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Deep Learning

Releases 216

Releases &0
© PyTorch 2.7.1 Release, bug fix... (Latest) > TensorFlow 2.19.0 (Latest)
5 days ago ) ' on Mar 12

+ 59 releases + 215 releases

Packages Packages

No packages published Mo packages published

Used by 790k Used by 527k

. ANp—
"‘-'—' Q. ‘ +789,635 = | Bt l'a{ +527,143
= 63

Two popular deep learning frameworks are used in more than 1M+ projects.

Many organizations lack resources to run expensive DL workloads in-house.



Public Cloud Platforms

Benefits
A
. v 4
Workload

Scale With Low Security
Demand Maintenance Upgrades

Lower
Cost



Attacks on Cloud Workloads

Software Attacks Physical Attacks
VM1 VM2
DRAM Module
Inspect - - -
Memory, [—> APpPP App

CPU State

Cold boot attacks
Virtual Machine Monitor Interfaces snooping attacks

1. LibVMI, A python library for virtual machine introspection.
2. Cold Boot Attacks are Still Hot: Security Analysis of Memory Scramblers in Modern Processors, HPCA 2017



Deep Learning Models

Why protect deep learning modes?

* Well-trained models provide a competitive edge to businesses.

* Training state-of-the-art models is expensive.

* White-box access to the model introduces security and privacy
risks.

Explaining and harnessing adversarial examples, ICLR 2015
Membership Inference Attacks against Machine Learning Models, IEEE S&P 2017



Solution: Trusted Execution Environments

Application % Application &
Operating System & Operating System %
)C‘

Traditional Security Model TEE Security Model

Protects the host from the guest. Protects the guest from the host.

E.g., Virtual Machines, CPU protection rings, E.g., Intel SGX, Intel TDX, AMD SEV, and
containers, and sandboxes. ARM CCA.



Intel SGX (Software Guard Extensions)

A set of new M—

Instructions.

ECREATE
EADD
EEXTEND
EINIT
EENTER X
EEXIT

.> -
ERESUME A new (enclave) mode of enclave

EREMOVE CPU execution.
EGETKEY

EREPORT

44

user

Changes to memory
access semantics.



Confidential Virtual Machines

Runs an entire virtual machine with a TEE.

Implementations:

 AMD Secure Encrypted Virtualization (SEV)

* Intel Trust Domain Extensions (TDX)

« Arm Confidential Compute Architecture (CCA)

CVM CVM Legacy VM
App App App
Kernel Kernel Kernel

Hypervisor




Thesis Statement

Hardware-based trusted execution environments can be
leveraged to run private deep learning inference workloads on
public cloud platforms with practical runtime performance while

protecting the privacy and integrity of the model.



SGX Threat Model
—Unirusted

* Intel CPU * Operating System
e Code and Data Within * Hypervisor
SGX Enclaves * BIOS
* Firmware
* Peripheral Devices
Enclave * System Buses

| off o
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Restricted Instructions

IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD I/O fault may not safely recover.
LAR, VERR, VERW Might provide access to kernel
information.

Table: Restricted instructions within an enclave. [Intel Manual]j

SYSCALL instruction is frequently used by most applications to request OS services.
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Solution

Limit restricted instruction
within enclaves

Rewrite \

e

mea Application

>

Emulate

Delegate —

Enclave

[

Untrusted
Code

\_

H—

Host OS
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Frameworks to Port Applications to SGX

* Haven [OSDI 2014]

* Scone [OSDI 2016]

* Graphene-SGX [ATC 2017]
* Panolply [NDSS 2017]

* [xcsgx [CODASPY 2019]
 SGX-LKL

Which framework to use to port my application workload?
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Part 1: An Evaluation of Methods to Port Legacy
Code to SGX Enclaves



Method 1: Library OS

Runs an entire library OS

within the enclave. | Enclave
05012014 Do
 Haven [OSDI 2014 Insi
| Graphene.SGx (AT 2017 enciave. I DD
« SGX-LKL > LibOS
e Occlum [ASPLOS 2020] | | T usted Shim Lib
Library OS is
inside of the l T
enclave.
Untrusted Shim Lib
) v 1
Host OS




Method 2: Library Wrapper

Implements wrappers for functions
delegating restricted instructions.

Function wrapper

int read(int fd, char *buf, int len){
return ocall_read(fd, buf, len);

}

Dependencies
are outside the
* Panoply [NDSS 2017] enclave.

Enclave

Application

Trusted Shim Lib

b

Untrusted Shim Lib

v

\

libm libc libevent

[

L 4 |

Host OS
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Method 3: Instruction Wrapper

Implements wrappers for restricted

Instructions. | (

Dependencies Enclave
« Scone [OSDI 2016] are inside the
* Ixcsgx [CODASPY 2019] enclave.

Trusted Shim Lib
Restricted syscall instruction ~>

in libc _
__syscall: Instruction wrapper

movq %rdi,%rax l T

movqg %rsi,%rdi

int __syscall(long argo,

Untrusted Shim Lib

movqg %rdx,%rsi ; w){ i
movqg %rcx,%rdx

movq %r8,%rl0

ocall_syscall()

movqg %r9,%r8

movq 8 (%rsp) ,%r9 } A 4
syscall ‘ Host OS

ret



Porpoise

* We built Porpoise to port applications to SGX enclaves.

* Porpoise implements wrapper around the SYSCALL instruction in
musl.

* No modification to applications’ source code.

* Publicly available at https://github.com/iisc-cssl/porpoise

18


https://github.com/iisc-cssl/porpoise

Research Questions

What is the effort required, e.g., code changes, to
obtain a working enclave?

What is the effort required to re-engineer a
working enclave, e.g., by moving code out of or
Into the enclave?

How much trusted code does each method
require?

What is the performance cost of each of the three
methods?

19



Evaluation

Cpython 3.7 Python interpreter in C
OpenSSL 1.0.1  OpenSSL Cryptographic library

Benchmark application used in evaluation.
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Representative Frameworks:

Library OS — Graphene-SGX [ATC 2017]

Library Wrapper — Panoply [NDSS 2017]

Instruction Wrapper — Porpoise [In-House Implementation]

21



RQ1: Porting Effort
| Bzip2 | Python | Memcached | H20 | OpenSSL_

_--_-

Library Wrapper -

_--_-

Challenges with library wrapper model: Large evolving interface.

#Interfaces
Glibc ~2000

Support in Panoply ~250

Addition for Bzip2 10




Evolution of Glibc Interface

API Size

2200
2180
2160
2140
2120
2100
2080
2060
2040
2020
2000

hhtlLlii[

220 2.21 222 223 224 225 2.26 2.27 2.28 2.29

W AP| Size mAdded W Remove

Added/Removed
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Evolution of Syscall Interface

350 10
345

340

TN

v4.15 v4.16 v4.17 v4.18 v4.19 v4.20 v5.0 v5.1 V5.2

API Size
o

IS
Added

a1

o
N

o

B API Size B Added

Syscall APl is smaller and has few changes than Glibc API.
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Summary: Porting Effort
| Bzip2 | Python Memcached | H20 | OpenSSL_

_--_-

Library Wrapper -

_--_-
_ — Manifest File —— Low (Binary Compatibility)

: Implement Missing
Library Wrapper e - — High

* Instruction Wiapper | —— o O e~ Medum
Porpoise Libraries
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RQ2: Re-engineering Effort

Move non-sensitive code or modules outside the enclave.

Bzip2 OpenSSL Cpython
Execute compression and Generate rsa cryptographic Execute python interpreter
decompression algorithm keys within enclave. loop within enclave.
within TEE.

ec PyEval EvalCode()
BZ2_bzcompressInit() 5
SHA256 PyArena_New()
genrsa
BZ2_bzCompress() — PyArena_Free()
BZ2_bzCompressEnd () 5
aes PyArena_Malloc
BZ2_bzReadOpen()
read()

BZ2_bzRead () 26



RQ2: Re-engineering Effort

Move non-sensitive code or modules outside the enclave.

e.g. Run only RSA key-generation algorithm within the enclave.

Library OS

Applications cannot
be re-engineered

Library Wrapper Instruction Wrapper

Application SLOC Added

OpenSSL

Same re-engineering efforts for Library
Wrapper and Instruction Wrapper models.
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RQ3: Security

: Library Instruction

IIbC 1 222,912 82 978

119,545 119,545
Lines of framework code that is part of the TCB.

Library OS — Lib OS Within TCB — High TCB

Library Wrapper — Only Shim Layer Within TCB —*> Low TCB

Instruction Wrapper ——» Dependencies within TCB ~ — Medium TCB
28



RQ4: Runtime Performance

Relative runtime

S Ul Ul O

Bzip2 Memcached OpenSSL H20 CPython

B Native T Library OS
T Instruction Wapper []Library Wrapper

No clear winner in runtime performance.
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Part 2: MazeNet: Protecting DNN Models on Public
Cloud Platforms With TEEsS
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Challenge 1: Fixed Protected Memory

Intel SGXv1 offers 128 MB of cryptographically
protected main memory.

—»| Sealed Page [—

@ Evict
Enclave

@ Restore

Memory-intensive enclave applications incur performance penalty.
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Challenge 2: Underutilisation

{8+l

CPUs Without TEE

CPU With TEE I 1 1K
Hardware Accelerators Without TEE

TEE cannot securely utilise untrusted resources.
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Prior Approaches C: C» Cs Cu Cs Cs Cr Co Cs Cio Cu Co Cas

Homomorphic Encryption

4 )
c=Eney, (e [ ttte ojele
C/C'ZF(C)

y=Dec,,,(c?
\_ - \ % v

Client Server Ci C C; C4 Cs

CryptoNets [PMLR2016] Arithmetic Circuit

Homomorphic Encryption is computationally expensive.
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Prior Approaches
Cryptography-based Technigues: Multi-party Computation

obiv i 5| [2] [8][5] [5
ivious o sl 18] 18 o)
4 ™ 4 ™ SREIREIREIRE:
L Transfers é_’ §+§+ ‘£+C>L<
x | 1 Gc 5| |12 18] ]2 [2
—p @) < O <
) I
N Y N Y / l
OT/HE
Pl P2 Yao Garbled Circuits
Encode Inputs Evaluate Garbled Circuits

DeepSecure [DAC 2017], SecureML [S&P 2017], CryptFlow [S&P 2020], Orca [S&P 2024]

MPC-based techniques incurs high communication cost.
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Prior Approaches
Outsourcing Linear Layers to GPUs With Matrix Masking

Online Phase

Offline Phase
Outsource
X.=X+r, Yi—X; W, y.=y.—u,
u=r;Ww,
Data Transferred (MB)
= c = c = Model
HAREIRERERE TEE- GPU|GPU- TEE| Total
= C L= S
— 4 g M= g = VGG16 34.77 51.78 86.48
sl |<| |8l <] |= ResNet50 38.70 40.39 79.09
DenseNet201 91.43 29.96 121.39

Slalom [ICLR 2019], DarkNight [Micro 2021], ShadowNet [S&P 2023], TEESIice [S&P 2024] 35



MazeNet

* Transforms pre-trained model into MazeNet models.
* Avoids performance penalty due to fixed protected memory of SGX.
* Improves performance with untrusted resources.

* Protects privacy of pre-trained model.

36



Method 1: Splitting

Large models incur performance penalty due to EPC swapping.

Solution: Pre-trained model is split into smaller submodels.

RS

| Split

= B oty

Submodel 1 Submodel 2 Submodel 3
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Method 2: Cloaking

Running submodels only within TEES results in underutilisation of the overall system.

5B B | BF

In-TEE Non-TEE In-TEE
Submodel 1 Submodel 2 Submodel 3

Non-TEE sudmodels leak weights. @
%%@ Cloak @
@ )

O
O




Method 3: Digital Signatures

Adversary can tamper with outsourced computation.

Er

In-TEE
Submodel 1

Input

=

@
O

Cloaked

Submodel 2

Sign(Input)
—>
Sign(Output)
Output

=

&
O

In-TEE

Submodel 3

Cloud vendor signs the input and output of cloaked submodels with its private key.
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MazeNet Workflow

- B %%; =

Pre-trained Model MazeNet Model

{nt

On premises

Model Builder
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MazeNet Workflow

& 222

On Cloud
Inputs Outputs

-

Model
Manager

.

s=iinl ==

6“6,6“6
/

Host 1 (TEE) Host 3 (TEE)

Host 2 (Non-TEE)



Benchmark Models

We evaluate the presented techniques on popular convolution neural networks.

HE B4 b

VGG16 ResNet50 ~ DenseNet201
Sequential Architecture Skip Connections Highly Connected Layers
Computationally expensive Very deep model

Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015
Deep Residual Learning for Image Recognition, CVPR 2016
Densely Connected Convolutional Networks, CVPR 2017
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Implementation

* Model Builder: Transforms pre-trained Model into MazeNet model.
* Model Manager: Deploy and runs MazeNet models.

TensorFlow Layers

ResNet50 Conv2D, Dense, BatchNormalization, Add,
GlobalAveragePooling2D,MaxPooling2D,
ZeroPadding2D, Activation

Cloaking support for various TensorFlow (v2.7) layers in MazeNet.
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Configuration Parameters

Cloak Factor |Submodel Width|In-TEE Layers

ResNet50 10% 1-7,92-102, 174-177

Configuration parameters used to generate MazeNet models.
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Experimental Setup

Three TEE Systems ~ One Non-TEE System

* Intel i7-7700 CPU ~ * Intel Xeon Gold 6150 CPU
* 4 Cores ~ + 36 Cores

* SGXv1 256 GB Main Memory

e 32 GB Main Memory

All the hosts are connected through one Gigabit Ethernet.
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Throughput Results

60
50
40
30
20

Predictions/s

10

O — | |

VGG16 ResNet50 DenseNet201

M Secure Baseline (i7-7700) Non-secure Baseline (i7-7700)
B Non-secure Baseline(6150) © MazeNet (i7-7700 & 6150)

MazeNet improves the throughput by 2x to 30x as compared to secure baseline.
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Latency Results

3500
3000
2500
2000
1500
1000

> B B
[ ] — [

0
VGG16 ResNet50 DenseNet201

Latency (ms)

M Secure Baseline (i7-7700)) Non-secure Baseline (i7-7700)
B Non-secure Baseline (6150) © MazeNet (i7-7700 & 6150)

MazeNet can improve the latency upto 5x as compared to secure baseline.

47



Overheads: Synthetic Computations

T Siandard

VGG16 30.96 : 151.76 153.6 5x
_-----
DenseNet201 8.58 51.18 54.36 6X

Floating point operations (GFLOPS) in standard and MazeNet Models.



Limitations
* Some detalls of the user inputs are visible to the adversary.

 The model developer needs to provide the suitable split and
architecture of synthetic layers.
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Nvidia Confidential Compute

. GPU With
| App | G(F;Lé_\(/)\lqth CC-on
Compute
| Nvidia Driver | |€H3—3{> g&ﬂ%‘gﬁ Protected
. Region
| GuestOS | Region
| Hypervisor | | Bounce Buffers | | Bounce Buffers |
+ 4
|  Bounce Buffers |« =0 Encrypied Data =
Transfers

CPU

Extends CPU TEE trust boundary to GPUs.
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Future Work

* Training support for MazeNet.
e Secure outsourcing of large language models to
untrusted hardware.
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Summary of Contributions

* We study the challenges in porting deep learning workloads to
trusted execution environments.

* We build Porpoise to port commodity applications to the Intel SGX
enclaves.

* We present MazeNet to run deep learning inference workload on
TEEs and improve the performance by outsourcing a portion of
computations to untrusted hardware, while protecting the privacy of
the model.
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Thank You!
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Backup Slides
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Formal Security Analysis

v
Layer 1
Layer 2 Layer 3
Layer 5 Layer 6 Layer 7 Layer 8 Layer 9
v v v v v
T1 T2 Ts T4 Ts

Only one of the subset of output will be the embedded output.

Plembedded output] =

1
oI — 1
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Overheads: TEE

12

10

= \Nithout TEE
= \\ith TEE

Predictions/s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Batch Size

TEE has negligible overheads at low batch sizes, overheads increase at higher batch size.
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Synthetic layers

Fk

Cloak
)

Embedded
Outputs

Synthetic
Outputs
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Throughput Results

14
12

10

o

Secure Baseline (i7-7700)
W Non-secure Baseline (i7-7700)
B MazeNet (i7-7700 & 6150)

(o]

Predictions/s

N

N

VGG16 ResNet50 DenseNet201

MazeNet improves the throughput by 2x to 30x as compared to secure baseline.
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