If the
LBS knows a particular client’s daily commuting patterns
or knows specific locations that the client visits, it can
differentiate between real queries and Sybil queries sent by
that client with high probability. For example, if the LBS
knows a client’s residential address (R) and his work address
(W ), it can identify the real path followed by the client by
searching for a path that starts at R and ends at W .

HIDING CLIENT LOCATION USING SYBIL QUERIES
The SybilQuery system presents an interface akin to existing
navigation systems. A user enters the address of the source
and destination of a trip, and the system outputs a path P
for the user to follow. A destination prediction scheme,
such as the one proposed by Krumm and Horvitz [28],
can be optionally used to alleviate the need for the user
to enter the destination. Additionally, SybilQuery requires
as input a security parameter k, that it uses to generate
k − 1 Sybil paths. Each path is represented by the system
as a sequence of waypoints enroute from the source to the
destination. As depicted in Figure 1, SybilQuery consists
of three modules: an endpoint generator, a path generator,
and a query generator. We describe each of these modules in
detail below.

The endpoint generator produces k − 1 synthetic start
and end points that statistically resemble the source and
destination input by the user so that the real trip does
not stand out from the synthetic trips. To do so, the
endpoint generator requires a database of regional traffic
statistics. This database reflects historic traffic trends
at various geographic locations in the area (it is not a
database of real-time traffic conditions). The high level
idea is that the endpoint generator processes this database
to identify clusters of locations that share similar features,
such as traffic density (details of specific features used
in our implementation are deferred to the next section).
This process is a one-time activity and suffices to produce
synthetic start and end points for multiple trips, e.g., until
the database is refreshed with newer statistics. The endpoint
generator chooses synthetic start and end points from the
clusters to which the actual source and destination belong. In
doing so, it also ensures that the Euclidean distance between
the source and destination of the actual path are within a
threshold of the Euclidean distance between the synthetic
start and end points.

The path generator uses the k start and end points,
including the actual source and destination, to produce k

paths, each represented as a sequence of waypoints. In
generating paths, it consults a database of regional maps (as
do existing on-board navigation systems). In fact, the path
generator may be implemented using existing navigation
systems, such as Google Maps, Yahoo! Maps, and on-board
GPS devices, because their interfaces are similar. Both the
endpoint generator and path generator need to be invoked
only once per trip.

The query generator is triggered when the user queries the
LBS with his current location `. Intuitively, it simulates the
motion of users along the k − 1 Sybil paths and generates
k − 1 Sybil locations. In its simplest form, the query
generator simply computes the offset of ` from the source of
the user’s path P , and applies similar offsets to the sources
of the Sybil paths to produce k−1 Sybil locations. However,
it can also use current traffic conditions to more accurately
simulate user movement along Sybil paths (e.g., simulate
slower movement if traffic is congested at one of the Sybil
locations).

The modular design of SybilQuery offers several advan-
tages. It lends itself to easy deployment, even with legacy
devices. The endpoint generator is a standalone component
that can possibly be installed as a user-level application
either on the user’s desktop or on his mobile device.
The path generator can be implemented using off-the-shelf
navigation systems. Using a navigation system enables
robust path generation based on regional maps, which allows
SybilQuery to generate Sybil paths that respect features such
as one-ways and road closures. It also allows SybilQuery
to robustly handle detours from the path P suggested by
the navigation system. Upon a detour, SybilQuery can
simply trigger the path generator to produce a new path to
the destination. Because paths are generated independent
of each other, SybilQuery can also simulate detours in
Sybil paths. SybilQuery’s design only requires the query
generator to be modified to send k queries to the LBS instead
of one. Based upon the deployment scenario, even this
modification should be relatively easy. For example, if an
end user employs a Web browser on his mobile phone to
send location-based queries to an LBS, the query generator
could be implemented as a browser extension.

Several extensions to the basic design above can improve the
robustness of the system to potential attacks.

(a) Randomizing path selection. Path generators im-
plemented using navigation systems typically return the
shortest route to the destination. However, real users may
not always follow the shortest path to the destination because
of factors such as detours and road closures. If SybilQuery
always produces shortest Sybil paths and the user chooses
a longer path to the destination, an adversary will be able
to differentiate the real path from Sybil paths with high
probability.
This problem is addressed with path generators that can
compute multiple paths to the destination (each with varying
lengths). Instead of choosing the shortest path, the path
generator instead uses a probability distribution (of the
frequency with which users choose paths other than the



shortest path) to make an appropriate choice from one of the
available paths to the destination.
(b) Handling active adversaries. An actively adversarial
LBS may return doctored query responses as an attempt
to differentiate Sybil paths from a client’s real path. For
example, suppose that an adversarial LBS falsely reports
traffic congestion at a particular location in response to a user
query. In response, a real user will likely take a detour. If the
SybilQuery system does not respond similarly to doctored
responses (e.g., by checking for congestion and triggering
detours in Sybil paths) an adversary could likely distinguish
the real path from Sybil paths.
SybilQuery handles active adversaries using N -variant queries.
In this technique, SybilQuery queries multiple LBSs and
compares their responses in a manner akin to N -variant
systems [6]. Unless all the LBSs queried collude with each
other, adversarial LBSs are likely to be detected.
(c) Endpoint caching. Suppose that a real path P fre-
quented by the user (e.g., commuter paths, such as home
to office) is associated with multiple sets of Sybil paths.
An LBS that observes paths over a period of time can
statistically identify P as the real path. Similarly, when a
user travels to a new location shortly after arriving at the
first destination, if the second set of Sybil trips are randomly
generated, then the real paths can be easily distinguished
from the Sybil paths since the real paths share an endpoint.
SybilQuery handles the above attacks by performing three
types of caching: (1) for the most common trips by the user,
the Sybil endpoints are cached; (2) if the user makes multiple
trips from one common endpoint (e.g., his home or office),
the corresponding Sybil endpoints are cached; and (3) when
the user embarks on a multi-destination trip, the start points
of the Sybil trips are cached so that the endpoint of a trip is
the same as the startpoint of the following trip.
(d) Providing path continuity. Although the paths gen-
erated by SybilQuery statistically resemble each other, it
is possible for the trip durations to differ (for both real
and Sybil trips). If a real trip ends before some of the
Sybil trips end, and the system stops sending queries,
the LBS can differentiate the real path from Sybil paths.
SybilQuery guards against this by being an “always on” tool
that continues to simulate movement along Sybil paths even
when the user’s real trip is complete. This feature ensures
security even when the lengths/durations of Sybil trips do
not match those of real trips.
(e) Adding GPS sensor noise. The location returned by
GPS devices is typically inaccurate, with the errors follow-
ing a Gaussian distribution [7]. If the Sybil locations always
fall on a road segment, an adversary can differentiate them
from locations returned by real GPS devices. SybilQuery
can prevent this by adding a random noise to each Sybil
location.

THE SybilQuery PROTOTYPE
In this section, we describe the implementation of our
SybilQuery prototype. The bulk of this section is devoted
to the description of the endpoint generator, which is imple-
mented as a Python client that uses a PostgreSQL database
backend with PostGIS spatial extensions to store regional
traffic information. The path generator is implemented as
a client that queries an off-the-shelf service [35] to find the

set of waypoints corresponding to the shortest path, given
a startpoint and an endpoint. Finally, the query generator
simulates user movement along all the k paths.

The Endpoint Generator
As discussed in the previous section, the endpoint generator
uses the source and destination addresses input by the user
to generate k − 1 synthetic endpoints. To ensure that
these synthetic endpoints statistically resemble the actual
endpoints of the user’s trip, the endpoint generator uses
a regional traffic database. The endpoint generator first
preprocesses the database to identify key features of each
geographic location.

Regional Traffic Database. For our prototype, we used
a month-long (August 25, 2008–September 24, 2008) set
of GPS traces from the Cabspotting project [2] as regional
traffic database. The Cabspotting project tracks the mobility
of cabs in the San Francisco Bay area.1 Each cab that
participated in this project was outfit with a GPS device that
updated its location with a server each minute. Each of these
updates was a quadruple:
<timestamp, cab ID, current location, flag>
Here, flag indicates whether the cab was metered (i.e., in
a trip) or empty. We used flag to convert the GPS traces
into trips (i.e., to demarcate sources and destinations during
which the cab was metered). Overall, our database contains
a total of 529,533 trips by 530 unique cabs; we observed at
least 447 cabs on any given day. Although we tailor our
discussion in the rest of this section to this database, we
emphasize that the techniques employed by SybilQuery are
applicable to any traffic database.

Preprocessing the Traffic Database. An ideal implemen-
tation of the endpoint generator would use an annotated
database of the local region to identify synthetic endpoints
that resemble the endpoints input by the user. The
annotated database would contain descriptive tags for each
geographic location, such as “parking lot,” “downtown
office building,” or “freeway.” The endpoint generator
would output synthetic sources and destinations whose tags
match the corresponding tags of the source and destination
supplied by the user. However, such annotated databases
are laborious to create and even so are unlikely to be
comprehensive or contain tags suitable for LBSs in different
application domains.

The preprocessing step addresses this problem by automati-
cally computing a feature set that describes each geographic
location using information from the traffic database. These
automatically extracted features then serve as tags that the
endpoint generator can use to find synthetic sources and
destinations that statistically resemble the user’s input.

Our implementation uses traffic density as the feature that
characterizes each geographic location. We define the traffic
density τ` of a geographic location ` as the number of trips
that start, end, or traverse through ` in a fixed interval of time
1Consequently, our experiments also focus on trips in this
geographic region. However, SybilQuery can automatically
generate Sybil queries for any geographic region if provided with a
similar traffic database for that region.



(we describe in detail below our how our system represents
geographic locations; for simplicity, it suffices to think of
them as fixed-size rectangular regions).We calculated τ`

for each location ` using the PostGIS spatial extension of
PostgreSQL. Because τ` can acquire a large number of
discrete values, we used a simple clustering algorithm to
group “similar” values of τ` into a single cluster. Although
any clustering technique may be used, we found that even
simple clustering algorithms, such as separating values of τ`

into buckets, serve our purpose well. We empirically verified
that these clusters of the San Francisco Bay area share
similar semantic properties. For example, different shopping
centers were grouped together into the same cluster as were
residential areas.

In addition to computing the traffic density of each geo-
graphic location `, the preprocessing step also computes a
probability distribution function (PDF) π` of the length of
a trip that originates at `. In particular, it computes the
following quantity for each location ` for all values of len.

π`(len) =
# trips of length len that start in `

# trips that start in `

This PDF is used by the endpoint generation algorithm to
choose appropriate geographic locations as sources for Sybil
paths.

Temporal traffic patterns. Traffic densities at a geographic
location ` vary depending on the hour of the day and the day
of the week, which results in temporal patterns in the values
of τ`. To reflect these temporal patterns in the features of
each geographic location, we define six kinds of temporal
states based on the patterns in our dataset, namely, “peak
interval/weekday” (7pm-11pm), “normal interval/weekday”
(6am-7pm and 11pm-3am), “off-peak interval/weekday”
(3am-6am), “peak interval/weekend” (7am-11pm), “normal
interval/weekend” (6am-7pm and 11pm-3am) and “off-peak
interval/weekend” (3am-6am). The precomputation step
computes six values of τ` for each location, corresponding
to each of the temporal states above. When the user supplies
a source and a destination, the endpoint generator chooses
the value of τ` to compute synthetic endpoints based upon
the timestamp in the user’s input.

Representing geographic locations. To compute τ`, the
preprocessing algorithm needs an appropriate data structure
to represent the location `. This data structure must
simultaneously balance precision and scalability, i.e., it
must store precise values of τ` for each location ` and
must readily scale to large geographic regions, such as the
San Francisco Bay area. To better illustrate this tradeoff,
suppose that geographic locations are represented using
fixed-size rectangular blocks, as was the case in an early
implementation of our prototype. We found that a block size
of 400m×400m resulted in a manageable number of blocks
for the entire Bay area (about 100,000 blocks), but did not
accurately represent traffic densities in crowded areas, such
as the downtown region and the airport. On the other hand,
a block size of 25m×25m accurately represented traffic
densities, but resulted in a large number of blocks (about
6.4 million blocks).

(a) San Francisco Bay area.
The airport appears on the
lower right corner of this
figure.

(b) San Francisco airport.
Black blocks have high traf-
fic densities.

Figure 2: Quadtree rep-
resentations of geographic
locations.

SybilQuery therefore uses
an adaptive data structure,
the Quadtree [12], to repre-
sent traffic densities. This
data structure represents ge-
ographic locations using blocks
of varying sizes (smallest
size is 25m×25m) depend-
ing on the traffic density of
that location. In particu-
lar, geographic regions with
non-uniform distribution of
traffic are represented using
small block sizes, while re-
gions with a uniform dis-
tribution of traffic are rep-
resented using larger block
sizes. Using the Quadtree
data structure, we were able
to represent traffic densities
for the entire San Francisco
Bay area using just 16,000
blocks.

Output of preprocessing.
Figure 2 pictorially repre-
sents the output of the pre-
processing step. Figure 2(a) shows the quadtree represen-
tation of the entire San Francisco Bay area. The adaptive
nature of the Quadtree data structure results in different
block sizes for different geographic locations. Although
each of these blocks has uniform traffic density, in our
experience, areas with high traffic density tend to be
represented with smaller block sizes. This effect is most
pronounced in areas with dense traffic, such as the airport,
depicted in Figure 2(b). Note that the regions with highest
traffic density, such as the freeway and the pickup area in
front of the airport are represented using small blocks, while
areas inside the airport that have no traffic are represented
using larger block sizes. Not all blocks have the same
traffic density; in Figure 2(b), blocks with the highest traffic
densities are filled in black.

Generating Sybil Endpoints. When provided with a source
and a destination input by the user, the endpoint generator
computes a Sybil source / destination pair as shown in
Algorithm 1 (our prototype adapts the same algorithm to
generate k − 1 Sybil source / destination pairs; for brevity,
we only illustrate the algorithm for one pair). It first finds the
geographic locations (in the Quadtree representation) `src
and `dst that contain the source and destination addresses
input by the user. Next, it computes the set of all source
locations ` that satisfy two conditions: (1) the traffic density
of ` is approximately that of `src; and (2) the probability of
a trip of length dist originating from ` matches that of `src.
The key intuition behind this step is to find the set of source
locations that closely resemble the source location input by
the user. It randomly chooses a source location `src′ from
this set of locations, and finds a destination location `dst′

within a radius dist of `src′ whose traffic density matches
that of `dst. The algorithm generates end points that are of
similar lengths but not exactly the same length as the real



Algorithm : Generate Sybil Endpoints(src, dst)
Input : (a) src: Street address of user’s source;

(b) dst: Street address of user’s destination.
Output : (src′, dst′): A Sybil source/destination pair.
dist = Euclidean distance between src and dst;1
`src, `dst = geographic locations that contain src, dst;2
Sources = Set of all locations ` with (i) τ` ≈ τ`src and (ii) π`(dist)≈ π`src (dist);3
`src′ = random location ∈ Sources;4
Destinations = Set of all locations ` with (i) τ` ≈ τ`dst and (ii) Euclidean distance5
between `src′ and `≈ dist;
`dst′ = random location ∈ Destinations;6
src′, dst′ = Reverse geocode random points in `src′ , `dst′ ;7
return (src′, dst′);8

Algorithm 1: Generating Sybil endpoints.

client path. This is to allow for the client path or the Sybil
paths to make occasional detours in the path generation step.

(a) Random point in geo-
graphic location.

(b) Street address closest to
random point via reverse
geocoding.

Figure 3: Finding a point
in a block using reverse
geocoding.

The last step is to identify
actual addresses within the
Sybil source/destination lo-
cations just identified. To
do so, it randomly chooses a
point within the geographic
location. However, this
point may reside in non-
driveable terrain, as shown
in Figure 3(a). If this
point were returned as a
source/destination, an adver-
sary can easily identify this
point as a Sybil address. To
avoid such cases, we reverse
geocode this point (using
an API provided by Google
Maps [18]) to find the street
address closest to the point
identified. Doing so greatly
improves the quality of the
endpoints generated by our
algorithm. Figure 3(b)
shows the closest street ad-
dress of the point identified
in Figure 3(a).

The Path Generator
The SybilQuery prototype implements the path generator
using the Microsoft Multimap API [35]. When supplied with
a source and a destination, this API produces a sequence
of waypoints representing the path to the destination. As
noted earlier, SybilQuery admits the use of any off-the-shelf
path generator, such as those used by on-board navigation
systems. This feature helps SybilQuery produce paths that
automatically account for environmental factors, such as
road closures and one ways.

The Multimap API currently only produces the shortest path
to the destination, thus making our prototype vulnerable to
attack if the user follows a longer path to the destination.
However, as noted earlier, this problem can easily be fixed
with the use of an API that generates a choice of paths to
the destination (or an API that allows the user to specify a
waypoint that must be included enroute the destination). The

(a) Real trip. The values
of τ` for the source and
destination were 22 and 247,
respectively.

(b) One of the Sybil
trips. The values of τ`

for the source and des-
tination were 22 and
255, respectively.

Figure 4: A real user trip and a Sybil trip generated by
SybilQuery.

path generation algorithm could then choose paths (both real
and Sybil paths) based upon a probability distribution of the
length of path that users typically follow to their destination.

The Query Generator
The basic version of SybilQuery’s query generator simulates
user movement along each path. It simulates the movement
of users along Sybil paths at approximately the projected
speed along that path. (Information about the average speed
along a path is obtained is returned by most off-the-shelf
path generators). When the user sends a query to the
LBS, the query generator obtains the current location of the
simulated users and sends these as Sybil queries to the LBS.
We have also interfaced the query generator with the Yahoo!
local API [44] to more accurately simulate movement along
Sybil paths under the constraints of current traffic. Thus, if
there is traffic congestion at a particular location, SybilQuery
can either simulate slower movement in that location or
simulate a detour (and request the path generator to generate
a fresh path to the destination). Note that Sybil paths get
congested and decongested independently from real paths.
When querying an LBS for online information, the query
is made for all the Sybil locations as well as the real client
location, so that the uncertainty at the LBS about the client
location remains the same. Although querying an LBS
that reports current traffic conditions renders the prototype
vulnerable to malicious LBSs that report false traffic data,
the query generator can use the N -variant queries approach
described earlier to counter this threat.

Example
Figure 4 presents SybilQuery in action. It shows a real
user trip (Figure 4(a)), obtained from the Cabspotter traces
for another month and one of the Sybil trips generated by
SybilQuery (Figure 4(b)); k was set to 4 for this example.
The real trip (at approximately 6pm) originates at a home
in Daly City and ends at a shopping area in downtown San
Francisco. All the Sybil trips generated by SybilQuery also
started in residential areas with similar traffic densities as
the source of the real trip, and ended in a crowded region of
San Francisco downtown. Figure 4 also reports the traffic
densities for the sources and destinations for the real and
Sybil trip generated by SybilQuery. A key point to note
from this example is that traffic densities accurately capture



k # questions # correct Probability
4 75 20 0.26
6 75 14 0.19

Figure 5: Results of a user study with 15 volunteers.

semantic properties (e.g., “residential area,” “downtown,”
“shopping area”) of geographic regions.

EVALUATION
In this section, we present the results of our evaluation of
the SybilQuery prototype. We evaluated both the privacy
and the performance offered by SybilQuery.

Privacy
To evaluate the quality of the Sybil paths generated by our
system, we conducted a user study. The high-level idea
behind the user study was to give the working system to
adversarial users, who would try to break the system by
trying to find the real user path hidden between Sybil paths.
Our methodology was as follows—we picked real paths
at random from the Cabspotter traces (different from the
month-long traces that were used to seed our prototype’s
endpoint generator) and used SybilQuery to generate Sybil
paths with different values of k. We also performed a
quantitative evaluation of privacy by devising a new metric.
The intuition behind this metric is that an adversary who has
access to a database R of real paths and a database S of
Sybil paths corresponding to paths in R should be unable
to differentiate between the two databases. We present
the results from this evaluation in our detailed technical
report [40].

User Study. We conducted the user study with 15
volunteers, each of whom had to answer ten questions. Each
question presented k paths (one real path and k − 1 Sybil
paths) to the volunteer, who had to identify the real path
from the Sybil paths. Five questions had k = 4 while the
remaining five had k = 6. Each volunteer was presented
with a different set of ten questions, i.e., our study obtained
responses for 150 questions in all. Volunteers could view
paths using the Google Maps API, and were instructed to
use any tools at their disposal, such as zooming into the map,
street views, and local information about the San Francisco
Bay area, in their attempt to distinguish real paths from Sybil
paths. All our volunteers were computer science graduates
familiar with the basic geography of the San Francisco Bay
area.

Figure 5 presents the results of this study and shows the
number of questions for which users were able to correctly
identify the real path from the Sybil paths. As this figure
indicates, volunteers were able to correctly guess the real
path with a probability of 0.26 for k = 4 and 0.19 for
k = 6. These probabilities are close to their expected
values (0.25 and 0.17, respectively). We further calculated
the per-user standard deviation of the probability of correct
guesses and found these values to be quite low (0.19 and
0.15, respectively). These results lead us to conclude that
the Sybil paths qualitatively resemble real paths.

Figure 6: Query/response
latency of SybilQuery.

Figure 7: Spatial cloaking:
Increase of cloaked region
radius with trip length.

Sample responses from the user study gave us an interesting
perspective into the mind of an adversary trying to break
the SybilQuery system. Several users selected a false trip
as the “odd man out” since all the other trips (including
the real trip) were similar. Different users used contrasting
rationale to guess real user trips. For example, some users
wrongly selected shortest paths since the real path “looked
too circuitous to be true”. Yet, others wrongly selected
circuitous paths as they felt that “outside human knowledge
could be directing this route”. Users typically found it hard
to guess when the trip started late (i.e.,if the first query
was made after travelling some distance), since “the starting
point seemed a bit odd”. Sybil paths with a prominent
endpoint such as a University or a Metro station were often
selected by users with responses such as “destination is
University (different from others) and more likely to be the
real user’s query”.

To summarize the user study, the reasonings used by the
adversaries were extremely diverse, which seems to explain
why the overall probability of guessing correctly was close
to that of random guessing.

Performance
We report the performance of several aspects of SybilQuery,
including the time needed to preprocess the traffic database
and the real-time performance of querying an LBS. We
also compare the performance of SybilQuery against an
implementation of spatial cloaking. All the results presented
below were obtained on a 1.73GHz Pentium M laptop with
512 MB RAM. Each experiment was repeated 50 times, and
the value of the privacy parameter k was fixed to be 4, unless
otherwise indicated.

One-Time and Once-Per-Trip Costs. The one-time cost
(offline step) for SybilQuery involves preprocessing of the
traffic database. This step processed 529,533 trips and took
approximately 2 hours and 16 minutes.

The once-per-trip costs for SybilQuery involve end-point
generation and path generation. Generating a single pair of
endpoints at the beginning of a user trip took an average of
5.47 seconds with a standard deviation of 1.02 seconds. To
measure the cost of generating paths, we randomly chose
trips with lengths varying between 5 and 30 minutes. The
mean cost of computing a path (including the network
latency to query the Microsoft MultiMap API) was 360
milliseconds, with a standard deviation of 150 milliseconds.



Figure 8: Response size returned by Sybil-
Query and spatial cloaking, for medium
POI density.

Figure 9: Response size returned by spa-
tial cloaking, for different POI densities.

Figure 10: Comparing the performance of
SybilQuery with spatial cloaking for range
queries.

Query/Response Performance. We measured the response
latency of SybilQuery by integrating it with the Yahoo!
Maps local search API [43]. Figure 6 shows the latency of
sending k queries and receiving responses. As expected, the
cost increases linearly with k, since k requests are sent to the
LBS each time the client makes a query.

Comparison with Spatial Cloaking. Spatial cloaking [19]
is a state of the art technique that achieves k-anonymity
by using an anonymizer to send the LBS cloaked regions
containing at least k users. The LBS returns all points
of interest (POIs) within the cloaked region that match the
query to the anonymizer. Although spatial cloaking was
originally proposed for static users, we considered a simple
variant for mobile users in which cloaked regions grow as
users move.2

We conducted experiments to compare spatial cloaking with
SybilQuery. Because spatial cloaking uses an anonymizer
to send cloaked regions containing k clients to the LBS, we
can expect the cloaked regions to increase in size as clients
move (because the cloaked region must contain the same set
of clients to preserve k-anonymity). In addition, because
an LBS returns query results for the cloaked region, we
can expect that increased POI density will lead to increased
query/response processing time at the anonymizer. Our
experiments, reported below, confirmed these expectations.

Figure 7 presents the results of the experiment that shows
that the size of cloaked regions increases as clients move.
We randomly chose trips varying in duration from 1 minute
to 30 minutes from the Cabspotter database. We then fixed
k = 4, and selected the smallest cloaked region containing
at least k − 1 other clients. As Figure 7 shows, the size of
the cloaked region increases with the duration of the trip.

To understand how this increase translates to query/response
processing overhead, we studied the size of the response
(in kilobytes) received from the LBS for a fixed nearest
neighbor query: “return the Chinese restaurant closest to
my current location.” In spatial cloaking, the anonymizer
sends the entire cloaked region to the LBS, and must process
responses from the LBS to identify the closest Chinese
2Although we have not carefully analyzed the privacy offered by
this scheme, it suffices to compare the query/response performance
of spatial cloaking with that of SybilQuery.

restaurant for the client issuing the query. However, because
SybilQuery sends exact street addresses, the LBS sends the
closest Chinese restaurant. Figure 8 compares the sizes of
the query response for spatial cloaking and SybilQuery. As
this figure shows, the query response size for SybilQuery
is nearly a constant (at approximately 2KB); it only varies
only with the value of k. However, the response size for
spatial cloaking increases linearly. This is because the size
of the cloaked region increases with trip length, which in
turn directly translates to an increased number of POIs that
match the user’s query.

We also conducted an experiment to study the effect of
increased POI densities on query/response performance.
We chose three representative nearest neighbor queries that
required the LBS to return the closest “restaurant,” “Chinese
restaurant,” and “Hunan Chinese restaurant” to the client’s
location. For spatial cloaking, these queries represent,
respectively, high, medium, and low POI densities. As
Figure 9 shows, with spatial cloaking the size of the query
results depends both on POI density and on the duration of
the trip, and rises to about 5MB within 30 minutes for high
POI densities. With SybilQuery, the query response size
remains fixed at 2KB (because only the closest restaurant
is returned).

The experiments above used nearest-neighbour queries, for
which the difference in query responses for spatial cloaking
and SybilQuery are most pronounced. In contrast, range
queries, such as “return the list of all Chinese restaurants in
an x-mile radius,” require the LBS to process the query over
an entire geographic region. If a client issuing range queries
uses SybilQuery to protect his location, the LBS must
process k geographic regions, each of x-mile radius. On the
other hand, if the client uses spatial cloaking, the LBS must
only process one geographic region whose radius is x miles
larger than the cloaked region. We can therefore expect
spatial cloaking to outperform SybilQuery as x increases.

Figure 10 shows that this is indeed the case. This figure
plots the query response size against increasing values of
x for both SybilQuery and spatial cloaking. For this
experiment, we assumed a circular cloaked region with a
fixed radius 5 kilometers, and used SybilQuery with k = 4.
For smaller values of x, SybilQuery outperforms spatial
cloaking because the combined area of k regions of radius x



is smaller than the cloaked region. However, as x increases,
spatial cloaking outperforms SybilQuery.

Nevertheless, we note that the query/response performance
of SybilQuery can never be worse than k times the perfor-
mance of spatial cloaking even for range queries.

RELATED WORK
• Synthetic locations. The idea of augmenting client
location with synthetically generated locations to achieve
location privacy was also recently proposed by Krumm [27]
in a concurrently developed system. Although our work is
similar in spirit, there are a number of differences between
the two systems. Krumm uses a probabilistic model of
driving behavior which depends on having data about the
road network and ground cover. SybilQuery on the other
hand uses statistical clustering techniques for end point
generation and an off the shelf path generation tool, which
makes it easily scale to large regions. Using false trips
for location privacy was earlier proposed by Kino [21,
20]. Kino’s work focused on reducing the computation
cost, so they use random walk based models for false path
generation, which can be easily reidentified.

• Cloaking schemes. Originally introduced by Gruteser
and Grunwald [19], cloaking aims to achieve k-anonymity
by hiding client location from the LBS both in space and
time. These systems achieve spatial anonymity by sending
a cloaked region containing at least k users to the LBS.
They achieve temporal cloaking by delaying a query until
at least k other users have also issued queries. This basic
model has been extended in several ways. For example,
work by Duckham and Kulik [8], Gedik and Liu [13, 14],
Bamba et al. [1] and Mokbel et al. [34] allow users to
personalize their privacy requirements, e.g., by letting them
decide thresholds for spatial and temporal resolution of
cloaked regions. Similarly, work by Bamba et al. [1] extends
the basic model to allow for `-diverse [32] queries. Other
related approaches include achieving k-anonymity using
path confusion [23, 25], where the anonymizing system
attempts to confuse the adversary by crossing paths where
at least two users meet.

A common theme in all the above systems is the need for
a trusted third-party anonymizer that ensures k-anonymity
(or `-diversity). Using a third-party anonymizer has two
disadvantages. First, the anonymizer is the central point of
failure and presents scalability and performance bottlenecks.
For example, an adversary could cripple the system with
a denial-of-service attack on the anonymizer. Moreover,
because the anonymizer has access to sensitive information
from clients, a compromize of the anonymizer would
result in a privacy breach. By offering a decentralized
design, SybilQuery avoids these shortcomings. Second,
most previous approaches only provide security guarantees
for static snapshots and do not consider history of user
movement (with the exception of work by Chow and
Mokbel [4], which also uses an anonymizer). Therefore, if
a user asks the same query from multiple cloaked regions
as she moves, the LBS could compromise her privacy by
correlating queries from these regions. These attacks are
called correlation attacks [15]. SybilQuery offers improved

protection than cloaking schemes because it does not attempt
to hide the actual path of the user from the LBS. Instead, it
ensures that the adversary is unable differentiate user paths
from Sybil paths.

• Peer-to-peer schemes. Recent research has developed
techniques based on peer-to-peer techniques to eliminate the
need for an anonymizer [17, 16, 5]. Also related, although
proposed as a mechanism for anonymous Web access, is
Crowds [37], in which a query originates from a “crowd”
of k users and the adversary is unable to identify the source
of the query. These techniques have the advantage of
being decentralized in nature. However, they still rely on
the presence of at least k participating peers; in contrast,
SybilQuery operates autonomously, independent of other
querying peers.

• Private Information Retrieval (PIR). Cryptographic
techniques based on PIR [29] offer another alternative to
eliminate anonymizers [15, 22]. Using PIR to protect client
location offers strong cryptographic guarantees on privacy
that SybilQuery unfortunately cannot offer. However,
the PIR-based scheme suffers from two drawbacks that
limit its applicability. First, in spite of impressive recent
advances, PIR remains computationally expensive [41].
For example, Ghinita et al. [15] employ a PIR protocol
that imposes a cost of O(n) at the server, in addition to
client/server communication costs of O(

√
n). Practically,

this translated to about 30 to 60 seconds of server processing
time for each location query and communication of a
few megabytes of data to process a single location-based
query in their implementation. In contrast, SybilQuery
is computationally cheap and generates queries with sub-
second latency. Second, PIR-based schemes require code
modifications at both the client and the server to implement
the PIR protocol. Thus, in contrast to SybilQuery, PIR-based
schemes cannot easily be applied to legacy systems.

• Other related research. Zhong et al. [45] recently pro-
posed a distributed k-anonymity scheme for location privacy
that makes use of an additive homomorphic cryptosystem.
The main limitation of such a system is that it requires
location brokers(cellular and/or WiFi providers) to be mod-
ified in order to implement their scheme. SpaceTwist [31]
is a recently proposed location privacy system that uses a
cloaking-like scheme to obfuscate the location of the client
from the LBS and uses an incremental algorithm to process
nearest neighbor queries. Like SybilQuery, SpaceTwist
is also decentralized and autonomous. However, unlike
SybilQuery, it does not ensure k-anonymity, does not handle
mobile users, and only supports nearest neighbor queries.

The idea of introducing synthetic information to achieve
privacy has previously been explored for anonymous Web
access [24, 38]. In these systems, a user query to a
Web server (e.g., a search request) is hidden amongst
synthetically generated queries. Similarly, Chuffnes et
al.recently developed SwarmScreen [3], a system which
protects user privacy in P2P systems by adding additional
random connections that are statistically indistinguishable
from natural ones.



Recently, Machanavajjhala et al. [33] developed rigorous
techniques based upon a variant of differential privacy [9] to
add synthetic information to released databases, and applied
it to a database of traffic commuting patterns. Adapting
these techniques to enable real-time generation of synthetic
queries is an interesting direction for future work.

SUMMARY AND FUTURE WORK
SybilQuery is an efficient, decentralized technique to hide
user location from LBSs. Its modular design allows
SybilQuery to be deployed with off-the-shelf client devices
and without any changes to the LBS. We implemented a
prototype of SybilQuery and integrated it with LBSs such
as Google Maps, Yahoo! Maps and Microsoft Live Maps.
Our experiments—both a qualitative user study as well as
a performance evaluation—show that Sybil queries can be
efficiently generated and they resemble real user queries. In
future work, we plan to enhance the SybilQuery prototype
to generate Sybil queries that also achieve stronger privacy
guarantees, such as `-diversity [32], t-closeness [30] and
differential privacy [9].
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