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Deep Learning

Two popular deep learning frameworks are used in more than 1M+ projects.

Many organizations lack resources to run expensive DL workloads in-house.
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Attacks on Cloud Workloads

DRAM Module

Cold boot attacks
Interfaces snooping attacks

Physical Attacks

1. LibVMI, A python library for virtual machine introspection.
2. Cold Boot Attacks are Still Hot: Security Analysis of Memory Scramblers in Modern Processors, HPCA 2017

Virtual Machine Monitor

Inspect
Memory,

CPU State

Software Attacks

VM1 VM2

App App
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Deep Learning Models
Why protect deep learning modes?

● Well-trained models provide a competitive edge to businesses.

● Training state-of-the-art models is expensive.

● White-box access to the model introduces security and privacy 
risks.

Explaining and harnessing adversarial examples, ICLR 2015
Membership Inference Attacks against Machine Learning Models, IEEE S&P 2017
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Solution: Trusted Execution Environments

Application

Operating System

Application

Operating System

Traditional Security Model

Protects the host from the guest.

E.g., Virtual Machines, CPU protection rings, 
containers, and sandboxes.

TEE Security Model

Protects the guest from the host.

E.g., Intel SGX, Intel TDX, AMD SEV, and 
ARM CCA.



  7

Intel SGX (Software Guard Extensions)

enclave

kernel

user

Changes to memory 
access semantics.

✓

✓X

kernel

user

enclave

A new  (enclave) mode of 
CPU execution.

A set of new 
instructions.
ECREATE
EADD
EEXTEND
EINIT
EENTER
EEXIT
ERESUME
EREMOVE
EGETKEY
EREPORT

X
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Confidential Virtual Machines

Hypervisor

Kernel

App

Kernel

App

Kernel

App

CVM CVM Legacy VM

Runs an entire virtual machine with a TEE.

Implementations:
● AMD Secure Encrypted Virtualization (SEV)
● Intel Trust Domain Extensions (TDX)
● Arm Confidential Compute Architecture (CCA)



  9

Thesis Statement

Hardware-based trusted execution environments can be 
leveraged to run private deep learning inference workloads on 
public cloud platforms with practical runtime performance while 

protecting the privacy and integrity of the model.
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SGX Threat Model

Trusted Untrusted

● Intel CPU
● Code and Data Within 

SGX Enclaves

● Operating System
● Hypervisor
● BIOS
● Firmware
● Peripheral Devices
● System BusesEnclave

OS
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Restricted Instructions

Instructions Comment

CPUID, GETSEC, RDPMC, SGDT, SIDT, SLDT, STR, VMCALL, VMFUNC Might cause VM exit.

IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD I/O fault may not safely recover. 

IRET, LDS/LES/LFS/LGS/LSS, MOV to DS/ES/SS/FS/GS, POP DS/ES/SS/FS/GS, 
SYSCALL, SYSENTER

Access segment register could 
change privilege level.

LAR, VERR, VERW Might provide access to kernel 
information.

ENCLU[EENTER], ENCLU[ERESUME] Cannot enter an enclave from 
within an enclave.

SYSCALL instruction is frequently used by most applications to request OS services.

Table: Restricted instructions within an enclave. [Intel Manual]



  12

Limit restricted instruction

within enclaves

Solution

Host OS

Enclave

Untrusted 
Code

Application
Emulate

Delegate

Rewrite
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Frameworks to Port Applications to SGX
● Haven [OSDI 2014]
● Scone [OSDI 2016]
● Graphene-SGX [ATC 2017]
● Panolply [NDSS 2017]
● lxcsgx [CODASPY 2019]
● SGX-LKL

Which framework to use to port my application workload?



  

Part 1: An Evaluation of Methods to Port Legacy 
Code to SGX Enclaves



  15

Method 1: Library OS

Linux processUser 
Process

Host OS

Enclave

Application

LibOS

Trusted Shim Lib

Untrusted Shim Lib

libc libm libevent
● Haven [OSDI 2014]
● Graphene-SGX [ATC 2017]
● SGX-LKL
● Occlum [ASPLOS 2020]

Library OS is 
inside of the 
enclave.

Runs an entire library OS 
within the enclave.

Dependencies 
are inside the 
enclave.
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Method 2: Library Wrapper

Host OS

Enclave

Application

Trusted Shim Lib

Untrusted Shim Lib

libclibm libeventDependencies 
are outside the 
enclave.

Function wrapper

int read(int fd, char *buf, int len){
    return ocall_read(fd, buf, len);
}

● Panoply [NDSS 2017] 

Implements wrappers for functions 
delegating restricted instructions.
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Method 3: Instruction Wrapper

Linux process

Host OS

Enclave

Application

Trusted Shim Lib

Untrusted Shim Lib

libc libm libevent

Dependencies 
are inside the 
enclave.

● Scone [OSDI 2016]
● lxcsgx [CODASPY 2019]

Implements wrappers for restricted 
instructions.

Restricted syscall instruction 
 in libc
__syscall:

movq %rdi,%rax
movq %rsi,%rdi
movq %rdx,%rsi
movq %rcx,%rdx
movq %r8,%r10
movq %r9,%r8
movq 8(%rsp),%r9
syscall
ret

Instruction wrapper

int __syscall(long arg0, 
…){
    ...
    ocall_syscall()
    ...
}
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Porpoise
● We built Porpoise to port applications to SGX enclaves.

● Porpoise implements wrapper around the SYSCALL instruction in 
musl.

● No modification to applications’ source code.

● Publicly available at https://github.com/iisc-cssl/porpoise

https://github.com/iisc-cssl/porpoise
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Research Questions

RQ1. What is the effort required, e.g., code changes, to 
obtain a working enclave?

RQ2.  What is the effort required to re-engineer a 
working enclave, e.g., by moving code out of or 
into the enclave?

RQ3.How much trusted code does each method 
require?

RQ4.What is the performance cost of each of the three 
methods?
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Evaluation

Application Version Description

Bzip2 1.0.6 File compression utility

Cpython 3.7 Python interpreter in C

H2O 2.0 HTTP Web server

OpenSSL 1.0.1 OpenSSL Cryptographic library

Memcached 1.5.20 Key-value store

Benchmark application used in evaluation.
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Representative Frameworks:

Library OS Graphene-SGX [ATC 2017]

Library Wrapper Panoply [NDSS 2017]

Instruction Wrapper Porpoise [In-House Implementation]



  22

RQ1: Porting Effort
Bzip2 Python Memcached H2O OpenSSL

Library OS ✅ ✅ ✅ ✅ ✅
Library Wrapper ✅ ❌ ❌ ✅ ✅
Instruction Wrapper ✅ ✅ ✅ ✅ ✅

#Interfaces

Glibc ~2000

Support in Panoply ~250

Addition for Bzip2 10

Challenges with library wrapper model: Large evolving interface.
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Evolution of Glibc Interface
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Evolution of Syscall Interface
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Syscall API is smaller and has few changes than Glibc API.
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Summary: Porting Effort

Library OS Manifest File Low (Binary Compatibility)

Library Wrapper Implement Missing 
Wrappers

High

Instruction Wrapper Recompile with 
Porpoise Libraries

Medium

Bzip2 Python Memcached H2O OpenSSL

Library OS ✅ ✅ ✅ ✅ ✅
Library Wrapper ✅ ❌ ❌ ✅ ✅
Instruction Wrapper ✅ ✅ ✅ ✅ ✅
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RQ2: Re-engineering Effort
Move non-sensitive code or modules outside the enclave.

Bzip2

Execute compression and 
decompression algorithm 
within TEE.

OpenSSL

Generate rsa cryptographic
keys within enclave.

Cpython

Execute python interpreter 
loop within enclave.

SHA256SHA256

ec

genrsa
base64

aes

BZ2_bzcompressInit()

BZ2_bzCompress()

BZ2_bzCompressEnd()

BZ2_bzReadOpen()

BZ2_bzRead()

PyArena_New()

PyArena_Free()

PyArena_Malloc

PyEval_EvalCode()

read()
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RQ2: Re-engineering Effort
Move non-sensitive code or modules outside the enclave.

e.g. Run only RSA key-generation algorithm within the enclave.

Applications cannot 
be re-engineered

Application #Interfaces SLOC Added

bzip 3 29

OpenSSL 1 8

CPython 24 277

Same re-engineering efforts for Library 
Wrapper and Instruction Wrapper models.

Library OS Library Wrapper Instruction Wrapper



  28

RQ3: Security

Library OS
Library 
Wrapper

Instruction 
Wrapper

Lib OS 31,742 N/A N/A

libc 1,222,912 N/A 82,978

shim N/A 14,506 1,934

SDK N/A 119,545 119,545

Lines of framework code that is part of the TCB.

Lib OS Within TCB

Only Shim Layer Within TCB Low TCB

Dependencies within TCB Medium TCB

High TCBLibrary OS

Library Wrapper

Instruction Wrapper
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RQ4: Runtime Performance

Bzip2 Memcached OpenSSL H2O CPython
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No clear winner in runtime performance.
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Part 2: MazeNet: Protecting DNN Models on Public 
Cloud Platforms With TEEs
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Challenge 1: Fixed Protected Memory

Enclave

kernel

EPC Page

Sealed Page

1 Evict 2 Restore

Intel SGXv1 offers 128 MB of cryptographically 
protected main memory.

Memory-intensive enclave applications incur performance penalty.
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Challenge 2: Underutilisation

CPU With TEE

CPUs Without TEE

Hardware Accelerators Without TEE

TEE cannot securely utilise untrusted resources.
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Prior Approaches
Homomorphic Encryption

c=Enckey(x)

y=Deckey(c
′)

c ′=F (c)

Client Server

C

C ′

CryptoNets [PMLR2016] 

x x x x x x x x

+ + + + + + +

x + x +

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1
` C2

` C3
` C4

` C5
`

Arithmetic Circuit

Homomorphic Encryption is computationally expensive.

C11 C12 C13
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Prior Approaches
Cryptography-based Techniques: Multi-party Computation

P1 P2

M

X

MPC-based techniques incurs high communication cost.
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DeepSecure [DAC 2017], SecureML [S&P 2017], CryptFlow [S&P 2020], Orca [S&P 2024] 
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Prior Approaches
Outsourcing Linear Layers to GPUs  With Matrix Masking

Offline Phase
Online Phase

Blind Input 

x̄i=xi+r i
ui=r iW i

r i←F
m Outsource

ȳ i= x̄iW i

Restore 
Results 
y i= ȳ i−ui

Model
Data Transferred (MB)

TEE→ GPU GPU→ TEE Total

VGG16 34.77 51.78 86.48

ResNet50 38.70 40.39 79.09

DenseNet201 91.43 29.96 121.39
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Slalom [ICLR 2019], DarkNight [Micro 2021], ShadowNet [S&P 2023], TEESlice [S&P 2024]
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MazeNet
● Transforms pre-trained model into MazeNet models.

● Avoids performance penalty due to fixed protected memory of SGX.

● Improves performance with untrusted resources.

● Protects privacy of pre-trained model.
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Method 1: Splitting

Solution: Pre-trained model is split into smaller submodels.

Split

Submodel 1 Submodel 2 Submodel 3

Large models incur performance penalty due to EPC swapping.
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Method 2: Cloaking

Cloak

In-TEE 
Submodel 1

Non-TEE 
Submodel 2

In-TEE 
Submodel 3

Running submodels only within TEEs results in underutilisation of the overall system.

Non-TEE sudmodels leak weights.
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Method 3: Digital Signatures
Adversary can tamper with outsourced computation.

In-TEE 
Submodel 1

Cloaked
Submodel 2

In-TEE 
Submodel 3

Sign(Input)

Sign(Output)

Cloud vendor signs the input and output of cloaked submodels with its private key.

Input

Output
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MazeNet Workflow

Pre-trained Model MazeNet Model

Model Builder

On premises



  41

MazeNet Workflow

On Cloud

Model 
Manager

Inputs Outputs

Host 1 (TEE)

Host 2 (Non-TEE)

Host 3 (TEE)
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Benchmark Models
We evaluate the presented techniques on popular convolution neural networks.

VGG16
Sequential Architecture

Computationally expensive

ResNet50
Skip Connections

DenseNet201
Highly Connected Layers

Very deep model

Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015
Deep Residual Learning for Image Recognition, CVPR 2016
Densely Connected Convolutional Networks, CVPR 2017
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Implementation

Model TensorFlow Layers

VGG16 Conv2D, Dense, MaxPooling2D, Flatten

ResNet50 Conv2D, Dense, BatchNormalization, Add, 
GlobalAveragePooling2D,MaxPooling2D, 
ZeroPadding2D, Activation

DenseNet201 Conv2D, Dense, BatchNormalization, Concatenate, 
GlobalAveragePooling2D, MaxPooling2D, 
ZeroPadding2D, AveragePooling2D

● Model Builder: Transforms pre-trained Model into MazeNet model.
● Model Manager: Deploy and runs MazeNet models.

Cloaking support for various TensorFlow (v2.7) layers in MazeNet.
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Configuration Parameters

Model Cloak Factor Submodel Width In-TEE Layers

VGG16 10% 10 1, 11, 22

ResNet50 10% 10 1-7, 92-102, 174-177

DenseNet201 10% 10 1-7, 49-137, 477-709

Configuration parameters used to generate MazeNet models.
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Experimental Setup

Three TEE Systems
● Intel i7-7700 CPU
● 4 Cores
● SGXv1
● 32 GB Main Memory

One Non-TEE System
● Intel Xeon Gold 6150 CPU
● 36 Cores
● 256 GB Main Memory

All the hosts are connected through one Gigabit Ethernet.
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Throughput Results

VGG16 ResNet50 DenseNet201
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MazeNet improves the throughput by 2x to 30x as compared to secure baseline.
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Latency Results

VGG16 ResNet50 DenseNet201
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MazeNet can improve the latency upto 5x as compared to secure baseline.
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Overheads: Synthetic Computations

Standard MazeNet Increase

In-TEE Cloaked Total

VGG16 30.96 1.85 151.76 153.6 5x

ResNet50 7.73 0.684 60.85 61.54 8x

DenseNet201 8.58 3.17 51.18 54.36 6x

Floating point operations (GFLOPs) in standard and MazeNet Models.
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Limitations
● Some details of the user inputs are visible to the adversary.

● The model developer needs to provide the suitable split and 
architecture of synthetic layers.
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Nvidia Confidential Compute

Extends CPU TEE trust boundary to GPUs.

Bounce Buffers

Hypervisor

Guest OS

Nvidia Driver

App

CPU

GPU With 
CC-on

Compute 
Protected 
Region

Bounce Buffers

Encrypted Data 
Transfers

GPU With 
CC-on 

Compute 
Protected 
Region

GPU1

Bounce Buffers

GPU2
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Future Work
● Training support for MazeNet.
● Secure outsourcing of large language models to 
untrusted hardware.



  52

Summary of Contributions
● We study the challenges in porting deep learning workloads to 

trusted execution environments.

● We build Porpoise to port commodity applications to the Intel SGX 
enclaves.

● We present MazeNet to run deep learning inference workload on 
TEEs and improve the performance by outsourcing a portion of 
computations to untrusted hardware, while protecting the privacy of 
 the model.
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Thank You!
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Backup Slides
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Formal Security Analysis

Layer 1

Layer 3Layer 2

Layer 5 Layer 6 Layer 7 Layer 8

T1 T2 T3 T4

Only one of the subset of output will be the embedded output.

Layer 9

T5
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Overheads: TEE
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TEE has negligible overheads at low batch sizes, overheads increase at higher batch size.
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Synthetic layers

Cloak

Synthetic
Outputs

Embedded
Outputs
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VGG16 Cloaked Submodel 1
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Throughput Results
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MazeNet improves the throughput by 2x to 30x as compared to secure baseline.
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