
Regulating Smart Devices in

Restricted Spaces

Daeyoung Kim
Department of Computer Science, Rutgers University

Committee: Prof. Vinod Ganapathy (Chair), Prof. Badri Nath,

Prof. Abhishek Bhattacharjee, Dr. Pratyusa Manadhata

(Micro Focus)

Devices are everywhere

2

Devices are increasingly capable

Model
CPU

(GHz)

Screen

(1000x)

Rear

camera

Front

camera

Battery

(mAh)

Sensors other than

Camera/Microphone

iPhone 0.4 153 2MP - 1,400
3

(light, accelerometer,

proximity)

iPhone3 0.6 153 3MP - 1,150
4

(+= compass)

iPhone4 0.8 614 5MP 0.3MP 1,420
6

(+= gyroscope, infrared)

iPhone5 1.3
(2 cores)

727 8MP 1.2MP 1,560
7

(+=fingerprint)

iPhone6 2.0
(2 cores)

1000 12MP 5.0MP 1,715
8

(+= barometer)

iPhoneX 2.39
(6 cores)

2740 12MP 7MP 2,716
9

(+= face recognition) 3

How can devices be misused?

• Malicious end-users can leverage sensors

to exfiltrate of infiltrate unauthorized data

• Malicious apps on devices can achieve

similar goals even if end-user is benign

4

Government or corporate office

• Problem: Sensitive documents and

meetings can be ex-filtrated using the

camera, microphone, and storage media

• Current solution: Physical security scans,

device isolation

Faraday

cages

5

Challenge: Bring Your Own Device

6

Classroom and exam setting

• Problem: Personal devices can be used to

infiltrate unauthorized information

[Financial Crypto 2014] [NY Times July 2012]

7

Classroom and exam setting

• Current solution: Deterrence via rules and

threats. Invigilation to ensure compliance

8

Challenge: Assistive devices

• Students may wish to use devices for

legitimate reasons:

– Smart glass or contacts for vision correction

– Bluetooth-enabled hearing aids

– Smart watches to monitor time

9

Other social settings

• Restaurants, conferences, gym locker

rooms, private homes, …

• Problems:

– Recording private conversations

– Pictures of individuals taken and posted to

social networks without their consent

– Pictures and videos of otherwise private

locations, e.g., private homes

10

Other social settings

• Current solutions: Informal enforcement

• Challenge: Social isolation

“For the first time ever this place,

Feast, in NYC just asked that I

remove Google Glass because

customers have complained of

privacy concerns […] I left”

11

Malicious apps exploiting sensors

 Early example of

sensory malware [CCS

2011]

• Use accelerometer and

record keystroke press

vibrations

• Up to 80% accuracy in

word recovery

Sensory malware

12

Malicious apps exploiting sensors

• Attacks have now been demonstrated using

every imaginable sensor

• Attack accuracy will improve with each

generation of devices and sensors

[NDSS 2011]
[NDSS 2013]

[USENIX Security 2014]

Sensory malware

13

Claim

Smart devices will become integrated

with daily lives  Ad hoc solutions,

e.g., banning device use, will no longer

be acceptable

Vision
Need systematic methods to regulate

devices and ensure responsible use

Discussion: Only considering overt device use. Covert use detection still requires traditional

physical security measures.
14

What solutions exist today?

 Mobile device management (MDM) solutions

15

Mobile device management

• Solution for enterprises that offer Bring your own

device (BYOD) models

• Employees are given a mobile device outfitted

with a secure software stack

• Enterprise policies “pushed” to device when

employee changes device persona

16

Mobile device management

• Solution for enterprises that offer Bring your own device

(BYOD) models

• Employees are given a mobile device outfitted with a

secure software stack

• Enterprise policies “pushed” to device when employee

changes device persona

Main shortcoming of current MDM solutions

 Enterprise must trust software stack on guest device

to enforce policies correctly

 But guest devices under control of possibly

malicious end-users

17

My thesis

We can leverage ARM TrustZone devices

to build methods to regulate smart

devices and ensure responsible use in

restricted spaces.

18

Contributions

• Regulating ARM TrustZone Devices in

Restricted Spaces [MobiSys 2016]

• ForceDroid: Enforcing Policy on Smart

Devices in Restricted Spaces

19

Regulating Smart Devices with

Remote Memory Operation

Contributions of our work

• Restricted space: Location owned by a

host, where guest devices must follow

the host’s usage policies

• Enable guest devices to prove policy

compliance to restricted space hosts

• Use a simple, low-level API that reduces

size of trusted computing base on guest

devices

21

Threat model

• Hosts and guests are mutually-distrusting:

– Hosts do not trust end-user of guest device or its end-

user software stack

– Guests do not trust host’s reconfiguration requests to

ensure policy compliance

• Trusted hardware on guest devices:

– Guest devices equipped with ARM TrustZone

• Guest devices are used overtly:

– Host must still use traditional physical methods to

detect covert device use

22

Guest device check-in

Restricted space Public space
23

Mutual authentication

Restricted space

Host’s policy server

Mutual

authentication

24

Host requests guest analysis

Restricted space

Host’s policy server

Request device

memory

Addr1, Addr2, Addr3, …

25

Guest vets host’s request

Restricted space

Host’s policy server

Request device

memory

Guest’s

vetting

service

Forward host’s

request

Addr1, Addr2, Addr3, …

Addr1, Addr2, Addr3, …

26

Guest vets host’s request

Restricted space

Host’s policy server

Guest’s

vetting

service

or

27

Host analyzes guest device

Restricted space

Host’s policy server

Send device

memory

Guest’s

vetting

service

Addr1, Addr2, Addr3, …

28

Host pushes policy to guest

Restricted space

Host’s policy server

Send memory

updates

Guest’s

vetting

service

29

Guest vets host’s updates

Restricted space

Host’s policy server

Send memory

updates

Guest’s

vetting

service

Forward host’s

requested updates

30

Guest applies host’s updates

Restricted space

Host’s policy server

Guest’s

vetting

service

Apply

memory

updates

31

Host requests proof

Restricted space

Host’s policy server

Request proof of

policy compliance

Guest’s

vetting

service

32

Guest sends proof

Restricted space

Host’s policy server

Verification token

Guest’s

vetting

service

33

Guest device check-out

Restricted space Public space
34

The ARM TrustZone
Guest device

Normal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

Secure world

(Protected by H/W)

35

Secure boot protects secure world
Secure world Normal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

Secure boot

36

Secure world stores keys
Secure world Normal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

Secure boot

PubKeyG, PrivKeyG

37

Memory is partitioned
Secure world Normal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

Secure boot

PubKeyG, PrivKeyG

38

Memory is partitioned
Secure world Normal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

Secure boot

PubKeyG, PrivKeyG

39

We enhance the secure world
Secure world

(booted securely)

Normal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

 Authentication

NW analysis

NW updates

Verif. tokens

1

2

3

4

40

Mutual authentication

Goal

Establish shared session

key ks between

host and guest

Secure world

ARM TrustZone

Secure-world memory

Host’s policy server

ks

ks

41

Establishing session key

Simplified TLS/SSL handshake

• Host’s keypair: PubKeyH, PrivKeyH

• Guest’s keypair: PubKeyG, PrivKeyG

1. Guest  Host: Exchange/verify public keys

2. Host  Guest: EncPubKeyG(ks)+ SignaturePrivKeyH

3. Guest (secure world): Verify host signature,

decrypt message and obtain ks

ks

42

Guest device analysis

Restricted space

Host’s policy server

Request device

memory

Addr1, Addr2, Addr3, …

Send device

memory

Addr1, Addr2, Addr3, …

ks

ks

43

Vetting host’s requests

• Vetting server ensures that host’s requests

do not compromise guest privacy

• Vetting policy: Host only allowed to

request guest device’s kernel memory

Guest device Guest’s vetting service

or

44

Analysis of NW memory snapshot

ks

Host’s policy server

ks

• Infer what peripherals are installed, and where in

memory their drivers are installed

• Detect guest device for malware infection,

including kernel-level rootkits

[Baliga, Ganapathy, Iftode, ACSAC’08, TDSC’11]

Guest device

45

Why look for NW rootkits?

Secure world Normal world

(Untrusted)

ARM TrustZone

Secure-world memory

ks

Normal

world OS

Secure world

applies updates

Rootkit

46

Why look for NW rootkits?

Secure world Normal world

(Untrusted)

ARM TrustZone

Secure-world memory

ks

Normal

 world OS

Rootkit

undoes

host’s

changes

Rootkit

47

Guest device update

Restricted space

Host’s policy server

Memory

updates

48

SW updates NW memory

Secure world Normal world

(Untrusted)

ARM TrustZone

Secure-world memory

ks

49

Updating peripheral drivers

• Device drivers in normal world control

execution of device peripherals

OS Kernel

Peripheral interface

Device driver

50

Updating peripheral drivers

• Introduce dummy driver to control peripheral

(e.g., disable it). Update kernel driver hooks.

 OS Kernel

Peripheral interface

Dummy driver Original driver
51

Are driver updates effective?

Peripheral

considered

Update size

(bytes)

Guest

device

Peripheral

disabled?

USB webcam 302 i.MX53

Camera 212 Nexus phone

WiFi 338 Nexus phone

3G (Data) 252 Nexus phone

3G (Voice) 224 Nexus phone

Microphone 184 Nexus phone

Bluetooth 132 Nexus phone

52

Vetting host’s updates

• An untrusted host can introduce new code into

guest devices

• Vetting policy: Ensure that dummy drivers are a

subset of the original drivers

– Via ARM-binary analysis on

Guest device Guest’s vetting service

or

53

Proof of compliance

Restricted space

Host’s policy server

Verification token

Request proof of

policy compliance

54

Verification tokens

• Host requests proof of compliance

• Secure world computes a fresh snapshot of all

NW memory locations updated by host

• Verification token:

• Verification token matches if and only if normal

world memory still in compliance with the host’s

usage policy

HMAC(,) ks

55

Summary

• Low-level API allows hosts to analyze and

control guests

– Simplifies design and size of TCB

• Hosts can obtain proofs of guest compliance

– Relies on ARM TrustZone hardware

• Vetting service balances guest privacy with

host’s usage policies

56

Regulating Smart Devices with

SEAndroid

Shortcomings of our previous work

1. Sharing memory images is too intrusive

2. Policy language is not user-friendly

3. Low deployability & maintenance difficulty

 Solution: Leveraging SEAndroid

58

Background

• SEAndroid

– Provide Mandatory Access Control (MAC)

• NFC

– Short-range wireless technologies between

two devices

• OP-TEE

– Open-source Portable Trusted Execution

Environment for ARM TrustZone-enabled

devices

59

Contributions of our work

• No privacy concerns with pre-defined

SEAndroid policies on guest devices

• Fine-grained policy enforcement with

SEAndroid

– Peripherals, apps, file system level control

• Provide secure policy enforcement

mechanism with ARM TrustZone

• Easy to use with NFC

60

SEAndroid

61

Threat Model

• The normal world can be compromised

• The NFC peripheral operates in the secure

world

• Pre-defined SEAndroid policies do not

have vulnerabilities

• OP-TEE as a secure OS is not vulnerable

62

System Architecture

63

Policy Enforcement Procedure

NW SW Host

Policy ID

Request Check-in

Load Policy

Verification Token

64

SEAndroid Policy Example

• SEAndroid Policy form:

• Removing following rules disables USB

device peripherals

allow domains types:classes permissions;

allow system_server usb_device:chr_file rw_file_perms;

allow system_server usb_device:dir r_dir_perms;

65

Implementation

• Guest device:

– Integrated Android and OP-TEE on i.MX6

development board

– Ported NFC device driver to secure world

• Host server:

– Developed NFC application on Android device

66

Summary

• Higher-level abstraction for fine-grained policy

enforcement with SEAndroid

• Hosts can obtain proofs of guest compliance

– Relies on ARM TrustZone hardware

• No privacy concerns

67

Conclusion

• Remote memory operation

– Low-level API allows hosts to analyze and control

guests

• SEAndroid approach

– Higher-level abstraction for fine-grained policy

enforcement

• Hosts can obtain proofs of guest compliance

– Relies on ARM TrustZone hardware

We present systematic methods to regulate

devices and ensure responsible use

68

Future directions

• Balance between security and privacy

• Automated kernel image analysis tool

• Automated policy rules generator tool

• Policy enforcement on connected

wearable devices

69

Other Contributions

• "Seeing is believing: Sharing Real-time Traffic

Images via Vehicular Clouds," [IEEE Access 2016]

• “Detecting Plagiarized Mobile Apps using API

Birthmarks,” [JASE 2015]

• “DoppelDriver: Counterfactual Actual Travel

Times for Alternative Routes,“ [PERCOM 2015]

• "Data-Driven Inference of API Mappings,"
[PROMOTO 2014]

• "Tweeting Traffic Image Reports on the Road,"
[MobiCase 2014]

70

Acknowledgement

• Advisor: Vinod Ganapathy

• Thesis Committee: Vinod Ganapathy, Badri Nath,

Abhishek Bhattacharjee, and Pratyusa Manadhata

• Co-authors: Liviu Iftode, Badri Nath, Abhinav

Srivastava, Amruta Gokhale, Daehan Kwak, Ruilin Liu,

Ferdinand Brasser, Christopher Liebchen, Ahmad-Reza

Sadeghi

• Discolab members

– Mohan Dhawan, Shakeel Butt, Lu Han, Liu Yang,

Rezwana Karim, Hai Nguyen, Daehan Kwak, Amruta

Gokhale, Ruilin Liu, Nader Boushehrinejadmoradi,

Wenjie Sha, Hongzhang Liu

71

Daeyoung Kim

daeyoung.kim@cs.rutgers.edu

Thank you!

Backup Slides

Check-in Protocol

74

Operational details

1. How can host trust guest to apply policy?

 Answer: Leverage ARM TrustZone

2. Why memory snapshots and updates?

 Answer: Powerful low-level API. Reduces TCB

3. How does vetting service ensure safety?

 Answer: Simple, conservative program analysis

4. Can’t guest device simply reboot to undo?

 Answer: REM-suspend protocol

75

Related approaches

• Device virtualization:

– Heavyweight; probably not for all devices

– Still requires host to trust hypervisor on guest

• Mobile device management solutions:

– No proofs to host

– Device-dependent TCB on guest

• Context-based access control:

– Same shortcomings as MDM solutions above

78

Analysis of NW memory snapshot

Host’s policy server

Recursive traversal of memory data structures

Root symbols &

kernel entry points

Data

invariants
Code

whitelist

Code

pages

Data

structs

? ?

79

Are memory updates the right API?

• Powerful, low-level API for device control

• Simplifies design of secure world (TCB) and

keeps it device-independent

 TCB component SLOC

Memory manager 1381

Authentication 1285

Memory ops., verification tokens 305

REM-suspend 609

SHA1 + HMAC 861

X509 877

RSA 2307 80

Do memory updates affect app stability?

Passive updates: Update memory and start the app

 USB MobileWebCam ZOOM FX Retrica Candy Cam HD Cam Ultra

App Error Android Error App Error App Error Android Error

Camera Android Cam Camera MX ZOOM FX Droid HD Cam HD Cam Ultra

Android Error App Error App Error Android Error Android Error

WiFi Spotify Play Store YouTube Chrome Facebook

No Connection No Connection No Connection No Connection No Connection

3G (Data) Spotify Play Store YouTube Chrome Facebook

No Connection No Connection No Connection No Connection No Connection

3G (Voice) Default call application

Unable to place call

Micro-

phone

Audio rec Easy voice rec Smart voice rec Snd/voice rec Smart voice rec

App Error App Error App Error App Error App Error
81

Do memory updates affect app stability?

Active updates: Update memory with “live” app

 USB MobileWebCam ZOOM FX Retrica Candy Cam HD Cam Ultra

App Error App Error App Error App Error App Error

Camera Android Cam Camera MX ZOOM FX Droid HD Cam HD Cam Ultra

Blank Screen App Error Android Error Blank Screen Blank Screen

WiFi Spotify Play Store YouTube Chrome Facebook

No Connection No Connection No Connection No Connection No Connection

3G (Data) Spotify Play Store YouTube Chrome Facebook

No Connection No Connection No Connection No Connection No Connection

3G (Voice) Default call application

Unable to place call

Micro-

phone

Audio rec Easy voice rec Smart voice rec Snd/voice rec Smart voice rec

Empty File Empty File Empty File Empty File Empty File

82

Memory updates are ephemeral

• Guest device can violate host’s usage

policies by simply rebooting to undo host’s

memory updates!

• Once device checked in, secure world

must:

– Mediate all low-battery and power-off

interrupts

– Checkpoint device memory to disk

– Upon power up, must restore device memory

from checkpoint

83

Device checkpoint

• Problem: Checkpoint stored on disk

– Readable by untrusted end-user

– But session key ks must not be stored in clear

– Otherwise, malicious end-user can use it to

impersonate guest’s trusted secure world!

• Solution: REM-suspend protocol

84

REM-suspend

• ARM TrustZone equips each device with a

device-specific key KDEV

• The key KDEV is only accessible from the

secure world

• We use KDEV to encrypt ks in device

checkpoint

• When device is powered again, secure

world uses KDEV to decrypt and restore ks

85

REM-suspend

Secure world

ARM TrustZone

ks KDEV
Guest

device

storage

ks

86

REM-suspend

Secure world

ARM TrustZone

ks KDEV
Guest

device

storage

ks

ks
KDEV

87

SW reads NW memory

Secure world Normal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

ks

88

Classroom and exam setting

89

