
Decentralized Information Flow Control for the Robot

Operating System

A PROJECT REPORT

SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology(Research)

IN

Faculty of Engineering

BY

Chinmay Gameti

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

January, 2024

Declaration of Originality

I, Chinmay V. Gameti, with SR No. 04-04-00-10-22-19-1-17201 hereby declare that the

material presented in the thesis titled

Decentralized Information Flow Control for the Robot Operating System

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2019-2022.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge and I have carried out due diligence to ensure the originality

of the report.

Advisor Name: Advisor Signature

1

© Chinmay Gameti

January, 2024

All rights reserved

DEDICATED TO

My beloved parents

Whose unwavering support and guidance have been instrumental

in shaping my journey. Their love and encouragement have been

my constant pillars of strength, and I am deeply grateful for their

presence in my life.

Acknowledgements

i

Abstract

The Robot Operating System (ROS) is a popular open-source middleware widely used in the

robotics community. While ROS provides extensive support for robotic application develop-

ment, it lacks certain fundamental security features, making ROS-based systems vulnerable to

attacks that can compromise the application and user security. To address these challenges,

ROS incorporates security plugins and libraries to protect against unauthorized access and en-

sure secure communication between ROS applications. However, these user-level security tools

do not protect end-to-end information flow against operating system (OS)-level attacks.

This research introduces FlowROS, a decentralized information flow control (DIFC) system

for ROS. FlowROS empowers ROS applications with fine-grained control over their sensitive

information, providing a programmable interface and supporting explicit label propagation for

modified ROS applications. FlowROS also leverages implicit label propagation for backward

compatibility with unmodified ROS applications while guaranteeing end-to-end information

flow control, including secrecy and integrity requirements. The implementation of FlowROS

includes a kernel-level enforcement engine based on Linux security modules (LSM) to intercept

sensitive communications within the system.

The contributions of this research include identifying the limitations of mandatory access

control (MAC)-based policy frameworks in ROS, motivating the need for DIFC systems in

robotics platforms, presenting FlowROS as a practical DIFC solution for ROS applications,

addressing the inherent DIFC challenge in ROS, and demonstrating the robustness, security,

and performance of FlowROS through case studies, evaluations, and practical policies.

Overall, FlowROS enhances the security of ROS-based systems by providing ROS applica-

tions explicit control over the flow of their sensitive information, mitigating vulnerabilities, and

protecting against accidental data disclosure.

ii

Publications based on this Thesis

iii

Contents

Acknowledgements i

Abstract ii

Publications based on this Thesis iii

Contents iv

List of Figures vii

List of Tables viii

Abbreviations viii

1 Introduction 1

1.1 Introduction . 1

1.2 Outline . 6

2 Background and Threat Model 7

2.1 ROS Framework . 7

2.1.1 Nomenclature . 8

2.1.2 eProsima DDS . 9

2.1.2.1 Dynamic Discovery Protocol . 12

2.2 Access Control . 13

2.2.1 Secrecy and Integrity . 13

2.2.1.1 Discreationary Access Control 14

2.2.1.2 Mandatory Access Control . 14

2.2.1.3 Information Flow Control (IFC) Challenges 16

2.2.1.4 Decentralized Information Flow Control (DIFC) 16

iv

CONTENTS

2.3 Motivation . 18

2.3.1 Threat Model . 21

2.4 Challenges . 21

2.4.1 Label Explosion . 21

3 Related Work 24

3.1 ROS Security . 24

3.2 Information Flow Control . 26

4 FlowROS 28

4.1 DIFC Model . 28

4.1.1 Tags and Labels . 28

4.1.1.1 Partial Order Lattice . 29

4.1.1.2 Classification and Declassification 29

4.1.1.3 Global Capability . 30

4.1.2 Label propagation . 31

4.1.2.1 Secrecy . 31

4.1.2.2 Integrity . 31

4.1.2.3 Label Changes . 32

4.1.3 Implementation . 33

4.1.3.1 Why LSM? . 34

4.1.3.2 Major and Minor LSMs . 34

4.1.3.3 Limitations . 36

4.1.3.4 DDS Modifications . 36

4.1.3.5 Domain Declassification . 38

4.1.4 User APIs . 39

4.2 Sample DIFC Policies . 39

4.2.1 Taint Tracking . 39

4.2.2 Storage Policy . 40

5 Evaluation 42

5.0.1 ROS2 Camera Application . 42

5.1 Experiments . 46

5.1.1 Communication Latency . 46

5.1.2 System Overhead . 50

5.1.3 Availability . 53

v

CONTENTS

6 Conclusion and Future Work 54

6.1 Conclusion . 54

6.2 Future Work . 54

A RTPS Traffic 56

A.1 User traffic . 56

A.2 Metadata Traffic . 57

Bibliography 58

vi

List of Figures

1.1 ROS motivating example . 4

2.1 eProsima Data Distribution Service (DDS) architecture (Image borrowed from

eProsima Fast DDS documentation [47, 7]) . 10

2.2 Access Matrix for DAC, P1 and P2 are processes and there access rights for file

f1 and f2 . 14

2.3 DDS security mechanisms as an added plugin (Image borrowed from OMG DDS

documentation [46]) . 20

2.4 Label explosion due to discovery Endpoint Discovery Protocol (EDP) protocol . 23

4.1 Implicit vs. Explicit label propagation . 33

4.2 FlowROS architecture that includes mainly three components: 1. User Application

Programming Interface (API) for ROS applications to manage labels that com-

municates through IOCTL interface, 2. DDS middleware support to register

ports used in Endpoint Discovery Protocol (EDP) and 3. Reference monitor

that is part of Linux Security Module (LSM) . 37

4.3 Simple taint tracking . 40

4.4 Storage policy . 41

5.1 Camera DIFC policy . 43

5.2 Benchmark publish/subscribe example . 47

5.3 Bar Graph of Communication Latency . 48

5.4 Added delay in the reference monitor . 50

5.5 Userspace Latency Comparison . 51

5.6 Kernelspace Latency Comparison . 52

5.7 Comparison of CPU Utilization: Without Label vs. With Label 52

vii

List of Tables

5.1 Communication latency . 48

5.2 Table of mean and minimum latency . 49

5.3 Table of mean and minimum latency for added delay of 500us 50

5.4 System-level overheads . 51

viii

LIST OF ABBREVIATIONS

ROS Robot Operating System

SROS Secure Robot Operating System

OMG Object Management Group

DDS Data Distribution Service

RTPS Real-Time Publish Subscribe

EDP Endpoint Discovery Protocol

PDP Participant Discovery Protocol

API Application Programming Interface

DAC Discretionary Access Control

MAC Mandatory Access Control

IFC Information Flow Control

DIFC Decentralized Information Flow Control

ACL Access Control List

TCB Trusted Computing Base

HTEE Hardware-base Trusted Execution Environment

RBAC Role-based Access Control

LSM Linux Security Module

ix

Chapter 1

Introduction

1.1 Introduction

The Robot operating system ROS [57] is an open-source middleware that is heavily used

and accepted in the robotics community. ROS is rapidly growing and widely used due to its

support of software libraries and tools that are developer-friendly [58, 12, 57], providing ROS

developers with a wholesome architecture for developing a wide variety of robotic applications

[56, 26, 19]. ROS uses a publish/subscribe model where ROS nodes executing in separate process

contexts or executing remotely on a distributed system can communicate with other ROS

nodes by publishing/subscribing to the data using ROS topics. Topics are the communication

abstractions ROS applications use to communicate with other ROS applications. For instance,

Let us say a ROS node A publishes its data on the topic UserData; the ROS node that requires

that piece of information (e.g., B) will subscribe to the topic UserData in order to receive

the UserData feed. The earlier version of ROS (i.e., ROS version 1) middleware used master

node architecture, such that the master node executing on the same ROS-based environment

is responsible for establishing communication between ROS nodes using ROS topics. However,

the master node architecture is susceptible to a single point of failure, leading the system to

a crash and a non-functional state [23, 28]. ROS2, a recent version of ROS, integrates a Data

Distribution Service (DDS) [5, 4, 11, 61, 6] that, by default, manages the communications

between ROS applications and therefore mitigates the ROS-based environment from a failure

(i.e., a single point of failure) and providing a reliable real-time publish/subscribe wired protocol

[6, 10]. ROS2, by default, uses an open-source DDS implementation eProsima but still allows

ROS developers to use any available open-source DDS libraries suitable for their use case.

Henceforth, in this thesis, the word “ROS.” will imply ROS2 unless explicitly mentioning ROS

1

version 1.

ROS provides better middleware support for robotic application development due to its

diverse support for various robots and industrial use cases. However, it lacks some basic secu-

rity features, making ROS-based systems vulnerable to attacks that may violate security for

applications and users [54, 38, 21]. For instance, a compromised ROS application running on

the system may try eavesdropping the communication between ROS applications. It can ac-

cess or ex-filtrate the user’s classified data and the application’s private sensitive files. Also, a

malicious application can publish or subscribe to topics it is not allowed to. To overcome these

challenges, ROS provides libraries and service plugins to protect the system from such attacks

[71, 16, 46] that prevent malicious applications from publishing (i.e., denial of service attacks,

fault injection, etc.) or unauthorized subscription (i.e., sniffing), such that, the applications

can mitigate such attacks by using Secure Robot Operating System (SROS), or secure DDS’s

authentication and access control service plugins [46]. Using SROS, applications can declare

who can publish or subscribe to the topics using signed certificates, and the SROS layer will

enforce it at run time [71]. ROS applications can monitor data flows using logging and data

tagging plugins at the DDS layer. Note that eavesdropping on the packets can be mitigated

using cryptographic plugins that the DDS layer by default does.

These are some user-land security tools that the ROS2 middleware supports, but the system

is still far from perfect since ad-hoc security tools at the DDS layer do not guarantee end-to-end

information flow protection on the system against OS-level attacks [49, 16, 46]. For instance,

DDS primarily uses network sockets (i.e., UDPV4 and TCPV4) to establish the connections and for

actual pub/sub communications, but the capability exists for ROS applications executing on

ROS environment to use other mediums of communications (e.g., shared memory (i.e.msg msg),

System V. (i.e.,IPC), and files). Using an OS-level interface exposes an attack surface to mali-

cious applications to bypass the ROS layer completely and use OS-level artifacts to ex-filtrate

sensitive information out of the system through a network or storage interface. To mitigate

such vulnerabilities leading to accidental data disclosure of sensitive information, previous work

[16] uses a centralized policy mechanism and kernel-level enforcement [3] to track the informa-

tion flow of user and application’s sensitive data not leaking out of the system. Similarly, past

work [49] uses OS-managed security mechanisms (e.g., Controlled HW access using ports and

SELinux, access control (SELinux), and Netfilters) to secure DDS-based systems (on robotics

platform) from OS-level attacks. These frameworks leverage SELinux and AppArmor, which

are Mandatory access control (Mandatory Access Control (MAC)) based systems. MAC sys-

tems provide OS-level information flow control guarantees by applying kernel-level enforcement

of user or trusted system admin-given centralized security policies (i.e., MAC policies). Note

2

that MAC systems fundamentally suffer from two problems:

1. Coarse granularity. Since MAC systems apply process-level enforcement. The MAC-

based system cannot distinguish different security classes of data at the process level.

Therefore, they label the process with the highest security label associated with the data.

(i.e., the process having data that belongs to the highest security class).

2. Policy deduction. Deducing a policy has always been challenging on MAC systems,

which require system admin to thoroughly identify information flow in the system and

create a system-wide centralized policy considering the secrecy and integrity requirements

of the system that should cover all possible information flow path in the system [53, 69,

34, 35, 50].

Figure 1.1 below shows a scenario on a ROS-based system where an application publishes three

types of data associated with three security classes (i.e., top-secret, secret, and nonsecret).

Consider a scenario where a ROS-based system uses OS-level enforcement (SELinux/AppAr-

mor) to guarantee end-to-end secrecy and integrity. The application wants to protect its data

belonging to the security class “top secret,” such that only specified trusted applications in

the system are allowed to subscribe to this data. For the data belonging to the class “secret,”

any application can subscribe to this data. However, the data should not leave the system.

The application does not want to put any restrictions on the flow of data belonging to the

class “nonsecret,” Such a requirement will force a MAC policy to classify the application to

the highest security level that the data is associated with, therefore putting undue restrictions

on all types of information flows that the application performs, i.e., information belonging to

classes “secret” and “nonsecret” will suffer a similar information flow restrictions as of security

class “top secret.”

In operating systems, the natural evolution of the security mechanisms has highlighted these

facts and tried rectifying the limitations that MAC systems impose [59]. These mechanisms

have realized the need to segregate application data based on how applications see it or associate

the security class with its data. Thus, it offers application developers a programmable interface

that empowers them to control the flow of information.

We present FlowROS, an OS-level Decentralized Information Flow Control (DIFC) sys-

tem for the robot operating system (ROS). FlowROS enables ROS applications by giving

fine-grained control over their sensitive information using a programmable interface that the

FlowROS exposes. FlowROS supports explicit label propagation for modified ROS applications

[68, 44, 60, 33, 74] and leverages implicit label propagation mechanism to provide backward

3

Figure 1.1: ROS motivating example

compatibility for unmodified ROS applications while still guaranteeing end-to-end information

flow control (i.e., secrecy and integrity requirements). FlowROS supports using DIFC on the

ROS platform by identifying the need for DIFC on the ROS platform and solving the critical

challenge that the underlying ROS imposes (i.e., Label explosion1). We implement FlowROS

from scratch and leverage Linux security modules (LSM) [72] for implementing the kernel-level

enforcement engine that intercepts every sensitive communication in the system. We support

our proposal with an open-source implementation.
1

To summarize our contributions:

• We identify the shortcomings of MAC-based policy frameworks on ROS and, therefore,

motivate the use of the DIFC system on robotics platforms.

• We present FlowROS as a new DIFC system for ROS, empowering ROS applications to

control their sensitive information from accidental data disclosures.

• We demonstrate a practical DIFC system, FlowROS, as a combination of explicit and

implicit label propagation, making it backward compatible with unmodified ROS appli-

cations

• We identify and highlight an inherent DIFC challenge on ROS and provide a solution in

FlowROS for making DIFC possible on the ROS platform.

• We present the robustness of FlowROS by demonstrating practical policies and a case

study of an existing ROS application to use DIFC. We present a security evaluation of

1“Label explosion” refers to a situation where the entire system accumulates all distinct labels, resulting in
a large restrictive label, leading the system to a non-functional state[44].

4

FlowROS on the NVidia Jetson TX2 board and a performance evaluation showing the

overheads incurred at the application and system levels.

5

1.2 Outline

The further thesis is organized as follows:

• Chapter 2 gives an overview of ROS nomenclature, eProsima DDS, and Dynamic discovery

protocol. And a detailed introduction to OS-level access control and information flow

control mechanisms. We further present security and privacy concerns on ROS-based

applications, defining our adversarial model and trusted computing base.

• Chapter 3 presents related work with respect to ROS and Information Flow Control (IFC)

systems.

• Chapter 4 presents security and privacy-related work in the ROS framework and OS-level

information flow control.

• Chapter 5 gives a detailed explanation of the implementation of FlowROS. The formal ex-

planation of tags, labels, and label propagation rules in FlowROS. The Reference monitor

implementation and FlowROS ioctl interface for ROS applications.

• Chapter 6 presents practical DIFC policies for ROS applications and evaluation of FlowROS

on the NVIDIA Jetson TX2 board.

• In chapter 7, we finally conclude and address a few future directions.

6

Chapter 2

Background and Threat Model

This chapter gives background on Robot Operating System (ROS) middleware, which

is extensively used in robotics platforms, and the eProsima Data Distribution Service

(DDS) library that ROS uses for seamless communication between ROS applications.

Then, we explain the evolution of classic OS-level security mechanisms from access control

systems (i.e., Discretionary Access Control (DAC), MAC, etc.) to various decentralized

information flow control systems (i.e., OS-level DIFC, PL-based DIFC, etc.).

2.1 ROS Framework

Robot Operating System (ROS)[2, 12, 57, 58] is a widely used middleware for robotics plat-

forms. In recent years, it has gained popularity in the robotics community. ROS enables

applications executing on various kinds of robots, autonomous vehicles, and drones to quickly

implement a rich set of functionalities, including those for 2D and 3D simultaneous localiza-

tion and mapping, navigation, and perception. Many robotics platforms are distributed, and

ROS enables applications to work seamlessly across a set of coordinating robots. For example,

ROS-based applications are used to control a group of collaborating robots on a factory shop

floor or a swarm of drones together accomplishing a task. Many industries are shifting to a

networked-based environment to increase production by automating many tasks. The ROS

middleware is expected to grow and have applications on many different platforms [23].

7

2.1.1 Nomenclature

ROS’s nomenclature comprises four fundamental concepts: nodes, topics, messages, and services

[52].

• A node in ROS is an entity that performs computation. Nodes execute at the granularity

of a process in operating systems. The process-level granularity of ROS nodes enables

ROS for a modular design, which works similarly to software modules. As a result, in the

ROS environment, the terms nodes and software module are often interchangeable.

• In ROS, Nodes can communicate with other nodes by passing messages. The messages

are nothing but a typed data structure used for communication. Some primitive types

of messages include (integer, boolean, character, floating-point, etc.). Also, messages

can further be composed of many other different types and different primitive types of

messages.

• Nodes communicate with each other by passing messages as the ROS middleware library

provides a simple abstraction to applications for data communication. Topics are nothing

but a string used by the ROS layer. ROS provides a publish/subscribe-based system, and

applications can create publishers and subscribers associated with topics. Applications

can publish messages on topics that are then delivered to applications that have subscribed

to those topics. Applications declare the set of topics they post or subscribe to using

manifests. Then, the Data Distribution Service (DDS), part of ROS middleware, handles

matchmaking and message delivery underneath using the interfaces given by OS. Multiple

publishers and subscribers can concurrently exist at the same time on a single topic. Also,

a node can publish/subscribe to many topics simultaneously.

• The publish/subscribe model is based on topics. It is a beneficial paradigm for applications

running in the ROS environment. The broadcast nature of the message-passing protocol

used in these models does not allow synchronous transactions, which some applications

might need (e.g., web services-based applications). ROS also has service nodes that are of

request and response types, and it has well-defined sets of requests and response messages.

ROS2 is redesigned from its previous version ROS1, so it becomes versatile for many robotic

applications that can utilize the ROS environment in a better way. The earlier version of

ROS had a notion of the centralized master node that managed communications among ROS1

nodes—keeping track of nodes that broadcast its publishers and subscribers and create com-

munication links between them. Upon creating the communication link, publishers can send

8

messages directly to subscribers by publishing their data on topics, and subscribers can receive

the data by subscribing to it. The failure of a central node can break down an entire system

and lead to some DOS attacks [23, 24, 39, 28]. ROS2 comes up with an open-source middleware

service, a decentralized data distribution model (Data Distribution Service) [5, 10, 6] developed

for embedded and real-time systems; DDS allows applications to discover each other at runtime

dynamically, known as dynamic discovery protocol.

2.1.2 eProsima DDS

Fast data distribution service, Fast DDS, also formerly known as Fast RTPS, is specifically de-

signed for distributed applications. eProsima implements an easy-to-use data-centric communi-

cation medium in the form of middleware. ROS, by default, comes with eProsima middleware

for its real-time publish-subscribe model. There are many pub/sub implementations of DDS,

but eProsima is a widely used, efficient, and performance-oriented implementation[61, 4, 7, 13,

9]. We focus on the eProsima-based version of ROS for our FlowROS system. Figure 2.1 shows

the architecture of eProsima implementation, specifying different components.

The concept of Domain is used as a communication medium in DDS. A domain acts as a dis-

tinct communication layer, enabling applications to seamlessly interact and discover each other’s

publishers and subscribers within a network. In this context, DDS introduces the concept of

a DomainID, which serves to logically separate networks within the same physical infrastruc-

ture. This means that multiple ROS2 systems can operate concurrently on a single machine or

within the same physical network without any mutual interference. Consequently, only those

applications or nodes that share the same DomainID (i.e., belong to the same domain) are

capable of discovering each other through the RTPS wired protocol of DDS. Essentially, a

ROS system constitutes a communication graph comprising a collection of nodes, topics, and

services facilitated by DDS. Each ROS system is linked to a specific DomainID, ensuring that

all nodes within a system are initialized with the same DomainID. Users can set the DomainID

either through environmental variables (e.g., using ROS DOMAIN ID) or programmatically

during the development of a ROS application. Please note that any further discussions regard-

ing Topics, DDS entities, and the Discovery protocol will be assumed to take place within the

context of the same DDS domain.

Topics are fundamental to the discovery protocol and communication (i.e., data exchange)

among ROS applications. Each DDS entity, such as publishers or subscribers within a ROS

application, shares information about the topics it publishes or subscribes to with the DDS

9

Figure 2.1: eProsima DDS architecture (Image borrowed from eProsima Fast DDS documen-
tation [47, 7])

10

layer. This information includes the topic name, data type, Quality of Service (QoS), and other

relevant details. Multiple topics can exist within a domain, and applications can publish or

subscribe to these topics. The DDS middleware is responsible for routing messages based on

topic names. When a publisher sends a message on a topic, the DDS middleware efficiently

routes this message to the subscribers of that topic. It accomplishes this by keeping track of

all active publishers and subscribers for each topic and creates communication channels only

between the nodes that are relevant to the exchange. This approach helps the DDS middle-

ware optimize network traffic, avoiding the need to create communication channels between all

pairs of nodes. Since topic discovery is a part of the automatic discovery protocol in DDS, it

is announced to all other entities in the system. However, this announcement, which involves

metadata traffic, is managed by the DDS middleware and is not disclosed to the applications.

DataWriter: The publisher is a DDS entity that publishes messages on topics associated with

the DataWriter entity. An application developer uses a high-level publish API to publish data.

DataWriter, which is part of the publisher, has a Data-Writer history cache; Data published

by the application is temporarily written to the Data-Writer cache, which is then later passed

on to the Real-Time Publish Subscribe (RTPS) layer. All data writers are bound to a specific

topic, and subscribers that match this topic will be able to receive the data.

DataReader: All DataReaders are bound to a specific topic for receiving data publication

updates on that topic. Data readers are mainly associated with subscribers. DataReaders

are created when applications create subscribers. DataReaders have a DataReader history

cache that stores the data published or sent by a DataWriter on the topic that DataReader is

associated with.

eProsima implements its DDS middleware mainly in two layers. The first layer is a DDS

layer, a high-level abstract layer for applications using DDS; this layer is for managing data for

the Publishers and Subscriber interface provided to applications before sending data over the

communication channel. The second layer is the RTPS layer, which implements a lower level

or internal layer for data communication. The protocol is based on the OMG group’s RTPS

standards [9, 10]. The API Domain layer has more control over the actual data communication

over the wired protocol; it uses OS-level abstractions (such as sockets, shared memory, pipes,

etc.) to manage data communication between RTPSWriters and RTPSReaders.

The final transport layer is where the actual data transfer is carried out over the physical

communication medium between DDS entities. The architecture of DDS is made such that

the middleware service can run on any API service beneath the ROS framework (i.e., OS-level

11

services). Some internal transport layers it uses are UDPV4, UDPV6, TCPV4, TCPV6, Shared

memory (SHM), etc.

2.1.2.1 Dynamic Discovery Protocol

DDS enables applications to work seamlessly without the hassle of creating network commu-

nication with other running applications. This will require application writers to add support

for managing communication links between applications upon initialization, destruction, and

network failures. DDS makes this task of management easier for applications. In a ROS en-

vironment, applications do not need to know a priori where other applications reside, and

they might be running on the same platform or remotely. The actual data transfer between

applications happens through OS-level abstractions (i.e., sockets, files, shm). DDS uses a dis-

covery mechanism to facilitate the easy and efficient management of data exchange protocol

for ROS. It automatically detects active applications on the system and matches DataWriters

with DataReaders.

1. Participant Discovery Phase

Every application on the system initializes itself on a specific Domain by creating an in-

stance of DomainParticipant class. That enables the DDS layer to listen to meta-traffic by

other domain participants on the system and create communication links between them.

Domain Participant sends announcement and acknowledgment messages periodically on

the Domain. These messages consist of Uni-cast addresses (such as IP and Port) that the

Domain participant listens to for meta-data traffic and data sent by other applications

known as user-data traffic. The DDS layer uses meta-data traffic to manage communica-

tion among DomainParticipants. The acknowledgment messages relating to participant

discovery are usually sent in a broadcast manner so that everyone listens to them. Fur-

thermore, these messages are sent over a well-defined multi-cast address and port that

are calculated using the DomainID.

2. Endpoint Discovery Phase

DataReaders and DataWriters are part of Publishers and Subscribers of Domain par-

ticipants. DomainParticipants send acknowledgment messages to each other to discover

their endpoints over the communication link created by the Participant Discovery Pro-

tocol (PDP) protocol. Communication for the Endpoint discovery phase is usually of

one-to-one uni-cast type, unlike the messages sent in the participant discovery phase

using the broadcast method on well-defined ports.

12

OMG, a standards development organization, has given DDS interoperability wire protocol for

real-time publish-subscribe. OMG standards specify mainly three layers: that are platform-

independent module (PIM), platform-specific module (PSM), and serialized payload represen-

tation [10].

2.2 Access Control

2.2.1 Secrecy and Integrity

A process is an execution context for a program to perform computation on the system. Similar

to process-level abstraction that protects other execution contexts executing on the machine,

the Protection domain, which is used, also controls the access among processes belonging to

different security contexts. The term protection domain is used to specify what a process can

do, and In some sense, the protection domain represents a group or a security context. Each

process belongs to some protection domain, which then can be used to monitor the access to

system resources that are performed by the process. Sometimes due to bugs, some processes

can inadvertently or maliciously impact the execution of another process by taking control over

processes having bugs. Typically, A system uses some sparse data structure (e.g., Access Control

List (ACL), Matrix) to keep the record of valid accesses or operations that a process can do

for all the protection domains in the system. These protection systems’ security guarantees are

generally secrecy, integrity, and availability. Some important terms that are used to describe

protection systems are subjects, objects, and operations. Processes and users belong to the

subject, objects are OS-level resources (i.e., files, sockets, inodes), and operations are generally

tasks (i.e., read, write, and execute) that subjects can perform on objects.

Secrecy and integrity are two primary security goals that protection systems can provide. In

general, these systems aim for models of either secrecy or integrity. However, some unique access

control systems focus on both [17, 18, 64]. Some objects may have sensitive or confidential

information that should not be disclosed to unauthorized processes or subjects. Hence secrecy

policy limits unauthorized subjects from accessing (i.e., malicious processes from performing

read operations on sensitive kernel-level objects) containing sensitive information. Similarly,

some objects may have information that other objects and subjects rely upon. Corrupted

information of such sensitive data might break down other running processes or, as a result,

the whole system. Hence, the integrity goal prevents corrupting sensitive data that others rely

upon.

13

Figure 2.2: Access Matrix for DAC, P1 and P2 are processes and there access rights for file f1
and f2

2.2.1.1 Discreationary Access Control

In the DAC (Discreationary Access Control) system, permissions for subjects to access objects

are determined based on policies. Various representations, such as the Lampson access matrix,

access control lists (ACL), and capability lists, can explain the security of DAC. The access

matrix is just a data structure representing subjects and objects, with each entry in the cell

defining the set of allowed operations for a principal.

However, the issue with DAC arises from all objects’ access privileges being left to the

discreation of their users or processes. It allows any untrusted process to modify the protection

state, posing a significant security risk. For instance, consider access matrix 2.2 file 1 containing

sensitive information and process one having read access to it. If process 1 is benign but has a

code vulnerability, malicious process two can exploit this vulnerability and leak the information

via file 2. Since process 1 has read access to file 1, process 2 can also grant itself read access to

file 1 by altering the data structure used for a DAC. This lack of control can lead to potential

data leaks and unauthorized access. In conclusion, it is hard to reason about the security of

the system based on the protection state it is in and all mutable protection states that can be

derived. Hence for the DAC system, it is an undecidable problem known as a safety problem

[27]. To protect the system completely, such that information can not leak, and any untrusted

process should not be able to modify the protection state (access matrix). There is a need

for an authorized system administrator who can only assign and modify the transition state,

leading to a Mandatory Access Control system.

2.2.1.2 Mandatory Access Control

As mentioned earlier, the DAC system allows untrusted processes to modify the access matrix,

leading to potential issues like information leaks and control hijacking of processes with vulner-

14

abilities. As a result, DAC falls short of guaranteeing secrecy and integrity requirements. To

overcome these limitations, mandatory access control (MAC) systems have emerged.

The primary objective of MAC is to address the fundamental necessity for a protection

system that can enforce secrecy and integrity requirements, even in the presence of malicious

software within the system. In MAC, the protection state, represented by policies, must origi-

nate from a trusted and authorized source capable of identifying the secrecy and integrity needs

of the system. This ensures a robust and reliable mechanism for maintaining the security of

the system’s data and processes.

MAC systems consist of three primary operations types delegated to a trusted system admin.

1. Labeling.

2. Mandatory protection state.

3. Transition(i.e., label change).

Labels serve as system-defined identifiers that assign specific security classes or semantics to

subjects and objects within the system. These security classes associated with processes (or

principals) and objects enable the OS-level reference monitor to enforce security policies dynam-

ically during runtime based on these labels. A trusted administrator is responsible for assigning

these labels to processes and objects following the security requirements of the applications or

the entire system. Once labels are assigned, they remain immutable, ensuring the tamper-proof

nature of the MAC system.

The labeling represents how subjects and objects in the systems are mapped with labels.

Whenever a new file or process is created, it is assigned some label associated with a security

classification. A mandatory protection ‘state’ shows a protection state that describes the set

of allowed operations that subjects can perform on objects in the form of an access control list

or access matrix. The access matrix shows relations among labels; these relations show a set of

allowable and non-allowable operations that an OS-level reference monitor will use to enforce

the security policies given by a system admin.

In operating systems, new processes are spawned through a fork and execve system calls.

Upon calling the execve call, the process’s binary file (i.e., code and data of a program) is

replaced with the binary path given by the program (or application) at runtime, also known

as policy loading. In such scenarios, transitions of the system admin-assigned labels become

necessary. The new program may have different access rights than the previous one and should

be confined by giving new labels meeting the security requirement.

15

2.2.1.3 Information Flow Control (IFC) Challenges

An Information flow control [22] policy prevents accidental data disclosure or provides secrecy

by applying constraints on the data objects and subjects that are well-known in the system.

An IFC system expects a system administrator to produce a set of well-defined rules for data

propagation and release. Hence, it requires policies to be complete to avoid accidental data

leaks. Considering we have a solid policy, an IFC (such as MAC) can then enforce that policy at

the OS level to prevent such data leaks [43, 48, 16, 33]. A policy includes a set of allowable rules

in the form of predefined security labels attached to these subjects and objects. The policy

represents the ordering of security classes, determining how data will flow between any two

security classes. A secrecy requirement will follow “no flow up” (i.e., lower to higher security

class). And flows that are not allowed in the system should go by a declassification.

A centralized policy requires the system admin to analyze the whole system’s provenance

(i.e., audit logs) generated at runtime by a whole system provenance capture modules in the

kernel. These capture modules record every read/write access in the system by subjects (i.e.,

processes) on objects. Then it is the responsibility of a system admin to analyze and prepare a

policy thoroughly. For example, AppArmor, SELinux, Smack, etc., are some mainstream MAC

systems that provide tools to ease the process of policy generation, such as auditd mode, etc.

But coming up with a full-proof policy is still a complex problem [35, 50] because to protect the

system from attacks and misbehavior, a policy should cover all most every allowable access, and

audit logs should cover all possible access paths for all the applications running in the system.

Further, there are attempts to solve this problem [35, 34, 53, 69, 70]; for example, there is a

path-based confidence framework (such as ASPGEN for AppArmor, etc.) that help in policy

generation by categorizing objects and increasing the code coverage.

2.2.1.4 Decentralized Information Flow Control (DIFC)

As discussed in the previous section, with the increase in the complexity of modern software

and the need for software to secure sensitive data, it is challenging to express and enforce these

security needs using standard DAC and MAC solutions. Lately, better security mechanisms

have been developed for application developers to control their data, as in how their sensitive

data will be consumed and propagated further to other applications on the system that may

maliciously use it (i.e., SEApp [59]). As a natural evolution of security needs, DIFC enables

application developers to express the categories of the data in the app by giving policies in the

form of allowed or disallowed rules.

16

For instance, consider an application that has data of different security class (e.g., confidential,

non-confidential, etc.). For the data tagged confidential, whichever process tries to read it will

not be able to access any file or files not having the confidential tag to write. If a process or

an application still wants to write, it needs to declassify itself by following the declassification

principles. On the contrary, non-confidential information can be consumed and propagated

without the need for declassification. There are mainly three types of DIFC models. One DIFC

at the language level [41, 40, 42], the second at the operating system level [68, 74, 33], and the

third at the architecture level [67, 75]. Where each of these approaches comes with its strengths

and weaknesses [60].

Language-based DIFC. These DIFC systems use program analysis and data structures

to follow secrecy and integrity constraints. It is more fine granular and static in nature as it

attaches labels to the data structures and objects at the application program level; the primary

need for a language-based DIFC is that it requires an intrusive system or a completely new

language. That is the reason these models use JVM or JAVA language. This approach gives

better control as it is enforced at the byte-code generation layer. But the disadvantage is that

it trusts the operating system and cannot protect against OS-level object violations (i.e., files

and sockets) [60, 40].

OS-level DIFC. OS-based DIFC systems support information flow tracking at the ab-

straction of objects and subjects in the system. These systems have a reference monitor as a

part of the kernel layer, which is implemented using Linux Security Module (LSM) [72]. LSM

provides some basic hooks in the Linux kernel code, which are then used to develop security

rules. OS-based DIFC uses these hooks to implement their reference monitor that tracks the

information flow. These systems works based on labels and capabilities; every object and sub-

ject in the system has labels (a set of tags represents a label) and capabilities based on what

reference monitor allows or disallows certain information flow. In the DIFC model, applications

can express their policies by defining these tags and their associated capabilities and attaching

them to their process, threads, or data (i.e., files). In the next section, we further explain the

DIFC model and abstractions in-depth, using the standard OS-based DIFC model in FlowROS.

Past works such as Asbetos [68] and HiStar [74] are examples of OS-based DIFC systems

implemented entirely as a modified OS from scratch. They also use DIFC models such as

labels/capabilities but are heavy as they change core OS abstractions to adhere to security and

integrity requirements. HiStar uses page granularity and page protections to enforce information

flow control policies. Labels are attached to every page in the system, and upon page access,

the page protection mechanism triggers a reference monitor to identify and analyze the flow.

Though it provides a security guarantee, the methodology is inefficient regarding execution time

17

and memory utilization (i.e., due to memory fragmentation). Also, it makes the enforcement

heavy as the DIFC reference monitor requires memory management at the page granularity,

leading to an increase in the execution time. On the contrary, flume implements its reference

monitor entirely at the user level and tracks access of objects by subjects using the granularity

of address space.

Architecture-level DIFC. Past works such as RIFLE [67] demonstrate an architecture-

based runtime DIFC system capable of enforcing user-specified IFC policies for any program.

RIFLE employs binary translation to convert ISA into Information Flow Secure (IFS) ISA [67,

60], and utilizes modified hardware to assist in tracking information flow. During runtime, the

modified IFS ISA interacts with the trusted operating system, which is responsible for enforcing

policies. Similarly, Loki [75] demonstrates that IFC policies provided by the application in DIFC

can be further integrated into the architecture by leveraging the concept of tagged memory (i.e.,

tagging every word in physical memory) and assigning a 32-bit tag value per page in memory

to monitor IFC flows at the processor level. This methodology can mitigate exploits due to

a compromised OS kernel, but it still requires a minimized trusted kernel code to make final

IFC decisions. It uses HiStar as a modified OS, which is not a commodity OS. In conclusion,

architecture-level DIFC systems provide slightly better information flow control than mere OS-

level enforcement, but ultimately they still rely on OS-level enforcement to make IFC decisions.

Unlike OS-level and PL-level DIFC systems, they are not ad hoc in nature [60].

In FlowROS, we leverage the LSM architecture that is already present as a part of the

Linux kernel to implement our reference monitor. Recent DIFC works, such as Weir [44] and

Laminar [60], use the LSM framework for their DIFC model, as it can readily be used rather

than requiring changing the whole OS.

2.3 Motivation

ROS is used on many platforms to accelerate application development for robotics since ROS2’s

communication middleware DDS provides seamless data transfer protocols and better manage-

ment of devices and applications [19].

Unfortunately, ROS does not provide any security by default; any application can publish

to any topic, and any application can subscribe to any topic. This leads to various attacks

on ROS, such as spoofing messages by publishing on topics it is not authorized to, snooping

on other applications’ data by unauthorized subscription, or faking the application’s identity

[23, 16]. The ROS community came up with SROS [71], an added layer in ROS middleware, in

an attempt to solve this problem. SROS makes it mandatory for applicants to have identities

18

backed by X.509 certificates, that a trusted third party signs and messages between applications

are secured using the TLS protocol. Moreover, SROS mandates applications only to publish

or subscribe based on the application manifests. The content of the manifest is also bound

with the x.509 certificates and, therefore, cannot be forged by an attacker. The added SROS

layer in ROS middleware prevents some basic attacks from happening, but it still does not

completely prevent data leaks from happening in the ROS environment. For example, prior

work [19, 16] shows shortcomings and attack scenarios even in an SROS secure layer on a ROS

system. To highlight the ROS2 security, figure 2.3 shows the overall architecture for the DDS

security [46]. The figure shows all the available security mechanisms, and these mechanism try

to solve several attacks and loopholes, as shown below:

• Authentication This plugin identifies ROS applications running on the system or the

users initiating the tasks on the DDS layer and also helps authenticate participants in the

ROS environment.

• Access Control As ROS applications use the pub/sub model to send and receive data

through DDS middleware, this service plugin enables the authorization of the operations.

For instance, is it allowed to join a domain and publish or subscribe to specific topics,

etc.?

• Cryptographic plugins enable the DDS layer to provide operations to secure commu-

nications at the transport layer so that an eavesdropping application cannot leak the

information, which includes data-level encryption, decryption, hashing, etc.

• Logging and tagging plugins. Logging plugins provide application interfaces for au-

diting ROS-level DDS events. Moreover, tagging allows ROS participants to tag their

messages at the DataWriter level. Secure DDS [46] provides applications the capability

to attach tags to their published messages, and the access control plugin of DDS will use

these tags to authorize the publish/ subscribe operations performed by other participant

nodes in the system or communication graph. Note that applications must provide access

control rules in an XML file describing the rules. The tagging plugin gives applications

fine-grained control over their data, specifying who can subscribe to certain data classes.

However, it is only enforced at the DDS layer, meaning a malicious application can still

send or receive data using OS-level communications.

ROS applications can use these plugins to prevent several attacks at the ROS2 middleware

layer [16, 23, 24, 19]. However, these mechanisms still do not provide end-to-end security

guarantees due to the following reasons:

19

Figure 2.3: DDS security mechanisms as an added plugin (Image borrowed from OMG DDS
documentation [46])

1. Lack of end-to-end reasoning:

SROS strictly adheres to the application manifests and only allows applications to publish

or subscribe to topics declared in their manifest. Application writers write these manifests,

and they cannot know a priori what other applications will be executing on the platform

and, hence, will be writing manifests in a manner such that the application can work in

all possible runtime environments.

2. Bypassing the ROS layer completely:

A malicious application that wants to ex-filtrate sensitive information can create a socket,

file, pipe, etc., without using any API service from the middleware and communicate the

data using these OS-level abstractions by completely bypassing the ROS layer.

The past work [16] demonstrates the efforts to mitigate such loopholes and vulnerabilities by

introducing an added layer of trusted software, a full-fledged system-wide mandatory access

control (MAC) enforced by the underlying operating system. Privaros applies host policies

on the ROS applications running on the drone using kernel-level enforcement (AppArmor).

It requires a trusted system admin to identify centralized security requirements and prepare

policies to be enforced by kernel-level enforcement to prevent malicious applications from leaking

20

users’ sensitive information to the external untrusted sinks. On the contrary, FlowROS provides

a decentralized information flow control for robotic applications targeted specifically for ROS2

middleware, as it is widely used for developing robotic applications. FlowROS enables ROS

applications to express information flow policies based on how their sensitive data flows in the

system and control its propagation.

2.3.1 Threat Model

In practice, ROS applications use APIs exposed by ROS middleware to create publishers/sub-

scribers and clients/servers for communication at the application level. Further, ROS middle-

ware implementation uses APIs exposed by the DDS layer. The DDS layer creates files, sockets,

shared memory, etc., for communication between applications, providing an abstraction layer

to ROS. DDS encapsulates its implementation within its libraries and modules, preventing ap-

plications from inadvertently modifying or overwriting the internal DDS implementation. Our

threat model includes a malicious application that can create files, sockets, or shared memory

using OS-level abstractions and ex-filtrate sensitive information by completely bypassing ROS,

SROS, and DDS layers. Therefore, we require OS-level information flow control to intercept all

the sensitive communication in the system to prevent sensitive data from leaking. FlowROS’s

Trusted Computing Base (TCB) includes an OS-level enforcement engine and DDS library. We

require DDS library support to distinguish meta traffic that is only being used by the DDS layer

from actual data transfer. We modified the DDS layer to communicate metadata traffic-related

ports to the kernel to avoid inconsistent information flow leading to label explosion. Note that

meta-traffic ports are not available to applications and are only used by the DDS layer. Since

the DDS layer is part of our TCB, we do not mitigate the attacks that can overwrite or mod-

ify the DDS binaries linked to ROS applications. We also do not consider the covert-channel

attacks that are possible due to the implicit label propagation feature for FlowROS for unmod-

ified applications, as it can be prevented by allowing only explicit label propagation, but that

would require all the applications running on a ROS-based system to be modified.

2.4 Challenges

2.4.1 Label Explosion

In a DIFC system, labels represent some security class the objects and subjects belong to.

The reference monitor performs information flow control checks based on these labels. Explicit

21

label propagation is when a process or a subject explicitly changes its label. Similarly, implicit

label propagation is when a reference monitor changes the label of a process or subject based

on an information flow it encountered in the system. Note that implicit label changes only

happen upon valid communications (i.e., the receiving process can be allowed to receive that

information). Consider ROS applications running in a ROS-based environment shown in figure

2.4. ROS applications are linked with Data Distribution Service (DDS) to communicate. The

Endpoint Discovery Protocol (EDP), part of DDS, establishes communication between ROS

applications by broadcasting meta-traffic messages to all applications running on the system.

Consider an application P publishing some data on a topic that Q has subscribed to, lead-

ing to an information flow from P to Q. A communication from P to Q would change Q’s

label to P ’s label, but due to the broadcasting nature of DDS’s discovery protocol, which is

responsible for endpoint discovery of applications trying to communicate based on the Pub/Sub

model. The DDS layer internally sends packets to all the applications running on the system

for endpoint discovery protocol. Discovery leads to an information flow that was not an actual

communication but rather EDP meta-traffic that implicitly raises R and S’s security label equal

to P ’s label, even though R and S have still not seen the data associated with security class

LP . Meta-traffic broadcasting creates implicit label propagation, leading to label creep, which

unnecessarily restricts R and S. Note that the implicit label propagation only happens when

R and S are indeed allowed to subscribe to the information published by P (i.e., the reference

monitor will perform implicit label propagation if capabilities of R and S allow it to do so).

DDS uses multi-cast ports for its endpoint discovery protocol. These are some well-defined

ports that the discovery protocol uses at the DDS layer only. In FlowROS, we register these

ports in the kernel through the DDS layer by modifying EDP to avoid information flows leading

to label explosion. Note that ROS2 applications can configure the listening locators through

XML configuration files, but DDS does not expose the ports used for discovery protocol to

applications [6, 10].

22

Figure 2.4: Label explosion due to discovery EDP protocol

23

Chapter 3

Related Work

We demonstrate the use of the DIFC system in ROS-based environments applicable on

many robotics platforms where ROS applications can leverage a decentralized model for

controlling and securing their sensitive data from accidental disclosures and preventing

malicious applications from gaining access to it. Further, this chapter aims to explore

the works coinciding with ROS and existing DIFC systems that attempt to solve similar

security and privacy-related concerns.

3.1 ROS Security

ROS, in its basic form, lacks certain fundamental security mechanisms leading to various kinds

of attacks that are possible. Mclean et al. [39] highlight an attack that is possible on a ROS-

based system; a ROS participant is able to inject false commands into an actual robot running

in a ROS environment, as ROS messages are by default not encrypted therefore making it pos-

sible for an attacker to capture ongoing messages and reuse them to generate false commands.

Similar works highlight the shortcomings of ROS [54, 29] leading to various kinds of attacks,

such as denial of service, privilege escalation, spoofing, etc. ROS community developed a few

mechanisms as an added library support to mitigate these kinds of attacks SROS [71]. SROS

provides features such as TLS support for socket-level ROS communications and x.509 certifi-

cation support to restrict the computing nodes to well-defined namespaces and permitted roles.

It also provides tools for ROS applications to generate access control policies using AppArmor

profiles. Further, it confines the nodes executing in the context of a process at the OS level.

Hardware Robot Operating System (H-ROS) [36] provides infrastructure for robot vendors to

use the H-ROS tools built upon ROS to create their robotic components that support real-time

functionalities, better performance, and security. It protects robotic components due to its

hardware-supported encryption and authentication mechanisms.

24

TROS [37] presents an attack scenario on humanoid social robots where an attacker can

land on the system software stack, most probably through network interfaces, and try to mis-

behave with its functioning resulting in a susceptible situation. TROS mitigates such attacks

on the system by introducing a Hardware-base Trusted Execution Environment (HTEE) and

segregating critical functionalities of ROS (i.e., keys, IDs of nodes, URI of ROS entities, etc.

) to a trusted execution environment using Intel SGX and separating the memory that might

consist of sensitive information and leveraging attestation for some functions as well.

There are works that [14, 51] demonstrate how publish/subscribe-based systems can be secured

by integrating with a Role-based Access Control (RBAC) [25]. RBAC is suitable for large-scale

systems targeted for an organization or enterprise-based domains (e.g., public bodies) where

the roles of entities follow a straightforward hierarchical structure, benefiting the RBAC-based

model. The idea behind RBAC systems is to disintegrate the relationship between principals

and their privileges and assign roles (or rights) to services that principals will be using. It

makes it simpler and applicable for large-scale systems as the number of individual users is

very high and keeps changing.

Recent work by Hwimin Kim et al. [31] shows how the security of DDS can be improved by

adding an attribute-based access control model to verify and authorize communication between

participants. They show ABAC is naturally suited for DDS as DDS entities are well associated

with their attributes. And DDS performs access control by allowing/denying the connection

requests at the DDS discovery phase itself.

Beck et al. [16] demonstrate the shortcomings of the added SROS layer in ROS wherein

a malicious application can directly use OS-level artifacts in order to communicate or ex-

filtrate sensitive information to untrusted sinks in the system. To mitigate such loopholes,

they leverage LSM-based AppArmor to restrict the information flow in the system by using

the AppArmor application profiles given by a trusted centralized authority. MAC systems can

prevent sensitive data from leaving the system but with the condition that it requires complete

system-wide policies such that it covers all possible communication paths in the system [3, 65].

The coarse granularity of MAC policies puts undue restrictions on data that does not belong to

a sensitive class [60]; also, generating a whole system-wide policy is difficult to achieve, which

makes it not very application-friendly [59]. Considering these drawbacks of a mandatory access

control system, we leverage a DIFC-based model for ROS applications to better control their

sensitive information, and we demonstrate a use-case of DIFC on robotics platforms.

25

Dieber et al. [23, 24] shows how fault injection of messages and similar attacks can be

prevented by adding a new mechanism as an Authentication server (AS) on top of ROS without

making any changes to the underlying ROS layer and verifying the inputs from nodes and/or

components in the system using cryptographic methods. There are works [54, 55] that identify

the fingerprints of malicious activities using automated tools and then prevent it from happening

by generating rules automatically and creating a firewall.

3.2 Information Flow Control

MAC systems [65, 3] can very well enforce information flow control (i.e., secrecy and integrity

rules [22]) by labeling subjects and objects in the system. These labels are static in nature

and require external interference for transitions. For example, once a policy is loaded into the

system, it cannot change its label without requiring to reload the policy itself. As discussed

earlier, MAC systems suffer coarse granularity; as a result, work such as SEApp [59] in this

domain enables application developers to control and confine (or sandbox) different modules of

applications with a clear requirement to protect the system resources from malicious modules

or applications. SEApp brings a programmable interface to application developers so that they

can use SEAPP-exposed APIs to label files, Android services, and components. And use SEApp

policy language to define access rules with respect to labels. Note that SEApp uses SELinux

as their enforcement mechanism, which is a MAC-based model.

A decentralized information flow control [68, 33, 74, 60, 32] system naturally provides this

capability to applications, such that they can confine other components of their applications

based on the sensitive data the components are dealing with and also segregate the different

class of sensitive information within single process context by dynamically changing their labels.

Browserflow [48] demonstrates a taint tracking system for cloud-based document apps to

control the flow of “texts” across cloud services and prevent accidental data disclosure. They

highlight cases where certain sensitive texts may belong to users or enterprises, and dissemi-

nation of those texts by an attacker to docs in other browser tabs on the same host or across

remote hosts may violate the user’s privacy policy. They prevent text disclosures based on

user-given policies by enforcing information flow control in the browser. The novelty in their

approach is how they tag text segments inside documents and monitor the propagation of those

texts across other docs if a user tries to copy/paste it or if a malicious application attempts to

exfiltrate it out of the system.

Historically, Android leverages DAC and MAC-based access control mechanisms [63, 65, 59]

to protect the application’s private and user data from accidental data disclosure. A natural

need for bringing control to application developers led to decentralized information flow control

26

on Android [43, 30, 73], using which developers can have fine-grained control over the propa-

gation of their sensitive information. Weir [44] highlighted some drawbacks of the DIFC work

on Android. Some of these works support floating labels for background components to give

backward compatibility as they are unmodified and used by all applications, and that creates

a label creep as labels will be merged when more than one application is creating background

components, leading to components not being usable anymore because of the undue restrictions.

Aquifer [43] does not support labeling the background components initialization to support mul-

titasking for all the applications that use it; therefore, it does not prevent data disclosure from

these components. Weir presents a DIFC system practical for Android’s unpredictable infor-

mation flow by creating fresh instances upon every new intent with a different security context,

namely “polyinstantiation.” All the DIFC systems mentioned earlier implement process-level

reference monitors, assuming only process-level components. Note that the Android-based envi-

ronment has unpredictable flow due to user interference. In contrast, a ROS-based environment

generally does not suffer unpredictable flows; therefore, indicating FlowROS is practical for such

an environment as application developers are fully aware of communications among ROS nodes

that are part of the application context. FlowROS is a process-level DIFC system capable of

enforcing information flow control policies at the process level. Additionally, FlowROS makes

DIFC feasible for platforms like ROS by addressing the issue of “label explosion,” a common

challenge for any DIFC system.

27

Chapter 4

FlowROS

In this chapter, we explain the DIFC model that FlowROS use, including the terms

tags, labels, capabilities, and label propagation. Then we present the implementation of

FlowROS using the LSM framework and highlight changes we added in the LSM for ROS

applications. Lastly, we demonstrate some DIFC policies for ROS applications.

4.1 DIFC Model

We define the DIFC abstractions used in FlowROS. FlowROS’s DIFC model is quite similar

to the previous DIFC models [33, 44, 60, 68], and we highlight the changes in detail further in

the section. In the DIFC system, principals are the entities (i.e., users [33], processes [42], and

kernel threads [74]) that perform operations on files or data in the system.

4.1.1 Tags and Labels

The fundamental terms for a Decentralized Information Flow Control (DIFC) system are tags,

labels, and capabilities. Tags are arbitrary tokens chosen from a large set of opaque tokens

(denoted as T). Tags are utilized to associate data with a particular security class or level.

The tags themselves have no inherent meaning; it is the application that imbues the tag with

semantic meaning by associating it with its data (e.g., an application might use arbitrary tags

t1 and t2 for data belonging to two different security classes). For example, application A might

attach tag a to its sensitive data, while application B might use tag b for its sensitive data.

A principal (i.e., a process) in the system can define one or more tags to fulfill the secrecy or

integrity requirements of its sensitive information.

28

A label is a set of tags drawn from T, as shown below. In other words, a label can be

formed from a collection of tags or a single tag. Note that a label can also be an empty set

(i.e., containing no tags). Labels serve as the basis for any Information Flow Control (IFC)

reference monitor to make information flow decisions;

L = {t1, t2, . . . , tn}

4.1.1.1 Partial Order Lattice

In the partial order, a Label Lx is considered less than or equal to a Label Ly (i.e., Lx ⊆ Ly) if

all the tags that are there in Lx are also there in Ly. Hence, in DIFC, the partial order often

implies a subset relation between labels, and this subset relation dictates how data flows in the

system; that is, information can flow from a lower label to a higher label but not vice-versa.

Applications are required to assign appropriate labels to their processes based on the security

requirement; therefore, after assigning labels in adherence to the security policy, all the labels

in the system follow a partial order lattice relation [62, 44]

4.1.1.2 Classification and Declassification

Since the advantage of DIFC over MAC systems is that it allows label changes at runtime,

the operations enabling this are known as classification and declassification. Classification

involves assigning labels to data or a process. This label indicates the data’s security class.

Declassifying a label means decreasing its security level by removing one or more tags from

it, thereby allowing data that was once restricted to be processed at a lower security level.

Declassification is very powerful in terms of flexibility and functionality, as it facilitates the

downward flow of information to lower security levels by declassifying information that was

derived or accumulated from various sources with different security classes.

All the principals (i.e., processes) in the system have their own set of labels. The reference

monitor in the DIFC systems use these labels to mediates the information flows that are hap-

pening in the system (i.e., per process LS for secrecy and LI for integrity.). The DIFC system

uses a secrecy label to allow/disallow access to sensitive information and avoid accidental data

disclosure to unidentified principals and untrusted sinks and Integrity labels to protect the data

from corruption. For instance, consider a process P with tag t ∈ LS, and then the reference

monitor conservatively assumes that Process P has seen the data tagged with t. For it to release

or sent to any lower-class label, it requires declassification. Similarly, for integrity, if t ∈ LI ,

process P performing some computation using input files or sockets should have an integrity

level equal or super-set of LI to maintain the integrity of process P. In theory, secrecy, and

integrity labels can have any tags, but in practice, they are mutually exclusive.

29

As discussed, secrecy and integrity labels are used to enforce and implement secrecy and

integrity policies. Every principal in the system initially has an empty label which it may use to

configure policies for its data; these labels form a partial order lattice under the subset relation,

and the bottom of this lattice represents unlabeled resources. Objects in the system also have

an empty label initially. If any labeled process creates a file or an object, then those object

inherits those labels. Later access to these files will be allowed if it complies with the DIFC

label propagation rules [33, 44].

Now the question arises of how the reference monitor knows who has the privilege to add

or remove tags from their labels (i.e., classify and declassify). The answer is capabilities; ev-

ery principal in the system has a capability set, Cp, that represents whether a principal (i.e.,

process) can raise its label to a higher secrecy level by adding a tag or decreasing by removing

a tag. For instance, let us consider a tag t, such that t+ ∈ Cp: a t+ gives the principal the

privilege to add a tag t to its label. Adding tag t to its label allows the process to release the

data or consume the data corresponding to the tag t of the security class. Similarly, a principal

that creates a tag t owns the data for security class t and is capable of giving t− capability to

other principals in the system; As a result for t− ∈ Cp, a t− gives the principal the privilege

to remove a tag t from its label (i.e., declassify) [33, 68, 44]; removing t will signify a declas-

sification, and then the principal can communicate to another principal or access a file not

having tag t in its label. In a centralized IFC system (i.e., MAC), the creation of the policies

can only be done by a trusted “system admin” who can create new tags based on the system

requirement and can add or remove tags from secrecy labels (classify or declassify information),

or add or remove tags to integrity labels (endorse or drop endorsement). In FlowROS, similar

to Flume [33], Asbestos [68], and Laminar [60], individual principals can create new tags. The

principal P who creates a tag t, by default, has t+ and t− capability (i.e., if P creates tag t, then

{(t+, t−) ∈ Cp}). Moreover, P can further give t+ or t− to any other principal in the system.

4.1.1.3 Global Capability

Similar to a per-process capability, the concept of global capability Gp is useful when a principal

wants to give everyone else in the system the capability to raise their label or to downgrade their

label as the data owner (i.e., principal), who create new tags for its data cannot individually

give each process t+ or t− capability, and also no process or principal can know priori what all

processes are executing in the system with what process ID to do so.

30

4.1.2 Label propagation

In DIFC, applications give the policy to control the flow of its data (i.e., propagation) and

access its files using labels. It attaches tags to the processes and objects that it wants to

control. Let us consider an information flow from x to y, where x can be a principal trying to

access an object or a file y to write, or y can be another principal that principal x is trying to

communicate to send some data, in that case, information is flowing from x to y. Similarly, x

may be trying to read from a file y, or x may be trying to receive some information from y;

in that case, we say information flows from y to x. To define formally, FlowROS enforces the

DIFC rules for data flowing from x to y:

4.1.2.1 Secrecy

In the partial order lattice relation of the labels, Bell and LaPadula [62] define a secrecy policy

as when information is flowing from x to y, a principal is not allowed to read data from the

higher level (i.e., no read-up) and is not allowed to write any data to the lower level (no write

down). Formally, Sx and Sy are the secrecy label for principals x and y, respectively; secrecy is

preserved if and only if the information flow from x to y follows:

Sx ⊆ Sy

To comply with the above information flow secrecy rule, the principals may explicitly change

their label by adding or removing a tag from their label. For example, to satisfy the secrecy

rule, principal x can add a tag t to its label Sx (classify) if and only if it has the capability to

do so (i.e., t+ ∈ Cx ∪G), where G is the global capability. Similarly, y can remove a tag t from

its label Sy if it has the capability to declassify tag t (i.e., t− ∈ (Cy ∪G)).

4.1.2.2 Integrity

The integrity rule defines the alteration rules to maintain the integrity of the processes or

principals performing computation. It does not allow reading from lower levels (no read down)

and no writes to higher integrity levels (no write up). To formalize the enforcement rule [20]:

Iy ⊆ Ix

Similar to the secrecy rules, any principal x can satisfy the integrity rule by endorsing its label

Ix to send the information to a higher level, if and only if x has the capability to do that in

Cx and while receiving the information from lower level labeled principal x, y can drop the

endorsement by removing the tag, let say t, again if and only if it has the capability to remove

tag t from is label Iy (i.e., t− ∈ (Cy ∪G)).

31

4.1.2.3 Label Changes

DIFC systems enable programs (i.e., at the process level) to implement policies. As a result,

programs have the capabilities to control and use the APIs and system calls exposed by the

DIFC enforcement engine to create tags, classify and declassify information, endorse or drop

endorsement for the safe information flow and access control [74, 68, 33, 44, 60]. As discussed

earlier, to satisfy the secrecy or integrity rules, a principal can add or drop its label using its

capabilities requires the principal to explicitly change its label. In FlowROS, if a principal ‘P’

wants to raise its label from L1 to L2, by adding the tags to L1 that are not there in L1 but

present in L2, it should satisfy the following equation:

(L2 − L1) ⊆ (C+
p ∪G+)

Similarly, P wants to drop endorsement of its label L1 to L2 by dropping some tags that are

there in L1 but not present in label L2; it should satisfy:

(L1 − L2) ⊆ (C−
p ∪G−)

Explicit labels

Tranquility [62, 44] is the final assignment of labels to objects and principals in the system;

it is the property of the MAC systems. However, this property is relaxed in DIFC systems,

so the principals may change their labels (classify or declassify) “safely.” Therefore, changing

the immutable labels in MAC to mutable labels in DIFC makes it more flexible for applica-

tions. But it also can’t dwell with the unpredictable information flow environments since all

the applications in the system need to be modified to be compatible with DIFC. Explicit la-

bel propagation requires principals to explicitly change their labels using programming (i.e.,

modify applications to call label change mechanisms); it includes creating tags for their sensi-

tive information and adding/removing tags from their labels, declaring capabilities to control

the flow of their sensitive information. Listing 4.1 shows a ROS2 application program that

creates the tag for the data it wants to control. It always increments or raises its label by

adding that tag before publishing the sensitive information. Figure 4.1 shows how FlowROS’s

reference monitor makes the information flow decision using labels. In the case of modified

applications, principals must always change their labels to satisfy secrecy and integrity rules.

A flow from principal ‘A’ to principal ‘B’ will result in a complete denial due to label mismatch.

32

Figure 4.1: Implicit vs. Explicit label propagation

Implicit labels

The concept of floating or implicit labels emerged to provide compatibility for unmodified ap-

plications. Asbestos used it [68] and subsequent works as well [43, 30, 44]. It was introduced to

fill the compatibility gap between modified and unmodified applications, making DIFC systems

usable in a practical environment (i.e., where information flow is unpredictable). Implicit label

propagation allows the information to flow from a principal x to y, such that the resulting Ly

will equal (Ly ∪ Lx), where y is a process belonging to an unmodified application. X can be

a process that belongs to a modified or unmodified application [44, 68]. Figure 4.1 shows how

the reference monitor combines the label LA and LB due to an implicit flow of information.

However, note that kernel only performs this merging of labels for unmodified applications if

and only if their capabilities allow it to do so.

4.1.3 Implementation

FlowROS consists of mainly three components 4.2, user IOCTL interface for ROS applications,

kernel IOCTL interface, and OS-level reference monitor. We implement the FlowROS DIFC

system on Linux kernel version 4.9 (i.e., vanilla). FlowROS’s reference monitor is implemented

from scratch using Linux security modules (i.e., LSM[72]). MAC systems (e.g., SELinux, Ap-

pArmor, Smack, etc.) also use the LSM framework to implement kernel-level enforcement to

apply centralized policies. We further explain in this section a brief on FlowROS’s reference

monitor.

33

4.1.3.1 Why LSM?

A basic LSM framework provides already compiled code directly inside the Linux kernel, namely

hooks, which allows us to insert checks into the kernel through hooks that are invoked whenever

something sensitive is going to happen in the system. For instance, a sensitive operation means

that when a process tries to access files, credentials, sockets, and inter-process communications,

the hooks will control security modules to perform enforcement.

4.1.3.2 Major and Minor LSMs

The major LSMs can load/unload files from the user space at run-time and when the system

boots. It also gives exclusive access to pointers and security identifiers in the kernel objects

for security modules. SELinux, AppArmor, TOMOYO, and SMACK are examples of major

LSMs. At a time, only one LSM can be loaded into the system because the LSM framework

provides exclusive access to security fields already embedded in kernel objects. On the contrary,

minor LSMs require fewer security fields and security context pointers. Hence it is loaded along

with a major LSM in a stacked manner. Minor LSMs only need flags to turn specific fields

on/off. Examples include YAMA, Lockdown, etc. We implement FlowROS’s reference monitor

as Major LSM since we require security context pointers and identifiers present in the kernel

objects to create and initialize DIFC fields in every kernel object and subject (i.e., process) and

also to mediate all the information flow in the system; as a result, reference monitor can allow

or disallow information flow (e.g., using label propagation rules).

Below we show what structures we use in the kernel to initialize security contexts for objects

and principals. Each process in the system has set of Labels and a capability set.

• Process

struct task struct and struct cred Since Linux uses a lightweight process architec-

ture, it keeps task struct for every thread in the execution phase. FlowROS is a process-

level enforcement, not a thread-level. Thread-level enforcement requires separating the

memory that thread can access [60]. Therefore, we initialize security context (i.e., la-

bels) in struct cred, which is a process-level structure. Note that we do not support

thread-level DIFC, but we mediate all the accesses in the systems. Suppose there is more

than one thread executing in a single process context. In that case, other threads will be

blocked while FlowROS performing label checks on one of the threads (i.e., process-level

enforcement limitations [33, 43, 44]).

• File and sockets.

34

struct inode and struct file We label inode and file so that the reference monitor

can keep track of its access.

• Packets.

struct sk buff In Linux, packets are represented as sk buff Since DDS communications

are mostly network-based, we store the sender process’s PID in the secmark field of

sk buff

LSM framework provides security pointers (i.e., *security, *i security, *f security, etc.)

that we can use to store the security context for the reference monitor. As a result, all the ob-

jects in the systems initially have empty labels, and objects inherit the labels from the principal

upon first access. Furthermore, label changes later follow security rules (secrecy and integrity).

FlowROS uses *task security, and *cred security for process-level security context.

Note that the LSM framework provides more support to mediate all kinds of information flow

in the system, which SELinux, AppArmor, and similar standard major LSMs use. For ex-

ample, struct new device for controlling the network devices, struct kern ipc perm and

struct msg msg for System V IPC protocols. Nevertheless, as we implemented FlowROS as a

prototype, we limited the implementation to a proof of concept. FlowROS only registers and

defines access check hooks to cover basic decentralized information flow control policies and

mitigate accidental data disclosures at the network and file system level (i.e., we do not medi-

ate the flow of shared memory and IPC). Implying a malicious application can leak sensitive

data through IPC or shared memory communication that FlowROS currently does not moni-

tor. However, that is not a vulnerability or a bug; it is instead a prototype limitation. It can

easily give a complete OS-level end-to-end security guarantee in the future. In FlowROS, we

register the following hooks that are important for initializing and allocating security context

for the reference monitor for all objects and principals in the system. All principals in the

system initially inherit the empty labels and capabilities from the init process. However, later,

these labels and capabilities can be used to define their security policies. FlowROS currently

exempts the init process and system-level services (i.e., daemons) from LSM security checks.

However, FlowROS also supports LSM infrastructure to modify their labels and capabilities

because FlowROS allocates empty labels and capability set at the boot-time for them.

35

• File related hooks

file open, inode create,inode alloc security,

inode free security,sb alloc security,sb free security

file ioctl, file receive

• Socket related hooks

sk alloc security, sk free security, socket sendmsg, socket recv msg,

socket sock rcv skb

• Task and Cred relate hooks

task alloc, task free, cred alloc blank,

cred free, cred prepare, cred tranfer

4.1.3.3 Limitations

Note that the LSM framework provides more support to mediate all kinds of information

flow in the system, which SELinux, AppArmor, and similar standard major LSMs use. For

example, struct new device for controlling the network devices, struct kern ipc perm and

struct msg msg for System V IPC protocols. Nevertheless, as we implemented FlowROS as

a prototype, we limited the implementation to a proof of concept. FlowROS only registers

and defines access check hooks to cover basic decentralized information flow control policies

and mitigate accidental data disclosures at the network and file system level (i.e., we do not

mediate the flow of shared memory and IPC). This implies that a malicious application can leak

sensitive data through IPC or shared memory communication that FlowROS currently does not

monitor. However, that is not a vulnerability or a bug; it is instead a prototype limitation. It

can easily give a complete OS-level end-to-end security guarantee in the future.

4.1.3.4 DDS Modifications

ROS2 is a new version of ROS developed using a Data Distribution Service (DDS) that is

responsible for managing the data exchange among ROS applications using the wired protocol.

FlowROS requires support from the DDS layer, which is linked to all the ROS2 applications in

the system. DDS internally manages many layers that separate different modules responsible

for efficiently managing data transfer over a network or other mediums that DDS supports

(2). Mainly, two important protocols send data over the network using sockets or file OS

abstractions. First is the discovery protocol, which helps ROS applications discover each other

and introduce their publish/subscribe ports for later data transfer. Moreover, the second is the

36

Figure 4.2: FlowROS architecture that includes mainly three components: 1. User API for ROS
applications to manage labels that communicates through IOCTL interface, 2. DDS middleware
support to register ports used in Endpoint Discovery Protocol (EDP) and 3. Reference monitor
that is part of LSM

protocol that the publish/subscribe model of DDS uses to send the actual data produced and

consumed by the ROS applications. The DDS layer only uses the discovery protocol, and its

data is not exposed to the upper layers. As we highlighted, the discovery protocol leads to a

classic “Label Explosion” problem, making DIFC or any taint tracking system impractical to

use at the level, as the reference monitor will deny all the subsequent accesses in the system

due to the label creep. Therefore, FlowROS figure 4.2 modifies DDS layers to segregate the

ports used for the discovery protocol only by the DDS layer by registering these ports into the

kernel. The reference monitor does not enforce IFC rules on discovery, hence adding the DDS

layer to the trusted computing base for the FlowROS DIFC system.

37

4.1.3.5 Domain Declassification

FlowROS allows domain declassification [15, 66, 44], where applications that create tags, as

data owners, can declare a set of trusted network domains (tD) for the security class t.As a

result, FlowROS will declassify the information with the tag t being exported to the network.

FlowROS allows the DDS protocol to send packets to the local host (i.e., 127.0.0.1) by default,

as DDS communicates between processes using the local host IP address. However, to enforce

information flow control policies, FlowROS applies secrecy and integrity rules at the network

sendmsg hooks as well as recvmsg hooks, and upon any violation, it can drop the packets at the

network interface itself. Since DDS mainly uses network-based communications using packets,

both for discovery protocol and data transfer protocol. It makes it challenging for the reference

monitor to get the receiver’s security context at network LSM hooks and the sender’s security

context at the receiving end. Therefore, FlowROS’s reference monitor embeds the pid of the

sending Process in the already existing security field of packets (i.e., secmark) at the LSM hook

level and uses that security field to monitor DDS communications to apply information flow

control policies at the receiving end. (e.g., Privaros [16] also uses this method at the LSM

level). Also, ROS2 middleware is used for applications running in a distributed setup.

38

4.1.4 User APIs

create tag(tag)

Creates a new tag with the specified name.

add tag label(tag)

Adds a tag to the label of the calling process, allowing it to be associated with principals

and objects.

remove tag(tag)

Removes the ’tag’ from the label of the process.

add global(tag)

Function to add a global tag, allowing any process in the system to consume the data

that belongs to the global tag.

add pos cap(tag, pid)

Function to give process privilege to increment its label with the given ’tag.’

add neg cap(tag, pid)

Function to give process privilege to decrement its label with the given ’tag.’

add domain(tag, IP)

Allows applications to declare domain declassification based on the specified IP address.

4.2 Sample DIFC Policies

4.2.1 Taint Tracking

We will now explain how a ROS2 application can implement a simple taint tracking policy for its

sensitive data to avoid accidental data disclosure to the untrusted sinks. In figure 4.3, consider

a process Pm that belongs to a ROS application; superscript m represents that to apply a taint

tracking policy, process Pm is modified at the program level for changing its label Lp by adding

the tag t before sharing the sensitive information tagged with t. As Pm creates tag t, by default,

it has the positive and negative capability for tag t (i.e., (t+, t−) ∈ Cp). Now, Pm adds the

positive capability t+ to Gc so that any application can consume the sensitive data tagged with

t, but only by adding that tag to its label. As a result, Q consumes the data from Pm with im-

plicit label change by the reference monitor (i.e., LQ = {} → {t}). Note that the implicit label

change for process Q is because it is an unmodified application; a DIFC system supports such

39

Figure 4.3: Simple taint tracking

implicit label changes to provide backward compatibility to unmodified applications[33, 44]. Q

consumes the sensitive data produced by the Pm, but it cannot ex-filtrate sensitive information

to untrusted sinks as it does not have declassification rights. Similarly, any other applications

in the system will be able to read or consume the information tagged with t but will not be

able to leak the data. Since Pm is the data owner for tag t, it specifies trusted declassifier

RD by giving declassifying capability to RD (i.e., (t− ∈ CR)).Therefore, the reference monitor

will allow RD to send the sensitive data over the network by implicit declassification. Since

RD is a trusted declassifier, it can also explicitly change its label by dropping the tag t (i.e.,

LR = {t} → {}) and then sending it over the network.

4.2.2 Storage Policy

FlowROS supports labeling in the file system so that the applications can secure their data and

avoid data leaks to untrusted applications or sinks. Figure 4.4 shows a storage policy where

P has some sensitive information, and it creates a tag t for that information. Let us say P

makes a file to write the data belonging to security tag t to the file. The reference monitor

will initialize the file with the label of the principal that creates it (i.e., t). Therefore, for

any application (e.g., Process Q in figure 4.4) with a label lower than the file’s label Lf , the

reference monitor will deny the access (i.e., restrict information flow if (Lf ⊊ LQ)). However,

since process P has given classifying rights to the Process, R. R can access the file by explicitly

modifying its label, or if unmodified, the reference monitor will change its label using implicit

label propagation (following secrecy and integrity rules). Although process P, the data owner

of t, has given t+ capability to process R, R cannot ex-filtrate or leak the data after reading

40

Figure 4.4: Storage policy

from a file with P’s sensitive information. If R tries to send data over the network, FlowROS’s

reference monitor will not allow that, as R has a classified label with the security class t. Note

that all the untrusted sinks in the system are, by default, considered to have an empty label,

implying no data associated with any security class should go out of the system.

41

Chapter 5

Evaluation

In this Chapter, we first demonstrate a DIFC-capable modified version of the Camera

application that can protect its data from accidental data disclosure. Then we show our

experimental results highlighting overheads incurred due to DIFC modifications

5.0.1 ROS2 Camera Application

To highlight the motivation behind a DIFC system over a MAC system in terms of better

usability, we identified an already existing ROS2 demo image tools application [58] and mod-

ified applications to support DIFC and prevent disclosure of sensitive data, listing 5.1 shows a

snippet of the application that publishes a live camera feed on the topic ImageRaw and pub-

lishes the status of the camera on the topic ImageStatus continuously while it is running on

the system. Previous work [16] highlights a use case for applying access control policies in the

robotics environment, where a centralized access control policy tries to mitigate data leaks and

illegal access to sensitive information. For instance, a camera feed is considered to be sensitive

information. Ex-filtration of it to untrusted sinks (e.g., network or storage) may cause a seri-

ous privacy issue. Still, other applications can consume it; for example, an image processing

application might need that data to identify and avoid obstacles that might be coming in the

way of a drone traveling on the fly. On the contrary, if the image processing application is

executing on some cloud server to process the camera feed, the system must have a trusted

declassifier to sanitize the video feed and send it over the network. Considering similar access

control policies, we demonstrate the use of FlowROS to rectify the drawbacks of access control

policies and the use of decentralized information flow control on the robotics platform that is

more application-friendly.

42

Figure 5.1: Camera DIFC policy

Some of the key challenges that FlowROS solves are listed below:

1. Data segregation

FlowROS’s DIFC system enables ROS applications to better control their sensitive data

by associating it with the security class and controlling information flow as needed by

declaring and defining policies. Also, note that data segregation and controlling require

minimal application modifications.

2. Implicit propagation

FlowROS’s reference monitor supports implicit label propagation for unmodified applica-

tions.

Figure 5.1 shows a practical communication graph of our modified version ROS2 camera

application to support DIFC use-case Cm that has two types of data; first, it publishes a piece

of sensitive information, a video feed on the topic ImageRaw, and second, comparatively less

sensitive information camera status published on the topic ImageStatus. Let us say Dm is a

modified image-processing application that requires a video feed and it blurs the sensitive part

of the ImageRaw; hence it subscribes to the topic ImageRaw and publishes Sanitized Image

further down in the communication graph. ED is sanitizing application to export sensitive

information to the network by declassifying it and hence it is a trusted declassifier. To achieve

this, Cm gives t+1 capabilities to Dm and ED (line 5 and 6 in listing 4.1) so that they can

43

subscribe to the image feed published by Cm and gives ED t−1 capability allowing it to declassify

data that belong to security class t1 to communicate to the network. Since Dm and ED are

modified applications and trusted, they follow explicit label propagation to satisfy information

flow rules(i.e., applications or nodes are modified at the code level to change their labels). On

the other hand, for the less sensitive information (i.e., ImageStatus), Cm adds t+2 capability

to Gc, implying any application in the system can subscribe to the topic ImageStatus but not

having t−2 will not allow any application to leak the data. The application increments its label

before sharing the sensitive information(line 14) and removes tag from its label after sharing

sensitive information (line 18).

44

1 std:: string topic("ImageRaw"); // Sensitive information

2 std:: string topic("ImageStatus")

3 create tag("t1");

4 create tag("t2");

5 add pos cap("t1",Image processing node); //Image processing app

6 add pos cap ("t1",Declassifier node); // trusted declassifier

7 add neg cap("t1",Declassifier node);

8 auto node = rclcpp :: node:: make_shared("camera");

9 // Publish the image message and increment the frame_id.

10 . . .

11 add tag label("t1");

12 pub ->publish(std::move(msg));

13 ++i;

14 rclcpp :: spin_some(node);

15 remove tag label("t1");

16 . . .

17 add tag label("t2");

18 auto msg_status = std:: make_unique <std_msgs ::msg::String >();

19 msg_status ->data = std:: to_string(val_status);

20 val_status += 1;

21 pub_status ->publish(std::move(msg_status));

22 rclcpp :: spin_some(node);

23 remove tag label("t2");

24 delay_status = true;

25 . . .

Listing 5.1: ROS2 Camera.cpp

45

5.1 Experiments

We evaluate FlowROS by considering two important questions: 1. What is the impact on the

latency involved for communications among applications due to the information flow control

checks performed by the reference monitor in the kernel? 2. What system overheads does the

application suffer due to DIFC modifications in the application to secure its sensitive informa-

tion?

We implemented FlowROS on Linux kernel version vanilla 4.9 on Ubuntu 18.04. The choice

of this kernel is due to its support for the Nvidia Jetson TX2 board. We used ROS version

2 (dashing) and eProsima FASTRTPS version 1.8.2 [58, 12, 6] that ROS2 integrates for un-

derlying communication protocols among ROS applications. Overall, we provide user space

IOCTL interface support for ROS applications to leverage DIFC calls, consisting of 253 lines

of code. We implemented FlowROS as an LSM module with an added code of 1575 lines

that includes FlowROS’s kernel IOCTL interface and the reference monitor responsible for in-

tercepting the communications in the system. We used the Nvidia Jetson TX2 development

kit [45] for evaluating the overheads of FlowROS. The Jetson board has quad-core ARM A57

and dual Denver 2 64-bit CPU architecture support, 8GB LPDDR4 RAM, and 32 GB eMMC

flash storage support. We evaluated Jetson since the robotics community heavily uses Jet-

son and similar arm-based boards. The Jetson board also has 256 CUDA computing cores,

which are useful for navigation and image-processing software stacks for robotic applications.

Although ROS is compatible with any architecture, we use a Nvidia Jetson board with ARM

architecture, as it is heavily used for robotic applications [16].

5.1.1 Communication Latency

We use an open-source i-Robot performance evaluation framework [8] designed to evaluate

ROS2 applications on different metrics. i-Robot is developed in core C++ language with only

library dependency of ROS2. It provides libraries and tools to create applications and evaluate

their overheads concerning ROS2 communication, CPU, memory usage, etc. In i-Robot, nodes

that run in the context of a process do not perform any computations; therefore, they solely

measure overheads. As the reference monitor performs information flow control checks at the

process level, this benchmark helps us evaluate the latency incurred at the message level.

This benchmark provides a full ROS application environment consisting of 10 and 20 nodes,

publishing and subscribing to each other’s topics and, in the end, generating a detailed report

of overheads incurred. As the nodes publish and subscribe to the topics and do not perform

46

Figure 5.2: Benchmark publish/subscribe example

any active computation, we segregate the entire benchmark consisting of many nodes into two

nodes. Still, we configure them on the different parameters (frequency of publishing) to identify

the impact on latency due to the reference monitor checks. we modify the i-Robot benchmark

to support DIFC calls, such that the user can use the labeling option to run the test with

different configurations

Figure 5.2 shows a communication graph between a computing node geneva executing in a

process context and publishing on the topic amazon, similarly a node arequipa executing in a

separate process context subscribes to the topic amazon. To observe the communication delay

or latency incurred due to DIFC checks, we labeled the processes geneva and arequipa with

different label sizes (i.e., the label consists set of tags) and with different publishing frequencies

to understand how applications with different publishing frequencies get affected.

i-Robot benchmark samples the resources being used every 500ms for the duration of the

test. We ran the above 5.2 benchmark configuration for the duration of 10s for each mean

latency entry in the table. The base shows the mean latency observed without labeling the

nodes, and Label 1 indicates the mean latency observed with a label size of ten. Similarly,

Label 2 and Label 3 indicate mean latencies with label sizes of 100 and 1000, respectively. We

observed that labeling applications do not impact overheads in the latency till the frequency of

100. Also, for lower publishing frequencies, DDS buffers the messages the application publishes

for a few milliseconds to optimize the data exchange process, therefore incurring a slightly

higher mean latency. To justify our hypothesis, we further ran the benchmark 5.2 for a very

high-frequency rate so that DDS buffering would be minimized and we could see precise latency.

47

Table 5.1: Communication latency

Frequency(pub/sec)
Mean (us)

Base Label 1(size=10) Label 2(size=100) Label 3(size=1000)
10 4698 5789 5084 5168
50 4460 5003 4277 4780
100 2900 2789 2757 2677

10 50 100

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

Frequency (pub/sec)

M
ea
n
(u
s
)

Base Label 1 Label 2 Label 3

Figure 5.3: Bar Graph of Communication Latency

i-Robot benchmark samples the resources being used every 500ms for the duration of the

test. We ran the above 5.2 benchmark configuration for the duration of 10s for each mean la-

tency entry in the table. The base shows the mean latency observed without labeling the nodes,

and Label 1 indicates the mean latency observed with a label size of ten. Similarly, Label 2 and

Label 3 indicate mean latencies with label sizes of 100 and 1000, respectively.We observed that

labeling applications do not show impact overheads in the latency till the frequency of 100. As

figure 5.3 represents table 5.1 where for the frequency 10, label size 100 shows lower latency

than label size 10 and 1000. Similarly, for frequency 50, communication latency for label size

100 is lower than the base (i.e., without label) and label size 1000. Implying that the deviations

in the communication latencies are high. It is also because DDS buffers the messages that the

application publishes to optimize the data exchange; hence, for higher publishing frequencies,

the average communication latency comes down to around 2600us as the buffering impact will

48

Table 5.2: Table of mean and minimum latency

Frequency Without Label
Mean (us) Min (us)

500 900 459
1000 468 361

Frequency With Label
Mean (us) Min (us)

500 921 426
1000 627 297

be lesser. To justify our hypothesis, we ran the benchmark 5.2 for a very high-frequency rate to

minimize DDS buffering, resulting in latency till 500us. Table 5.2 shows mean latency numbers

for the label size 1000 and publishing frequency 500 and 1000; this results in a slight increase

in the mean latencies, but still, the communication overhead due to reference monitor checks is

significantly less in comparison with the deviations in the latencies as can be seen in table 5.2

that minimum communication latencies with labeling are still lesser than the base (i.e., without

label). Note that it is not the case that with label checks, latencies are always less than without

labels; instead, the point is that the deviations in the latencies are higher than the overhead

incurred due to reference monitor, and therefore, there is no consistent overhead seen in the

numbers even at the high frequencies. To prove that we added a delay of 500 microseconds in

the reference monitor code of the kernel as shown in the figure 5.4, precisely where the flow is

allowed due to correct label rules, and we saw the delay getting reflected in the numbers. To

conclude, label checks performed by the reference monitor incur very low overhead (i.e., in the

magnitude of a few microseconds), therefore not impacting much on the overall communication.

Note that for evaluation purposes, we tested the latencies for label sizes up to 1000; in practice,

label size depends upon the number of security levels the application needs in order to deduce

information flow policies (e.g., Label size 10 can represent 210 = 1024 security levels or classes

for its objects and subjects which is more than sufficient [68, 74]).

49

Table 5.3: Table of mean and minimum latency for added delay of 500us

Frequency Without Label
Mean (us) Min (us)

1000 540 330
Frequency With Label

Mean (us) Min (us)
1000 1032 715

Figure 5.4: Added delay in the reference monitor

5.1.2 System Overhead

In the DIFC system, modified applications are required to add a tag or remove a tag from

their label depending upon the information flow that the application is going to perform, say

increasing the label for a piece of higher classified information and decreasing the label while

sharing the information that belongs to a lower class. DIFC delegates these modifications to

the application developers to control their sensitive information better. In the previous section,

we showed that label checks performed in the kernel do not affect the latency much as they are

straightforward and simple instructions to execute. However, on the contrary, label changes

require system-level calls (i.e., ioctls in our case) that the kernel performs on behalf of an

application, therefore incurring some more context switches and more user-kernel overheads.

To identify the system-level and performance overhead, the application might suffer, we use

the same benchmarking application 5.2 as the i-Robot framework also samples the system-level

performance overheads incurred by the applications while running. In addition to that, we

use strace and time tools available on the Linux machine to identify user-space and kernel-

space overheads at the run-time due to application modification. We configure strace with an

option to timestamp the time taken by each ioctl call that the application has performed for

label changes. Moreover, it generates the report of the total kernel-space execution time. We

modified the i-Robot benchmark to change its label using FlowROS’s ioctl interface.

50

Table 5.4: System-level overheads

Frequency Without Label

No. of IOCTL Userspace (s) Kernelspace (s) CPU Utilization (%)

1 - 0.342 0.260 0.592
5 - 0.818 0.465 0.890
10 - 1.014 0.549 0.910
50 - 2.132 1.539 2.5
100 - 3.984 2.974 4.01

Frequency With Label

No. of IOCTL Userspace (s) Kernelspace (s) CPU Utilization (%)

1 600 0.360 0.306 0.689
5 3000 0.893 0.617 1.21
10 6000 1.358 0.832 1.649
50 30 000 2.941 3.346 4.34
100 60 000 4.066 4.087 4.96

1 5 10 50 100
0

1

2

3

4

Frequency (pub/sec)

T
im

e
(s
)

Userspace Latency Overhead

Without Label With Label

Figure 5.5: Userspace Latency Comparison

51

1 5 10 50 100
0

1

2

3

4

Frequency (pub/sec)

T
im

e
(s
)

Kernelspace Overhead

Without Label With Label

Figure 5.6: Kernelspace Latency Comparison

1 5 10 50 100
0

1

2

3

4

5

Frequency (pub/sec)

P
er
ce
n
ta
ge

(%
)

CPU Utilization Overhead

Without Label With Label

Figure 5.7: Comparison of CPU Utilization: Without Label vs. With Label

52

In Figure 5.2, the Geneva application publishes messages on the topic ”Amazon,” and we

analyzed the system overheads on the Geneva node. For this analysis, we added a set of 10 tags

to its label before publishing anything and removed the tags from its label after publishing.

This methodology was chosen to observe the system-level overheads incurred due to application

modifications at runtime. This experiment mimics the practical behavior of applications that

use DIFC calls to protect their sensitive information. Table 5.4 and Figures 5.5, 5.6, and 5.7

show the overheads incurred in the application due to DIFC modifications. The frequency

represents the rate at which the application publishes messages per second, adding the label

before publishing the message and removing it afterward. It is important to note that the system

overhead shown in Figures 5.5 and 5.6 represents the amount of time spent by the application

in the Userspace and Kernelspace. With labeling, the application does show an increase in

Userspace time, but the kernel overhead is slightly higher than that of the Userspace. This

is because changing labels requires the application to make IOCTL calls, leading to context

switches, which are considerably heavier. Hence, the kernel overhead is more evident in Figure

5.6. Applications must open the FlowROS ioctl device /dev/flowros and send label change

ioctl calls at runtime to alter their labels.

5.1.3 Availability

Our implementation source and benchmarks are available at this URL[1]:

https://github.com/ChinmayGameti/FlowROS

53

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has presented FlowROS, a Decentralized Information Flow Control (DIFC) system

tailored for the Robot Operating System (ROS), addressing the critical security and privacy

challenges inherent in the existing ROS framework. FlowROS presents an OS-level DIFC

mechanism, empowering developers to safeguard sensitive information more effectively. We

have identified the limitations of Mandatory Access Control MAC systems in the context of

ROS, as these system’s coarse granularity and complex policy deduction requirements often

result in inefficient security measures for robotic platforms. The dual approach of explicit and

implicit label propagation in FlowROS ensures backward compatibility with unmodified ROS

applications while maintaining robust information flow control. FlowROS effectively tackles the

inherent DIFC challenge of label explosion in ROS, ensuring the system remains functional and

secure. Implementing FlowROS is demonstrated through practical policies and a case study on

an existing ROS application.

6.2 Future Work

• The Robot Operating System (ROS) facilitates domain separation by enabling virtual

isolation for applications running on the same system but operating in distinct domain

planes. This architectural design ensures that applications within the same domain can

exclusively discover and communicate with each other, effectively segregating their oper-

ational environments. However, this domain separation paradigm, integral to ROS, is not

inherently mirrored in Information Flow Control (IFC) systems at the operating system

(OS) level. In the OS context, there is a lack of visibility regarding which processes and

objects belong to specific domains, leading to potential challenges in policy enforcement

54

and information security.

A promising direction for future development involves extending the domain separation

concept to OS-level IFC systems. This IFC systems could robustly enforce domain-specific

policies by integrating domain ID information into the OS-level reference monitor. This

enhancement would allow the OS to recognize and respect the domain boundaries estab-

lished in ROS, thus providing a more cohesive and secure environment for applications.

Such an integration would not only reinforce the isolation between different domains but

also streamline the management of information flow and access control, adhering to each

domain’s specific needs and constraints.

• FlowROS, as an OS-level DIFC system, effectively secures sensitive data within single-

system ROS applications. However, its current design is limited to individual systems

and doesn’t extend to distributed ROS networks. A key area for future enhancement

is the adaptation of FlowROS for distributed environments. This advancement would

significantly improve data protection across interconnected ROS systems, meeting the

evolving demands of complex, networked robotic applications.

• Similar to RIFLE [67] and Loki [75], which showcase Information Flow Control (IFC)

systems combining secure kernel and hardware support, a parallel approach could be

beneficial for the ROS environment. Exploring this direction could enhance the security

framework within ROS.

55

Appendix A

RTPS Traffic

A.1 User traffic

This type of traffic refers to the actual data being exchanged between the nodes in a ROS

platform. It consists of the messages that are published and subscribed to by different nodes.

56

A.2 Metadata Traffic

• This type of traffic, on the other hand, pertains to the communication related to the

metadata about the DDS entities.

• Metadata traffic includes information such as announcements of new data writers or

readers, status messages, and other control or discovery information necessary for the

establishment and maintenance of the DDS communication.

• This traffic is essential for the underlying DDS middleware to manage the network of

distributed nodes, ensuring that publishers and subscribers are correctly connected and

synchronized.

57

Bibliography

[1] Flowros. https://github.com/ChinmayGameti/FlowROS. 53

[2] ROS1 Technical overview. http://wiki.ros.org/ROS/Technical%20Overview. 7

[3] App-armor is an effective and easy-to-use linux application security systems. https://

example.com/app-armor. 2, 25, 26

[4] Cyclone dds. https://example.com/cyclone-dds. 1, 9

[5] Data distribution service (dds). https://www.omg.org/spec/DDS/1.4/PDF, . 1, 9

[6] The real-time publish-subscribe protocol dds interoperability wire protocol. https://www.

omg.org/spec/DDSI-RTPS/2.3/PDF, . 1, 9, 22, 46

[7] eprosima. https://example.com/eprosima. vii, 9, 10

[8] irobot ros 2 performance evaluation framework. https://github.com/irobot-ros/

ros2-performance. 46

[9] Omg ddsi-rtps specification. https://www.omg.org/spec/DDSI-RTPS/2.2, . 9, 11

[10] Omg ddsi-rtps specification. https://www.omg.org/spec/DDSI-RTPS/2.5/PDF, . 1, 9, 11,

13, 22

[11] Open dds. https://example.com/open-dds. 1

[12] ROS2 Client libraries, . https://index.ros.org/doc/ros2/Concepts/

ROS-2-Client-Libraries/#common-functionality-the-rcl. 1, 7, 46

[13] Vortex open slice. https://example.com/vortex-open-slice. 9

[14] Jean Bacon, David M Eyers, Jatinder Singh, and Peter R Pietzuch. Access control in pub-

lish/subscribe systems. In Proceedings of the second international conference on Distributed

event-based systems, pages 23–34, 2008. 25

58

https://github.com/ChinmayGameti/FlowROS
http://wiki.ros.org/ROS/Technical%20Overview
https://example.com/app-armor
https://example.com/app-armor
https://example.com/cyclone-dds
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF
https://example.com/eprosima
https://github.com/irobot-ros/ros2-performance
https://github.com/irobot-ros/ros2-performance
https://www.omg.org/spec/DDSI-RTPS/2.2
https://www.omg.org/spec/DDSI-RTPS/2.5/PDF
https://example.com/open-dds
https://index.ros.org/doc/ros2/Concepts/ROS-2-Client-Libraries/#common-functionality-the-rcl
https://index.ros.org/doc/ros2/Concepts/ROS-2-Client-Libraries/#common-functionality-the-rcl
https://example.com/vortex-open-slice

BIBLIOGRAPHY

[15] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and Yuan

Tian. Run-time monitoring and formal analysis of information flows in chromium. In

NDSS, 2015. 38

[16] Rakesh Rajan Beck, Abhishek Vijeev, and Vinod Ganapathy. Privaros: A framework for

privacy-compliant delivery drones. In Proceedings of the 2020 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’20, page 181–194, New York, NY, USA,

2020. Association for Computing Machinery. ISBN 9781450370899. doi: 10.1145/3372297.

3417858. URL https://doi.org/10.1145/3372297.3417858. 2, 16, 18, 19, 20, 25, 38,

42, 46

[17] William E Boebert and R Y Kain. A practical alternative to hierarchical integrity policies.

In Proceedings of the 8th National Computer Security Conference, 1985. 13

[18] David F C Brewer and Michael J Nash. The chinese wall security policy. In Proceedings of

the IEEE Symposium on Security and Privacy, 1989. doi: 10.1109/SECPRI.1989.36295.

13

[19] Kun Cheng, Yuan Zhou, Bihuan Chen, Rui Wang, Yuebin Bai, and Yang Liu. Guardauto:

A decentralized runtime protection system for autonomous driving. IEEE Transactions on

Computers, 70(10):1569–1581, 2021. doi: 10.1109/TC.2020.3018329. 1, 18, 19

[20] David D Clark and David R Wilson. A comparison of commercial and military computer

security policies. In 1987 IEEE Symposium on Security and Privacy, pages 184–184. IEEE,

1987. 31

[21] Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, and Yang Liu. On the (in) security

of secure ros2. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and

Communications Security, pages 739–753, 2022. 2

[22] Dorothy E. Denning. A lattice model of secure information flow. Commun. ACM, 19(5):

236–243, may 1976. ISSN 0001-0782. doi: 10.1145/360051.360056. URL https://doi.

org/10.1145/360051.360056. 16, 26

[23] Bernhard Dieber, Stefan Kacianka, Stefan Rass, and Peter Schartner. Application-level

security for ros-based applications. In Intelligent Robots and Systems (IROS), 2016

IEEE/RSJ International Conference on, pages 4477–4482. IEEE, 2016. 1, 7, 9, 18, 19,

26

59

https://doi.org/10.1145/3372297.3417858
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056

BIBLIOGRAPHY

[24] Bernhard Dieber, Bernhard Breiling, Sebastian Taurer, Stefan Kacianka, Stefan Rass,

and Peter Schartner. Security for the robot operating system. Robotics and Autonomous

Systems, 98, 2017. 9, 19, 26

[25] David F Ferraiolo, RD Kuhn, and Ramaswamy Chandramouli. Role-based access control,

2nd edn. artech house. Inc., Norwood, 2007. 25

[26] Blake Hannaford, Jacob Rosen, Diana W. Friedman, Hawkeye King, Phillip Roan, Lei

Cheng, Daniel Glozman, Ji Ma, Sina Nia Kosari, and Lee White. Raven-ii: An open

platform for surgical robotics research. IEEE Transactions on Biomedical Engineering, 60

(4):954–959, 2013. doi: 10.1109/TBME.2012.2228858. 1

[27] Michael A Harrison, Walter L Ruzzo, and Jeffrey D Ullman. Protection in operating

systems. Communications of the ACM, August 1976. doi: 10.1145/360303.360333. 14

[28] Tanmay Jain and Gene Cooperman. Dmtcp: Fixing the single point of failure of the ros

master. In ROSCON 2017: the ROS Developers Conference, 2017. 1, 9

[29] Se-Yeon Jeong, I-Ju Choi, Yeong-Jin Kim, Yong-Min Shin, Jeong-Hun Han, Goo-Hong

Jung, and Kyoung-Gon Kim. A study on ros vulnerabilities and countermeasure. In Pro-

ceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-

Robot Interaction, pages 147–148, 2017. 24

[30] Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken, Kazuhide

Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake. Run-time enforcement of

information-flow properties on android. In Computer Security–ESORICS 2013: 18th Eu-

ropean Symposium on Research in Computer Security, Egham, UK, September 9-13, 2013.

Proceedings 18, pages 775–792. Springer, 2013. 27, 33

[31] Hwimin Kim, Dae-Kyoo Kim, and Alaa Alaerjan. Abac-based security model for dds.

IEEE Transactions on Dependable and Secure Computing, 19(5):3113–3124, 2021. 25

[32] Maxwell Krohn and Eran Tromer. Noninterference for a practical difc-based operating

system. In 2009 30th IEEE Symposium on Security and Privacy, pages 61–76. IEEE,

2009. 26

[33] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie

Kohler, and Robert Morris. Information flow control for standard os abstractions. SIGOPS

Oper. Syst. Rev., 41(6):321–334, oct 2007. ISSN 0163-5980. doi: 10.1145/1323293.1294293.

URL https://doi.org/10.1145/1323293.1294293. 3, 16, 17, 26, 28, 30, 32, 34, 40

60

https://doi.org/10.1145/1323293.1294293

BIBLIOGRAPHY

[34] Sven Lachmund. Auto-generating access control policies for applications by static analysis

with user input recognition. In Proceedings of the 2010 ICSE Workshop on Software Engi-

neering for Secure Systems, SESS ’10, page 8–14, New York, NY, USA, 2010. Association

for Computing Machinery. ISBN 9781605589657. doi: 10.1145/1809100.1809102. URL

https://doi.org/10.1145/1809100.1809102. 3, 16

[35] Yun Li, Chenlin Huang, Lu Yuan, Yan Ding, and Hua Cheng. Aspgen: an auto-

matic security policy generating framework for apparmor. In 2020 IEEE Intl Conf

on Parallel & Distributed Processing with Applications, Big Data & Cloud Com-

puting, Sustainable Computing & Communications, Social Computing & Network-

ing (ISPA/BDCloud/SocialCom/SustainCom), pages 392–400, 2020. doi: 10.1109/

ISPA-BDCloud-SocialCom-SustainCom51426.2020.00075. 3, 16

[36] Victor Mayoral, Alejandro Hernández, Risto Kojcev, Iñigo Muguruza, Irati Zamalloa, Asier

Bilbao, and Lander Usategi. The shift in the robotics paradigm — the hardware robot

operating system (h-ros); an infrastructure to create interoperable robot components. In

2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages 229–236,

2017. doi: 10.1109/AHS.2017.8046383. 24

[37] Giovanni Mazzeo and Mariacarla Staffa. Tros: Protecting humanoids ros from privileged

attackers. International Journal of Social Robotics, 12:827–841, 2020. 25

[38] Jarrod McClean, Christopher Stull, Charles Farrar, and David Mascareñas. A prelim-

inary cyber-physical security assessment of the Robot Operating System (ROS). In

Robert E. Karlsen, Douglas W. Gage, Charles M. Shoemaker, and Grant R. Ger-

hart, editors, Unmanned Systems Technology XV, volume 8741, page 874110. Interna-

tional Society for Optics and Photonics, SPIE, 2013. doi: 10.1117/12.2016189. URL

https://doi.org/10.1117/12.2016189. 2

[39] John McClean, Christopher Stull, Charles Farrar, and David Mascareñas. A preliminary

cyber-physical security assessment of the robot operating system (ros). In Unmanned

Systems Technology XV, volume 8741, page 874110. International Society for Optics and

Photonics, 2013. 9, 24

[40] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In Pro-

ceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’99, page 228–241, New York, NY, USA, 1999. Association for

61

https://doi.org/10.1145/1809100.1809102
https://doi.org/10.1117/12.2016189

BIBLIOGRAPHY

Computing Machinery. ISBN 1581130953. doi: 10.1145/292540.292561. URL https:

//doi.org/10.1145/292540.292561. 17

[41] Andrew C. Myers and Barbara Liskov. A decentralized model for information flow control.

SIGOPS Oper. Syst. Rev., 31(5):129–142, oct 1997. ISSN 0163-5980. doi: 10.1145/269005.

266669. URL https://doi.org/10.1145/269005.266669. 17

[42] Andrew C Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel Nys-

trom. Jif: Java information flow. software release, 2001. 17, 28

[43] Adwait Nadkarni and William Enck. Preventing accidental data disclosure in modern op-

erating systems. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &

Communications Security, CCS ’13, page 1029–1042, New York, NY, USA, 2013. Asso-

ciation for Computing Machinery. ISBN 9781450324779. doi: 10.1145/2508859.2516677.

URL https://doi.org/10.1145/2508859.2516677. 16, 27, 33, 34

[44] Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. Practical {DIFC}
enforcement on android. In 25th USENIX Security Symposium (USENIX Security 16),

pages 1119–1136, 2016. 3, 4, 18, 27, 28, 29, 30, 32, 33, 34, 38, 40

[45] I NVIDIA and TX Jetson. developer kit and modules, 2021. URL https://www. nvidia.

com/en-us/autonomous-machines/embedded-systems/jetson-tx2. 46

[46] Object Management Group (OMG) Std. ptc/17-09-20. DDS Security. http://www.omg.

org/spec/DDS-SECURITY/1.1/, 2017. Rev. 1.1, Sept. 2017. vii, 2, 19, 20

[47] OMG. eprosima. https://fast-dds.docs.eprosima.com/en/latest/fastdds/

library_overview/library_overview.html. vii, 10

[48] Ioannis Papagiannis, Pijika Watcharapichat, Divya Muthukumaran, and Peter Pietzuch.

Browserflow: Imprecise data flow tracking to prevent accidental data disclosure. In Pro-

ceedings of the 17th International Middleware Conference, Middleware ’16, New York,

NY, USA, 2016. Association for Computing Machinery. ISBN 9781450343008. doi:

10.1145/2988336.2988345. URL https://doi.org/10.1145/2988336.2988345. 16, 26

[49] Gerardo Pardo-Castellote and Gabriela Cretu-Ciocarlie. Securing access to distributed

pub-sub information in a system-of-systems and gig environment. Real-Time Innovations,

Inc.(May 2010), 2010. 2

62

https://doi.org/10.1145/292540.292561
https://doi.org/10.1145/292540.292561
https://doi.org/10.1145/269005.266669
https://doi.org/10.1145/2508859.2516677
http://www.omg.org/spec/DDS-SECURITY/1.1/
http://www.omg.org/spec/DDS-SECURITY/1.1/
https://fast-dds.docs.eprosima.com/en/latest/fastdds/library_overview/library_overview.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/library_overview/library_overview.html
https://doi.org/10.1145/2988336.2988345

BIBLIOGRAPHY

[50] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers, Margo

Seltzer, and Jean Bacon. Practical whole-system provenance capture. SoCC ’17, page

405–418, New York, NY, USA, 2017. Association for Computing Machinery. ISBN

9781450350280. doi: 10.1145/3127479.3129249. URL https://doi.org/10.1145/

3127479.3129249. 3, 16

[51] Lauri IW Pesonen, David M Eyers, and Jean Bacon. Access control in decentralised

publish/subscribe systems. J. Networks, 2(2):57–67, 2007. 25

[52] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob

Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In ICRA

workshop on open source software, volume 3, page 5. Kobe, Japan, 2009. 8

[53] Tobias Rauter, Andrea Höller, Nermin Kajtazovic, and Christian Kreiner. Towards an

automated generation of application confinement policies with binary analysis. In 2015

International Symposium on Networks, Computers and Communications (ISNCC), pages

1–6, 2015. doi: 10.1109/ISNCC.2015.7238568. 3, 16

[54] Sean Rivera and Radu State. Securing robots: An integrated approach for security chal-

lenges and monitoring for the robotic operating system (ros). In 2021 IFIP/IEEE Inter-

national Symposium on Integrated Network Management (IM), pages 754–759, 2021. 2, 24,

26

[55] Sean Rivera, Sofiane Lagraa, and Radu State. Rosploit: Cybersecurity tool for ros. In

2019 Third IEEE International Conference on Robotic Computing (IRC), pages 415–416.

IEEE, 2019. 26

[56] Joseph M. Romano, Jordan P. Brindza, and Katherine J. Kuchenbecker. Ros open-source

audio recognizer: Roar environmental sound detection tools for robot programming. Auton.

Robots, 34(3):207–215, apr 2013. ISSN 0929-5593. doi: 10.1007/s10514-013-9323-6. URL

https://doi.org/10.1007/s10514-013-9323-6. 1

[57] ros. ROS.org—Powering the World’s Robots, . https://www.ros.org. 1, 7

[58] ros2. ROS 2–ROS 2 documentation, the latest version of the robot operating system.

https://index.ros.org/doc/ros2/. 1, 7, 42, 46

[59] Matthew Rossi, Dario Facchinetti, Enrico Bacis, Marco Rosa, and Stefano Paraboschi.

SEApp: Bringing mandatory access control to android apps. In 30th USENIX Se-

63

https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1007/s10514-013-9323-6
https://www.ros.org
https://index.ros.org/doc/ros2/

BIBLIOGRAPHY

curity Symposium (USENIX Security 21), pages 3613–3630. USENIX Association, Au-

gust 2021. ISBN 978-1-939133-24-3. URL https://www.usenix.org/conference/

usenixsecurity21/presentation/rossi. 3, 16, 25, 26

[60] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett

Witchel. Laminar: Practical fine-grained decentralized information flow control. SIGPLAN

Not., 44(6):63–74, jun 2009. ISSN 0362-1340. doi: 10.1145/1543135.1542484. URL https:

//doi.org/10.1145/1543135.1542484. 3, 17, 18, 25, 26, 28, 30, 32, 34

[61] RTI. RTI Connext DDS Core Libraries and Utilities, User Manual. RTI, 2013. Version

5.1.0. 1, 9

[62] John Rushby. The bell and la padula security model. Computer Science Laboratory, SRI

International, Menlo Park, CA, 1986. 29, 31, 32

[63] R.S. Sandhu and P. Samarati. Access control: principle and practice. IEEE Communica-

tions Magazine, 32(9):40–48, 1994. doi: 10.1109/35.312842. 26

[64] Gerhard Schellhorn, Wolfgang Reif, Axel Schairer, Paul A Karger, Volker Austel, and

Daniel Toll. Verification of a formal security model for multiplicative smart cards. In

Proceedings of the European Symposium on Research in Computer Security, 2000. 13

[65] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing selinux as a linux

security module. NAI Labs Report, 1(43):139, 2001. 25, 26

[66] Deian Stefan, Edward Z Yang, Petr Marchenko, Alejandro Russo, Dave Herman, Brad

Karp, and David Mazieres. Protecting users by confining {JavaScript} with {COWL}. In
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14),

pages 131–146, 2014. 38

[67] N. Vachharajani, M.J. Bridges, J. Chang, R. Rangan, G. Ottoni, J.A. Blome, G.A. Reis,

M. Vachharajani, and D.I. August. Rifle: An architectural framework for user-centric

information-flow security. In 37th International Symposium on Microarchitecture (MICRO-

37’04), pages 243–254, 2004. doi: 10.1109/MICRO.2004.31. 17, 18, 55

[68] Steve Vandebogart, Petros Efstathopoulos, Eddie Kohler, Maxwell Krohn, Cliff Frey, David

Ziegler, Frans Kaashoek, Robert Morris, and David Mazières. Labels and event processes

in the asbestos operating system. ACM Trans. Comput. Syst., 25(4):11–es, dec 2007. ISSN

0734-2071. doi: 10.1145/1314299.1314302. URL https://doi.org/10.1145/1314299.

1314302. 3, 17, 26, 28, 30, 32, 33, 49

64

https://www.usenix.org/conference/usenixsecurity21/presentation/rossi
https://www.usenix.org/conference/usenixsecurity21/presentation/rossi
https://doi.org/10.1145/1543135.1542484
https://doi.org/10.1145/1543135.1542484
https://doi.org/10.1145/1314299.1314302
https://doi.org/10.1145/1314299.1314302

BIBLIOGRAPHY

[69] Ruowen Wang, William Enck, Douglas S. Reeves, Xinwen Zhang, Peng Ning, Ding-

bang Xu, Wu Zhou, and Ahmed M. Azab. Easeandroid: Automatic policy analysis

and refinement for security enhanced android via large-scale semi-supervised learning. In

Jaeyeon Jung and Thorsten Holz, editors, 24th USENIX Security Symposium, USENIX

Security 15, Washington, D.C., USA, August 12-14, 2015, pages 351–366. USENIX

Association, 2015. URL https://www.usenix.org/conference/usenixsecurity15/

technical-sessions/presentation/wang-ruowen. 3, 16

[70] Ruowen Wang, Ahmed M. Azab, William Enck, Ninghui Li, Peng Ning, Xun Chen, Wenbo

Shen, and Yueqiang Cheng. Spoke: Scalable knowledge collection and attack surface

analysis of access control policy for security enhanced android. In Proceedings of the

2017 ACM on Asia Conference on Computer and Communications Security, ASIA CCS

’17, page 612–624, New York, NY, USA, 2017. Association for Computing Machinery.

ISBN 9781450349444. doi: 10.1145/3052973.3052991. URL https://doi.org/10.1145/

3052973.3052991. 16

[71] Robert White, Henrik I Christensen, and Morgan Quigley. Sros: Securing ros over the

wire, in the graph, and through the kernel. ArXiv e-prints, 1611.07060, 2016. 2, 18, 24

[72] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg

Kroah-Hartman. Linux security modules: General security support for

the linux kernel. In 11th USENIX Security Symposium (USENIX Secu-

rity 02), San Francisco, CA, August 2002. USENIX Association. URL

https://www.usenix.org/conference/11th-usenix-security-symposium/

linux-security-modules-general-security-support-linux. 4, 17, 33

[73] Yuanzhong Xu and Emmett Witchel. Maxoid: Transparently confining mobile applications

with custom views of state. In Proceedings of the Tenth European Conference on Computer

Systems, pages 1–16, 2015. 27

[74] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making infor-

mation flow explicit in histar. In Proceedings of the 7th USENIX Symposium on Operating

Systems Design and Implementation - Volume 7, OSDI ’06, page 19, USA, 2006. USENIX

Association. 3, 17, 26, 28, 32, 49

[75] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis. Hardware

enforcement of application security policies using tagged memory. In Proceedings of the

65

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-ruowen
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-ruowen
https://doi.org/10.1145/3052973.3052991
https://doi.org/10.1145/3052973.3052991
https://www.usenix.org/conference/11th-usenix-security-symposium/linux-security-modules-general-security-support-linux
https://www.usenix.org/conference/11th-usenix-security-symposium/linux-security-modules-general-security-support-linux

BIBLIOGRAPHY

8th USENIX Conference on Operating Systems Design and Implementation, OSDI’08, page

225–240, USA, 2008. USENIX Association. 17, 18, 55

66

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Introduction
	1.2 Outline

	2 Background and Threat Model
	2.1 ROS Framework
	2.1.1 Nomenclature
	2.1.2 eProsima DDS
	2.1.2.1 Dynamic Discovery Protocol

	2.2 Access Control
	2.2.1 Secrecy and Integrity
	2.2.1.1 Discreationary Access Control
	2.2.1.2 Mandatory Access Control
	2.2.1.3 Information Flow Control (IFC) Challenges
	2.2.1.4 Decentralized Information Flow Control (DIFC)

	2.3 Motivation
	2.3.1 Threat Model

	2.4 Challenges
	2.4.1 Label Explosion

	3 Related Work
	3.1 ROS Security
	3.2 Information Flow Control

	4 FlowROS
	4.1 DIFC Model
	4.1.1 Tags and Labels
	4.1.1.1 Partial Order Lattice
	4.1.1.2 Classification and Declassification
	4.1.1.3 Global Capability

	4.1.2 Label propagation
	4.1.2.1 Secrecy
	4.1.2.2 Integrity
	4.1.2.3 Label Changes

	4.1.3 Implementation
	4.1.3.1 Why LSM?
	4.1.3.2 Major and Minor LSMs
	4.1.3.3 Limitations
	4.1.3.4 DDS Modifications
	4.1.3.5 Domain Declassification

	4.1.4 User APIs

	4.2 Sample DIFC Policies
	4.2.1 Taint Tracking
	4.2.2 Storage Policy

	5 Evaluation
	5.0.1 ROS2 Camera Application
	5.1 Experiments
	5.1.1 Communication Latency
	5.1.2 System Overhead
	5.1.3 Availability

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	A RTPS Traffic
	A.1 User traffic
	A.2 Metadata Traffic

	Bibliography

