

Protecting Deep Learning Models on Cloud Platform with
Trusted Execution Environments

Computer Systems
Security Laboratory

IISc Bangalore

Kripa Shanker
PhD Candidate

Supervisor, Prof. Vinod Ganapathy

 2

Deep Learning

Two popular deep learning frameworks are used in more than 1M+ projects.

Many organizations lack resources to run expensive DL workloads in-house.

 3

Public Cloud Platforms

Scale With
Demand

Workload

W
o

rk
e

rs

Low
Maintenance

Security
Upgrades

Lower
Cost

Benefits

 4

Attacks on Cloud Workloads

DRAM Module

Cold boot attacks
Interfaces snooping attacks

Physical Attacks

1. LibVMI, A python library for virtual machine introspection.
2. Cold Boot Attacks are Still Hot: Security Analysis of Memory Scramblers in Modern Processors, HPCA 2017

Virtual Machine Monitor

Inspect
Memory,

CPU State

Software Attacks

VM1 VM2

App App

 5

Deep Learning Models
Why protect deep learning modes?

● Well-trained models provide a competitive edge to businesses.

● Training state-of-the-art models is expensive.

● White-box access to the model introduces security and privacy
risks.

Explaining and harnessing adversarial examples, ICLR 2015
Membership Inference Attacks against Machine Learning Models, IEEE S&P 2017

 6

Solution: Trusted Execution Environments

Application

Operating System

Application

Operating System

Traditional Security Model

Protects the host from the guest.

E.g., Virtual Machines, CPU protection rings,
containers, and sandboxes.

TEE Security Model

Protects the guest from the host.

E.g., Intel SGX, Intel TDX, AMD SEV, and
ARM CCA.

 7

Intel SGX (Software Guard Extensions)

enclave

kernel

user

Changes to memory
access semantics.

✓

✓X

kernel

user

enclave

A new (enclave) mode of
CPU execution.

A set of new
instructions.
ECREATE
EADD
EEXTEND
EINIT
EENTER
EEXIT
ERESUME
EREMOVE
EGETKEY
EREPORT

X

 8

Confidential Virtual Machines

Hypervisor

Kernel

App

Kernel

App

Kernel

App

CVM CVM Legacy VM

Runs an entire virtual machine with a TEE.

Implementations:
● AMD Secure Encrypted Virtualization (SEV)
● Intel Trust Domain Extensions (TDX)
● Arm Confidential Compute Architecture (CCA)

 9

Thesis Statement

Hardware-based trusted execution environments can be
leveraged to run private deep learning inference workloads on
public cloud platforms with practical runtime performance while

protecting the privacy and integrity of the model.

 10

SGX Threat Model

Trusted Untrusted

● Intel CPU
● Code and Data Within

SGX Enclaves

● Operating System
● Hypervisor
● BIOS
● Firmware
● Peripheral Devices
● System BusesEnclave

OS

 11

Restricted Instructions

Instructions Comment

CPUID, GETSEC, RDPMC, SGDT, SIDT, SLDT, STR, VMCALL, VMFUNC Might cause VM exit.

IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD I/O fault may not safely recover.

IRET, LDS/LES/LFS/LGS/LSS, MOV to DS/ES/SS/FS/GS, POP DS/ES/SS/FS/GS,
SYSCALL, SYSENTER

Access segment register could
change privilege level.

LAR, VERR, VERW Might provide access to kernel
information.

ENCLU[EENTER], ENCLU[ERESUME] Cannot enter an enclave from
within an enclave.

SYSCALL instruction is frequently used by most applications to request OS services.

Table: Restricted instructions within an enclave. [Intel Manual]

 12

Limit restricted instruction

within enclaves

Solution

Host OS

Enclave

Untrusted
Code

Application
Emulate

Delegate

Rewrite

 13

Frameworks to Port Applications to SGX
● Haven [OSDI 2014]
● Scone [OSDI 2016]
● Graphene-SGX [ATC 2017]
● Panolply [NDSS 2017]
● lxcsgx [CODASPY 2019]
● SGX-LKL

Which framework to use to port my application workload?

Part 1: An Evaluation of Methods to Port Legacy
Code to SGX Enclaves

 15

Method 1: Library OS

Linux processUser
Process

Host OS

Enclave

Application

LibOS

Trusted Shim Lib

Untrusted Shim Lib

libc libm libevent
● Haven [OSDI 2014]
● Graphene-SGX [ATC 2017]
● SGX-LKL
● Occlum [ASPLOS 2020]

Library OS is
inside of the
enclave.

Runs an entire library OS
within the enclave.

Dependencies
are inside the
enclave.

 16

Method 2: Library Wrapper

Host OS

Enclave

Application

Trusted Shim Lib

Untrusted Shim Lib

libclibm libeventDependencies
are outside the
enclave.

Function wrapper

int read(int fd, char *buf, int len){
 return ocall_read(fd, buf, len);
}

● Panoply [NDSS 2017]

Implements wrappers for functions
delegating restricted instructions.

 17

Method 3: Instruction Wrapper

Linux process

Host OS

Enclave

Application

Trusted Shim Lib

Untrusted Shim Lib

libc libm libevent

Dependencies
are inside the
enclave.

● Scone [OSDI 2016]
● lxcsgx [CODASPY 2019]

Implements wrappers for restricted
instructions.

Restricted syscall instruction
 in libc
__syscall:

movq %rdi,%rax
movq %rsi,%rdi
movq %rdx,%rsi
movq %rcx,%rdx
movq %r8,%r10
movq %r9,%r8
movq 8(%rsp),%r9
syscall
ret

Instruction wrapper

int __syscall(long arg0,
…){
 ...
 ocall_syscall()
 ...
}

 18

Porpoise
● We built Porpoise to port applications to SGX enclaves.

● Porpoise implements wrapper around the SYSCALL instruction in
musl.

● No modification to applications’ source code.

● Publicly available at https://github.com/iisc-cssl/porpoise

https://github.com/iisc-cssl/porpoise

 19

Research Questions

RQ1. What is the effort required, e.g., code changes, to
obtain a working enclave?

RQ2. What is the effort required to re-engineer a
working enclave, e.g., by moving code out of or
into the enclave?

RQ3.How much trusted code does each method
require?

RQ4.What is the performance cost of each of the three
methods?

 20

Evaluation

Application Version Description

Bzip2 1.0.6 File compression utility

Cpython 3.7 Python interpreter in C

H2O 2.0 HTTP Web server

OpenSSL 1.0.1 OpenSSL Cryptographic library

Memcached 1.5.20 Key-value store

Benchmark application used in evaluation.

 21

Representative Frameworks:

Library OS Graphene-SGX [ATC 2017]

Library Wrapper Panoply [NDSS 2017]

Instruction Wrapper Porpoise [In-House Implementation]

 22

RQ1: Porting Effort
Bzip2 Python Memcached H2O OpenSSL

Library OS ✅ ✅ ✅ ✅ ✅
Library Wrapper ✅ ❌ ❌ ✅ ✅
Instruction Wrapper ✅ ✅ ✅ ✅ ✅

#Interfaces

Glibc ~2000

Support in Panoply ~250

Addition for Bzip2 10

Challenges with library wrapper model: Large evolving interface.

 23

Evolution of Glibc Interface

2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29
2000

2020

2040

2060

2080

2100

2120

2140

2160

2180

2200

0

5

10

15

20

25

30

35

40

API Size Added Remove

A
P

I S
iz

e

A
dd

ed
/R

em
ov

ed

 24

Evolution of Syscall Interface

v4.15 v4.16 v4.17 v4.18 v4.19 v4.20 v5.0 v5.1 v5.2
315

320

325

330

335

340

345

350

0

2

4

6

8

10

API Size Added

A
P

I S
iz

e

A
dd

ed

Syscall API is smaller and has few changes than Glibc API.

 25

Summary: Porting Effort

Library OS Manifest File Low (Binary Compatibility)

Library Wrapper Implement Missing
Wrappers

High

Instruction Wrapper Recompile with
Porpoise Libraries

Medium

Bzip2 Python Memcached H2O OpenSSL

Library OS ✅ ✅ ✅ ✅ ✅
Library Wrapper ✅ ❌ ❌ ✅ ✅
Instruction Wrapper ✅ ✅ ✅ ✅ ✅

 26

RQ2: Re-engineering Effort
Move non-sensitive code or modules outside the enclave.

Bzip2

Execute compression and
decompression algorithm
within TEE.

OpenSSL

Generate rsa cryptographic
keys within enclave.

Cpython

Execute python interpreter
loop within enclave.

SHA256SHA256

ec

genrsa
base64

aes

BZ2_bzcompressInit()

BZ2_bzCompress()

BZ2_bzCompressEnd()

BZ2_bzReadOpen()

BZ2_bzRead()

PyArena_New()

PyArena_Free()

PyArena_Malloc

PyEval_EvalCode()

read()

 27

RQ2: Re-engineering Effort
Move non-sensitive code or modules outside the enclave.

e.g. Run only RSA key-generation algorithm within the enclave.

Applications cannot
be re-engineered

Application #Interfaces SLOC Added

bzip 3 29

OpenSSL 1 8

CPython 24 277

Same re-engineering efforts for Library
Wrapper and Instruction Wrapper models.

Library OS Library Wrapper Instruction Wrapper

 28

RQ3: Security

Library OS
Library
Wrapper

Instruction
Wrapper

Lib OS 31,742 N/A N/A

libc 1,222,912 N/A 82,978

shim N/A 14,506 1,934

SDK N/A 119,545 119,545

Lines of framework code that is part of the TCB.

Lib OS Within TCB

Only Shim Layer Within TCB Low TCB

Dependencies within TCB Medium TCB

High TCBLibrary OS

Library Wrapper

Instruction Wrapper

 29

RQ4: Runtime Performance

Bzip2 Memcached OpenSSL H2O CPython
0

1

2

3

4

5

6

Native Library OS
Instruction Wapper Library Wrapper

R
el

at
iv

e
ru

nt
im

e

No clear winner in runtime performance.

 30

Part 2: MazeNet: Protecting DNN Models on Public
Cloud Platforms With TEEs

 31

Challenge 1: Fixed Protected Memory

Enclave

kernel

EPC Page

Sealed Page

1 Evict 2 Restore

Intel SGXv1 offers 128 MB of cryptographically
protected main memory.

Memory-intensive enclave applications incur performance penalty.

 32

Challenge 2: Underutilisation

CPU With TEE

CPUs Without TEE

Hardware Accelerators Without TEE

TEE cannot securely utilise untrusted resources.

 33

Prior Approaches
Homomorphic Encryption

c=Enckey(x)

y=Deckey(c
′)

c ′=F (c)

Client Server

C

C ′

CryptoNets [PMLR2016]

x x x x x x x x

+ + + + + + +

x + x +

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1
` C2

` C3
` C4

` C5
`

Arithmetic Circuit

Homomorphic Encryption is computationally expensive.

C11 C12 C13

 34

Prior Approaches
Cryptography-based Techniques: Multi-party Computation

P1 P2

M

X

MPC-based techniques incurs high communication cost.

Oblivious
Transfers

GC

Encode Inputs Evaluate Garbled Circuits

C
on

vo
lu

tio
n

A
ct

iv
at

io
n

C
on

vo
lu

tio
n

A
ct

iv
at

io
n

Yao Garbled Circuits
OT/HE

DeepSecure [DAC 2017], SecureML [S&P 2017], CryptFlow [S&P 2020], Orca [S&P 2024]

M
ax

 P
oo

l

 35

Prior Approaches
Outsourcing Linear Layers to GPUs With Matrix Masking

Offline Phase
Online Phase

Blind Input

x̄i=xi+r i
ui=r iW i

r i←F
m Outsource

ȳ i= x̄iW i

Restore
Results
y i= ȳ i−ui

Model
Data Transferred (MB)

TEE→ GPU GPU→ TEE Total

VGG16 34.77 51.78 86.48

ResNet50 38.70 40.39 79.09

DenseNet201 91.43 29.96 121.39

C
on

vo
lu

tio
n

A
ct

iv
at

io
n

C
on

vo
lu

tio
n

A
ct

iv
at

io
n

M
ax

 P
oo

l

Slalom [ICLR 2019], DarkNight [Micro 2021], ShadowNet [S&P 2023], TEESlice [S&P 2024]

 36

MazeNet
● Transforms pre-trained model into MazeNet models.

● Avoids performance penalty due to fixed protected memory of SGX.

● Improves performance with untrusted resources.

● Protects privacy of pre-trained model.

 37

Method 1: Splitting

Solution: Pre-trained model is split into smaller submodels.

Split

Submodel 1 Submodel 2 Submodel 3

Large models incur performance penalty due to EPC swapping.

 38

Method 2: Cloaking

Cloak

In-TEE
Submodel 1

Non-TEE
Submodel 2

In-TEE
Submodel 3

Running submodels only within TEEs results in underutilisation of the overall system.

Non-TEE sudmodels leak weights.

 39

Method 3: Digital Signatures
Adversary can tamper with outsourced computation.

In-TEE
Submodel 1

Cloaked
Submodel 2

In-TEE
Submodel 3

Sign(Input)

Sign(Output)

Cloud vendor signs the input and output of cloaked submodels with its private key.

Input

Output

 40

MazeNet Workflow

Pre-trained Model MazeNet Model

Model Builder

On premises

 41

MazeNet Workflow

On Cloud

Model
Manager

Inputs Outputs

Host 1 (TEE)

Host 2 (Non-TEE)

Host 3 (TEE)

 42

Benchmark Models
We evaluate the presented techniques on popular convolution neural networks.

VGG16
Sequential Architecture

Computationally expensive

ResNet50
Skip Connections

DenseNet201
Highly Connected Layers

Very deep model

Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015
Deep Residual Learning for Image Recognition, CVPR 2016
Densely Connected Convolutional Networks, CVPR 2017

 43

Implementation

Model TensorFlow Layers

VGG16 Conv2D, Dense, MaxPooling2D, Flatten

ResNet50 Conv2D, Dense, BatchNormalization, Add,
GlobalAveragePooling2D,MaxPooling2D,
ZeroPadding2D, Activation

DenseNet201 Conv2D, Dense, BatchNormalization, Concatenate,
GlobalAveragePooling2D, MaxPooling2D,
ZeroPadding2D, AveragePooling2D

● Model Builder: Transforms pre-trained Model into MazeNet model.
● Model Manager: Deploy and runs MazeNet models.

Cloaking support for various TensorFlow (v2.7) layers in MazeNet.

 44

Configuration Parameters

Model Cloak Factor Submodel Width In-TEE Layers

VGG16 10% 10 1, 11, 22

ResNet50 10% 10 1-7, 92-102, 174-177

DenseNet201 10% 10 1-7, 49-137, 477-709

Configuration parameters used to generate MazeNet models.

 45

Experimental Setup

Three TEE Systems
● Intel i7-7700 CPU
● 4 Cores
● SGXv1
● 32 GB Main Memory

One Non-TEE System
● Intel Xeon Gold 6150 CPU
● 36 Cores
● 256 GB Main Memory

All the hosts are connected through one Gigabit Ethernet.

 46

Throughput Results

VGG16 ResNet50 DenseNet201
0

10

20

30

40

50

60

Secure Baseline (i7-7700) Non-secure Baseline (i7-7700)
Non-secure Baseline(6150) MazeNet (i7-7700 & 6150)

P
re

d
ic

tio
n

s/
s

MazeNet improves the throughput by 2x to 30x as compared to secure baseline.

 47

Latency Results

VGG16 ResNet50 DenseNet201
0

500

1000

1500

2000

2500

3000

3500

Secure Baseline (i7-7700)) Non-secure Baseline (i7-7700)
Non-secure Baseline (6150) MazeNet (i7-7700 & 6150)

L
a

te
n

cy
 (

m
s)

MazeNet can improve the latency upto 5x as compared to secure baseline.

 48

Overheads: Synthetic Computations

Standard MazeNet Increase

In-TEE Cloaked Total

VGG16 30.96 1.85 151.76 153.6 5x

ResNet50 7.73 0.684 60.85 61.54 8x

DenseNet201 8.58 3.17 51.18 54.36 6x

Floating point operations (GFLOPs) in standard and MazeNet Models.

 49

Limitations
● Some details of the user inputs are visible to the adversary.

● The model developer needs to provide the suitable split and
architecture of synthetic layers.

 50

Nvidia Confidential Compute

Extends CPU TEE trust boundary to GPUs.

Bounce Buffers

Hypervisor

Guest OS

Nvidia Driver

App

CPU

GPU With
CC-on

Compute
Protected
Region

Bounce Buffers

Encrypted Data
Transfers

GPU With
CC-on

Compute
Protected
Region

GPU1

Bounce Buffers

GPU2

 51

Future Work
● Training support for MazeNet.
● Secure outsourcing of large language models to
untrusted hardware.

 52

Summary of Contributions
● We study the challenges in porting deep learning workloads to

trusted execution environments.

● We build Porpoise to port commodity applications to the Intel SGX
enclaves.

● We present MazeNet to run deep learning inference workload on
TEEs and improve the performance by outsourcing a portion of
computations to untrusted hardware, while protecting the privacy of
 the model.

 53

Thank You!

 54

Backup Slides

 55

Formal Security Analysis

Layer 1

Layer 3Layer 2

Layer 5 Layer 6 Layer 7 Layer 8

T1 T2 T3 T4

Only one of the subset of output will be the embedded output.

Layer 9

T5

 56

Overheads: TEE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

Without TEE

With TEE

Batch Size

P
re

di
ct

io
ns

/s

TEE has negligible overheads at low batch sizes, overheads increase at higher batch size.

 57

Synthetic layers

Cloak

Synthetic
Outputs

Embedded
Outputs

 58

VGG16 Cloaked Submodel 1

 59

Throughput Results

VGG16 ResNet50 DenseNet201
0

2

4

6

8

10

12

14

Secure Baseline (i7-7700)

Non-secure Baseline (i7-7700)

MazeNet (i7-7700 & 6150)

P
re

di
ct

io
ns

/s

MazeNet improves the throughput by 2x to 30x as compared to secure baseline.

	page2
	page3
	page4
	page5
	page6
	page7
	Slide 7
	page42
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	page22
	Slide 27
	page23
	page24
	page25
	page26
	page27
	Slide 33
	Slide 34
	Slide 35
	page28
	page29
	page30
	page31
	page32
	page33
	page34
	page35
	page36
	page37
	Slide 46
	page39
	page33
	page41
	page43
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	page44
	Slide 57
	page41
	Slide 59

