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Abstract

E-commerce companies are actively considering the use of delivery drones for customer

fulfillment, leading to growing concerns around citizen privacy. Drones are equipped

with cameras, and the video feed from these cameras is often required as part of routine

navigation, be it for semi-autonomous or fully-autonomous drones. Footage of ground-

based citizens captured in these videos may lead to privacy concerns.

This paper presents Privadome, a system that implements the vision of a virtual pri-

vacy dome centered around the citizen. Privadome is designed to be integrated with city-

scale regulatory authorities that oversee delivery drone operations and realizes this vision

through two components, Pd-Mpc and Pd-Ros. Pd-Mpc allows citizens equipped with

a mobile device to identify drones that have captured their footage. It uses secure two-

party computation to achieve this goal without compromising the privacy of the citizen’s

location. Pd-Ros allows the citizen to communicate with such drones and obtain an

audit trail showing how the drone uses their footage and determine if privacy-preserving

steps are taken to sanitize the footage. An experimental evaluation of Privadome shows

that the system scales to near-term city-scale delivery drone deployments (hundreds of

drones). We show that with Pd-Mpc the mobile data usage on the citizen’s mobile de-

vice is comparable to that of routine activities on the device, such as streaming videos.

We also show that the workflow of Pd-Ros consumes a modest amount of additional

CPU resources and power on our experimental platform.

iii



Keywords

Citizen privacy; delivery drones; secure multi-party computation; robot operating system

(ROS); trusted hardware.

iv



Contents

Acknowledgements i

Abstract iii

Keywords iv

Contents v

List of Figures vii

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview 6

3 Shortlisting Drones with Pd-Mpc 12

3.1 Drone Shortlisting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Encoding as an MPC Computation . . . . . . . . . . . . . . . . . . . . . 15

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Evaluation of Pd-Mpc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Pd-Mpc using Garbled Circuits . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Precision v/s Arithmetic Overflows in MOTION . . . . . . . . . . . . . . 27

4 Auditing Compliance with Pd-Ros 32

4.1 Goals and Design Space Exploration . . . . . . . . . . . . . . . . . . . . 32

4.2 Background on ROS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Core Components of Pd-Ros . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Evaluation of Pd-Ros . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Related Work 40

v



6 Conclusion 43

Bibliography 44

vi



List of Figures

2.1 Deployment vision for Privadome. . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Setup for Pd-Mpc’s geometric computation. . . . . . . . . . . . . . . . . 13

3.2 Per-query mobile data usage (MBs) on citizen’s phone. . . . . . . . . . . 21

3.3 Overall query latency at citizen’s mobile device. . . . . . . . . . . . . . . 22

3.4 Overall query latency at citizen’s mobile device (for Algorithm 3). . . . . 25

3.5 Per-query mobile data usage (for Algorithm 3). . . . . . . . . . . . . . . 26

3.6 Precision versus overflow tradeoff in MOTION. Error percentages of com-

puted result compared to the real valued result appear in parantheses. . . 29

4.1 Setup of ARM TrustZone-based drone with Pd-Ros. . . . . . . . . . . . 36

4.2 Pd-Ros experimental setup and results. . . . . . . . . . . . . . . . . . . 38

vii



Chapter 1

Introduction

This thesis concerns the problem of citizen privacy in the era of delivery drones. Prior

studies [21, 96, 87, 63, 37] have shown that citizens perceive drones as a threat to their

privacy, and rightly so. Drones are equipped with cameras for navigation, and the video

feeds captured by these cameras may record footage of ground-based citizens and their

private spaces [94]. A recent survey in the US found that 88% of the participants were

concerned about delivery drones recording their footage and using it for marketing and

advertising [28]. Admittedly, the delivery drone sector is regulated by government over-

sight (e.g., the identities of drones are generally known), and the drones belong to large

e-commerce companies with reputations to protect. Nevertheless, privacy remains a prob-

lem because citizens have no way to reason about how the footage is stored or used.

Recent drone-based food and coffee delivery trials by Alphabet Wing in various Aus-

tralian cities led to citizen concerns and a parliamentary report calling for oversight on

privacy [22, 66]. European drone vendors recently formed Drones4Sec [38], a body to

define protection of personal data in the era of drones (among other objectives). Laws

proposed by various countries have suggested that data gatherers (e.g., drone operators)

must incorporate suitable accountability mechanisms to protect citizen privacy [70]. In-

deed, large e-commerce companies are often asked by governments to explain how they

use the data they collect [34].

In this thesis, we propose a framework called Privadome to protect citizen privacy

in the presence of delivery drones. Privadome aims to implement the vision of a virtual

privacy dome, centred around the citizen, that protects their privacy from the prying

cameras of delivery drones. Privadome detects a delivery drone (or multiple drones) that

may be in the vicinity of a citizen and determines whether that citizen is captured in the

field of view of the drone’s camera. Privadome also provides mechanisms for the citizen

to determine whether the pictures/video captured by the drone’s camera are suitably

sanitized to protect privacy, e.g., that all faces captured in the video feed are blurred
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(as is done in Google Street View). From the perspective of a ground-based citizen,

Privadome simply requires the citizen to install an application on their mobile phone.

This mobile application helps determine the citizen’s location, which is then used to

identify drones in the citizen’s vicinity and start the workflow in Privadome.

Privadome is designed to be integrated with a city-scale regulatory authority that over-

sees delivery drone operations. These regulatory authorities are region-specific, e.g., the

Federal Aviation Authority in the US [10], the Civil Aviation Authority in the UK [9],

or the Directorate General of Civil Aviation in France and in India [48, 49]. The regula-

tory authority must be aware of the identity and current location of each delivery drone

operating in the city. This assumption is not just realistic for the delivery drone sector,

but in fact a requirement, to ensure collision-free delivery routes. Such requirements

have been proposed in the drone laws of various countries (e.g., USA [10], France [92],

EU [43], Switzerland [31], and India [49]), and drone security vendors are offering deploy-

able tracking solutions [84, 78].

Privadome has two components: Pd-Mpc, which we describe next, and Pd-Ros, an

auditing framework for the citizen to determine if privacy is maintained in the recorded

footage. Pd-Mpc allows a citizen to identify delivery drones whose cameras have the

citizen in their field of view (§3). Pd-Mpc uses secure multiparty computation (MPC)

between the regulatory authority’s server and the citizen’s mobile phone to accomplish

this goal without revealing the citizen’s location. Two-party MPC, which we use, enables

a pair of mutually-distrusting parties to collaboratively compute a function without re-

vealing anything besides the function output. Pd-Mpc encodes a geometric computation

that incorporates each drone’s location, its direction of motion, the specifics of the drone’s

camera hardware and the citizen’s location. This geometric computation determines if

the citizen appears anywhere in the camera’s field of view. Pd-Mpc’s use of MPC en-

sures that it is able to accomplish this goal without requiring the regulatory authority to

reveal the locations of all the drones in the city to the citizen.

However, näıve use of MPC in this setting presents scalability problems. Regula-

tory authorities operate at a city-scale, possibly tracking hundreds of delivery drones at

any given time. Several thousand citizens may also simultaneously query the regulatory

authority to identify drones in their vicinity. Off-the-shelf MPC protocols are compu-

tationally expensive and will have difficulty operating with the number of drones that

one may expect at a city-scale. Moreover, each citizen communicates with the regulatory

authority with their mobile phone, and traditional MPC protocols consume significant

network bandwidth. Pd-Mpc is carefully engineered to scale to hundreds of drones, mak-

ing it suitable for near-term city-scale deployments. Our evaluation of Pd-Mpc shows

that each query from the citizen (to check their privacy at city-scale) only consumes up
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to 6.59MB of mobile data for city-scale deployments of up to a thousand delivery drones.

Note that the regulatory authority can execute queries from different citizens in paral-

lel, and therefore automatically scales to an arbitrary number of citizen queries using

cloud-based replication.

Once a citizen identifies a drone(s) that has captured their footage, they may wish to

ensure that their privacy is maintained in the recorded footage. This requires communi-

cating with the drone, either directly or via the regulatory authority. A well-intentioned

delivery drone must then convince the citizen that the video has been sanitized appro-

priately. However, the citizen must have mechanisms to trust the drone’s assertions that

the data is sanitized.

Pd-Ros is an exemplar framework aimed to provide such assurances on ROS2-based

drones (§4). ROS2—the Robot Operating System, version 2 [75]—is a popular mid-

dleware used in the software stacks of drones by numerous vendors. Pd-Ros enhances

ROS2 to audit data flows between applications within the drone. Pd-Ros relies on

trusted hardware on the delivery drone to provide the citizen with an audit trail of how

their data is used within the drone. Many regulatory bodies do require delivery drones

to be equipped with such trusted hardware (see §2 for references).

Prior related methods in this area have been tailored toward ground-controlled drones [61,

14, 62, 15]. They aim to detect if the drone has captured a citizen’s footage in the first-

person view exported to a ground-based human operator. Privadome’s methods are

agnostic to whether the drone is ground-controlled or fully-autonomous. Companies such

as Amazon are considering using fully-autonomous drones for their delivery fleets [4],

and prior methods will not work with such drones. Privadome is the first system with

mechanisms for citizens to obtain an audit trail from a drone that has captured their

footage to maintain their privacy.

At this point, it is natural for the reader to question our choice of focusing exclusively

on the delivery drone sector. After all, citizen privacy can just as well be compro-

mised by end-user drones that are not delivery drones, so what purpose does a delivery

drone domain-specific system like Privadome serve? We answer these concerns with three

propositions.

• First, the delivery drone sector is commercially important. Many e-commerce giants

have set up drone delivery units (e.g., Google Wing, Amazon Prime Air), and the eco-

nomic and logistical advantages of drone-based delivery are beyond question. The tech-

nology has also sufficiently advanced, as evidenced by successful recent trials. Privacy

concerns, however, remain a significant hurdle to the wide-spread adoption of delivery

drones [21, 96, 87, 63, 37, 27, 66]. Privadome, tailored specifically to this sector, is

therefore likely to be of significant interest to the community.
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• Second, a system like Privadome can in fact encourage adoption of delivery drones.

Trials of delivery drones in the recent past have raised concerns from privacy-conscious

citizens [22, 66]. Studies [91, 60] indicate that privacy concerns by citizens can in fact

impact technology uptake and sales, with a study by Cisco [24] showing 90% of customers

would not buy from companies that do not adequately protect their data privacy. We

therefore believe that the adoption of a Privadome-like solution, which offers audit trails

attested by trusted hardware, can build citizen confidence and encourage the uptake of

drone-based delivery.

• And third, the presence of regulations in this sector makes a solution like Privadome

technologically feasible. Delivery drones are operated on behalf of e-commerce compa-

nies that have reputations to protect, and their operations are overseen by a regulatory

authority. Delivery drones are required to declare their location and are often equipped

with trusted hardware. There is an incentive to comply with local laws and regulations,

and a system like Privadome can enable enforcement of citizen privacy on these drones.

Admittedly, it is challenging to protect citizen privacy in the presence of rogue end-

user drones (i.e., in the unregulated sector). Solutions to detect citizen privacy violations

by unregulated drones have only been developed for certain kinds of drones [61, 15].

These solutions also involve active participation from the citizen, e.g., to perturb an

object/person to see if it is in the field of view of a drone [61] or to install WiFi detectors

on home windows to detect drones hovering outside [15]. A general solution to address

citizen privacy in the presence of unregulated drones will require a legal framework and

law-enforcement methods, both of which are actively being considered [74], but outside

this paper’s scope.

Unregulated drones will continue to compromise citizen privacy for the foreseeable

future, until further regulations and enforcement mechanisms are in place. However, we

also believe that this fact must not preclude the development of a privacy solution in the

commercially-important delivery drone sector. This belief led us to build Privadome.

1.1 Contributions

To summarize, Privadome’s key contributions are:

• Pd-Mpc, an MPC-based system for citizens to identify drones that have captured their

footage while preserving location privacy of citizens. Pd-Mpc is carefully engineered to

minimize network communication on citizens’ mobile devices and work with city-scale

drone deployments. Our evaluation simulating various city-scale deployments shows that

for near-term deployments (∼1000 drones), Pd-Mpc consumes lesser network bandwidth

on the citizen’s mobile device than streaming low-resolution YouTube videos.

• Pd-Ros, an auditing framework on ROS2-based drones, for citizens to determine
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if their captured footage is suitably sanitized. Pd-Ros’ workflow consumes a modest

amount of additional CPU resources and power when implemented on a NVidia Jetson

Xavier NX development board, with hardware similar to those on drones.

1.2 Outline

The rest of the thesis is organised as follows:

• Chapter §2 gives an overview of the envisioned deployment model and a description

of the two major components - Pd-Mpc and Pd-Ros- that make up Privadome.

• Chapter §3 describes Pd-Mpc, the various challenges that are associated with using

secure multi-party computation for a real world use-case such as Privadome, and

contains a performance evaluation of Pd-Mpc under various circumstances.

• Chapter §4 describes Pd-Ros and how it enables us to provide an audit trail to

the citizen to ensure compliance and contains a performance evaluation for the

overheads associated with Pd-Ros.

• Chapter §5 describes related work in the domain and Chapter §6 finally concludes

the thesis.
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Chapter 2

Overview

Figure 2.1 presents the envisioned deployment scenario and overall workflow of Pri-

vadome. Privadome is designed to be integrated with a wide-area (e.g., city-scale) regula-

tory authority with oversight on delivery drone operations. We assume that the identity

of each drone is known to the regulatory authority and that the drone provides real-time

location updates to the regulatory authority (Step 1 in Figure 2.1). Indeed, such re-

quirements have been stated in the drone laws of various countries. For instance, the

US Federal Aviation Authority (FAA) has proposed that all delivery drone operations

from 2023 must comply with remote identification rules, which require each drone to

update the FAA with its identity, current location, altitude and velocity, in addition to

other required data [10]. France [92], the European Union [43], Switzerland [31], Aus-

tralia [65, 66] and India [49] have also proposed similar regulations for drone operations.

Some countries (e.g., India [49]) even require drones to declare their flight path and seek

permission from the aviation authority prior to take-off. Security vendors have begun

to offer commercial tracking solutions that can be incorporated into drones so that they

comply with these regulations [84].

Privadome additionally requires that the particulars of the drone’s camera system (its

focal length and sensor size) be known to the regulatory authority. This information is

used in the geometric computation in Pd-Mpc. Although current regulations do not

explicitly state that drones must make these details known to the regulatory authority,

we feel that this is a reasonable assumption. These details are generally publicly available

and associated with the drone’s make and model.

When a citizen wishes to determine if a drone is recording their footage, they query the

regulatory authority using an application on their mobile phone (Step 2 in Figure 2.1).

The application can be configured to send such queries periodically. This application

allows the user to specify a vicinity radius centred around them. The regulatory authority

will detect drones within the vicinity radius of the citizen that have captured the citizen’s
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1 Delivery drones register with a city-scale regulatory authority that oversees their opera-
tion. Each drone has a unique identifier and keeps the regulatory authority updated with
its location. 2 Privacy-conscious citizen queries the regulatory authority with their current
location (using Pd-Mpc), and obtains a shortlist of drones whose cameras may have the
citizen in their field of view. 3 Citizen communicates with the drone, either directly or via
the regulatory authority (without revealing their identity). Well-intentioned drones running
Pd-Ros can provide an audit trail to citizens showing that their privacy is maintained in the
footage.

Figure 2.1: Deployment vision for Privadome.

footage. Our focus in this paper is on the privacy of the citizen’s footage itself. However,

this application can easily be extended so that the citizen can also specify other locations

(e.g., their home or yard) whose privacy they would like to protect in the footage recorded

by delivery drones.

In Privadome, citizens interact with the regulatory authority using Pd-Mpc, which

uses a two-party MPC protocol. Its inputs are the details of all the drones in the city

(the location, direction of motion, and camera particulars of each drone), as provided

by the regulatory authority, and the citizen’s location. Pd-Mpc uses this information

to output to the citizen the identities of drones that may have captured the citizen’s

footage. Pd-Mpc goes beyond the traditional step of simply identifying drones in the

citizen’s vicinity (in fact, some drone-installed trackers already wirelessly broadcast their

presence to nearby devices [78]). Pd-Mpc uses the direction of motion of each drone and

the details of the drone’s camera in a geometric computation to determine whether the

citizen’s location is within the field of view of the drone’s camera. Only such drones are

shortlisted in the output of Pd-Mpc. As delivery drone operations begin to increase in

popularity, we can expect several tens of drones to be present within typical vicinity radii

that citizens may specify (e.g., 500 metres). By shortlisting drones that have the citizen

in their field of view, Pd-Mpc reduces the number of drones from which the citizen must

request an audit trail in Step 3 .
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Pd-Mpc uses MPC to accomplish this goal without revealing the citizen’s location to

the regulatory authority. This is important because even though the regulatory authority

is likely to be a trustworthy body, citizens will find it unpalatable to reveal their locations.

Even if the citizen’s queries anonymously reveal location, i.e., without disclosing the

citizen’s identity, prior work shows that citizens can be de-identified using historical

query data (e.g., [69]).

Pd-Mpc encodes the entire aforementioned geometric computation using the machin-

ery of MPC, thereby ensuring the citizen’s location privacy. In that sense, Privadome

views the regulatory authority as an honest-but-curious participant. Delivery drone oper-

ators may also not wish to make the location of all their delivery drones publicly available

to anybody that poses a query to the regulatory authority. Pd-Mpc has the pleasant

side-effect of also ensuring this goal (to an extent), but this is a not our primary goal,

whereas protecting citizen privacy is. The identities of drones that are in the citizen’s

vicinity are revealed to the citizen.

With the shortlist of drones in hand, the citizen can then request each delivery drone

to show that it is taking measures to ensure privacy in the recorded footage (Step 3 ).

This communication between the citizen and the drone can either happen directly, as-

suming supporting infrastructure for such direct communication exists, or mediated by

the regulatory authority. This communication happens anonymously, without revealing

the citizen’s identity either to the drone or the regulatory authority. Each drone can then

provide suitable proof to show that it is complying with region-specific privacy laws. For

example, it could present an audit trail to the citizen showing that the footage is being

sanitized on-board the drone or that the footage is being recorded at low resolution.

Modern drones routinely capture video footage that is used to detect and avoid obsta-

cles during navigation. Thus, it is impossible to offer a solution in which sensitive objects

or people do not get captured in the video footage. Prior solutions [61] that simply detect

whether a citizen/object appears in the video footage will therefore flag (as suspicious)

drones that may otherwise be well-intentioned, and happened to capture the footage of

the citizen in their field of view during routine navigation. Privadome’s approach is to

provide a framework (namely, Pd-Ros) that allows well-intentioned drones to provide an

audit trail to citizens that their privacy is being preserved in the video footage. Drones

that cannot provide a satisfactory audit trail or fail to communicate with the citizen can

be reported (identities of shortlisted delivery drones are known to the citizen and the

regulatory authority). Privadome can thus abate citizen privacy concerns, such as those

raised after a recent Alphabet Wing drone delivery trial [22], which in turn incentivizes

drone delivery companies to adopt a Privadome-like solution.

Pd-Ros is an auditing framework for ROS2-based drones. We chose to demonstrate
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our approach on ROS2 because of its popularity among drone vendors, e.g., various

models sold by DJI, 3DR, Parrot, Gaitech, Erle, BitCraze, and Skybotix use ROS2. It

should be possible to develop Pd-Ros-like solutions for other drone software stacks as

well. In our Pd-Ros prototype, we ensure privacy by checking that applications on the

drone only consume video footage from the camera after it has been sanitized, e.g., to

blur faces that appear in each frame. ROS2 is a publish/subscribe system, in which

applications publish and subscribe to topics, e.g., the camera may publish to a topic

called VideoFeed , to which the navigation application may subscribe. ROS2 sets up

communication between applications by matching topics, and applications declare the

topics to which they publish or subscribe in a manifest. Audit trails record the manifest

of the application when it is launched. Manifests show how applications are permitted

to communicate. Citizens can use them to verify that raw video footage is sanitized for

privacy before being consumed by downstream applications.

The key challenge, however, is to provide a basis for the citizen to establish trust in

the integrity of the audit trail presented by a delivery drone. In Privadome, we address

this problem by requiring delivery drones to be equipped with trusted hardware. We use

the ARM TrustZone [7] in our experimental prototype, but any similar attestation hard-

ware should suffice. Pd-Ros uses the ARM TrustZone to: 1 run the trusted software

that sanitizes image feeds; 2 procure and securely store the data producer/consumer

information (the audit trail); and 3 digitally signs and sends the audit trail to a citizen

that requests a proof of footage sanitization.

It is natural to ask whether requiring delivery drones to be equipped with trusted

hardware overly restricts the scope of Privadome. In response, we note that drone laws

are beginning to recognize and provide special certifications to drones that are equipped

with trusted hardware. For example, India offers the higher-grade “Level 1” certification

only to drones that have a hardware-backed trusted execution environment [49]. Drone

vendors are also beginning to incorporate trusted hardware capable of securely storing

information and performing cryptographic operations, e.g., the Wisekey Secure Element

on the Parrot ANAFI Ai drone [67].

That said, laws governing delivery drone operations are still evolving in various coun-

tries, and it is unclear if all countries will require delivery drones to be equipped with

trusted hardware. For example, they may simply require that the drone be equipped

with a certified software stack, but not require any hardware root of trust on the drone

(e.g., the lower-grade “Level 0” certification given to drones in India [49]). Because Pd-

Ros is a set of tools atop the drone software stack, we expect that these tools can also

be used on (ROS2-based) drones that lack trusted hardware. However, in the absence of

trusted hardware the guarantees provided will be correspondingly weaker. For example,
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the audit trail cannot be digitally signed by the hardware root-of-trust, and the citizen

will have to trust that the software stack on the drone is untampered to establish the

integrity of the audit trail.

Because Privadome’s main goal is to protect citizen privacy, its threat model is citizen-

centric. The regulatory authority is assumed to be honest-but-curious. It truthfully

engages with citizens to identify drones that have their footage, but citizens do not have

to reveal their location to the regulatory authority. The regulatory authority must be

able to track the locations of all delivery drones registered with it. We expect regulatory

authorities to be operated by a trusted entity (e.g., the government) and therefore rule out

the possibility of collusion between the regulatory authority and delivery drone operators.

We assume that delivery drones are owned by large e-commerce companies with rep-

utations to protect. However, Privadome only trusts these e-commerce companies to the

extent that it expects them to operate drones equipped with a trusted execution envi-

ronment, such as the ARM TrustZone. It expects the drones’ identities and details of

their camera hardware to be registered with the regulatory authority. The public key

associated with the trusted hardware can itself serve as the drone’s identifier. We assume

the existence of supporting public-key infrastructure, i.e., a certifying authority that is-

sues digital certificates for the public keys of registered drones; the regulatory authority

can serve this role. For Privadome, the trusted-computing base on the drone is just the

trusted hardware, capable of securely storing the audit trail and attesting the software

stack on the drone. Note that e-commerce companies have historically relied on decen-

tralized delivery fleet management. They often engage the services of third-party delivery

service fleet operators (DSPs) (e.g., see [25, 57, 39, 42]), who procure and operate the

delivery vehicles. While we can reasonably assume that e-commerce giants have no overt

intention to break local privacy laws, the same cannot be assumed of DSPs. Indeed,

Privadome’s threat model does not trust DSPs, but does assume that the e-commerce

company requires DSPs to operate drones equipped with trusted hardware, which in

turn can attest that the DSP has not tampered with the drone’s software stack.

One could ask why Privadome-like mechanism is needed at all, if the e-commerce com-

panies are assumed to be benign in intent. The answer is that it is still important to have

accountability mechanisms in place to ensure that the e-commerce companies are abiding

with local privacy laws [70]. Having accountability mechanisms such as Privadome both

acts (1) as a deterrent to the drone operators from violating local laws; and (2) as a con-

fidence building means for citizens, who in turn will be more open to adopting delivery

drone-based services. Indeed, history has shown that e-commerce giants are sometimes

caught violating privacy of their clients [40, 93, 34, 82]. This therefore underscores the

need for a deterrent and an accountability mechanism available to citizens.
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Privadome’s threat model excludes drones that are not registered with the regulatory

authority and other rogue drones that deliberately try to hide their current location. We

also exclude from our threat model drones that use attached cameras that are outside of

the purview of the drone’s attested software stack. For example, a rogue drone operator

can attempt to bypass Privadome by physically attaching a Go-Pro camera to the drone.

Neither the trusted hardware on the drone nor the ROS2 software stack will have any

control over such an attached camera. Other methods and regulations are required to

deter such attacks. We expect that e-commerce giants will not engage in deliberate

attempts to violate local privacy laws because they have reputations to protect. However,

individual DSPs may engage in such attacks. E-commerce giants can deter DSPs from

engaging in such attacks by requiring the DSP to provide a live photograph of the drone

prior to take-off from the warehouse, which can subsequently be examined for the presence

of unauthorized attachments.
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Chapter 3

Shortlisting Drones with Pd-Mpc

Pd-Mpc is a system based on two-party MPC, involving a citizen and the regulatory

authority. At the end of Pd-Mpc, the citizen has a short list of drones in whose field

of view he/she appears. We first present the geometric computation used to detect if

the citizen is in the drone camera’s field of view (§3.1), describe how to encode this

computation in an MPC framework (§3.2), present implementation details (§3.3) and an

evaluation of our Pd-Mpc prototype (§3.4).

3.1 Drone Shortlisting Algorithm

Figure 3.1 depicts the basic setup of the geometric computation. For simplicity, this

figure considers a bird’s eye view in two dimensions, with both the drone and the citizen

on the same plane. Suppose we assume that a drone is within the citizen’s vicinity radius,

and that its location at a given instant in time is given by the pair of GPS coordinates

(Γt, λt). To determine whether the citizen at (Γc, λc) is within its field of view, we need

to know both the cone of vision of the drone’s camera and the direction in which the

drone is moving (assume for now a fixed, forward-facing camera, which we subsequently

relax). The regulatory authority can compute the angle of the cone of vision (θ in

Figure 3.1) using the details of the drone’s hardware with a well-known formula [59]: θ =

arctan(d/2f), where f is the focal length of the camera’s lens and d is the dimension of

the sensor (e.g., the CCD sensor) used to digitally record the image. These parameters

are typically associated with the make and model of the drone, which we assume is known

to the regulatory authority. Algorithm 1 therefore simply uses θ as an input.

The regulatory authority captures the drone’s direction of motion using its GPS co-

ordinates after a short interval of time, shown as (Γt+δ, λt+δ) in Figure 3.1. The citizen

lies within the camera’s field of view if the angle shown as ϕ in Figure 3.1 is less than

θ. On a two-dimensional plane with (Γt, λt) as the origin, ϕ is the angle between the

two vectors denoting the drone’s direction of motion (
−→
D) and the citizen’s location with
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We use the drone’s current GPS location (Γt, λt) and location after a short time interval
(Γt+δ, λt+δ) to determine its direction of motion. The drone camera’s field of view is abstracted
by the parameter θ. Pd-Mpc’s geometric computation determines whether the citizen’s lo-
cation (Γc, λc) is within the drone’s field of view, i.e., whether ϕ < θ. For the field of view
computation, Pd-Mpc converts location information captured as GPS coordinates into an
equirectangular projection with (Γt, λt) as origin.

Figure 3.1: Setup for Pd-Mpc’s geometric computation.

Algorithm 1: DetectFieldOfView.
Input: From citizen: Γc, λc, VicinityRadius.
Input: From regulatory authority: Γt, λt, Γt+δ, λt+δ, θ.
Output: True if citizen in field of view, else False.
// Each (Γ, λ) is a GPS latitude/longitude pair.

1 Dist = Distance(Γc, λc, Γt, λt)
2 if (Dist > VicinityRadius) then return False

3
−→
D = Vectorize(Γt, λt, Γt+δ, λt+δ)

4
−→
C = Vectorize(Γt, λt, Γc, λc)

5 ϕ = arccos((
−→
D ·
−→
C) / (|

−→
D| × |

−→
C |))

6 if (ϕ ≤ θ) then return True else return False
7 Procedure Vectorize (Snyder [80])

Input: GPS coords of Origin & Target: (Γo, λo, Γt, λt).
Output: Vector denoting Target in an equirectangular projection with Origin as origin.

8 X = R × (λt - λo) × cos (Γo × π
180 )

9 Y = R × (Γt - Γo) // R = Earth’s radius
10 return the vector [X, Y]

respect to the origin (
−→
C). The value of ϕ can be determined using the dot product of

−→
D and

−→
C , as shown in line 5 of Algorithm 1. Recall that locations are reported as GPS

coordinates, which are in latitudes and longitudes. To obtain the vectors
−→
D and

−→
C , we

need to obtain equirectangular projections of the GPS coordinates [80] with (Γt, λt) as

the origin. Vectorize, called on lines 3 and 4 of Algorithm 1 accomplishes this task.

A few observations about Algorithm 1 are in order:

• Vertical Field of View. The algorithm only considers the horizontal field of view, and

ignores the vertical field of view. A citizen lies within the vertical field of view of the
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drone if ϕv < θ, where ϕv = arctan(h/Dist), where h is the altitude of the drone, and Dist

is the distance between the drone and the citizen, as calculated on line 1. Although this

calculation is simple enough to include in the algorithm, we chose not to do so because of

two reasons. First, it is reasonable assume that a citizen appears within the vertical field

of view of a drone within the vicinity radius. The citizen will likely be out of view only if

the drone is too close to the citizen, e.g., hovering right overhead, in which case ϕv>θ).

For drones that are in such proximity, we assume that the citizen’s footage would have

been captured on the drone’s approach path, and that the citizen would be interested

in obtaining an audit trail from that drone anyway. If the drone is equipped with an

optical flow camera (usually downward facing) it will capture the citizen’s footage even

if it is hovering right overhead. Second, the vertical field of view computation involves

a division (h/Dist) and a trigonometric (arctan) operation, both of which are expensive

to execute when the algorithm is encoded in MPC. Moreover, as we discuss in §3.2, even
precisely computing Dist is computationally expensive in MPC.

• Gimbal-mounted Cameras/Multiple Cameras. The algorithm assumed a fixed camera,

facing forward in the direction of motion of the drone. On drones with a gimbal-mounted

camera, the camera may not necessarily point forwards in the direction of the drone’s

motion. Algorithm 1 can easily incorporate drones with such cameras. The drone will

have to additionally communicate the pitch and yaw of the gimbal to the regulatory

authority. Using this information, the regulatory authority can calculate the angle (α)

between the drone’s direction of motion and the camera’s orientation. The angle α can be

applied as a corrective factor to ϕ on line 5. The same idea can also be applied to account

for the yaw and pitch of the drone itself, and suitable corrective factors can be applied to

ϕ. The algorithm can also accommodate drones that are equipped with multiple cameras

by considering a consolidated cone of vision that encompasses the cones of vision of each

individual camera.

• Camera Resolution. The algorithm requires the citizen to provide a vicinity radius as

input; only drones within this vicinity radius are considered. However, cameras differ

in their resolution, with higher-resolution cameras capable of capturing sharp images

from afar. Using a single vicinity radius ignores information about camera resolution.

However, Algorithm 1 can incorporate this information if the regulatory authority itself

suggests suitable vicinity radii, based on the resolution of the drone’s camera (which

it can determine from the drone’s make and model). In this case, citizens will specify

the maximum acceptable resolution at which they are comfortable being captured in the

footage, and the regulatory authority will suggest a suitable vicinity radius for each drone.

14



3.2 Encoding as an MPC Computation

Pd-Mpc encodes DetectFieldOfView as a secure two-party computation between

the citizen and the regulatory authority. However, Algorithm 1 requires a few modifi-

cations to make it secure and efficient for use in an MPC framework. We detail those

modifications here, but first provide some background on MPC frameworks.

Broadly, there are two popular regimes of MPC protocols. One regime uses Yao-style

garbled circuits (GC) [95]. In GC, one party called the circuit garbler generates the gar-

bled circuit and gives it to the other party who evaluates it. The circuit evaluator obtains

the other party’s inputs using oblivious transfer (OT) before evaluating the circuit, and

the rest of the evaluation is non-interactive. The circuit evaluator then reveals the values

at the output gate to the other party. In GC, fresh circuits must be used each time the

computation is run.

A second regime uses secret-sharing, as exemplified by the GMW protocol [46]. In

this regime, both parties participate in the evaluation of the circuit. Each party holds

its share of the value of a wire. During circuit evaluation both parties interact via a

series of OT steps to exchange their wire shares to execute a gate in the circuit. There is

an extensive body of research in both regimes to optimize circuit evaluation, reduce the

number of OT rounds, and to enable support for integer and floating point arithmetic

and Boolean operations. Although our Pd-Mpc prototype is based on secret-sharing,

this section discusses considerations for both regimes (Section §3.5 discusses a GC-based

implementation of Pd-Mpc). While garbling schemes aim to minimize interactive com-

munication, the circuit produced by the circuit garbler is often quite large (we quantify

this later in the section) and a fresh circuit must be provided to the circuit evaluator each

time the circuit is evaluated. In contrast, secret-sharing based approaches minimize up-

front network communication but require multiple interactions among the parties during

the course of computation.

Algorithm 2 shows DetectFieldOfView adapted to MPC. We now describe the

security and performance considerations that went into the design of Algorithm 2.

Security Considerations. Note that Algorithm 1 only considers inputs from one drone.

To protect citizen privacy, the algorithm needs to be executed with the coordinates of

all drones in the city. If Algorithm 1 were näıvely iterated over all drones, it would be

insecure, as described below.

First, note that the output must not be revealed to the regulatory authority because

it could simply use the Boolean result of Algorithm 1 to determine the set of drones in

the vicinity of the citizen, and obtain an estimate of the citizen’s location. We therefore

modify the protocols to only reveal the output to the citizen. In secret-sharing MPC
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protocols, this goal is accomplished by ensuring that only the regulatory authority reveals

its wire shares for the output gates to the citizen, but not vice-versa. In a GC-based setup,

one could designate the citizen as the circuit garbler and the regulatory authority as the

circuit evaluator. The citizen would modify the garbled tables for the output gates reveal

only encoded values (seen by the regulatory authority), rather than the clear-text result

of the computation. The encoded values can be decoded by the citizen, but not the

regulatory authority.

Second, even if the output were revealed only to the citizen, the nature of the com-

putation in Algorithm 1 has a subtle side-channel when executed on individual drones.

While we can expect that there will be a few hundred drones at city-scale (in the near-

term, scaling to a few thousand drones in 10-15 years), we only expect a small fraction of

these to be within the vicinity radius of the citizen. For example, an Airbus study [12] es-

timated an average of 16,667 delivery drone flights per hour over Paris (roughly 100km2)

by 2035. This translates to under two drone flights per hour over a fixed 100m2 area,

assuming a uniform distribution. As a result, we can expect that the more complex

computation on lines 3 to 6 will be triggered only for a few drones. In secret-sharing

schemes, the side-channel manifests as network messages (i.e., the OT steps) exchanged

during interactive execution. The regulatory authority can observe the number/size of

messages exchanged during circuit evaluation and obtain an estimate of the number of

drones in the vicinity of the querying citizen. In turn, this may be used to localize the

citizen using the current density of drones in various locations of the city. In a GC-based

setup, this side-channel would instead manifest as timing differences: the circuit would

take longer to execute for drones in the vicinity of the citizen. If the regulatory authority

is the circuit evaluator, this side-channel reveals drones near the citizen.

To mitigate the side-channel, we run the computation in bulk for all drones. That

is, rather than running the algorithm for each drone, we modify its inputs so that the

regulatory authority provides the coordinates for all drones in one go. The algorithm

iterates the distance computation over all the drones. Since all this happens within the

MPC computation the regulatory authority is oblivious to the identity of the drones that

are in the citizen’s vicinity.

However, running the computation in bulk for all drones alone is not sufficient for

security. If lines 3 to 6 of Algorithm 1 were executed conditionally only on drones in

the citizen’s vicinity, it exposes a subtle side-channel. In a secret-shared MPC setup,

the choice of whether the computation within the conditional is executed (or not) would

determine the number of OT messages exchanged between the regulatory authority and

the citizen’s mobile device. This, in turn, leaks information about the number of drones

in the citizen’s vicinity, which is undesirable. A similar side-channel would exist in a GC-
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Algorithm 2: DetectFieldOfView in MPC.
Input: From citizen: Γc, λc, LatVicinity, LongVicinity, citizen’s masking factors (drawn from

R+): cΓ1, cλ1, . . ., cΓn, cλn.

Input: From regulatory authority, identity, position and
−→
D vector for all drones: (Idi, Γi

t, λ
i
t,−→

Di) for all drones in city (i=1. . .n), regulatory authority’s masking factors (from R+):
rΓ1, rλ1, . . ., rΓn, rλn.

Input: Publicly-known: θ1, . . ., θn for all drones.
Output: Revealed to citizen: ⟨DotPi,NormSquarei,NearbyLati,NearbyLongi⟩ for all drones.

M1 [Γdiff] = LatitudeDiff(Γ1
t , . . ., Γ

n
t , Γc)

M2 [λdiff] = LongitudeDiff(λ1
t , . . ., λ

n
t , λc)

M3 for i ← 1 to n do

M4 NearbyLati = (Γdiff[i] - LatVicinity) × cΓi × rΓi

M5 NearbyLongi = (λdiff[i] - LongVicinity) × cλi × rλi

M6
−→
Ci = Vectorize(Γi

t, λ
i
t, Γc, λc)

M7 DotPi =
−→
Di ·
−→
Ci

M8 NormSquarei = (|Di|)2 × (|Ci|)2
M9 Result.add(⟨Idi,DotPi,NormSquarei,NearbyLati,NearbyLongi⟩)

M10 end
M11 return Result (revealed only to citizen)

// The steps below happen on the citizen’s phone (no MPC)
M12 for ⟨Idi,DotPi,NormSquarei,NearbyLati,NearbyLongi⟩ ∈ Result do

M13 if (NearbyLati ≤ 0) and (NearbyLongi ≤ 0) then
M14 ϕi = arccos(DotPi/

√
NormSquarei)

M15 if (ϕi ≤ θi) then shortlist the drone Idi.

M16 end

M17 end

based setup as well, in which the execution (or not) of the conditional would manifest as

timing differences, observable by the regulatory authority, which evaluates the circuit.

As a result, we designed Algorithm 2 to run the steps to compute ϕ for all drones,

and not just those drones that are in the vicinity of the citizen. By executing the circuit

on all drones in the city, Algorithm 2 makes the computation oblivious to the number of

drones in the citizen’s vicinity.

Our choice of using secret-shared MPC over garbled-circuit-based MPC was motivated

by the size of the circuits needed to achieve the security properties discussed above.

Although Algorithm 2 logically depicts the computation iterating over all the drones

using a loop, the circuit represents the computation on lines M4 to M9 with the loop

unrolled. Note that this is possible because the value of n is predetermined, allowing

the circuit to be generated for fixed values of n. In experiments with both secret-shared

and GC-based MPC, we observed that the size of the circuits generated in a GC-based

setup were 10-100× larger than the circuit sizes in a secret-shared setup. For example,

for n=1000, the size of the circuit in our secret-shared MPC setup (using MOTION [17])

is about 6.5MB. In contrast, the size of the garbled circuit (generated using EMP [86],
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a popular GC framework) was 685MB. Further, note that in a GC-based setup, a fresh

circuit must be used each time the two parties engage in computation, thus requiring the

exchange of 685MB each time the citizen queries the regulatory authority, thus making

the entire setup prohibitively expensive.

Performance Optimizations. Our MPC encoding of Algorithm 1 has four key perfor-

mance optimizations:

1 Distance computation. Line 1 of Algorithm 1 computes the distance between the

drone and the citizen. The Euclidean distance between the drone and the citizen, given

their respective GPS coordinates, is computed using Haversine’s formula [79]. Comput-

ing the Haversine formula involves trigonometric functions and square-root operations,

which we wanted to avoid because they are well-known sources of inefficiencies in MPC

algorithms [5]. For example, computing distance between a pair of points using Haver-

sine’s formula in MOTION [17] requires a circuit with 284 gates and results in 179.9KB

network traffic. Vincenty’s method [85] is more precise than the Haversine formula, but

is even more expensive.

We thus approximate the distance between the citizen and the drone using the differ-

ence between the GPS coordinates of the citizen and the drone. A difference of 0.001 de-

grees in the latitude values of two locations corresponds to a distance of 111 meters

between them along the North-South axis [50]. Likewise, the difference between their

longitude values estimates their distance along the East-West axis (after suitably nor-

malizing based on the latitude values, to account for an equirectangular projection).

Subtraction operations can be implemented cheaply within MPC algorithms. Thus we

modify our approach—instead of providing a Euclidean distance as a vicinity threshold,

the citizen supplies a threshold of the difference between latitudes and longitudes. In our

implementation, approximating the distance using this method requires a circuit with

just 6 gates, and one distance computation costs just 0.239KB of network traffic. In Al-

gorithm 2, lines M1-M2 (LatitudeDiff and LongitudeDiff) compute the differences

between the citizen’s coordinates and the drone’s coordinates in bulk, as an n×1 matrix.

2 Lifting Vectorize. Observe that the call to Vectorize on line 3 in Algorithm 1

only uses inputs from the regulatory authority. This computation therefore does not

have to execute as an MPC circuit. The regulatory authority can instead provide the
−→
D

vectors of drones as an input to the algorithm.

3 Early termination. The computation on line 5 of Algorithm 1 requires inputs from

both the citizen (
−→
C) and the regulatory authority (

−→
D) to compute the angle ϕ. This

calculation involves a division, a square root and an arccos operation. The square root

appears as the final step in the calculation of the product of the L2-norms |
−→
D|×|

−→
C |.

Each of these operations is expensive in MPC.
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We therefore modify the algorithm to omit the costly operations. The algorithm

computes the value
−→
D ·
−→
C . It omits the square-root step in the computation of the

norms within the MPC algorithm, leaving us with the values |
−→
D|2 and |

−→
C |2 (the square

of the L2-norms), which we simply multiply. It reveals these values only to the citizen,

who can then proceed with the square-root, division and arccos (in plaintext) on their

mobile device to compute ϕ and shortlist drones accordingly. These steps appear as

lines M7-M15 of Algorithm 2. This approach results in considerable savings because

the generated circuits are much smaller. In turn, this results in much reduced network

communication overheads. For example, in our implementation of the computation in

lines 5 and 6 (of Algorithm 1), early termination reduces the network traffic for one

iteration of the loop from 21.5MB to 45.1KB. This is because in a secret-sharing MPC

regime, early termination avoids additional OT steps that would otherwise be required if

the computation happened within MPC. In a GC-based setup, early termination would

reduce the communication from the garbler to the evaluator because of the reduction in

the size of the circuit to be garbled.

There are two minor downsides to this approach. The first is that (unlike in Algo-

rithm 1) the citizen learns the identities of all drones in their vicinity, and not just those

of the drones that have captured their footage in their field of view. However, we feel that

this is an acceptable tradeoff. Some drone-installed tracking devices already broadcast

their their presence to nearby devices [78] and the citizen is likely to be aware of the

identities of drones close-by.

The second is that the value of θ associated with the drone must be available to the

citizen to perform the comparison on line 6 of Algorithm 1. We feel that the values

of θ are not sensitive, and can be revealed publicly. In fact, the specification of most

commercially-available drones is already available publicly, and the citizen would likely

be able to compute the values of θ for most brands of drones. Revealing θ values only

provides clues to the citizen about the brand of the delivery drone used, which we again

feel is an acceptable tradeoff for performance. However, if delivery drone companies are

hesitant to reveal θ values, we note that line 6 alone can be encoded as a separate MPC

computation, with the citizen supplying the ϕ values computed by the mobile application.

4 Avoiding Boolean comparisons in MPC. Observe that the citizen performs the com-

putations on lines M14 and M15 only on drones that are located within the vicinity

threshold. The MPC computation can simply reveal a Boolean value for each drone,

informing the citizen whether that drone is in the citizen’s vicinity. For drone i in Al-

gorithm 2, this Boolean is ((Γdiff[i] - LatVicinity) ≤ 0) ∧ ((λdiff[i] - LongVicinity) ≤ 0).

Instead, Algorithm reveals the sign-preserving masked values NearbyLati and NearbyLongi

to the citizen, and the comparison is performed on the citizen’s mobile device.
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We chose to reveal the values of NearbyLati and NearbyLongi to the citizen to utilize

optimizations implemented in the MOTION framework [17]. Observe that the MPC com-

putation in Algorithm 2 is purely arithmetic in nature (with only +, − and × operators).

MOTION uses algorithms tailored to make arithmetic computations fast, and introduc-

ing a comparison operator into the computation would require MOTION to switch to

a Boolean representation of numbers to perform the computation. We observed that

switching from the arithmetic to the Boolean world is an expensive operation in the

MOTION framework. For example, with n=1000 drones, we observed that running Al-

gorithm 2 consumes approximately 6.59MB. In contrast, computing the Boolean value

((Γdiff[i] - LatVicinity) ≤ 0) ∧ ((λdiff[i] - LongVicinity) ≤ 0) within MPC and revealing

only the final result to the citizen consumes approximately 104.7MB.1

3.3 Implementation

As previously discussed, we used MOTION [17] to implement Algorithm 2. The regu-

latory authority reveals the value of n in Algorithm 2 (the number of drones), and the

circuit is generated for that value of n. Our experimental results indicate that our secret-

sharing-based implementation scales to hundreds of drones at city-scale. With a city-scale

deployment of a 1000 drones, each query consumes just 6.59MB of mobile data. Assum-

ing the citizen sends queries every 5 minutes, the bandwidth is about half of streaming a

low-resolution video on YouTube (see §3.4).
These results already are within the realm of practicality for near-term city-scale de-

ployment of delivery drones. However, the bandwidth consumption and scalability of

our approach can be improved further with a number of optimizations. Recent advances

show that several steps of the OT can be completed as a pre-computation step, fur-

ther reducing mobile data consumption [26]. Several MPC frameworks optimize mixed

Boolean and arithmetic computations, and allow efficient switching between the Boolean

and arithmetic worlds (e.g., [32, 68]), which can also be explored.

1NearbyLati and NearbyLongi are masked values of (Γdiff[i] - LatVicinity) and (λdiff[i] - LongVicinity),
respectively, with the citizen and the regulatory each providing masking factors cΓi, cλi, rΓi, rλi as
additional inputs to the algorithm. The masking factors (drawn from R+) serve to protect the raw
values of (Γdiff[i] - LatVicinity) and (λdiff[i] - LongVicinity) from both the regulatory authority and the
citizen, but preserve the sign of the result. Masking is required because the raw values would reveal the
locations of the drones to the citizen (or the location of the citizen to the regulatory authority). Note that
Γdiff[i] and λdiff[i] are bounded in range as they denote differences of latitudes and longitudes. Thus,
the masking factors can be chosen from a large-enough range of enough range of the set of R+ numbers
so that the multiplications on lines M4 and M5 are sign-preserving, i.e., no arithmetic overflows. See
Section §3.6 for a detailed treatment of arithmetic overflows.
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Number of drones in city Data consumed (MBs)

100 0.69
200 1.34
500 3.31
1000 6.59
2000 13.14
10,000 65.60

Figure 3.2: Per-query mobile data usage (MBs) on citizen’s phone.

3.4 Evaluation of Pd-Mpc

We evaluated Pd-Mpc by studying how it performs under a simulated city-scale drone

deployment. To model the regulatory authority server, we used a Intel Core i7-7700

(3.60GHz) CPU with 16GB RAM, running Linux 5.11.0-37 (Ubuntu 20.04). To model

the citizen’s mobile device, we used a NVidia Xavier NX board with (ARMv8.2 64-bit

6-core CPU, with 8GB RAM), running Linux for Tegra [53].

Data Consumption on Citizen’s Mobile Device. We measured the mobile data con-

sumption on the citizen’s device to pose queries to the regulatory authority. Figure 3.2

reports these measurements. The mobile data consumed depends the number of drones

deployed in the city, which in turn determines the size of the circuit and therefore the

OT messages that must be exchanged (i.e., the value of n in Algorithm 2). Thus, for

our experiments we crafted inputs to our MPC implementation that vary the number of

drones.

Observe from Figure 3.2 that mobile data usage increases as the number of drones in

the city-wide deployment (n) increases. This is because the size of the circuit increases

proportionally with n, thereby resulting in a larger amount of data to be exchanged

between the citizen’s phone to the regulatory authority. The mobile data usage includes

transmitting the circuit itself and OT during the computation. For a deployment with

1000 drones city-wide, each query from the citizen’s phone consumes about 6.59MB of

mobile data. Assuming that the citizen sends queries every 5 minutes, this translates

to approximately 79MB of mobile data consumption an hour. This number is about

half the network bandwidth required to stream a low-resolution video from YouTube

(135MB/hour at 426x240p resolution, with a bitrate of 300Kbps). We measured an

average power draw of 0.96mAh to transmit 1MB of data, which translates to roughly

76mAh per hour at this query frequency, or 1.2% utilization per hour of a standard

6000mAh smartphone battery. While there have been a number of trials of delivery

drones, they are yet to be deployed at a large scale, and we expect the growth in this

sector to be gradual. Considering, for example, the Airbus study cited earlier [12], which

projects 16,667 drones per hour over the city of Paris only by the year 2035, we feel that

1000 drones represents a conservative estimate of a near-term city-scale drone deployment.
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↓ Number of Query latency at citizen’s device

drones in city lan (milliseconds) wan (seconds)

100 3.73±1.40 4.52±1.29
200 10.77±2.76 8.84±1.59
500 28.36±7.63 13.36±1.96
1000 78.66±15.23 16.33±4.09
2000 153.56±28.29 23.82±4.06
10,000 1281.32±126.20 65.89±29.02

Average RTT between the citizen and regulatory authority on our 1Gbps lan is 0.220ms
(measured with ping). In wan, the citizen is connected via a 4G mobile data network, and
the regulatory authority is an instance on Azure US East. The average RTT is 253.28ms, and
the citizen’s data upload speed during the experiment varied between 1.89Mbps to 12.96Mbps
(averaging 6.78Mbps), measured with SpeedTest [81].

Figure 3.3: Overall query latency at citizen’s mobile device.

For a deployment with 10,000 drones city-wide, each query from the citizen’s phone

consumes about 65.6MB. Further improvements to MPC technology are needed to reduce

this number and scale MPC city-wide as drone deployments increase.

Latency at Citizen’s Mobile Device. We measured the end-to-end latency observed by a

citizen from the time a query is issued to the time that the regulatory authority responds.

We studied the latency both when the citizen and regulatory authority are on a 1Gbps

LAN, and also on a slow WAN with highly variable upload speeds, in which the citizen’s

mobile device, connected on a 4G mobile data network (a mobile provider based in India),

contacts the regulatory authority that runs on a virtual machine hosted on Azure (US

East). Figure 3.3 reports the results of our experiments (average and standard deviation

reported over 5 runs), which show that even in a slow WAN setting with n=1000, the

citizen can obtain query results in approximately 16±4 seconds.

Although our evaluation is citizen-centric, note that it also provides insight into the

performance of the regulatory authority’s server. Even in the most computationally-

and communication-heavy case that we considered (10,000 drones city wide), the overall

client latency was about 1.28s in a LAN. The regulatory authority can parallelize MPC

computation for different queries, therefore easily scaling up to an arbitrary number of

querying citizens.

Accuracy of the DetectFieldOfView Algorithm. Finally, we evaluated the precision

of our approach at detecting whether an object is in a camera’s field of view. For this

evaluation, we conducted a field study in which we simulated the setup in Figure 3.1 using

a fixed camera, i.e., we placed the the camera, denoting the drone camera, at specified

location with a fixed orientation (i.e., the values of Γt, λt and the
−→
D vector are known).

We set up ground markers denoting the camera’s cone of view, i.e., θ on either side of
−→
D.

We then repeated an experiment in which placed a person of interest, denoting the
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citizen, at a specified location (i.e., Γc, λc is known). Out of 20 trials of this experiment,

we placed the person of interest within the camera’s field of view in 10 trials, and outside

the field of view in 10. DetectFieldOfView precisely determined that the person was

within the field of view (or not) in 19 out of the 20 trials. The lone false positive was a

case in which the person was close to the boundary of (and within) the field of vision, but

was identified as being outside. We attribute this error to the quality of GPS values that

we were able to obtain to determine location coordinates (we used the person’s Samsung

M31 device to determine their GPS coordinates). When we instead simulated the same

experiment with Google Maps, using markers to identify the locations of the citizen,

drone camera and the drone’s direction of motion (using Google Maps GPS coordinates),

DetectFieldOfView was 100% accurate.

3.5 Pd-Mpc using Garbled Circuits

It is natural to ask whether Algorithm 1 can be encoded in MPC using garbled ciruits.

As already mentioned in §3.2, we observed that the sizes of the circuit denoting the MPC

encoding in Algorithm 2 using a GC-based setup were 10-100× larger than the circuit

sizes in a secret-shared setup. For n=1000, the size of the secret-shared setup using

MOTION [17]) is about 7MB. In contrast, the size of the garbled circuit using EMP [86]

was 685MB. Thus, the MPC encoding shown in Algorithm 2 would be prohibitively

expensive if implemented using garbled circuits.

The key problem that makes the encoding in Algorithm 2 unsuitable for GC is that

the computation in lines M4-M9 is iterated over all n drones. Because garbled circuits

require a garbling table to represent every intermediate wire, the size of the circuit is

large. The circuit gets larger with larger values of n, as the loop is unrolled to create the

garbled circuit.

Unlike our secret-shared implementation atop MOTION, however, traditional Yao-

style garbled circuits work on Boolean representations. Thus, in a GC-based implemen-

tation atop EMP, there is no need to avoid Boolean comparisons in the MPC computation

(cf. the discussion under “Avoiding Boolean comparisons in MPC” in §3.2). As a result,

one can encode the computation so that the complex dot product calculations are per-

formed only on drones that are in the vicinity of the citizen. We show the resulting

encoding in Algorithm 3. Line GC4 ensures that the computation required for field-of-

view determination is only performed on drones in the vicinity of the citizen.

We designate the citizen as the circuit garbler and the regulatory authority as the

circuit evaluator. This is because the citizen can pre-compute a large number of garbled

circuits and send to the regulatory authority, e.g., the citizen could do so periodically, and

transmit these garbled circuits when connected with sufficient network bandwidth. The
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live network cost between the garbler and the evaluator is only the OT cost of transmit-

ting the garbler’s inputs to the circuit. Thus, during circuit evaluation, only the citizen’s

inputs need to be transmitted to the regulatory authority via OT, keeping the commu-

nication requirements modest when the citizen’s mobile device is on a low-bandwidth,

high-latency mobile WAN. In contrast, if the regulatory authority were designated as the

circuit garbler and the citizen’s mobile phone as the circuit evaluator, then the OT will

involve transferring city-scale data of all the drones to the mobile device on each query.

Algorithm 3: DetectFieldOfView adapted for MPC using Yao-style [95]
garbled circuits.
Input: From citizen: Γc, λc, LatVicinity, LongVicinity.

Input: From regulatory authority, identity, position and
−→
D vector for all drones: (Idi, Γi

t, λ
i
t,−→

Di) for all drones in city (i=1. . .n).
Input: Publicly-known: θ1, . . ., θn for all drones.
Output: Revealed to citizen: ⟨DotPi,NormSquarei⟩ for drones in vicinity.

GC1 [Γdiff] = LatitudeDiff(Γ1
t , . . ., Γ

n
t , Γc)

GC2 [λdiff] = LongitudeDiff(λ1
t , . . ., λ

n
t , λc)

GC3 for i ← 1 to n do
GC4 if (Γdiff[i] ≤ LatVicinity and λdiff[i] ≤ LongVicinity) then

GC5
−→
Ci = Vectorize(Γi

t, λ
i
t, Γc, λc)

GC6 DotPi =
−→
Di ·
−→
Ci

GC7 NormSquarei = (|
−→
Di|)2 × (|

−→
Ci|)2

GC8 Result.add(⟨Idi,DotPi,NormSquarei⟩)
GC9 end

GC10 end
GC11 return Result (revealed only to citizen)

// Steps below happen on citizen’s phone (not as MPC)

GC12 for each ⟨Idi,DotPi,NormSquarei⟩ ∈ Result do

GC13 ϕi = arccos(DotPi/
√
NormSquarei)

GC14 if (ϕi ≤ θi) then shortlist the drone Idi.

GC15 end

However, by only executing the computation on drones in the vicinity of the citizen,

Algorithm 3 has a subtle side-channel. The side-channel arises as a result of the control-

dependency between lines GC5-GC8 and the conditional on line GC4. The side-channel

is akin to implicit flows in the information-flow literature [33]. The regulatory authority

can infer (using timing differences or the amount of network communication) the number

of drones in the citizen’s vicinity, but not their identities.

There are known methods in the literature to suppress this implicit information-flow

side-channel ensuring that the conditional on line GC4 of Algorithm 3 executes as an

oblivious if statement, in which dummy statements are suitably introduced so that some

blocks of code are executed regardless of the value of the conditional [97]. While some

MPC frameworks provide such an oblivious if statement construct (e.g., Obliv-C [97]),
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Number ← Number of drones in citizen’s vicinity →
in

city

↓

1 2 5 10

100 lan: 81.6±19.7ms lan: 94.4±9.6ms lan: 133.8±6.1ms lan: 163.0±10.1ms
wan: 5.9±0.4s wan: 9.7±1.0s wan: 15.8±1.4s wan: 24.0±3.9s

200 lan: 107.2±4.7ms lan: 127.2±19.2ms lan: 137.6±10.3ms lan: 196.4±20.7ms
wan: 7.2±0.5s wan: 8.1±1.5s wan: 15.7±1.8s wan: 23.5±1.7s

500 lan: 165.8±12.8ms lan: 167.2±27.0ms lan: 221.6±29.6ms lan: 235.8±25.9ms
wan: 9.1±0.7s wan: 12.5±2.1s wan: 19.7±3.7s wan: 21.4±2.1s

1000 lan: 370.2±19.6ms lan: 383.4±25.8ms lan: 457.2±27.6ms lan: 554.6±51.8ms
wan: 11.0±1.5s wan: 14.8±3.3s wan: 19.6±1.5s wan: 51.9±6.2s

Average RTT between the citizen and regulatory authority on our 1Gbps lan is 0.220ms (mea-

sured with ping). In wan, the citizen is connected via a 4G mobile data network, and the

regulatory authority is an instance on Azure US West-Central. The average RTT is 282ms,

and the citizen’s data upload speed during this experiment varied between 74KBps to 328KBps,

measured with SpeedTest [81].

Figure 3.4: Overall query latency at citizen’s mobile device (for Algorithm 3).

many others do not (e.g., EMP does not), and the onus is on the algorithm designer to

ensure that both branches of the conditional contain identical amount of computation

(with identical timing and network communication). Moreover, making the conditional

oblivious has the drawback of requiring dummy code blocks to be executed regardless

of the conditional, and the encoding of these code blocks adds to the circuit size. This

brings us back to the same problems that plague encoding Algorithm 2 using garbled

circuits, as discussed earlier in this section.

As a result, Algorithm 3 chooses not to make the conditional on line GC4 oblivi-

ous. Unfortunately, this is the cost of having a practical GC implementation. As dis-

cussed earlier, the costs are prohibitive otherwise in GC—using an oblivious if statement

in Algorithm 3 with code similar in timing/communication characteristics to those in

lines GC5-GC8 results in a garbled circuit that is about 685MB for n=1000 drones.

The cost of having a non-oblivious if statement is that the regulatory authority learns

the number of drones in the vicinity of the querying citizen via the resulting side-channel

(but not the drone identities). Thus, even if the regulatory authority were to learn the

number of drones that pass the if-conditional on line 4, it would just learn the number

of drones in the vicinity of some citizen (and not a particular citizen, because citizens

submit queries anonymously). This is a weaker privacy guarantee than the one provided

by Algorithm 2, which runs the computation on all drones. For example, it may be

possible for the regulatory authority to use live drone traffic density maps to estimate the

approximate locations from where the citizen issues queries, which may be unacceptable

in some settings (e.g., see Abidi et al. [2] for such an attack).

We now present an evaluation of Algorithm 3 (implemented in EMP [86]) using the
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Number ← No. of drones in citizen’s vicinity →
in

city ↓
1 2 5 10

100 1.349 2.032 4.076 7.483
200 1.750 2.432 4.476 7.884
500 3.207 3.888 6.190 9.598
1000 5.721 6.403 8.448 12.112

Figure 3.5: Per-query mobile data usage (for Algorithm 3).

same experimental setup described in §3.4. As before, we measured the mobile data

consumption on the citizen’s device to pose queries to the regulatory authority. We

also measured the end-to-end latency observed by the citizen when a query is issued.

Figure 3.4 and Figure 3.5 report the results of our experiments (average and standard

deviation reported over 5 runs).

Observe that the mobile data consumed depends upon two factors: the number of

drones deployed in the city and the number of drones in the citizen’s vicinity. The

former determines the size of the garbled circuit that is generated and must be sent

from the citizen to the regulatory authority (i.e., the value of n in Algorithm 3). The

latter determines the number of drones for which lines GC5-GC8 of Algorithm 3 execute.

Thus, for these experiments we crafted inputs to our MPC implementation that vary the

number of drones deployed in the city, and simulate a given drone density in the citizen’s

vicinity.

Figure 3.5 shows that for a given density of drones in the citizen’s vicinity, mobile data

usage increases as the number of drones in the city-wide deployment (n) increases. This

is because the size of the circuit to be garbled increases proportionally with n, thereby

resulting in a larger amount of data to be sent from the citizen’s phone to the regulatory

authority. The mobile data usage also includes the OT time to send the citizens inputs,

however, that is a constant value for all cases. In the worst case that we simulated—1000

drones city-wide, with a dense presence of 10 drones in the citizen’s vicinity—each query

from the citizen’s phone consumes about 12.112MB of mobile data.

This mobile data usage is roughly double compared to the mobile data usage for 1000

drones as reported in Figure 3.2. Also, note that Figure 3.2 reports the number for the

oblivious algorithm (Algorithm 2) that executes the computation on all 1000 drones. In

contrast, the complex computation in the GC implementation of Algorithm 3 runs on only

10 drones that clear the conditional on line GC4. This experiment clearly justifies our use

of secret-sharing based MPC in Pd-Mpc over a garbled circuit-based implementation.

For a given city-scale drone deployment (e.g., n=100 drones), observe that the per-

query mobile data usage increases in proportion to the drone density in the citizen’s

vicinity. The reader may question why we observe this trend, given that the size of the

garbled circuit is fixed by the value of n, and does not depend on drone density. The
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answer to this question lines in how Algorithm 3 is implemented atop EMP, as discussed

below.

Recall that EMP lacks default support for oblivious if statements, and relies on the

programmer to suitably design the algorithm to ensure that any side channels due to the

lack of this support are suppressed. In particular, EMP will not compile Algorithm 3 (as

shown) because the predicate used in the conditional statement on line GC4 is input-

dependent. EMP compiles the circuit only if the value of the predicate on line GC4

is revealed to the citizen (thereby revealing to the citizen the identities of drones in

their vicinity). Further, EMP transmits the garbled tables for the wires of the circuit

corresponding to lines GC5-GC8 of Algorithm 3 on-the-fly, i.e., as and when the circuit

evaluator exercises that branch of the computation, and not in advance.

Moreover, EMP does not directly encode the for-loop on line GC3 in the circuit, but

chooses to create a circuit with the loop unrolled (which it can, because the value of

n is a constant that is known to the circuit garbler). Thus, a different set of garbled

tables is transmitted each time the computation executes lines GC5-GC8. As a result,

the per-query network communication increases with the drone density. This is indeed

a side-channel that allows the regulatory authority to determine the drone density in

the anonymously querying citizen’s vicinity (but not their identities). In summary, the

various performance optimizations that are required to make a GC-based realization of

Algorithm 3 practical in terms of network communication overhead in turn result in an

implementation that offers weaker privacy guarantees than the secret-shared implemen-

tation of Algorithm 2, implemented in our Pd-Mpc prototype.

3.6 Precision v/s Arithmetic Overflows in MOTION

The DetectFieldOfView works on real-valued numbers such as GPS coordinates.

While modern computer programs use floating point representations (e.g., as standardized

in IEEE 754) of real-valued numbers, support for floating point operations in MPC frame-

works is relatively sparse in most publicly-available MPC frameworks (with SecFloat [72]

being a recent development in this direction). Thus, special care must be taken when

implementing algorithms that use real-valued numbers atop MPC frameworks. In this

section, we discuss how we handle real-valued numbers in Pd-Mpc implemented atop

the MOTION framework [17].

MOTION does not support circuit representations with floating point, and instead

chooses to represent and manipulate real-valued numbers using a fixed point representa-

tion atop its support for circuit operations on integers. More precisely, the MOTION

framework has a C++ front-end for programmers to write the algorithm that must

be evaluated using MPC, which it compiles into a circuit that is then evaluated us-
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ing the MPC protocol. Any real-valued numbers used in the computation are expressed

as doubles in the C++ program (i.e., a floating point representation), which the circuit

compiler encodes into a 32-bit or 64-bit integer.

The encoding function E#b(x) works as follows. It takes two inputs, the C++ double

floating point number x to be encoded, and #b, the number of bits in the encoded

integer devoted to representing the fractional part of the floating point number. The

encoding function is E#b(x) = x× 2#b, which is implemented by left-shifting the floating

point number by #b bits. The MPC circuit expresses all operations on the real-valued

number on the encoded representation, and any real-valued outputs from the algorithm

are decoded back into the C++ double representation via the corresponding decoding

function D#b (right-shifting the result by #b bits).

This encoded representation presents two tradeoffs based on the parameters that

the MPC framework uses for encoding. The first issue concerns the bitwidth of the

integer representation. Using a 64-bit integer to represent encoded real-values allows us

to manipulate larger real-valued numbers and perform more operations on them without

loss of accuracy or the risk of an overflow (due to the fixed-point representation). However,

in comparison to a 32-bit representation, it leads to much larger circuits, and therefore

a greater communication overhead in MPC frameworks. Pd-Mpc uses a 32-bit integer

representation.

The second issue concerns the number of bits used for the fractional part (#b). If

the representation uses a larger number of bits to represent the fractional part, then

any arithmetic operations on the real-valued number will offer more precision. However,

because the encoding function works by left-shifting the number by #b bits, successive

arithmetic operations run the risk of arithmetic overflow since fewer bits are available to

represent the non-fractional part of the real-valued number. This is because E(p) × E(q)
first results in p×q×22#b), which is right-shifted by #b bits to preserve the invariant that

#b bits are used to represent the fractional part. Nevertheless, the non-fractional part

must have sufficient bits to accommodate the value of p×q, otherwise the computation

results in an overflow. This presents an interesting tradeoff between precision and arith-

metic overflow based on #b. In MOTION, the programmer specifies the value of #b in

the C++ program. Figure 3.6 illustrates this tradeoff using a sequence of multiplications

on three real-valued numbers p, q and r with various values for #b. We first multiply

the encoded representations of p and q and then multiply the product with r. The figure

also shows the decoded value of the intermediate product E(p) × E(q). It compares the

value of the product with the expected real-value and reports the difference (as the error

term). With #b=6 bits, the number of bits available for the non-fractional part is not

sufficient to express the product p×q×r, and the result is an arithmetic overflow.
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Real values p = 79.234, q = 89.312, r = 89.312

#b T = D#b(E#b(p)× E#b(q)) D#b(E#b(T )×E#b(r))

4 7078/(0.020%) 632154/(0.021%)
5 7075.22/(0.018%) 631905/(0.018%)
6 7076.61/(0.0008%) Overflow

Figure 3.6: Precision versus overflow tradeoff in MOTION. Error percentages of
computed result compared to the real valued result appear in parantheses.

It is challenging to a priori decide the value of #b to use in the Algorithm 2 that both

avoids overflow and provides sufficient precision. Note that GPS coordinates are bounded

in value, and we can therefore reason about the largest and smallest GPS values that arise

during the computation, and choose masking factors appropriately to avoid overflows.

Thus, we can avoid overflow issues (by bounding the masking factors) on line M1 and

line M2 of Algorithm 2. However, the same cannot be said of the computation of the
−→
C

vector on line M6 followed by the multiplications implicit in the dot product computation

with
−→
D in line M7. Indeed, we observed that the sequence of multiplications results in

arithmetic overflows for certain values of #b.

To avoid these overflows, our implementation of Algorithm 2 avoids a sequence of

multiplications using the same value of #b. In particular, for a product p×q×r, we

observe that we can use one value of #b to compute S=E#b(p) × E#b(q), analyze the

resulting product’s value after decoding T=D#b(S), and then choose a different value

of #b to encode T and r to compute the final product. For the example shown in

Figure 3.6, we observe that D9(E9(p) × E9(q)) = 7076.62, which differs from the real

value by 0.001%, with #b=9. For the second product, we encode 7076.62 and r with

#b=5, to obtain D5(E5(7076.62) × E5(r)) = 632031, which differs from the real value by

0.001%. Note that with the same value of #b=6 used for both products, there was an

arithmetic overflow in the computation (Figure 3.6), which we avoided by using different

values for #b as we progressed through the sequence of multiplication operations. We

estimate a suitable value of #b for the second multiplication by analyzing the value of

the first product and avoid an overflow.

We implemented the same idea in Algorithm 2. In particular, we chose to termi-

nate the MPC computation after the computation of the
−→
C vectors, and decode the x-

and y-components of these vectors back into their C++ double representations within

MOTION (thus revealing them outside MPC). We can then observe the values of the

decoded double valued representation in C++ and decide afresh the value of #b for

the subsequent dot product computation. Any further computation with the freshly re-

encoded
−→
C vectors will therefore avoid overflow issues that arise as a result of a sequence

of multiplications on encoded values.

Unfortunately, this poses a fresh challenge. Lifting the values of the intermediate
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Algorithm 4: Adaptation of Algorithm 2 to avoid arithmetic overflows in MPC
computation.

Input: From citizen: Γc, λc, LatVicinity, LongVicinity, citizen’s masking factors (from R+):
cΓ1, cλ1, . . ., cΓn, cλn, xα1, yα1 . . ., xαn, yαn.

Input: From regulatory authority, identity, position for all drones: (Idi, Γi
t, λ

i
t) for all drones

in city (i=1. . .n), regulatory authority’s masking factors (from R+): rΓ1, rλ1, . . ., rΓn,
rλn, xβ1, yβ1, . . ., xβn, yβn.

Output: Revealed to citizen: ⟨DotPi,NormSquarei,NearbyLati,NearbyLongi⟩ for all drones.
MFP1 [Γdiff] = LatitudeDiff(Γ1

t , . . ., Γ
n
t , Γc)

MFP2 [λdiff] = LongitudeDiff(λ1
t , . . ., λ

n
t , λc)

MFP3 for i ← 1 to n do

MFP4 NearbyLati = (Γdiff[i] - LatVicinity) × cΓi × rΓi

MFP5 NearbyLongi = (λdiff[i] - LongVicinity) × cλi × rλi

MFP6 ⟨Xi,Yi⟩ = Vectorize(Γi
t, λ

i
t, Γc, λc)

MFP7 Xi = (Xi + xαi + xβi); Yi = (Yi + yαi + yβi)

MFP8 ResultXY.add(⟨Idi,Xi,Yi⟩)
MFP9 ResultΓλ.add(⟨Idi,NearbyLati,NearbyLongi)⟩)

MFP10 end
MFP11 return ResultXY (value revealed to both parties)
MFP12 return ResultΓλ (revealed only to citizen)

MFP13 Analyze ResultXY and re-encode all Xi, Yi in the clear (i.e., not in the MPC framework)

MFP14 for i ← 1 to n do
MFP15 Ci = ⟨(Xi - xαi - xβi), (Y

i - yαi - yβi)⟩
MFP16 DotPi =

−→
Di ·
−→
Ci

MFP17 NormSquarei = (|
−→
Di|)2 × (|

−→
Ci|)2

MFP18 ResultDotPNorm.add(⟨Idi,DotPi,NormSquarei⟩)
MFP19 end
MFP20 return ResultDotPNorm (revealed only to citizen)

// The steps below happen on the citizen’s phone (not MPC)
MFP21 Result = Join ResultΓλ and ResultDotPNorm using Id values.
MFP22 for ⟨Idi,DotPi,NormSquarei,NearbyLati,NearbyLongi⟩ ∈ Result do

MFP23 if (NearbyLati ≤ 0) and (NearbyLongi ≤ 0) then
MFP24 ϕi = arccos(DotPi/

√
NormSquarei)

MFP25 if (ϕi ≤ θi) then shortlist the drone Idi.

MFP26 end

MFP27 end

products back to C++ necessarily reveals the values to the citizen and the regulatory

authority (used to determine the value of #b for the subsequent computation), which

compromises the privacy of the computation. To avoid revealing the values, we therefore

add masking factors just before the x- and y-components of
−→
C are revealed (to both par-

ties), and terminate the first phase of the MPC computation. This happens on line MFP7

of Algorithm 4. Masking with the xα, yα, xβ, yβ values still involves arithmetic oper-

ations, and therefore the risk of overflow. However, these are addition operations, and

therefore are far less likely to overflow as compared to multiplication operations. On
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line MFP13, we re-encode the (masked) values for the rest of the calculation. This step

encodes the masked double values into the fixed-point 32-bit representation using the

new value of #b. We then resume the MPC protocol with re-encoded values, which un-

masks and recovers the raw value of the
−→
C vectors on line MFP15. Following this step,

Algorithm 4 then proceeds identically to Algorithm 2.
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Chapter 4

Auditing Compliance with Pd-Ros

With the shortlist of drones in hand, the citizen uses Pd-Ros to obtain audit trails from

drones and ensure that they are privacy-compliant. This section presents the goals and

design space for Pd-Ros (§4.1), an overview of ROS2 (§4.2), a prototype implementation

of Pd-Ros atop ROS2 (§4.3), and its evaluation (§4.4).

4.1 Goals and Design Space Exploration

Pd-Ros is a set of tools that helps well-intentioned drones achieve the following goals:

• (G1) Use only sanitized data. Pd-Ros must ensure that camera data is never used

unsanitized.

• (G2) Offer compliance proof. Pd-Ros must be able to convince a citizen that goal G1

is satisfied.

To reliably offer proofs of compliance, Pd-Ros assumes the presence of trusted hard-

ware on the drone. This hardware must be capable of performing basic cryptographic

operations, offer the ability to securely store an audit trail, and respond to citizen re-

quests with a digitally-signed audit trail. Trusted hardware is typically endowed with

a public/private key pair with the private key stored securely in the hardware, and the

public key digitally certified by a certificate authority. This public key serves as the

drone’s identifier.

In our prototype, we use the ARM TrustZone [7], which provides these features.1 An

ARM TrustZone processor can be in one of two worlds of execution at any given instant—

a secure world or a normal world. The secure world, also called the trusted-execution

environment (or the TEE), runs trusted software services. The normal world, or the rich-

execution environment, runs untrusted applications and is normally the environment

in which end-users of the device conduct the bulk of their activities. These features

1While ARM TrustZone has several known vulnerabilities [20], our use of the TrustZone in this paper
is merely illustrative. Pd-Ros can be built atop any “secure” TEE with similar features.
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are implemented with traditional hardware-level protection, and a small, trusted, secure

monitor that executes at a higher processor privilege level than the OS in the secure

and normal worlds. The two worlds interact via a secure monitor call (smc instruction)

that allows world switches. The secure world implements features such as normal world

attestation (e.g., as in Knox [11]).

ARM TrustZone provides memory isolation for the secure world as a default feature,

i.e., the normal world cannot map or access secure world memory. This feature provides us

a path to achieve goal G2 because audit trails and attestation reports can be safely stored

untampered in the secure world. TrustZone also optionally offers the ability to securely

split peripherals between the secure and the normal worlds, if the system-on-chip (SoC)

includes the TrustZone Protection Controller (TZPC) [8]. With TZPC, a peripheral can

be assigned to the secure world for exclusive access, and therefore cannot be accessed by

applications running within the normal world. Prior work [54] has used this to enable a

trusted input path via secure world control of certain peripherals (e.g., touchscreen).

On a TZPC-equipped SoC it is possible to accomplish goal G1 as follows. The camera

can be exclusively assigned to the secure world, and a trusted application executing in

the secure world can sanitize the video feed before it is consumed by applications in

the normal world. Any applications that require access to the raw video feed (e.g., a

navigator that requires sharp video frames) would also execute within the secure world

after a priori vetting that they do not leak the raw footage. This would ensure that

the camera data never leaves the secure world unsanitized, and the drone simply has to

prove the existence of the above setup to a querying citizen, which can be accomplished

by implementing secure boot and runtime attestation of the secure world.

The precise notion of what it means to “sanitize” a video footage to preserve privacy

is region-specific, and beyond the scope of Privadome. In this paper, we intentionally

do not commit to any particular method as an acceptable notion of video sanitization.

For example, it could mean that the footage is obtained at low resolution. Or it could

mean that sensitive objects, such as faces and car registration plates identified in the

video feed, are identified and blurred (i.e., pixelated). This notion has been used in

prior work [3, 13], and is also the approach that is employed to preserve citizen privacy

in Google Street View. In fact, prior work has even developed (MPC-based) methods

to allow individual citizens to specify their own privacy policies, e.g., to have just their

appearance blurred or edited out of the footage altogether [3]. All of these are viable

options within the broader Privadome-framework, but for the sake of having a concrete

policy for our discussion, we consider blurring frames (or all faces within a frame) as

our video sanitization policy. With TZPC, a trusted application that identifies and blurs

faces in video feeds would achieve Pd-Ros’ goals.
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We do not expect all drone platforms to have the TZPC on their SoC. For example, the

experimental platform (a NVidia Xavier NX development board) that we use to build Pd-

Ros does not offer exclusive secure world access to peripherals. We therefore focus on how

to achieve Pd-Ros’ goals even if the SoC lacks TZPC support. In the absence of TZPC,

the video footage from the camera is accessible in the normal world. The mechanisms

introduced by Pd-Ros must therefore be tailored to the software environment executing

in the normal world. We illustrate Pd-Ros for drones running ROS2 in the normal world.

We first provide with background on ROS2 and then describe the core components of

Pd-Ros.

4.2 Background on ROS2

ROS2 is a popular middleware platform for robotics [75]. It is a set of libraries and

user-space utilities that provide support for easy development of distributed robotics

applications across a federation of robots. ROS2 offers a publish/subscribe model for

robotics applications to communicate with each other. Applications publish messages

labeled with specific topic names. Applications that subscribe to that topic can receive

these messages from the publishing application. ROS2 uses the Data Distribution Ser-

vice [51, 30] to match pairs of applications that have such a publish/subscribe relationship.

Each ROS2 application executes as a process atop the underlying OS, and ROS2 sets up

either socket-based or shared-memory communication between a pair of applications.

ROS2 itself does not authenticate message senders, and all messages between applica-

tions are transmitted in the clear. This leads to a number of spoofing and eavesdropping

attacks (e.g., [36, 35, 58, 73]). Moreover, any application can publish or subscribe to any

topic. This leads to situations where a malicious application can publish a video feed

under the same topic as a genuine application, and confuse downstream applications that

consume the video feed. The community has therefore developed Secure ROS (SROS) to

overcome these shortcomings [89, 90, 88]. In SROS, TLS is used to secure the commu-

nication between applications. Further, each application must provide a manifest that

declares the list of topics to which that application publishes or subscribes. The applica-

tion’s code and this manifest are then cryptographically bound via an X.509 certificate,

signed by a trusted third party. SROS uses the X.509 certificate to detect and prevent

the launch of any applications whose code or manifest have been modified. SROS also

ensures that an application can only publish or subscribe to the topics explicitly identified

in its manifest. Pd-Ros builds upon ROS2 extended with SROS (we will use “ROS2”

to refer to ROS2 enhanced with SROS).
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4.3 Core Components of Pd-Ros

On ARM TrustZone-enabled delivery drones, ROS2 and the corresponding application

ecosystem execute in the normal world. The secure world runs a minimal trusted OS and

trusted applications (the Trusty TEE [47] in our Pd-Ros prototype). Pd-Ros offers

tools implemented in the normal world and in the secure world to restrict access to the

raw video feed on drones in which the camera cannot be exclusively assigned to the secure

world. It requires that raw access to camera hardware be restricted to a single ROS2

application. This requirement can easily be enforced by the normal world OS.

Suppose that this camera application publishes its feed to a topic called VideoFeed .

Downstream applications can consume the video feed by subscribing to this topic. Pd-

Ros requires that applications on well-intentioned drones subscribe instead to a topic

called PrivVideoFeed . Pd-Ros provides a dedicated ROS2 application—the Sanitizer

Front-End (Sanitizer-FE)—that exclusively subscribes to VideoFeed and publishes to

PrivVideoFeed (see Figure 4.1). Sanitizer-FE uses the traditional publish/subscribe ab-

straction, thereby allowing other downstream ROS2 applications to interact with it with-

out requiring any invasive changes to their code. At the back-end, Sanitizer-FE uses a

secure monitor call (smc) to perform a world switch, and interact with a trusted video

sanitizer in the secure world. This video sanitizer is entrusted with applying the region-

specific privacy policy, e.g., blurring faces in the video feed. As discussed earlier, ROS2

applications that require raw access to VideoFeed can be accommodated as exceptional

cases after vetting that they do not intentionally leak the feed.

This setup suffices to ensure goal G1 on a well-intentioned drone. However, the

drone must also convince a citizen that this setup exists on the drone (goal G2). To

accomplish goal G2, Pd-Ros relies on the way application manifests work in SROS.

As previously discussed, the manifest is cryptographically-bound to the application’s

identity, and SROS uses the X.509 certificate of the application to check that the manifest

and the application’s code have not been tampered. The manifest specifies the topics that

the application publishes/subscribes to, and SROS ensures that the application does not

deviate from this specification at runtime.

Pd-Ros extends ROS2’s application launcher to store an application’s manifest in

the secure world when it is launched in the normal world. The trusted audit logger in the

secure world attests the normal world kernel, ROS2 and SROS and stores the attestation

report in the audit trail whenever an application is launched. Entries in the audit trail

are time-stamped, and the citizen either requests the entire audit trail, or a snippet for a

particular time interval. Upon a citizen query, the secure world digitally signs and sends

the audit trail. The citizen then uses the audit trail as follows:
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Pd-Ros provides well-intentioned drones tools to ensure that video footage is suitably san-
itized, and to provide an audit trail to citizens to convince them so. Pd-Ros introduces:
1 A ROS2 application that subscribes to the camera’s feed (topic VideoFeed). On a well-
intentioned drone, no other applications will subscribe to this topic (they subscribe to PrivVide-
oFeed); 2 A trusted video sanitizer that runs in the secure world and applies region-specific
privacy policies to the video feeds; 3 An agent in the normal world that collects the SROS
manifests of applications that are launched for execution; 4 An audit logger that stores SROS
manifests, and digitally signs and sends them in response to citizen queries.

Figure 4.1: Setup of ARM TrustZone-based drone with Pd-Ros.

1 Check normal world OS/ROS2/SROS integrity. The citizen first uses the attestation

report to verify the integrity of the normal world OS, ROS2, and SROS. This step is

critical because Pd-Ros relies on the normal world OS to ensure that access to the

camera hardware is restricted to a single application. Because Pd-Ros relies on SROS

to enforce application manifests, the citizen must ensure the integrity of ROS2/SROS in

the normal world.

2 Check integrity of Sanitizer-FE and ROS2 application launcher. As is standard [77],

we assume that the normal world OS also includes in the attestation report the integrity

measurements of applications that it launches. The citizen uses these measurements to

verify the integrity of Sanitizer-FE and the application launcher.

3 Check publish/subscribe patterns. SROS application manifests limit how applications

communicate. Thus, the citizen simply needs to verify that applications that execute in

the normal world do not subscribe to any topics published by the camera application

(i.e., VideoFeed), and that Sanitizer-FE subscribes only to VideoFeed and publishes to

a single topic, PrivVideoFeed . Together with the runtime assurance provided by SROS

and the trusted video sanitizer in the secure world, the citizen can be assured that the

video footage is being sanitized before use. While the topics specified in the manifest

of an application represent the sandbox within which the application can operate, they

may not always publish or subscribe to all the topics in the manifest. Although not in
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our prototype, Pd-Ros could use an agent to dynamically query ROS2 to determine the

publish/subscribe graph, and store that instead in the audit trail.

Citizens can either query the shortlisted drones directly (if such communication support

exists), or via the regulatory authority. Such queries must obviously be anonymous to

protect the citizen’s identity, failing which the regulatory authority can simply use the

set of queries from a citizen to compromise their location privacy. Fortunately, such a

query interface can easily implemented using well-known methods (e.g., Tor).

The assurances provided by the audit trail rely on certain assumptions that are stan-

dard in hardware-based attestation. For example, we cannot defend against zero-day

exploits on SROS, ROS2, the normal world kernel, or any of the components of Pd-Ros.

We also assume that SROS completely mediates application communication within the

normal world. A malicious ROS2 application can attempt to bypass SROS by directly

invoking OS abstractions, e.g., via raw sockets, to communicate with a colluding applica-

tion [13]. Prior work has attempted to harden the normal world kernel against zero-day

exploits [11, 45], and to ensure that applications only communicate under the purview of

SROS [13, 6]. Those methods also apply to our setting. §?? provides a detailed analysis.

Given our goals, it is natural to ask whether audit trails produced by Pd-Ros alone

do not suffice to protect citizen privacy. The regulatory authority could itself periodically

query all delivery drones in operation, check the audit trails to determine whether the

drones are in compliance, and publish a compliance report for all drones on a public

forum for all citizens to see. If the compliance report also includes the locations of

drones (provided a drone operator permits the release of the location information for all

its drones, city-wide), citizens can determine the compliance status of drones in their

vicinity using this public forum.

The key shortcoming with this deployment model is that does not provide any mech-

anism for the citizens to seek further accountability that is otherwise possible with Pd-

Mpc. For example, with Pd-Mpc, the citizens know precisely which drones have cap-

tured their footage. This allows the possibility of an accountability mechanism via which

citizens can request their footage from those drones and verify that it has been sanitized.

This is akin to citizens being able to request their activity reports on platforms such as

Google or Facebook, or citizens being able to view their footage on Google Street View

and confirm that it has been sanitized.

4.4 Evaluation of Pd-Ros

We implemented and evaluatedPd-Ros on a Nvidia Xavier NX development kit, equipped

with a 6-core Nvidia Carmel ARMv8.2 64-bit CPU and 8GB RAM. It also has a 384 core

GPU with 48 tensor cores that makes it ideal for heavy video processing. This hardware
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a Baseline setup.

b Setup with redirection and blurring.

Metric Baseline With redirection
Time 16.643s 16.687s (+0.26%)
CPU Utilization 18.68% 31.82% (+70.34%)
Power Use:
• System 5V rail 4138.58mW 4980.73mW (+20.34%)
• SoC rail 1217.15mW 1250.11mW (+2.71%)
• CPU+GPU rail 744.22mW 1502.87mW (+101.8%)
c Performance impact of flow redirection on NVidia Xavier.

Figure 4.2: Pd-Ros experimental setup and results.

is similar to that found as the companion boards on many commercial drones. We chose

this development kit because it is equipped with the TrustZone and has an open and

programmable secure world. We configured the secure world to run the Trusty TEE [47],

which allows for easy development of trusted applications. The normal world runs Linux

for Tegra (L4T) [53], which consists of the Linux kernel 4.9, a bootloader, and supporting

drivers. We installed a ROS2-based environment in the normal world

To evaluate the cost of sanitizing video feeds, we consider the setup shown in Fig-

ure 4.2. We built a pair of ROS2 applications, the first of which publishes a video feed that

the second consumes directly, as shown in Figure 4.2a . This is our baseline, which we

run with a workload in which the publisher sends a video feed consisting of 250 frames

(resolution 320×240 pixels, at 30 frames/second). The publisher converts each frame

into ROS2’s message format, which the subscriber receives and converts back to a video

frame. We then implemented redirection and sanitization of the video feed as shown in

Figure 4.2 b , in which Sanitizer-FE exclusively subscribes to the feed of the publisher,

and redirects the flow to a trusted sanitizer in the secure world. The trusted sanitizer

applies a simple box blur filter to the image. We intentionally kept the functionality of

the trusted sanitizer simple to show the basic cost of redirection. More complex image

processing logic can obviously be built within the trusted sanitizer, with a correspond-

ing increase in resource consumption. The trusted sanitizer returns the modified feed to

Sanitizer-FE, from which the subscriber application consumes it.

Figure 4.2 c presents the results of our experiments. We measured the end-to-end la-

tency of the application workflow (from publishing to receiving the video feed), the CPU

utilization. We also used the in-built 3-channel INA3221 power monitor on the Xavier
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board to measure power consumption at the system, SoC and CPU+GPU rails, respec-

tively. As our results show, the overall application latency on this lightly-loaded drone is

minimally impacted, with the video being blurred in near real time. This operation only

led to a modest increase in CPU utilization and power draw.

We also evaluated the overall cost of attesting the normal world (kernel, ROS2, and

SROS), and storing application manifests in the secure world. Recall this step is per-

formed when the application is launched, and thus increases launch time. We measured

the time to launch the cam2image application, which is part of the standard ROS2 distri-

bution. WithoutPd-Ros this application takes 4.78s to launch on our hardware platform,

while it takes 10.66s with Pd-Ros.
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Chapter 5

Related Work

Although the focus of this paper is on citizen privacy in the presence of delivery drones,

a number of prior works have considered security and privacy of drones and other aerial

vehicles, broadly considered. Nassi et al. [63] provide a comprehensive overview of the

security and privacy issues in the era of drones.

Recent work has attempted to detect privacy violations committed by drones that are

controlled by a ground-based operator equipped with a first-person view (FPV). These

works leverage the observation that such a drone must wirelessly communicate with the

operator to export the camera’s view to the FPV. Wi-Fly [15] aims to detect drones

that hover outside the windows of homes. It uses a window-mounted sensor that detects

a drone approaching the window by studying variations in the received signal strength

(RSS) at the sensor. Nassi et al.’s work [61, 62, 14] detects whether an object (or person)

is captured in the FPV. Their work is based on the observation that if an object is being

recorded in the FPV, then physical perturbations of the object (e.g., shining light on

it) manifest as observable changes in the encrypted wireless channel between the drone

and the remote control. They use a ground-based detector to intercept this encrypted

wireless channel, and then employ cryptanalysis techniques that leverage this observation

to detect privacy-violating drones.

However, this prior work suffers from three important shortcomings. First, the de-

tection methods are tailored to drones that export an FPV to a ground-based operator.

They rely in a key way on the detector having access to the wireless channel that the

drone uses to export the FPV. They are thus not applicable to autonomous drones, which

may not export such an FPV or have a ground-based operator. Second, they do not offer

an end-to-end solution to a citizen who may wish to determine whether their privacy

is violated. That is, while they may help detect that a citizen is captured in the FPV,

they offer the citizen no way to deal with the violation or communicate with the drone

to query how the recorded video feed is used or stored. Indeed, these methods are not in
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any way tied to any regulatory framework that offers the citizen to reason about how the

captured data is used. Finally, these methods require active citizen participation, either

by installing detectors on their home windows (in the case of Wi-Fly [15]) or physically

perturbing the object/citizen suspected of being observed (in the case of Nassi et al.’s

work [61, 14, 62]). However, some synergies with Privadome exist. For example, a citizen

can use Nassi et al.’s methods to detect FPV-based drones that have him/her in their

field of view (instead of Pd-Mpc), and then use Pd-Ros to engage with the drone to

obtain an audit trail. On the flipside, while Privadome’s approach is restricted to delivery

drone operations that are overseen by a regulatory authority, Wi-Fly [15] and Nassi et

al.’s methods [62, 61, 14] apply to any FPV-based drones.

While Wi-Fly and Nassi et al.’s work focuses on how individual citizens are impacted,

Privaros [13] and AliDrone [56] develop methods to regulate delivery drones over well-

demarcated host airspaces that may dictate that specific policies are to be obeyed within

the airspace. For example, a college campus or an apartment complex may require

the delivery drone to ensure that images and video recorded in the their airspace be

blurred suitably, or that drones follow certain pre-identified drone lanes during their visits.

Privaros develops mandatory access control extensions for ROS-based drones that can

accept and enforce policies specified by ground-based hosts. Like Pd-Ros, Privaros also

relies on trusted hardware to prove to hosts that the delivery drones are in compliance.

However, unlike Privadome, Privaros does not focus on privacy of individual citizens, nor

does it offer a method to determine whether a citizen’s footage is captured by the drone.

AliDrone [56] is tailored to ensure that drones remain on drone lanes during their delivery

runes. It uses trusted hardware to securely store proofs-of-alibi (GPS coordinates of the

flight path) that can be used to prove to host airspaces that the drone was in compliance.

PROTC [55] also uses trusted hardware on drones with a focus on protecting the drone

software stack and peripherals from malicious attacks and rootkits [55].

Ding et al. [37] consider how location broadcast systems like Remote ID can potentially

compromise citizen privacy. They consider attacks whereby an attacker observing the

drone’s location can correlate drone trajectories with ground-based citizens and their

purchases. They also develop methods to quantify privacy risks and generate routes that

offer privacy. This work is focused on route planning and is complementary to Privadome,

which is citizen-centric.

In contrast to the above works, which mainly focus on privacy, there is a significant

body of work on drone security. Given the near-daily news stores about drones being

used to conduct various terrorist attacks (e.g., Venezuela [52], Iraq [29] and Japan [16]

being prominent examples), it is not surprising that much of the focus is on detecting

unauthorized drones. Methods to detect drones range from the use of radar [41], Lidar [23,
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83, 1] radio-frequency [64], computer vision [76], and acoustic signatures [18, 19]. These

methods can complement Privadome in city-scale deployments to detect or deter drone

flights outside of the purview of the regulatory authority. Security research focused on

delivery drones has mainly considered reliable package delivery. Here, prior work has

focused on methods to mutually authenticate delivery drones and intended recipients, for

example, using the sound signature of the drone [71]. Researchers have also developed

methods to ensure that delivery drones are not sabotaged in-flight, by developing methods

to detect and avoid projectiles thrown at them [44].

Abidi et al. [2] consider a setting in which citizens query aggregate pollution statistics

collected from sensors fitted on taxi fleets. As in Privadome, they protect citizen privacy

using MPC. However, they also consider the dual problem of protecting the privacy of

the taxi fleet using differential privacy, e.g., to hide the distribution of taxis of one fleet

operator from a competitor. While Abidi et al.’s work is in a different domain, Privadome

can borrow similar ideas to also protect drone fleet privacy from competing fleet operators.
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Chapter 6

Conclusion

Even as e-commerce companies work on the technology and infrastructure to enable

drone-based delivery, citizens are concerned about on how their privacy will be impacted

once it sees wide deployment. Clearly, much needs to be done to abate these concerns,

in the form of governmental regulation and enforcement methods. Privadome is a step in

that direction. It describes a framework that can be integrated with city-scale regulatory

authorities that oversee drone operations. The framework allows citizens equipped with a

mobile phone to determine if their footage is recorded by drones in their vicinity, and then

request an audit trail from those drones to determine if they comply with region-specific

privacy laws. Privadome accomplishes all these goals without revealing the citizen’s

location, and while only consuming mobile data comparable to streaming low-resolution

videos. Our experiments indicate that Privadome can scale to near-term city-scale drone

deployments. Privadome’s auditing mechanisms impose only a modest runtime overhead

on CPU utilization and power consumption on the drone.
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