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Abstract

Deep learning is rapidly integrated into different applications, from medical imaging to finan-

cial products. Organisations are spending enormous financial resources to train deep learning

models. Often, many organisations do not have sufficient resources to host, manage and scale

these deep learning workloads in-house. Therefore, these organisations outsource deep learning

inference workloads to public cloud platforms. However, outsourcing to public cloud platforms

raises security and privacy risks for the trained models. On the cloud, the service provider con-

trols all the software and hardware on their premises and has full access to the models deployed

on their platforms. A malicious or compromised cloud provider can steal the trained model

or interfere with the inference workload, which may lead to financial losses and legal troubles

for the model owner. This dissertation presents solutions to secure deep learning workloads on

public cloud platforms with hardware-assisted trusted execution environments.

Intel has introduced Software Guard Extensions (SGX), a hardware-based trusted execution

environment, to run private computations on public cloud platforms. However, applications do

not run out-of-the-box on the SGX platform due to the restrictions imposed by the SGX spec-

ifications to ensure confidentiality and integrity of the code and data. Therefore, applications

need to be rewritten, or other methods should be employed to avoid executing restricted in-

structions within the SGX enclave that contains code and private data. To port commodity

applications to SGX enclaves, the software community has developed multiple frameworks to

adapt existing applications to SGX specifications. However, at the beginning of this work, it

was not clear which framework should be used to port deep learning workloads to SGX en-

claves. Therefore, in the first part of this dissertation, we studied various frameworks that port

applications to SGX to find a suitable framework for porting deep learning workloads. The

study focuses on the challenges in transitioning commodity applications to SGX enclaves.

Next, during the study, we observed that memory-intensive applications, such as deep learn-

ing workloads, incur a performance penalty when executing within the trusted execution envi-

ronment offered by Intel SGX. Furthermore, SGX cannot securely use other untrusted resources,

such as untrusted co-processors, that are commonly used to accelerate deep learning workloads.
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Abstract

Therefore, the second part of the dissertation focuses on improving the performance of deep

learning workloads on TEE. It presents MazeNet, a framework to transform pre-trained mod-

els into MazeNet models and deploy them on heterogeneous execution environments based on

trusted and untrusted hardware, where the trusted hardware ensures the security of the model

while the untrusted hardware accelerates the deep learning workload. MazeNet employs a se-

cure outsourcing scheme that outsources both the linear and non-linear layers of deep learning

models to untrusted hardware. Our experimental evaluation demonstrates that MazeNet can

improve the throughput by 30x and reduce the latency by 5x.
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Chapter 1

Introduction

With the recent advances in deep learning, commodity applications are extended with deep

learning techniques to offer enhanced and tailored services to the users to accomplish their

everyday tasks with ease [45]. It is evident from the fact that two of the major AI frameworks,

TensorFlow and PyTorch, are used in more than 1.2 million GitHub projects in 2025 [39, 48]. A

majority of these applications are developed and owned by individuals and small organisations.

Deep learning workloads are computationally expensive and require dedicated hardware

accelerators to scale to real-world deployments. Many small and medium-sized organisations

do not have sufficient resources to run these models in-house. Therefore, they outsource deep

learning inference services to public cloud providers to free themselves from maintaining and

scaling the service with user demand. It is predicted that these deep learning deployments will

form a significant fraction of revenues for public cloud providers in the coming years [99].

However, moving to the cloud exposes the outsourced application and data to various secu-

rity and privacy risks, as the cloud vendor controls the full software and hardware resources on

its premises. As a result, an adversarial or compromised cloud vendor can steal or tamper with

the applications deployed on its platform. These security challenges make public cloud comput-

ing unattractive to organisations that deal with private and sensitive data, such as healthcare

institutions and financial organisations.

To tackle this problem of private computation on public cloud platforms, processor vendors

have introduced hardware support for Trusted Execution Environments (TEE) that protect

applications from privileged adversaries. Notable examples include Intel Software Guard Ex-

tensions (Intel SGX) [32], AMD Secure Encrypted Virtualization (AMD-SEV) [9], and Arm

TrustZone [8] and Confidential Compute Architecture (ARM CCA) [93].
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1.1 Trusted Execution Environments

While encryption schemes can protect the data when it is stored on disk, data-at-rest, and

during transfers over untrusted channels, data-at-transit, it is available in plaintext during

processing, data-in-use. An adversary can steal the data when it resides in main memory during

processing. The adversary can use software-based attacks by compromising the privileged

software, such as the host operating system or the hypervisor, or it can perform physical

attacks, such as probing memory and PCIe interfaces.

Trusted execution environments aim to protect the confidentiality and integrity of data-in-

use from privileged adversaries on the cloud and edge devices. Modern computing platforms

rely on hardware and software-based mechanisms such as page tables and CPU privilege levels

to isolate and protect host system software and user applications. These mechanism offers pro-

tection and isolation between processes, users, kernel, user applications, and virtual machines.

Traditional systems follow a hierarchical security model, where code executing at higher privi-

lege levels has access to resources at the same or lower privilege levels. For example, a virtual

machine manager executes at a higher privilege level than the guest kernel and user applica-

tions, thus it can access the resources that are allocated to them. However, those with lower

privileges cannot access higher-privileged resources.

Trusted execution environments introduce a new security model where guest applications,

running with lesser privileges, within an isolated and protected runtime, cannot be accessed even

by the privileged software or hardware, irrespective of their privilege levels, if they are not part of

the trusted computing base. However, the privileged host still controls the resource allocation,

such as allocating CPU time and memory pages to the trusted execution environments.

Trusted execution environments are implemented as a set of hardware and software ex-

tensions, where the responsibility of ensuring security is shared across both. The hardware

extensions prevent unauthorised software access to the TEE memory, and the software ex-

tensions enable the creation and management of the trusted environment. Additionally, TEE

platforms can have dedicated hardware to encrypt the contents of main memory to protect

them from physical attacks [53, 72, 167, 52], e.g., memory bus snooping [142, 78].

1.1.1 Intel SGX

Intel SGX is one of the TEE implementations that enables user applications to build secure

containers, referred to as enclaves, within their program address space. The code and data

within these enclaves are protected from privileged adversaries, such as operating systems.

Applications that wish to protect their sensitive data place their sensitive data within these
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(a) Hierarchical security model aims to protect
the privileged host from the malicious guest.
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(b) Trusted execution environments, e.g., Intel
SGX, aim to protect the guest from the host.

Figure 1.1: The Traditional or hierarchical security model aims to protect the privileged host
from the guest applications. In contrast, TEEs want to protect guest applications from the
host.

enclaves. An application can build one or more such enclaves to separate independent or

mutually distrusting modules, where one enclave cannot access the memory of other enclaves.

In SGX, the enclaves and the host kernel are mutually distrusting, i.e., neither the enclave

can access kernel memory nor the kernel can access the enclave memory. Both the enclave

and the kernel can communicate through user space memory. To implement this isolation be-

tween kernel and enclaves, Intel SGX changes the memory access semantics, which are enforced

through hardware to protect the kernel and enclave memory.

Within the enclaves, SGX restricts certain instructions that can compromise the confiden-

tiality and integrity of the enclaves. Some of the restricted instructions, e.g. syscall, are

frequently used by user applications to request the services of the operating system. Therefore,

commodity applications do not run out-of-the-box on enclaves, and the application developers

are responsible for ensuring that the enclave code does not execute any illegal instruction within

the enclaves.

It is the responsibility of the application running within an enclave to ensure that it does not

accidentally leak any sensitive data. Any data leaving the enclave must be encrypted or sanitized

before leaving the enclave boundary. The application should use proper security mechanisms

when communicating with the outside world, such as TLS/SSL for network communications

and encrypted file systems for storage.

To protect the enclave memory, Intel SGX reserves a portion of the main memory, referred
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to as Processor Reserved Memory (PRM), during the system boot to store encrypted pages of

enclaves. These encrypted pages on the main memory are referred to as Enclave Page Cache

(EPC), and they are encrypted by a dedicated cryptographic engine when stored on the main

memory and decrypted on the fly when moved to the CPU cache. The size of the EPC is fixed

and significantly smaller than the size of the main memory, e.g., 128 MB on SGXv1, due to the

hardware structures required to enforce memory protection.

1.1.2 Intel TDX

After SGX, Intel introduced Trust Domain Extensions (TDX) [4] to protect the entire virtual

machine instead of portions of the program address space. Intel TDX protects the guest virtual

machines from the host hypervisor, BIOS, and firmware. The host hypervisor still controls

the resource allocation, such as allocating memory to the guest virtual machines, but it cannot

access the allocated memory. This protection is implemented through a combination of software

and hardware support.

In Intel TDX, a trusted module runs within a protected region whose memory cannot be

accessed from external sources, such as the host hypervisor and DMA devices. The trusted

module manages the security policies and page tables of virtual machines, while the hardware

enforces those policies. The TDX module is responsible for setting up and tearing down trusted

virtual machines. The host hypervisor allocates a portion of main memory to the TDX module,

which in turn allocates those pages among the set of trusted virtual machines. Similar to Intel

SGX, Intel TDX employs main memory encryption to protect the guest virtual machines from

physical attacks.

Apart from Intel, other processor vendors also support VM-based trusted execution en-

vironments. AMD offers Secure Encrypted Virtualization (SEV) [34], and Arm introduced

Confidential Computing Architecture (CCA) [93] in Armv9 architecture. These solutions of-

fer similar protections as compared to Intel TDX; however, the implementation differs across

vendors, with security responsibility split across different software-hardware components.

In comparison to Intel SGX, Intel TDX, and other VM-based Trusted Execution Environ-

ments have a higher trusted computing base (TCB) as the guest kernel is part of the TCB.

Therefore, VM-based TEEs are more vulnerable to attacks. In this dissertation, we have used

Intel SGX for TEE as its threat model is more suitable for cloud workloads with the least

amount of TCB, and it was the only commercial solution available at the beginning of this

work.
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1.2 Deep Neural Networks

Deep neural networks are a special category of applications that learn complex functions or

input-output relationships directly from the training dataset and perform predictions on unseen

data that was not part of the training dataset. A deep neural network consists of a set of layers

that are connected to form a graph. Most layers contain parameters (or weights) that are

learned during the training phase from the training dataset. During the training, the model

learns an internal representation of the training dataset that is later used to make predictions

on previously unseen data.

Once a model is trained, it can perform predictions on input samples, where the input

passes through a sequence of layers to compute the prediction scores. Most of the layers consist

of linear operations, such as matrix multiplications, and non-linear operations, such as ReLU

or Sigmoid activation functions. As the linear operations form the bulk part of the model

evaluation and are computationally expensive, specialised hardware, such as GPUs, TPUs and

FPGAs, can be employed to speed up the linear and other operations to accelerate the model

evaluation on the given input.

The accuracy of a deep learning model depends on multiple factors such as the size of the

training dataset, the architecture or network connections between the layers and their types, and

the hyperparameters. Training a well-performing model is an expensive process due to the effort

required in collecting, cleaning, and labelling the training dataset, as well as the computational

cost involved in training the model [114]. A well-trained model provides a competitive business

advantage to model owners. Therefore, it becomes important to protect trained models.

Apart from trained model parameters, deep learning workloads involve other private and

sensitive data that needs to be protected from adversaries. Often, the training dataset is

sensitive, e.g., health care records [2], or private, e.g., financial data [1]. Many countries have

stringent laws that require organisations to maintain the privacy and confidentiality of such

records [2, 1]. In addition to the training dataset, model inputs during inference can be private

or sensitive as well, and need to be protected during inference.

Deep learning models are vulnerable to different classes of attacks that were not present

in earlier applications. These include membership inference attacks [137], model inversion

attacks [40], model extraction attacks [109], and adversarial attacks [47]. These attacks aim to

steal the trained models, training dataset, and exploit their behavior.
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1.3 Contributions and Outline

This dissertation studies the challenges in protecting applications and deep learning models

and workloads on public cloud platforms with Intel SGX, a hardware-based trusted execution

environment, and presents systems to port applications and deep learning models to SGX

enclaves. Further, it presents methods to speed up the deep learning inference workload with

untrusted hardware while protecting the confidentiality of the deep learning models.

The first challenge in using Intel SGX to protect deep learning workloads is that deep

learning frameworks, e.g., TensorFlow or PyTorch, do not run out-of-the-box on enclaves as

SGX restricts certain instructions within the enclave. Therefore, the inference framework needs

to be rewritten in an SGX-aware manner or use other methods to avoid execution on illegal

instructions within the enclave.

To overcome this barrier, the software community has devised various methods to port

existing applications to enclaves. However, at the beginning of this work, there was no clear

answer to which framework an application developer should use to port their existing workload

to enclaves. Therefore, in the first part of the dissertation, we study the challenges faced by

application authors to determine which framework is most suitable for their needs.

The frameworks developed by the community can be broadly classified into three categories:

the library OS model, the library wrapper model, and the instruction wrapper model. These

models use different methods to handle restricted instructions present in application code.

The library OS model. In this model, an entire library OS executes within an enclave.

To port an application to the enclave, the application developer loads the application binary

along with its dependencies into an SGX-aware library OS, which is responsible for adhering

to the specifications of SGX enclaves. Then, the application runs on top of the library OS,

while the library OS handles illegal instructions in application code within the enclave either

by delegating the execution to outside of the enclave or emulating the instruction within the

enclave. Frameworks that implement the library OS model include Haven [16], Graphene-

SGX [155], Occulum [134] and SGX-LKL [118].

The library OS model offers three main benefits: binary compatibility, fewer domain cross-

ings, and a simple enclave interface. The library OS model supports executing unmodified

binaries, along with support for simulating dynamic linking. The library OS emulates many

services within the enclave; therefore, few domain crossings are required to request services

from the host operating system. As the library OS handles many services within the enclave,

the library OS and host OS interface is narrower. Thus, it is easier to protect a small set of

interfaces.
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The main drawback of library OS is a large TCB size, as the library OS executes within

the enclave and is part of the TCB. Another drawback is low flexibility, as the entire binary is

expected to run within an enclave. This becomes challenging for the developer who wishes to

run non-sensitive portions of the application outside the enclave.

The library wrapper model. This model assumes that applications invoke operating sys-

tem services via libraries such as the standard C library (libc). Normally, these libraries con-

tain privileged instructions, which are prohibited in the enclaves. The library wrapper model

provides wrappers for library functions that delegate the execution of prohibited instructions

outside the enclave. This model is primarily used in Panoply [135].

The main benefit of the library wrapper model is a small TCB size, as the libraries execute

outside the enclave. However, this small TCB comes at the cost of a large enclave-host interface.

When the enclave requests a service from the host OS through one of these interfaces, it needs

to implement checks to ensure that the untrusted host OS has correctly serviced the request.

Having a large interface increases the burden of securing each interface.

Apart from the large interface, the library interface keeps changing from one release to

another, as there are no standards for most library interfaces. ISO and POSIX have defined

standards for function-call interfaces, but it has left many data structures unspecified.

The instruction wrapper model. In this model, wrappers are provided for the low-level

instructions (such as syscall, outb, outb) that are prohibited within the enclave. The wrap-

pers are responsible for outsourcing the execution of privileged instructions outside the enclave.

The wrappers are responsible for encrypting the sensitive data that leaves the enclaves and

decrypting the results received by the enclave. This model is implement by SCONE [13] and

lxcsgx [149].

The main advantage of the instruction wrapper model is a slower-changing interface as

compared to the library wrapper model. There is a defined contract between the hardware and

the software, the application binary interface (ABI). Also, the interface is smaller compared to

the library wrapper model, which makes it easier to secure the enclave-host interface.

The drawback arises from the somewhat larger TCB compared to the library wrapper model,

as the dependent libraries execute within the enclave.

Unfortunately, at the time of the study, there was no publicly available implementation

of the instruction wrapper model. Therefore, we built our own in-house instruction wrapper

model, Porpoise, for the study.

7



1.3.1 Porpoise

First, we built Porpoise to port commodity applications with the instruction wrapper model.

Porpoise is a thin intermediate layer that sits between the enclave application and the host

kernel. It enables enclave applications to get services of the host operating system by invoking

SGX restricted instructions outside the enclave on behalf of the enclave code. Porpoise consists

of two components: a trusted shim library that executes within the TEE and an untrusted

shim library that resides in the user space.

The trusted shim library in Porpoise implements wrappers around instructions that are

prohibited within enclaves. Usually, the prohibited instructions are present in the standard C

library (libc) and a few other low-level libraries. These libraries are modified to incorporate

wrappers that delegate prohibited instructions to the untrusted shim layer outside the enclave.

The untrusted shim can execute instructions on behalf of enclave applications as it runs in

user space. It invokes the required instructions and returns the controls to the trusted shim

layer. The trusted shim copies the results to the enclave and resumes application execution.

Porpoise implements wrappers around the syscall instruction as it is frequently used by ap-

plications to request operating system services, such as reading/writing files, allocating/deallo-

cating memory. The challenges in the implementation of Porpoise are presented in Chapter 3.4.

To port applications with Porpoise, a developer needs to recompile their application with

Porpoise shim libraries along with the modified standard C library. Then the developer can

deploy the newly compiled binary on an SGX platform. Thus, applications can be quickly

ported to SGX enclaves without any modification to the application’s source code.

1.3.2 An Evaluation of Methods to Port Legacy Code to SGX En-

claves

Once we had the candidate implementation for the instruction wrapper model, we resumed

our in-depth study of various models to port applications to SGX enclaves. We evaluated

the models on four dimensions: porting effort, application re-engineering effort, security, and

runtime performance. More specifically, we ask the following research questions:-

(RQ1) Porting effort. From an application developer’s point of view, what is the effort

required to port the application and get it running within the enclave?

(RQ2) Application re-engineering effort. Suppose that an application developer wishes

to re-engineer the application by deciding that he only wants to run a portion of the application

within the enclave. After the application developer has decided what code to run within the

enclave, what is the amount of effort that he needs to invest to get the code running within the
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enclave?

(RQ3) Security. How much trusted code runs within the enclave, in addition to the applica-

tion’s own enclave code?

(RQ4) Runtime performance. What is the runtime performance overhead of each of these

approaches, and how do they compare to native execution (i.e., executing the code without

enclaves)?

To answer the above research questions, we selected a representative of each model. We

selected Graphene-SGX [159] for the library OS model, Panoply [136] for the library wrapper

model, and Porpoise for the instruction wrapper model. Then, we took a few popular applica-

tions and ported them to SGX enclaves to answer the above research questions. The selected

benchmark applications consist of an in-memory key-value store (Memcached), cryptographic

libraries (OpenSSL), a web server (H20), and a Python interpreter (Cpython).

The detailed results from the study are presented in Chapter 3. To summarise the results,

the library OS model and the instruction wrapper model are suitable for quickly porting ex-

isting applications to SGX enclaves. Furthermore, the library OS model even provides binary

compatibility that enables developers to rapidly prototype their application for SGX enclaves.

Whereas the instruction wrapper model required re-compilation. Therefore, it requires more

effort than the library OS model to port applications. In contrast, the library wrapper model

needs extensive porting efforts as it requires writing additional wrappers for the missing library

functions.

In performance evaluation, no one model emerged as a clear winner with respect to runtime

performance, and the developer must choose the enclave programming model that works best

for the application at hand. Library OSes can provide good performance for some applications,

e.g., by offering caching and avoiding domain crossings. However, because the enclave execution

by itself imposes overheads, and library OSes execute entirely within the enclave, they may also

offer poor performance in some cases. The instruction wrapper and library wrapper models do

offer the potential for better performance if software developers have the flexibility to profile

and re-engineer their applications by reducing domain crossings.

As the library OS model provides binary compatibility for porting applications, we selected

the library OS model, Graphene-SGX, for porting deep learning workloads to SGX enclaves, as

it provides out-of-the-box support for the Python interpreter and TensorFlow framework, one

of the popular frameworks for running deep learning workloads.
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1.3.3 Protecting DL Models on Public Cloud Platforms

From the previous study, we learned that memory-intensive applications – deep learning work-

loads are one of those applications – can incur an order of magnitude performance penalty in

SGX enclaves, irrespective of the porting model, when they exceed the fixed protected mem-

ory usage offered by SGX. Further, deep learning inference runs slower on CPUs and can be

accelerated by faster processors. However, SGX cannot securely access other untrusted system

resources, including faster processors. Therefore, in the second part of the dissertation, we focus

on the performance of deep learning models with trusted execution environments by avoiding

the performance penalty imposed by SGX on memory-intensive applications, and utilise faster

and untrusted processors to speed up the inference workload.

We present MazeNet in Chapter 4, a novel deep learning inference system that utilises a

combination of trusted and untrusted hardware for accelerating deep learning workloads, while

protecting the privacy of deep learning models on public cloud platforms. MazeNet converts

pre-trained models into MazeNet models and deploys them on trusted and untrusted hardware

to provide secure inference services. It uses three key techniques to avoid the performance

penalty of SGX enclaves and speed up the inference service with untrusted hardware.

First, memory-intensive deep learning applications incur swapping when their memory needs

are higher than the size of the Enclave Page Cache (EPC), a portion of cryptographically pro-

tected main memory. When applications exceed the size of EPC, the SGX driver in the kernel

swaps out a few EPC pages to unprotected memory. As the swapping operation is computa-

tionally expensive due to cryptographic operations, applications incur a performance penalty.

Therefore, MazeNet splits the given model into smaller models referred to as submodels, such

that each submodel fits within the protected memory offered by Intel SGX.

Second, MazeNet outsources a subset of submodels to untrusted environments to speed

up the inference process. However, outsourcing to an untrusted environment compromises

the confidentiality and integrity of outsourced submodels, which were earlier protected by the

trusted execution environment. Therefore, MazeNet proposes a secure outsourcing scheme to

protect the confidentiality of outsourced submodels. It outsources both the linear and non-

linear layers. Before outsourcing a submodel, MazeNet cloaks the outsourced submodels and

deploys them on an untrusted runtime. During cloaking, synthetic layers and synthetic neurons

are added to hide the original submodel architecture and weights. To recover the embedded

results from the output produced by the cloaked submodels, the enclaves have access to the keys

that were generated during the cloaking phase to filter the synthetic results from the embedded

results.
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Finally, the computations outsourced to an untrusted environment can be tampered with

by the adversaries. Therefore, MazeNet employs a digital signature scheme to detect tampering

in outsourced computations. The cloud vendor signs the inputs and outputs of the outsourced

submodels and submits the results along with the signatures to the enclaves. The signatures

are later verified by re-evaluating the computations during an auditing phase.

We have implemented MazeNet on top of the TensorFlow framework. It consists of two com-

ponents: Model Builder and Model Manager. Model Builder takes models stored in TensorFlow

savedModel format to build MazeNet models, where the cloaked submodels are exported in

standard savedModel format, while the remaining submodels, which execute within TEEs, are

exported in TFLite format. For inference, Model Manager deploys MazeNet models to provide

secure inference services. It exposes an API for users to query the deployed models. On re-

ceiving inputs from users, it routes the inputs through a series of submodels within TEEs and

cloaked submodels in untrusted environments to compute the prediction results.

To evaluate the benefits and costs of running MazeNet models, we transform popular con-

volutional neural networks into MazeNet models and compare their performance against a

secure baseline system where the unmodified model runs within a trusted execution environ-

ment. The benchmark models used in our evaluation range from sequential models, such as

VGG16 [74], models with residual connections, ResNet50 [56], to models with highly connected

layers, DenseNet201 [59]. Our evaluation focuses on two key aspects of the inference workloads:

throughput and latency. Experimental results demonstrate that MazeNet can improve the per-

formance of deep learning inference workloads, up to 30x improvement in throughput and 5x

improvement in latency as compared to a secure baseline.

Recently, Nvidia has released Confidential Compute (CC) to extend the trust boundary of

TEEs from CPUs to GPUs. Nvidia CC enables VM-based TEEs to securely deploy DL models

on GPUs while protecting the confidentiality and integrity of the models from privileged adver-

saries. The communication over the untrusted PCIe channel is protected with pre-negotiated

encryption keys.

However, Nvidia Confidential Compute is limited to high-end server-grade GPUs after Hop-

per architecture [107]. The techniques presented in Chapter 4 can be employed to secure

inference workloads running on GPUs from other manufacturers and on older GPUs where

Nvidia CC is not available.
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1.4 Summary of Contributions

This dissertation supports the following thesis statement:

Hardware-based trusted execution environments can be leveraged to run pri-

vate deep learning inference workloads on public cloud platforms with practical

runtime performance while protecting the privacy and integrity of the model.

To support the above thesis statement, this dissertation makes the following contributions:

• Porpoise. A framework based on the instruction wrapper model to port commodity

applications to Intel SGX enclaves. To port applications, developers do not need to modify

applications’ source code; they only need to recompile the application with Porpoise

libraries. Porpoise has successfully ported several popular applications, including a web

server (H2O), cryptographic libraries (OpenSSL), a Python interpreter (CPython), and

a key-value store (Memcached).

• Evaluation of SGX porting frameworks. A comparative study of multiple frame-

works to port commodity applications to Intel SGX enclaves. The study classifies ap-

plication porting frameworks into three categories: the instruction wrapper model, the

library wrapper model, and the library OS model, and evaluates them on four parame-

ters: porting effort, re-engineering effort, security, and runtime performance. This helps

developers to make informed decisions when selecting a framework.

• MazeNet. A framework to run deep learning inference workloads on a set of trusted

and untrusted hardware while protecting the privacy of the model weights from privi-

leged adversaries. The trusted hardware protects the privacy of the model, while the

untrusted hardware speeds up the inference workflow. It introduces a secure outsourcing

scheme to offload both the linear and non-linear operations in deep learning models to an

untrusted environment. Experimental evaluation shows that MazeNet can provide up to

30x improvement in throughput and 5x improvement in latency.
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Chapter 2

Trusted Execution Environments

In this chapter, we will look into the various trusted execution environments offered by leading

silicon vendors. Arm was the first silicon vendor to introduce support for a trusted execution

environment with Arm TrustZone [8] in the year 2004. However, its wider adoption faced

challenges, as the only device vendor and the platform owner can build applications for the

TrustZone. Later, Intel announced SGX in 2013 [97] with a strong threat model suitable for

cloud platforms and applications. AMD introduced Secure Encrypted Virtualization (AMD

SEV) [34], which supports running an entire virtual machine within the trusted execution envi-

ronment. Later, Intel and Arm also started support for virtual machine-based trusted execution

environment with Intel Trust Domain Extension (TDX) [4] and Arm Confidential Compute Ar-

chitecture (Arm CCA) [93]. Recently, Nvidia introduced TEE support for GPUs [107], which

extends VM-based TEEs of CPUs to GPUs.

The main objective of TEEs is to protect the confidentiality and integrity of private data

from adversaries. An adversary can perform the following attacks to compromise the protected

region. First, it can launch software attacks, e.g., memory remapping attacks [9], from the

host operating system or hypervisor to break the security isolation of the TEE. Second, it can

carry out hardware attacks with DMA-capable devices to leak sensitive data from the main

memory. Third, it can perform physical attacks on the system, e.g., probing physical interfaces

of DRAM and PCIe [142, 78, 53, 52, 167, 95]. Lastly, the attacker can carry out side channel

attacks [161, 26] to leak sensitive data on multi-tenant systems.

To protect the code and data from the above attacks, different TEEs use different mech-

anisms to protect code and data. The security responsibility is split across the software and

hardware components of the TEEs. Some of the TEEs, e.g., Intel SGX, rely on the hardware

support to protect the code and data, while some rely on trusted software or firmware, e.g.,

Arm CCA, to provide the security guarantees.
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2.1 Intel Software Guard Extensions (SGX)

Intel SGX offers low-level instructions, e.g., ECREATE, EADD, and EEXTEND, to create an isolated

and protected region in their program address space. The code and data within this protected

region, referred to as an enclave, are protected from privileged adversaries, including the host

operating system, BIOS, and firmware. The code and data inside the enclave can be accessed

only from the accesses originating within the enclave. SGX restricts the host kernel from

accessing the memory of an enclave to protect its confidentiality and integrity. Also, an enclave

cannot access the kernel memory, i.e., both the kernel and the enclave are mutually distrusting.

The enclave and the kernel can communicate through the memory allocated to the user space.

SGX sets aside a fixed portion of the main memory during system boot to store pages

of enclaves, referred to as Enclave Page Cache (EPC). The EPC is encrypted by a dedicated

hardware, Memory Encryption Engine, when data is moved from CPU cache to main memory

to protect the confidentiality of data from physical attacks.

A program executing within the enclave has its own stack, heap, code and data segments.

A program running in user space can enter an enclave with EENTER instruction, which changes

the CPU mode of execution from user to enclave mode. The control enters the enclave through

a set of predefined entry points. Once the enclave has completed the execution, it can return

the control to the user space with the EEXIT instruction. In case any exception occurs during

the enclave execution, the enclave exits the enclave asynchronously, where the CPU state is

saved within the protected memory and registers are filled with synthetic data before returning

control to the host. Upon servicing the exception, the program can re-enter the enclave with

ERESUME instruction.

Although the host OS cannot access the memory allocated to enclaves, it is still in control

of memory allocation. A malicious OS may attempt to compromise the confidentiality and

integrity of an enclave through page remapping attacks as it controls the page tables. SGX

uses an Enclave Page Cache Map (EPCM) to track virtual-to-physical address translations to

detect tampering in address translation. External access to enclave memory generates a fault.

A program running within an enclave can use EREPORT instruction to get an attestation

report that a remote party can use to verify the correctness of the enclave state and Intel SGX

platform. The report contains measurements of code and data loaded into the enclave and

signed by the hardware root of trust key, which was baked into the CPU during manufacturing.

The trusted computing base (TCB) of an enclave application consists of code and data

residing within the enclave and the Intel CPU. The host OS and enclave launching user-space

libraries for creating and managing the enclave are outside of the TCB.
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2.2 Intel Trust Domain Extensions (TDX)

After SGX, Intel launched Trust Domain Extensions (TDX) [4] to protect virtual machines on

public cloud platforms. Intel TDX introduces trust domains, a trusted execution environment

that can host virtual machines. Intel TDX is a set of extensions to the Intel VMX [65] architec-

ture to create and manage virtual machines in trust domains. It protects a trust domain from

host virtual machine managers, hypervisors, legacy virtual machines and other trust domains on

the host platform. It also employs main memory encryption with dedicated hardware present

in Intel Total Memory Encryption Multi-key (TME-MK) [71] to protect the main memory from

physical attacks.

Intel TDX introduces a new Secure-Arbitration Mode (SEAM) for trust domains in addition

to the VMX mode for virtual machines in VMX architecture [65]. The SEAM mode runs an

Intel-signed TDX module that manages trust domains within the SEAM memory. Intel employs

Trusted Execution Technology (TXT) [18] to ensure that the TDX module is not tampered

with during the launch. External memory access to the SEAM memory is prohibited by the

hardware, irrespective of their privilege levels.

The TDX module manages the trust domains and virtual machines from launching, schedul-

ing, and allocating resources to them. The host VMM controls the resources on the system and

is responsible for allocating resources to trust domains. The VMM allocates a set of memory

pages to the TDX module. In turn, the TDX module can allocate the assigned pages to trust

domains.

The TDX module runs on the same physical CPU as the host and the guest VMs. It is also

responsible for managing the security policies, such as which hardware resources to be exposed

to trust domains. As the TDX module runs on the main CPU, it can enforce computationally

expensive security policies.

Intel TDX offers attestation services through the TDX module with assistance from SGX

to securely provision client virtual machines. The TDX module measures memory pages that

were added to the trusted domain during launch. A remote owner or a user can request the

trust domain to provide an attestation report to verify the initial execution state of the virtual

machine. The TDX module generates an attestation quote and then sends the attestation quote

to the Intel SGX TD-quoting enclave to produce an attestation report signed by the attestation

key, backed by a hardware root of trust.

The TCB of a TDX trust domain consists of code and data within the trust domain, which

includes the guest hypervisor, operating system, and user applications. Additionally, the TDX

module, attestation software, and the Intel CPU are part of the TCB. However, it excludes
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Figure 2.1: Intel TDX architecture [4]. Intel TDX introduces a new Secure-Arbitration Mode
(SEAM), in addition to VMX mode, to create isolated environments called Trust Domains. In
SEAM mode, a processor can be in two states: SEAM-root mode or SEAM-non-root mode.
SEAM-root mode hosts an Intel-signed TDX module that manages the trusted domains execut-
ing in SEAM-non-root mode. TDX prohibits external access to the SEAM-protected memory
hosting the TDX module.

BIOS, firmware, host hypervisor, operating system, system software and other hardware devices

present on the system.

In comparison to Intel SGX, Intel TDX offers a strong alternative to run confidential work-

loads on public cloud platforms. Application developers can quickly port their applications to

confidential virtual machines, whereas SGX requires applications to be rewritten in an SGX-

aware manner. However, Intel TDX suffers from a higher TCB as the guest operating system

is part of the TCB.

One major challenge with multiple implementations of trusted execution environments is

that supporting each trusted execution environment becomes challenging for hypervisors. Re-

cently, Cloud Hypervisor has deprecated support for Intel TDX [30], which further increases

the barrier for its adoption.
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2.3 AMD

AMD has introduced a series of technologies to secure private computation on public cloud

platforms. Each of the technologies extends the previous ones to enhance the protection and

reduce the attack surface. Initially, AMD introduced Secure Memory Encryption (SME) [34]

to encrypt the contents of the main memory. Subsequently, it presented Secure Encrypted

Virtualization (SEV) [34] to run encrypted virtual machines. Later, it launched Encrypted

State (ES) to protect the confidentiality of the CPU state from hypervisors during context

switches and interrupts. Finally, it rolled out Secure Nested Paging (SNP) [9] to preserve the

integrity of encrypted virtual machines.

2.3.1 AMD Secure Memory Encryption

When the data is stored on storage disks, data-at-rest, it is encrypted to protect the confiden-

tiality and integrity of data from unauthorized access. However, when the data is loaded into

DRAM and decrypted, it is available in plaintext in the main memory and referred to as data-

in-use. The plaintext data in the main memory can be compromised by privileged adversaries,

e.g., malicious system administrators or maintenance staff at the data centres, through software,

DRAM interface snooping [142, 78], and cold boot attacks [53, 52, 167, 95]. To protect the

confidentiality of data residing in main memory, AMD introduced Secure Memory Encryption

(SME), which encrypts the contents of the main memory to protect the confidentiality of the

data from physical attacks.

AMD Secure Memory Encryption adds dedicated hardware in the memory controller to

encrypt and decrypt the contents of DRAM on the fly. The data is decrypted when it is read

from DRAM to CPU caches and encrypted when it is written back to DRAM. This encryption

and decryption add an overhead to memory accesses. Therefore, only sensitive data should

be identified and placed within encrypted memory to limit performance degradation. The

dedicated hardware implements the Advanced Encryption Standard (AES) encryption scheme

to protect the content of the main memory. AMD SME relies on a physically separate co-

processor, AMD Secure Processor (AMD-SP), to manage the security. The co-processor runs

a trusted firmware to manage the encryption keys. The keys are not exposed to the software

to prevent accidental leakage from side channel attacks. AMD SME can protect workloads

from physical attacks, such as memory probing attacks and cold boot attacks; however, the

protection is insufficient if the hypervisor or the operating system is compromised or contains

vulnerabilities.
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Figure 2.2: AMD SEV memory access semantics [34]. AMD SEV introduces a new security
model where lower-privileged guest virtual machines are protected from the higher-privileged
host hypervisor. The hypervisor still controls resource allocation to guests, but cannot access
the allocated memory. The guest and the host can communicate through shared memory pages.

2.3.2 AMD Secure Encrypted (SEV)

In cloud environments, the host and the hypervisor have full access to the guest virtual ma-

chines. A compromised host can inspect and modify the guest state with memory scanning and

debugging utilities [148, 120] to steal cryptographic keys or compromise execution integrity.

AMD Secure Encrypted Virtualization extends AMD virtualization techniques (AMD-V) to

protect guest virtual machines from the compromised host by introducing a new security model

for CPU execution.

Traditional security models follow a hierarchical approach where the code executing with

higher privilege levels can access lower-privileged resources. In contrast, AMD SEV introduces a

new security model where the guest virtual machine running with lower privileges does not trust

the host hypervisor running at a higher privilege level. AMD SEV modifies the memory access

semantics that prohibit privileged hypervisors from accessing the private memory allocated

to guest virtual machines, as illustrated in Figure 2.2. The host still controls the resource

allocation, such as allocating memory pages to guest virtual machines. However, they cannot

inspect or modify private memory pages allocated to guests. The guest can share a few memory

pages with the host hypervisor to enable data transfers between the host and the guest. Further,

external hardware access from DMA devices to the private pages of a guest is prohibited. DMA

devices can use the shared pages to communicate with the guest virtual machines.

18



AMD SEV relies on AMD-SP to provide measurements that are signed by a hardware root

of trust to prove to the remote owner that the virtual machine was launched correctly on a

SEV-enabled platform. The attestation report also contains the security version number of

components that are part of the trusted computing base to detect outdated platforms that may

contain security vulnerabilities.

To summarise, AMD SEV provides strong memory confidentiality guarantees, similar to In-

tel SGX, for workloads running within the encrypted virtual machines. It relies on a co-processor

and a trusted firmware to manage the security of encrypted virtual machines. However, similar

to Intel TDX, the trusted computing base of a workload running in an encrypted VM is much

higher than an SGX enclave, as the operating system and other services, in addition to the

application, are part of the trusted computing base.

AMD SEV had a few limitations, such as the CPU state being visible in cleartext to the

hypervisor and missing support for memory integrity. AMD later fixed these limitations in the

following releases, which are discussed in the next section.

2.3.3 AMD Encrypted State (ES)

In AMD-SEV, discussed in the previous section, the CPU register state is visible in plaintext

to the hypervisor on certain events, e.g., VM exit, even if the guest is running within an SEV-

enabled virtual machine. The registers may contain sensitive data such as encryption keys,

which can be leaked or tampered with by a malicious hypervisor. Further, the hypervisor can

compromise the integrity through replay attacks by restoring the registers to a previous state

or by modifying the RIP (instruction pointer) register.

AMD Encrypted State (AMD-ES) secures the CPU register state during program execution

and VM exit events to prevent the above attacks. To protect CPU state, it encrypts the state of

the registers and stores them in the private memory of the VM during exit events for interrupt

processing or hypervisor emulation before transferring control to the host hypervisor. On the

VM resume, the hardware decrypts the register state and restores the CPU state.

However, the hypervisor needs certain register values to process the interrupt. For example,

if the guest VM has invoked the CPUID instruction, then the hypervisor needs the RAX register

values to service the CPUID instruction. AMD-ES enables a guest to selectively expose the

required registers to the hypervisor.

On VM exits, the hypervisor informs the guest VM that it has invoked an instructions that

require hypervisor assistance. Then, the guest places the necessary register values in plaintext

that are required by the hypervisor to service the interrupt. Once the hypervisor has processed

the request, control returns to the guest OS, which verifies the results and resumes execution.
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2.3.4 AMD SEV Secure Nested Paging (SEV-SNP)

AMD SEV Secure Nested Paging (SEV-SNP) [9] further strengthens the security of guest VMs

with integrity protection. In the earlier AMD SEV implementation, Secure Memory Encryption

protects the confidentiality of guest virtual machines on main memory, and AMD Encrypted

State (AMD SEV-ES) protects the confidentiality of the CPU state for guest virtual machines.

However, the hypervisor still manages the memory allocation and page tables for the guest.

A malicious hypervisor can use software-based attacks, e.g., memory remapping, to compromise

the integrity of the guest. Although the hypervisor cannot read plaintext data of the guest

data due to memory encryption, it can write arbitrary ciphertext to main memory, which

corrupts the guest state. During guest execution, the guest will observe arbitrary data at those

locations. Further, the host can perform replay attacks where it changes the encrypted pages

in main memory with past ciphertext texts, which causes the guest to read stale data. As

the hypervisor controls the page tables as well, it can perform memory aliasing and memory

remapping attacks to compromise the guest. In memory aliasing attacks, the hypervisor maps

multiple virtual pages to a single host physical page. Whereas, in memory remapping attacks,

the hypervisor maps a single guest page to multiple system physical pages.

In the earlier SEV threat model, the hypervisor was considered vulnerable but benign. In

contrast, SEV-SNP assumes the hypervisor to be malicious. Thus, SEV-SNP further reduces

the attack surface by removing the hypervisor from the trusted computing base. A program

running on an encrypted guest trusts the code and data within the virtual machine, along with

AMD Secure Processor (AMD-SP) and accompanying trusted firmware.

AMD SEV-SNP uses a Reverse Map Table (RMP) [9], as shown in Figure 2.3, to enforce

integrity protection. An RMP table is a system-wide data structure to track ownership of each

physical page. As RMP is privileged data, software access is prohibited to modify RMP entries.

Instead, SEV-SNP introduces a set of instructions for updating the table, allowing the guest

VMs to validate the pages that are allocated to them. Once pages are validated, the hypervisor

cannot remap those pages; otherwise, the mapping will become invalid, which will be detected

by the guest VM.

AMD SEV-SNP offers both confidentiality and integrity protection to the guest virtual

machines, similar to Intel SGX security guarantees for user enclaves. However, the level of

isolation is different in both implementations. AMD SEV-SNP offers isolation at the VM level,

whereas SGX protects code and data at the process level.

Due to VM-level isolation, client applications running in SNP-enabled virtual machines will

have a higher trusted computing base as the guest kernel and other services within the VM
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Figure 2.3: AMD SEV-SNP uses a Reverse Map table [9] to track ownership of each physical
page on main memory. Write access to the private pages is granted only to the owners, guest
VM, hypervisor, or the AMD Secure Processor.

are included in the TCB. For instance, a standard virtual machine with a Linux kernel loads

around 5MB of privileged kernel code, and any vulnerability in the privileged code compromises

the entire VM. In contrast, SGX requires minimal SGX-related code, in addition to the user

application, which minimizes the attack surface.

As SEV-SNP offers VM-based TEEs, existing workloads can run unmodified within the

virtual machines, which reduces the barrier to transitioning existing workloads to trusted exe-

cution environments. In contrast, SGX requires applications to be rewritten in an SGX-aware

manner, which adds development cost and time to move workloads to SGX enclaves or use

specialised library OSes.

A major advantage of virtual machine-based TEE over Intel SGX is that it does not require

specialised software stacks, e.g., library OS [159], or modifications to the application source

code [136] to run existing applications. Despite years of development effort poured into li-

brary OSes and specialised kernels have not achieved full binary compatibility with existing

workloads [51] due to which niche workloads either do not run or incur a performance penalty

because of missing optimisations that are incorporated in standard operating systems over the

decades.

AMD SEV-SNP is an alternative VM-based trusted execution environment and offers similar

features and functionality to Intel TDX. In contrast to Intel TDX, it runs the trusted firmware

on a separate co-processor rather than the host CPU, as in Intel TDX, which offers some

protections from side channel attacks. However, similar to Intel TDX, it suffers from a larger

TCB due to the guest kernel being part of the TCB.
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2.4 Arm

Arm was the first silicon vendor to introduce support for a trusted execution environment,

TrustZone [8, 81, 82], that was commercially and widely available on inexpensive mobile de-

vices. Arm introduced TrustZone in Armv6 architecture [92] with ARM1176JZF-S proces-

sor [91]. ARM TrustZone provides a hardware-based secure and isolated execution environment

that protects applications from privileged software-based attacks arising from hypervisors and

operating systems. It extends the Arm architecture with hardware-based security features to

protect applications in the trusted execution environment.

However, the wide adoption of TrustZone by the application developers always remained a

cause of concern due to the locked-in nature of TrustZone. An application developer has to rely

on the platform owner or device manufacturer to include their application in the set of trusted

applications that can run within the trusted execution environment [49, 31, 115]. As each

application that is added to the set of trusted applications increases the trusted computing base,

any vulnerability in one of the trusted applications can compromise the security of the whole

system. Therefore, the use of TrustZone was limited to a small set of applications that provide

trusted services such as biometric authentication, DRM media applications, and cryptographic

key management to other applications on the device. Some of the device manufacturers have

used TrustZone to provide additional security, as in Samsung Knox [37].

To overcome the limitations of TrustZone, Arm introduced Arm Confidential Computing

Architecture (CCA) [93] in Armv9 architecture [94] to run multiple isolated execution environ-

ments within a system. ARM CCA enables independent application developers to create an

isolated and protected environment to run their sensitive applications without relying on OEM

vendors. It provides stronger, hardware-backed confidentiality and integrity guarantees for the

applications running within the trusted environment.

2.4.1 Arm TrustZone

Arm TrustZone extends the Arm architecture to create a hardware-enforced isolated environ-

ment, referred to as a secure world, that protects trusted applications and sensitive data in

the secure world from malicious or compromised software in the normal world. The secure

world runs applications with a separate software stack consisting of a trusted operating system,

independent from the normal world.

ARM TrustZone protects the secure world against an adversary who controls the privileged

software running in the normal world. The adversary can tamper with the host hypervisor or

the operating system to compromise the security of trusted services and data within the secure
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Figure 2.4: Arm TrustZone architecture [8]. Arm TrustZone partitions the physical resources
into two logical worlds, secure and normal. The secure world hosts trusted applications along
with a small trusted kernel, whereas the normal world runs a feature-rich kernel and extensive
applications. The secure world has higher privileges and can access the resources allocated to
the normal world, whereas the normal world does not have access to the secure world.

world.

To protect the secure world, TrustZone partitions hardware resources into secure and non-

secure components. The CPU cores, cache, memory, and system bus are partitioned into logical

components to isolate the code and data in the secure world from the normal world. The code

and data in the secure world are not accessible to the software running outside the secure world.

However, the secure world can map normal world memory to access its contents in the secure

world. The secure world typically runs a small trusted OS (e.g., OP-TEE [31] on Linux, Trusty

TEE based on Little Kernel for Android[49]), and hosts a fixed set of trusted applications that

provide trusted services to the non-secure world. These trusted applications mostly deal with

sensitive, private data.

On the other hand, the normal world hosts a full-fledged operating system referred to as

Rich OS, e.g., Android or Linux, to provide services to the user. It runs feature-rich applications

such as messaging, banking apps, browsers, and a rich graphical user interface.

ARM TrustZone offers four different privilege levels from Exception Level 0, EL0, being the

lowest and Exception Level 3, EL3, being the highest, as shown in Figure 2.4. The processor

can be any one of the privilege levels in both worlds. However, it always executes in secure

mode at EL3 privilege level. A secure monitor or trusted firmware runs at EL3 that handles

transitions between both worlds. A processor running in the non-secure world can switch to

the secure world with the Secure Monitor Call (SMC) instruction that traps the CPU into the

highest privilege level, Exception Level 3 (EL3). The secure monitor saves the CPU context
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and performs a world switch.

ARM TrustZone can protect trusted applications running in the secure world from the

normal world. However, the trusted applications and the trusted operating systems running in

the secure world are still part of the trusted computing base. Any vulnerability in the trusted

operating system or trusted applications can compromise the security of the secure world and

applications running in the normal world [124, 133]. Although the size of trusted operating

systems and trusted apps is small, vulnerabilities have been reported in the past in trusted

operating systems and trusted apps [24, 3].

An optional secure partition manager, introduced in ARMv8.4-A architecture, in the secure

world with EL2 privileges can further partition the secure world into isolated environments such

that trusted applications in the secure world do not need to rely on a common kernel, i.e., each

application can have its own kernel. Therefore, any vulnerability in any one of the kernels

does not affect the trusted applications of the remaining kernels. Furthermore, some of the

functionalities of secure monitor which does not need the highest privileges can be moved to

an isolated environment running with lower EL1 privileges in the secure world.

Although Arm TrustZone provides a good starting point for securing applications and ser-

vices on mobile devices, it lacks sufficient protection to defend against physical attacks due to

the lack of memory encryption. An adversary can probe system buses to leak sensitive data

such as model weights. Further, the dependency on the platform owner to include additional

applications increases the barrier for Arm TrustZone adoption. Due to insufficient security

guarantees, TrustZone is not suitable for securing deep learning models.

Arm fixed the limitations of TrustZone in the following Confidential Computing Architec-

ture, which enables large-scale deployment of trusted applications and private data on the Arm

platform.

2.4.2 Arm Confidential Computing Architecture (CCA)

ARM Confidential Computing Architecture (CCA) enables third-party application developers,

independent of the platform owner and OEM vendor, to run confidential computations on

Armv9-A processors.

Arm introduced Realm Management Extensions (RME) in the Armv9 architecture [83].

RME is a set of hardware and software extensions to create isolated execution environments

called Realms. It introduces two new worlds – realm and root – in addition to the existing

secure and normal world in the Arm TrustZone, as illustrated in Figure 2.5. The realm world

is mutually distrusting with the secure world, i.e., it cannot access the resources of the secure

world, and the secure world cannot access the resources of the realm world.
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Figure 2.5: ARM CCA architecture [83]. It introduces two new worlds, Realm and Root, in
addition to the secure world and the normal world of the Arm TrustZone architecture. The
secure world and the realm world are mutually distrusting, and they communicate through a
secure monitor that runs in a new root world with the highest privileges, EL3.

The Realm world has three privilege levels EL0, EL1, and EL2, similar to privilege levels in

the secure and normal world. All three worlds, secure, normal and Realm, interact through a

secure monitor running at the highest privilege level EL3. As the three worlds need to trust

the secure monitor, it is moved from the secure world in ARM TrustZone architecture to a new

root world of its own.

A Realm Management Monitor (RMM) is a trusted firmware that runs at EL2 privilege level

in the realm world. It creates isolated execution environments referred to as realms. Realms are

confidential virtual machines where kernels run with EL1 privileges and applications with EL0

privileges in the realm world. RMM is responsible for maintaining confidentiality and integrity

between different realms. It exposes a Realm Management Interface (RMI) to the hypervisor in

the normal world to create and manage realm VMs. RMM only ensures the security of realms,

and other management tasks such as CPU scheduling and resource allocation are under the

control of the host hypervisor. The RMM is kept minimal, and all the device virtualisation and

emulation tasks are delegated to the host hypervisor. A hypervisor in the normal world uses

RMI to manage memory and other resources for realms. As the host hypervisor controls the

memory allocation, it may attempt to compromise the confidentiality and integrity of realm

VMs through memory mapping attacks. RMM protects against such attacks by maintaining a

nested page table and verifying RMI requests from the host hypervisor.

To protect the contents of the main memory from physical attacks [167], RME encrypts

the realm world, the secure world and the root world with different encryption keys. It also
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offers an optional Memory Encryption Context (MEC) [84] that can encrypt each Realm with

a separate key.

Arm CCA provides attestation capabilities for the remote application owner to verify the

integrity and confidentiality of the host platform. An attestation report signed by a hardware

root of trust contains measurements of software components that may influence the security

of a realm, such as the secure monitor running at EL3, the RMM running at EL2, and the

VM image. The attestation of the initial realm state provides assurance to the remote owner

that the initial VM image was not tampered with during the deployment. Once the owner

has verified the authenticity of the platform, it can provision sensitive data to the realm VM

required to proceed further.

Further, Arm CCA extends TCB beyond the CPU to include on-SoC peripheral devices in

the trust boundary after authentication. A realm VM can use TEE Device Interface Security

Protocol (TDISP) to authenticate devices [93]. On successful authentication, the device is

assigned to the realm VM, while other software access, e.g., host hypervisor and other realm

VMs, to the device is prohibited. The attested device can DMA into the assigned realm memory.

However, devices outside the SoC must use encryption when communicating with realm VMs

to protect against confidentiality, integrity, and memory replay attacks.

The trusted computing base of a realm consists of the kernel and applications code and data

within the Realm, RMM firmware, secure monitor firmware, Arm CPU and RME hardware

extensions. Other realm VMs and non-realm software, such as firmware of untrusted devices

on the system, privileged code in the secure world, are outside the trusted computing base.

Arm CCA offers another alternative implementation for running confidential virtual ma-

chines similar to AMD SEV and Intel TDX. It relies extensively on the trusted monitor running

at the highest privilege level to ensure the confidentiality and integrity of the realms. Similar to

Intel TDX, it runs the trusted monitor on the main CPU and can implement computationally

expensive security policies.

Arm CCA opens an exciting opportunity for application developers to leverage trusted

execution environments on mobile devices to protect the sensitive portions of their application

from privileged adversaries. It will be interesting to see how realms are incorporated into

the vast array of commodity applications. However, running computationally expensive deep

learning workloads on mobile devices may not be suitable, as it dramatically reduces the battery

life.
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2.5 Nvidia Confidential Compute (CC)

Nvidia Confidential Compute (CC) [107] extends the trust boundary of trusted execution envi-

ronments on CPUs to the GPUs. Nvidia introduced Confidential Compute in the Nvidia Hopper

architecture with H100 GPUs. It supports selected CPU-based TEEs, Intel Trust Domain eX-

tensions (TDX), AMD SEV-SNP and Arm Confidential Computing Architecture, which offers

support for confidential virtual machines. With Nvidia CC, a confidential virtual machine can

securely outsource confidential computing workloads to supported Nvidia GPUs. Nvidia CC

protects the confidentiality and integrity of code and data when it runs on the GPUs.

Nvidia Confidential Compute provides hardware and software features to protect the con-

fidentiality and integrity of confidential workloads on the GPU. It protects the data from

unauthorised software and hardware access from the privileged hosts, hypervisors, DMAs, and

other attached peripheral devices. It employs mechanisms for GPU TEEs to protect against

some of the side-channel attacks from other confidential virtual machines on the same host,

hypervisors, and physical attacks.

Nvidia Confidential Compute assumes that the adversary has limited physical access to the

GPUs. The adversary can snoop hardware interfaces, PCIe bus, NVLink, and DRAM. The

adversary can read and modify data on non-secure shared memory and perform replay attacks

and denial of service attacks.

The host is responsible for managing the resources on the system, including the Confidential

Compute on the GPUs, but it cannot read or write to the protected memory that belongs to

either CPU TEEs or GPU TEEs. The host is responsible for creating and managing both the

TEEs, but cannot access private memory allocated to the TEEs.

The CPU TEE would need to transfer data to the GPU TEE over untrusted channels, such

as PCIe. A malicious host can compromise the confidentiality and integrity of the data when

it is passing through an untrusted channel. To ensure confidentiality, Nvidia CC encrypts the

data before transferring it over an untrusted channel. The CPU and the GPU TEE establish a

symmetric encryption key and place the encrypted data on bounce buffers in untrusted memory,

which can be accessed by the CPU TEE, the GPU TEE, and the host. For integrity, Nvidia

CC uses digital signatures to detect integrity violations during transmission over untrusted

channels.

Nvidia CC offers secure boot and remote attestation similar to CPU TEEs. The GPU

firmware is verified during the GPU boot process to ensure that non-tampered firmware and

microcode that was released and signed by Nvidia is loaded. If the verification fails, the boot

process is halted. During the boot, the GPU attests its authenticity to the host through an
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Figure 2.6: Nvidia Confidential Compute Architecture [107]. Nvidia Confidential Compute
enables support to create trusted execution environments on GPU devices. A confidential
virtual machine running on the CPU can securely communicate with the GPU TEE, and
unauthorised access to GPU TEE memory from the privileged host kernel and hypervisor is
prohibited by the hardware. When the data is sent over untrusted channels, such as PCIe, it
is encrypted to protect against physical attacks.

attestation report. The host can verify that the attestation was signed by the Nvidia GPU

through a hardware-backed key.

A confidential virtual machine or the users must verify the authenticity of the GPU with

confidential compute before running any confidential workload on the GPU. Nvidia provides

remote attestation services, similar to remote attestation services offered by CPU-based TEEs,

for CPU-TEEs and remote owners to verify that the host has correctly set the confidential

compute environment on Nvidia GPUs.

Nvidia CC provides the required security guarantees for running private deep learning work-

loads on public cloud platforms. However, Nvidia CC is available only on server-grade GPUs

with recent architectures starting from Hopper. This leaves earlier GPUs and other hardware

accelerators, which do not support a trusted execution environment, unsuitable for privacy-

preserving deep learning.
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2.6 Conclusion

TEEs are expanding in commercial availability and scope from CPU to peripheral devices. Each

TEE offers different security guarantees due to different trusted computing bases, hardware and

software-based protection mechanisms, and the targeted platform.

However, due to diverse security models and software support, it becomes challenging for

cloud tenants to select the right security solution. For small security-sensitive applications and

code that require maximum protection, such as cryptographic libraries and wallets, biometric

data, authentication modules, and policy decisions can be deployed on Intel SGX due to the

least trusted computing base. However, the application needs to be rewritten or adapted to

be SGX-aware. Existing large business logic and applications, such as databases, web ser-

vices, logging, and monitoring applications, can be deployed on confidential virtual machines

supported by Intel TDX, AMD SEV-SNP, and Arm CCA, as they support unmodified client

workloads. For deep learning applications and workloads that require hardware acceleration,

Nvidia Confidential Compute is the only commercially available option. Based on the recent

advances and commercial availability of TEE on diverse devices, it can be expected that TEE

will be supported by other hardware accelerators in the future.

Currently, not all devices support trusted execution environments, and legacy devices cannot

be retrofitted to include the hardware support required for trusted execution environments.

Therefore, we need innovative solutions to utilise those devices.

This dissertation focuses on Intel SGX as it offers a strong threat model suitable for running

workloads on public cloud platforms and was the only commercial solution available at the

beginning of this work.
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Chapter 3

An Evalutation of Methods to Port

Legacy Code to SGX Enclaves

3.1 Introduction

Intel’s Software Guard Extensions (SGX) [96, 57] technology has now been commercially avail-

able since microprocessors using the Skylake micro-architecture were launched in August 2016.

Using the facilities of the SGX, user-level applications can create enclaves within which they

can place their sensitive code and data. Enclaves are cryptographically secured by the hard-

ware so that an adversary cannot observe the data or the computations with in the enclave.

SGX’s threat model accommodates a powerful set of adversaries, including the most privileged

software running on the system, i.e., the operating system or the hypervisor.

This powerful threat model makes SGX attractive for use in public cloud computing plat-

forms. On such platforms, the cloud provider controls the system software. An adversarial

cloud provider (or a benign one acting under government subpoena) can leverage this control

to completely subvert the confidentiality and integrity of a cloud client. The cloud provider

can peek into and arbitrarily modify the state of a client’s virtual machines or containers. This

makes public cloud computing environments unattractive to clients in several domains that han-

dle sensitive data, such as healthcare and banking. To accommodate clients with such sensitive

computing needs, a number of public cloud providers have begun to deploy SGX hardware in

their data centres, and offer solutions that allow clients to leverage the capabilities of the SGX

to build applications.

A client that wishes to leverage SGX must write its applications to be SGX-aware. An SGX-

aware application will place its sensitive data in enclaves, and ensure that the code that operates

on this data is also placed in the enclave. The SGX hardware places certain restrictions on the
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kinds of instructions that can execute within enclaves, e.g., system calls cannot be executed

within an enclave. Enclave code must be written to respect these restrictions, e.g., by having the

application that created the enclave make the system call on behalf of the enclave. The enclave

code must also take care to ensure that it does not inadvertently leak sensitive data outside the

enclave, and that any sensitive data written outside the enclave is cryptographically-protected

using keys stored within the enclave. Thus, while the SGX hardware offers powerful primitives,

much of the responsibility of ensuring the confidentiality and integrity of enclave data falls on

the application authors.

A number of techniques have been proposed in the literature to allow application authors

build secure enclave applications. These techniques range from those that statically verify the

absence of information leaks from enclave applications [139], programming-aids and libraries

to allow enclave applications to be written easily with encryption of any egress data being

handled by the library [140], and techniques that use programmer annotations on sensitive

data structures to automatically split applications into enclave/non-enclave portions [85]. The

focus of these techniques is to aid authors of enclave applications, writing new code tailored to

use the features of the SGX.

The focus of this work is on frameworks that have been developed to allow legacy code to

execute within enclaves. While several applications have been tailor-built for enclaves (e.g., [131,

117]), this is a resource-intensive process, and application developers may wish to enjoy the

benefits of the SGX without the upfront investment needed to build enclave code from scratch.

These frameworks provide the necessary in-enclave support to allow legacy code to operate

within the constraints imposed by the enclave programming model, e.g., inability to perform

certain operations such as system calls within the enclave. These frameworks broadly follow

three different models:

1 Library OS model. In this model, an entire library OS executes within the enclave. To

port an application within the enclave, the application developer simply loads the application

binary, together with any libraries that it uses, and can execute the resulting binary within

the enclave. As a result, these techniques are able to provide binary compatibility, i.e., unmod-

ified binaries (or only modified to link with the library OS) can execute within the enclave.

Frameworks that implement this model can additionally implement protections against IAGO

attacks [25] (e.g., attacks against the enclave application implemented by adversarial system

software by tampering with return values) by including a suitable shim layer within the library

OS that checks return values. Examples of frameworks that implement this model include

Haven [16], Graphene-SGX [155], and SGX-LKL [118].
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2 Library wrapper model. This model, implemented by Panoply [135], assumes that ap-

plications invoke system services via libraries such as the standard C library (libc). Normally,

these libraries contain the low-level system calls and other sensitive instructions that cannot

be executed within the enclave. Panoply provides library wrappers that enclave-based applica-

tions can link against. An application author can use Panoply by simply modifying the code

that uses the standard C library to instead use Panoply wrappers, which in turn provides the

necessary machinery to cross the enclave boundary.

3 Instruction wrapper model. In this model, wrappers are provided for the low-level

instructions (such as syscall, inb, outb) that are not permitted within enclaves. The wrappers

contain the machinery to cross the enclave boundary, and take care of data protection—they

automatically encrypt all data leaving the enclave boundary and decrypt the ciphertext data

received by the enclave.

On the surface, this model may appear conceptually similar to the library wrapper model;

however, the key difference is the level at which the wrappers are implemented. Because appli-

cations rarely use the low-level instructions such as syscall, inb, outb that are forbidden for

use within the enclave in their raw form, and instead rely on libraries to perform these calls on

their behalf, only the libraries that use these calls need to be modified to use the wrappers. The

application code that invokes these libraries remains unmodified. SCONE [13], lxcsgx [149],

and Porpoise, which is described in this work, use this model.

We present these models in more detail in Section 3.3. Note that while the example frame-

works discussed above have been developed with legacy applications in mind, their main goal

is to implement the heavy-lifting needed to get applications to conform to the constraints im-

posed by enclave programming. The same frameworks can also be leveraged as supporting

infrastructure by new enclave-based applications.

The primary contribution of this work is to evaluate the relative merits of the three methods

above in porting legacy code to SGX enclaves from a software engineering perspective. The

criteria on which we wish to evaluate the methods are:

• How much effort is required to port application code to enclaves in each of these methods?

This criterion measures the amount of effort that it takes a software developer to deploy a

first-cut of an application within the enclave.

• How much flexibility does each method offer the application developer in engineering the

enclave? For example, suppose that the application developer decides to execute some code

outside the enclave for performance reasons, how much effort does the developer need to invest

to port the code in that way using each of the methods?
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• How much trusted code (in addition to the application’s own code) must execute within the

enclave?

• What are the performance overheads imposed by each approach?

We discuss these questions in more detail in Section 3.5. To study these questions, we ported

a number of popular applications (including OpenSSL, Memcached, a Python interpreter, and

a Web server) to SGX enclaves using representative frameworks that implement each of the

models described above: Graphene-SGX [155] representing the library OS model, Panoply [135]

representing the library wrapper model, and Porpoise, representing the instruction wrapper

model. We studied the benefits and costs of each of these methods to port legacy applications.

In addition to answering the above questions, which is the primary contribution of this

work, we also consider the Porpoise prototype as a secondary contribution of this work.

3.2 Background on SGX

SGX enables confidentiality and integrity-protected execution of trusted code in untrusted

software environments [57, 96]. The primary end-user-visible artifact in an SGX system is the

concept of an enclave. An enclave is a linear region of a process’s virtual address space, the

contents of which are protected by SGX from even the most privileged software running on

that hardware platform.

A process creates and initializes an enclave via a set of instructions exported by the SGX

ISA. To create an enclave, the process provides a pointer to a binary executable and instructs

the hardware to initialize the enclave with this binary (which contains the code and data with

which the enclave must start executing). The hardware reserves a region of the virtual address

space for the enclave, and loads up the enclave with this binary. The pages for this portion of

the address space are drawn from a reserved region of physical memory (called the encrypted

page cache). The hardware then obtains a measurement of the enclave (for attesting it to the

entity that started the enclave) and seals the enclave so that any further modifications are not

possible [11].

SGX introduces a new enclave-mode in which the hardware can execute when executing the

code of the enclave. The SGX hardware ensures that the contents of the enclave are visible in the

clear only when the processor is in enclave mode, and the control is within that enclave. When

the processor is in kernel-mode or in user-mode, any code that attempts to access the enclave

will be unable to access the cleartext contents of the enclave. It accomplishes this protection

by encrypting the contents of the enclave with hardware-generated keys, and ensuring that

decryption only happens when the there is a memory access from code executing within the
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Instruction Comment
cpuid, getsec, rdpmc, sgdt, sidt, sldt, str, vmcall, vmfunc Might cause VM exit
in, ins/insb/insw/insd, out, outs/outsb/outsw/outsd I/O fault may not safely recover.

May require emulation.
Far call, Far jump, Far Ret, int n/into, iret,
lds/les/lfs/lgs/lss, mov to DS/ES/SS/FS/GS, pop of
DS/ES/SS/FS/GS, syscall, sysenter

Accessing the segment register
could change privilege level.

workhline lar, verr, verw Might provide access to kernel in-
formation.

enclu[eenter], enclu[eresume] Cannot enter an enclave from
within an enclave.

Table 3.1: Set of instructions forbidden for use within the enclave. Adapted from the Intel
SGX programming manual [64].

enclave.

The process enters enclave mode by executing an EENTER instruction exported by the SGX

ISA. Once the processor is in enclave-mode, the enclave code can freely access data stored both

within the enclave, as well as other user-space memory within the process’s address space.

However, SGX places several restrictions on the instructions that can execute when the

processor is in enclave mode. Table 3.1 lists the set of instructions that are forbidden in

enclave mode. These instructions can either be executed when the process is in user-mode

(e.g., syscall, enclu), or by the privileged system software (e.g., the OS or the hypervisor)

on behalf of the process (e.g., encls, modifications to the registers DS/ES/SS/FS/GS). Thus,

applications written for execution within the enclave must not include these instructions.

The main goal of the enclave-execution frameworks discussed in this work is to enable to

execution of legacy applications within the enclave. Legacy applications are not written with

enclaves in mind, and may include many of these instructions, e.g., instructions such as syscall,

sysenter and int are routinely used within user-space applications to invoke kernel services.

While these instructions are permitted for execution in the processor’s user-mode, they are

not permitted when the processor is in enclave-mode. The main goal of the enclave-execution

frameworks is therefore to enable user-space applications that use these instructions to execute

within the enclave by suitably wrapping the forbidden instructions and forwarding them for

execution outside the enclave.

Once the enclave has completed execution, it exits using the EEXIT instruction, transferring

control back to the user process that entered the enclave. Enclave exits can also happen

asynchronously (called an AEX in SGX). In both cases, the hardware saves the state of the

enclave, scrubs registers, and returns the processor to user-mode.

Threat Model. As is standard with SGX, we assume that the enclave contains sensitive code

and data that must be protected from adversaries. SGX admits a powerful adversary model
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in which even the code of the user-space process that launches the enclave and the privileged

system software (e.g., OS or hypervisor) are untrusted. SGX protects against these adversaries

by encrypting the enclave contents with hardware-managed keys, and decrypting the contents

only when the access is from within the enclave. Decryption is done within the cache-hierarchy

to prevent cold-boot and bus-snooping attacks on the contents of the enclave.

The attacker can attempt to attack the enclave in a variety of ways to compromise con-

fidentiality and integrity. SGX provides confidentiality and integrity protection against such

adversaries using standard cryptographic techniques (albeit implemented in hardware). The

adversary can also attempt to subvert the execution of the enclave by feeding it malformed

input, e.g., to exploit a memory error in the enclave code itself, or by suitably modifying re-

turn values when enclave code interacts with non-enclave code. For example, in IAGO-like

attacks [25], the attacker (OS) convinces the victim (enclave application) to act against itself.

When the enclave application requests random numbers, e.g., reading /dev/random file, the

operating system may return a fixed pattern, e.g., 0x00000000, to mislead cryptographic li-

braries into generating weak keys. Similarly, the operating system may return incorrect or fixed

system time or process ID to alter the enclave execution. Such attacks are a realistic threat,

especially the enclave contains a lot of low-level trusted code. Systems such as Haven [16]

attempt to protect against some such attacks (in particular, IAGO attacks) by implementing a

shim layer that checks the values that cross the enclave boundary. Nevertheless, it is important

to minimize the amount of trusted code running within the enclave. Indeed, this is one of the

metrics on which we evaluate the various enclave-execution frameworks that we consider.

For the purposes of this work, however, we do not consider within our threat model recent

work on hardware-based side channels to subvert SGX (e.g., ForeShadow [160]). While these

attacks constitute a serious threat to SGX, we consider them out of scope for this work, whose

main goal is to evaluate the merits and costs of various approaches to enclave code development.

3.3 Enclave-execution Models

In this section, we present the technical details of the three models that have been proposed

to date in the research community to support enclave-based applications. All the three models

referenced in this section are illustrated in Figure 3.1. For each model, we also qualitatively

discuss the benefits and costs of each model.

3.3.1 Library OS Model

The library OS model for enclave execution was pioneered by Haven [16], and has been fol-

lowed by other open-source prototypes such as Graphene-SGX [155] and LKL-SGX [118]. In
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Figure 3.1: Models to support enclave-based applications.

this model, the enclave consists of the application to be protected and a library OS (e.g., Draw-

bridge [116], Graphene [157], or the Linux kernel library (LKL) [119]).

A library OS implements the abstractions that a traditional OS exposes to applications, but

does so completely within user space. Because the library OS executes in user-space, it cannot

execute privileged operations that can only be executed in the processor’s supervisor mode

(e.g., operations related to protection and isolation, such as switching page tables upon a context

switch). Thus, the library OS interfaces with a small privileged software layer that implements

these privileged operations. This interface between the library OS and the privileged software

layer is typically narrower than the system call layer exposed by the OS to applications, e.g., 38

distinct operations in the interface of Graphene-SGX, 24 in Haven, and 7 in LKL-SGX [118].

The library OS includes wrappers that redirects control to the library OS handlers before it

reaches any of the instructions that cannot be executed in enclave mode (Table 3.1).

From the perspective of an application developer, the experience of running an application

with this model works as follows. The application developer specifies the binary executable that

must be executed within the enclave. This binary executable need not be statically linked with

the libraries that it uses. The application developer specifies the list of all libraries that the

application may potentially use (together with their code). The enclave is initialized with the

code of the library OS, the code of the application, as well as all libraries that the application

may use. Because the library OS contains all the supporting code needed by the application, it
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can link dynamically against any libraries it uses (that are already pre-loaded into the enclave).

The dynamic linker, which also runs inside the library OS, patches up the appropriate symbol

tables at runtime.

From an end-user’s standpoint, the execution of the application proceeds in a manner very

similar to executing the application on a traditional desktop (i.e., without enclaves). It is

important to note that no new code is loaded into the enclave after initialization (SGX’s at-

testation model disallows this) even though the end-user gets the illusion of dynamic linking.

This is because all the code is loaded into the enclave prior to attestation, and the dynamic

linker simply patches up symbol tables as the application references the libraries that it needs

at runtime.

Benefits of the model. We now list the benefits of this model:

• Binary compatibility. This approach offers binary compatibility. The application binary inter-

face is unchanged, so this approach can simply take any standard binary application (e.g., one

that is POSIX compatible), and execute it in the enclave “out of the box.” Binaries need

not even be statically linked, because the approach simulates dynamic linking; the applica-

tion developer need only specify and initialize the enclave with the list of all libraries that the

application may potentially use.

Note that library OS-based prototypes also rely on wrapping low-level instructions (i.e., those

forbidden in enclave execution) that appear within library code. They also rely on the ob-

servation that applications typically invoke the functionality implemented by these low-level

instructions via library calls, which themselves contain these low-level instructions. Thus, an

application developer needs to include enclave-compatible libraries when initiating the enclave.

• Fewer domain crossings. Because the library OS runs within the enclave, several operations

that traditionally execute within the OS can be fulfilled by the library OS itself. For example,

system calls such as getpwd, fcntl, dup and brk require a user/kernel domain crossing on a

traditional system. This is because these operations modify OS kernel data structures that

are shared among multiple applications. In this case, the library OS executes together with

the application that it serves, and this is the only application that it has to serve. Thus, the

operations represented by these system calls can simply be implemented as modifications to

data structures within the library OS, e.g., to an in-enclave file system. These calls do not

modify security-sensitive state of any other applications, and thus do not need to be executed

by privileged system software.

For some system calls, it is important not to cross over from the enclave. For example,

applications typically rely on the OS to provide a source of randomness. Since the OS is
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untrusted, the application can no longer simply trust the results of a getrandom system call

executed by the OS; the OS could simply cheat by providing a poor set of random values,

weakening any cryptographic keys that the application may then generate using these random

values. Instead, the underlying enclave execution framework must leverage other mechanisms

to obtain randomness, e.g., the rdrand x86-64 instruction, which sources randomness from the

hardware.

• Simple enclave interface. On the SGX, all code running outside the enclave is untrusted.

This includes the user-space application within which the enclave is initiated, as well as the

privileged system software layer. As a result, enclaves must typically guard against IAGO-like

attacks [25], in which the untrusted code attempts to compromise the security and privacy of

enclave code by passing malicious return values to calls that cross the enclave boundary.

In the library OS model, the interface to the enclave is conceptually simpler than even the

system call interface on traditional OSes. For example, as discussed previously, among the

three library OS execution models discussed in the literature, Graphene-SGX has the widest

interface, and even that interface consists of only 38 interfaces, as opposed to a few hundred in

a typical system call interface. As a result, on systems that use the library OS model, it is also

easier to design shim layers to protect against IAGO-like attacks.

Costs of the model. The main costs of the library OS model arise from the large TCB size that

executes within the enclave, and the relative inflexibility available to the application developer

to restructure the application:

• Large TCB size. The entire library OS runs within the enclave, amounting to code that is a

few hundreds of thousands of lines within the TCB (we provide concrete numbers in Section 3.5).

As a result, an attacker who targets the enclave-based application has a larger attack surface

to work with, and any vulnerabilities within the library OS or other supporting code become a

liability for the enclave.

• Low flexibility. As proposed and illustrated in the research literature on library OS proto-

types, entire applications execute within the enclave. This offers little flexibility to a potential

application developer who wishes to execute only part of the application within the enclave. For

example, consider an in-enclave Python interpreter—the developer may wish to execute only

the core interpreter loop within the enclave, leaving all the other functionality of the interpreter

outside the enclave. This may either be for performance reasons, or to reduce the amount of

trusted code in the application.

In the library OS model, re-engineering application code is cumbersome at best. The portion

of the application code that executes will need to communicate with the rest of the application,
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but this will involve communicating across the layers of the library OS. This model also com-

plicates the case where two enclave-based applications need to interact with each other. For

example, suppose that a Python interpreter, executing within an enclave, needs to communi-

cate with a key-value store, also executing within an enclave. The two are mutually-distrusting,

and therefore cannot execute as applications within the same library OS (and hence the same

enclave). Thus, they execute in two different enclaves, and each message in a cross-enclave

communication must go through the library OS layers in both enclaves. Graphene-SGX im-

plements this idea in the notion of enclave groups, which are a group of mutually-distrusting,

yet interacting applications, that may have been derived from a common parent process using

a fork.

3.3.2 Library Wrapper Model

To our knowledge, Panoply [135] is the only system that implements the library wrapper model.

Driven by the goal of minimizing the amount of trusted code executing in the system, Panoply

implements library wrappers for in-enclave applications. For example, it implements wrappers

for the standard C library. Applications are compiled/linked against the library wrappers

provided by Panoply. The library wrappers implement the task of marshalling data and passing

it to the library. In Panoply, the library itself executes outside the enclave, and is untrusted.

Benefits of the model. As discussed, the primary benefits of the model are that the enclave

code is extremely lightweight.

• Small TCB size. Among the three models discussed in this work, Panoply offers the smallest

TCB size. However, this comes at the cost of running the library outside the enclave.

• Flexibility to application developer. The application developer has the flexibility to decide

which portion of the application executes within the enclave. The task of splitting an application

is as simple as executing all the enclave code as a separate module, and making a cross-module

call to a function within that code. The enclave code itself is easy to produce, by simply linking

the module against the Panoply library.

Costs of the model. There are three key costs associated with the library wrapper model:

• Securing library execution. In Panoply, the code of all supporting libraries used by the

application executes outside the enclave. This code is untrusted, and can be used by the

attacker to subvert the enclave application, e.g., via IAGO-like attacks. Because the library

wrapper is much larger than the library OS interface, it becomes more challenging to defend

against such attacks.

• Application-level modifications. The Panoply prototype requires applications to be modified
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to leverage its library wrappers. All calls to the library within the application must be modified

by calls to the Panoply library instead. The Panoply authors report modifications on the order

of about a 1000 lines for the benchmarks that they report in their paper.

Conceptually, such changes do not require access to source code, as long as the code is

compiled to be position-independent (which SGX requires). It is possible to implement a

library wrapper prototype that can be incorporated with the enclave application at link time

(or by binary rewriting of the application). Our focus in this work is on the Panoply prototype,

which has a few limitations that necessitate source-level modifications. For example, Panoply

does not support the FILE structure of the standard C library. Any application code that uses

the FILE structure must be rewritten to use a placeholder variable of type int, which is then

translated to the corresponding FILE structure in the library (outside the enclave) via a table

lookup.

Although modifying applications does impose a burden on a software developer wishing

to quickly prototype an enclave-protected version of the application, the resulting engineering

effort may sometimes be used to improve application performance as well. For example, we

observed that the authors of Panoply had significantly modified the code of OpenSSL in the

process of porting it to work within the enclave. For example, aside from the modifications to

use Panoply library wrappers, the Panoply version of OpenSSL also replaces the random number

generation code with calls to the Intel SDK’s random number generator, which in turn calls the

rdrand x86-64 instruction to obtain random numbers. This prevents a domain crossing, and is

also more secure than relying on the underlying untrusted OS to provide random numbers.

• Large and evolving interface. The standard C library has an interface spanning several thou-

sand functions. Moreover, this interface has also been changing as the library implementation

evolves.

To understand the impact of this evolution, we studied the glibc repository and observed

the number of API calls across ten versions of the library, and the number of APIs added or

removed from each version. Table 3.2 presents our results. As this table shows, the library

wrapper interface is over two orders of magnitude larger than the library OS enclave interface,

and evolves significantly over the ten generations that we studied. Consequently, a library

wrapper implementation such as Panoply must also be modified and tailored for each version

of the library.

It is also important to note that standards such as POSIX and ISO only specify the library’s

function-call interface, but leave unspecified the definitions of data structures (e.g., the FILE

data structure). These data structures can change from one library version to another even if
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#Version # API size # added/removed
2.20 2021 +1/-2
2.21 2023 +2/-0
2.22 2032 +9/-0
2.23 2043 +12/-1
2.24 2046 +3/-0
2.25 2058 +13/-1
2.26 2073 +32/-17
2.27 2110 +37/-0
2.28 2126 +18/-2
2.29 2128 +2/-0

Table 3.2: The evolution of the standard C library (glibc) interface across several versions. This
table shows the number of API calls in each version, and the number of API calls added (+)
or removed (-) from the prior version.

the interface remains POSIX or ISO-compliant. Changes to these data structures will require

modifications to the library wrappers to suitably marshal/unmarshal the data as it crosses the

enclave boundary.

3.3.3 Instruction Wrapper Model

The instruction wrapper model works by providing wrappers for instructions that are forbidden

for use within the enclave, i.e., the instructions in Table 3.1. The wrappers perform marshaling

of arguments, and forward them to supporting code outside the enclave, which executes the

instructions on behalf of the enclave. In contrast to the library wrapper model, the marshaling

happens at a much lower level of abstraction, i.e., at the level of registers and memory.

In theory, this approach can be made to work on arbitrary binaries by replacing all oc-

currences of the instruction in the enclave code with the wrapper. However, practical im-

plementations of the instruction wrapper model, including SCONE [13] and Porpoise make

the observation that applications rarely use these instructions in their raw form. Rather, the

applications are programmed to use libraries, which in turn execute these low-level instruc-

tions on their behalf. Thus, they wrap the occurrences of these instructions within the library.

Applications simply link against these libraries to leverage the instruction wrappers.

Benefits of the model. This approach is conceptually similar to the library wrapper model and

shares some of its benefits. The main difference between this models and the Panoply prototype

is that the standard C library executes within the enclave. As a result these approaches have

a somewhat larger TCB than Panoply.

The primary benefit of this model over Panoply is that it is that by implementing wrappers

at a much lower level (i.e., wrapping instructions rather than providing library call wrappers),

it works on a much slower changing interface. To take an example, we consider the syscall
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#version # system calls # system calls added
v4.15 333 0
v4.16 333 0
v4.17 333 0
v4.18 335 2
v4.19 335 0
v4.20 335 0
v5.0 335 0
v5.1 339 4
v5.2 345 6

Table 3.3: Evolution of the system call interface across versions of the Linux kernel

instruction, which is used to implement system calls. Naturally, the wrappers for the syscall

instruction depend on which system call is being invoked (e.g., because the number of arguments

to each system call are different). As Table 3.3 shows, the system call interface on Linux is

both much narrower and much stabler over kernel versions as compared to the glibc interface

(which was shown in Table 3.2).

The instruction wrapper model executes libraries within the enclave. Thus, unlike with

Panoply, libraries can be trusted. However, this model must still implement a shim to protect

against IAGO-like attacks on the (much narrower) instruction return interface. This model does

not require invasive application-level modifications for rapidly creating an in-enclave prototype.

However, application-level modifications may be necessary to optimize its performance, and as

our evaluation shows, the instruction-wrapper model also lends itself well to any future re-

engineering of the application.

Costs of the model. The primary costs of the model are that it has a somewhat larger TCB

than Panoply (although a much smaller TCB than the library OS model). Applications also

need to be re-linked to use libraries in which the low-level instructions forbidden within SGX

enclaves are wrapped.

3.4 Porpoise: An Instruction Wrapper Prototype

Our goal in this work is to quantitatively evaluate the benefits and costs of the library OS, library

wrapping and instruction wrapping approaches to port code to enclaves. While we could find

open-source prototypes representing the library OS and library wrapping approaches, the source

code for SCONE [13], which implements instruction wrapping, was not available (SCONE is the

basis for a commercial offering from scontain.com). We therefore built our in-house prototype,

called Porpoise, for our evaluation. In this section, we describe, in brief, the implementation of

Porpoise and some key challenges we had to overcome in its implementation.

Porpoise is implemented as a set of modifications to musl-libc [106] version 1.1.9. As
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Figure 3.2: Design of an enclave-based application that uses Porpoise. Porpoise consists of the
trusted in-enclave shim, and an untrusted shim outside the enclave (shown in gray).

discussed in Section 3.3.3, we make the assumption that applications do not directly invoke

the raw low-level instructions, but rather rely on libraries for doing so. musl-libc is an API-

compatible implementation of the standard C library that is much more modular and easier to

modify than its counterparts such as glibc.

Figure 3.2 depicts an enclave that uses Porpoise to support an enclave application. Porpoise

relies on the Intel SGX SDK (version 2.7.1) [66] for various standard tasks such as enclave

initialization, ecalls (calls to the enclave from outside), ocalls (calls from the enclave to the

outside), maintaining the thread-control structures, the state save area and other structures

that are part of the SGX’s hardware/software interface. The hardware uses these structures

to store the state of registers when it exits the enclave, so as to protect them from untrusted

code outside the enclave. The Intel SGX SDK also has some untrusted support code outside

the enclave that the untrusted code in the process uses to interact with the enclave. The core

functionality of Porpoise is implemented in two shim layers: a trusted shim that runs within

the enclave, and an untrusted shim that facilitates the interaction of the enclave with the rest

of the user process.

The trusted shim layer is implemented as a set of wrappers around the evaluation of syscall

instructions in musl-libc. The shim is responsible for marshaling data outside the enclave. It

creates a copy of the system call’s arguments to buffers in the untrusted shim layer, and transfer

control to the untrusted shim layer. Correspondingly, the untrusted shim unmarshals the data

outside the enclave, and performs the system call on behalf of the enclave. Once the system

call returns, the untrusted shim returns control to the enclave with any return values from the

system call stored in buffers outside the enclave. The trusted shim copies data back from the
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untrusted shim layer, and unmarshals the data for consumption by the enclave. Logically, our

shim is structured as wrapper around occurrences of the syscall instruction in musl-libc,

with a case analysis based on the system call number, to determine the number of arguments

to be copied.

Because the trusted shim is the portion of the enclave that interacts with the untrusted

world, it is also logically the place where filters that detect IAGO-style attacks can be imple-

mented. Our Porpoise prototype currently only has wrappers for IAGO-style attacks largely

similar to the file-system shield and network shield described in the SCONE paper [13].

Porpoise’s trusted shim provides encryption by default for data that exits the enclave. Each

piece of data that is not required for executing the system call is encrypted with keys managed

by the trusted shim. However, we cannot encrypt all the arguments to the syscall instruction,

e.g., the system call number itself cannot be encrypted. Similarly, an enclave that interacts

with the file system outside must be able to name the file, which must be sent in the clear

(although the bytes sent to the file can be encrypted). For each system call, Porpoise’s trusted

shim encrypts the arguments that are not needed for the execution of the system call outside the

enclave (e.g., data blocks are not modified by the system call, and are therefore sent encrypted.

We note here that a number of papers have proposed oblivious file systems for enclaves [100,

6] that even hide the name of the file from the untrusted code. This is required to prevent the

untrusted code from making inferences about the file accesses made from within the enclave.

We do not consider these techniques to be within the scope of Porpoise for the purposes of

the present work, which is to evaluate the merits and costs of different ways of porting code to

the enclave. However, Porpoise is extensible, and such algorithms can be incorporated within

Porpoise as well.

We structured our implementation of the trusted shim by creating a simple send/recv

interface (as was also discussed in prior work [140]). Each argument of the system call is

wrapped with a send user call, whose API is as follows:

send user (void *enclbuf, void *userbuf,

ssize t size, int prot)

The first two arguments point to the in-enclave source buffer containing the data and the

buffer within the untrusted shim to receive the data, respectively, size denotes the amount of

data to be copied, and prot determines whether the data in the buffer should be encrypted

on its way out. We use AES in CTR mode with 128 bit keys for encryption. A corresponding

recv user call obtains data on the return path.

Porpoise incorporates support for 145 system calls (of the total of 325 system calls in

Linux-4.4.0-169). While we have plans to add support for the remaining system calls, prior
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work [158] indicates that system calls vary in terms of importance (based on their usage in

real-world packages). Indeed, we did not encounter these system calls in any of the application

benchmarks that we studied. We now discuss the technical challenges that Porpoise overcomes

in the implementation of some system calls.

• In-enclave threading. Porpoise supports multi-threaded applications via the pthreads API.

Although Intel SGX supports multiple threads of execution within the enclave, it does not allow

thread creation from within the enclave. Rather, an application has to pre-declare the number

of enclave threads that it would like to support, and the application creates this number of

threads in untrusted code. Each of these threads can enter the enclave in fresh thread context,

thereby creating the illusion of a multi-threaded enclave. Thus, each enclave thread will have

an associated counterpart thread in the untrusted user-space process.

Porpoise’s pthread-compatible threading model has to work within the constraints of SGX.

The pthread library uses the clone and arch prctl system calls to create new threads. The

clone system call is used to create a thread, while the arch prctl is used to modify the %fs

and %gs registers, which point to structures that store the thread state. For instance, each

thread has its thread-local structure (that we will call thread data) that stores a pointer to

the base of the thread’s stack, the thread ID, signal mask, canaries, and so on. The %fs register

is used to point to this structure of the currently executing thread. Both the %fs and %gs

registers can only be modified when the processor is in supervisor mode, and they cannot be

modified in user- or enclave-mode. They can be read irrespective of processor mode.

Within a traditional process, pthread uses the arch prctl system call to set the %fs register

to point to the thread data of the thread that is currently executing. This thread data

structure resides in a memory location within the process’s address space. The key difficulty

with wrapping arch prctl is that if the wrapper simply performs the equivalent operation

outside the enclave within the user process, the resulting call will set the %fs register within

the user-space. The kernel cannot access enclave memory, and therefore cannot change the

pointer to the thread’s state inside the enclave.

We address this problem as follows. As discussed earlier, the Intel SGX does not allow

threads to be created within the enclave itself. Rather, the application must pre-declare the

number of enclave threads it intends to use, and the enclave is initialized accordingly. Internally,

the Intel SGX SDK maintains an in-enclave thread control structure for each thread . This is

akin to the thread data structure for traditional user-space threads, but is required for in-

enclave bookkeeping of the thread.

Porpoise maintains a table that associates the in-enclave thread-control structure for each
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Application Description
bzip2-1.0.6 File compression utility
memcached-1.5.20 Key-value store
openssl-1.0.1m OpenSSL cryptography library
h2o-2.0.0 HTTP Web server
cpython-3.7 Python interpreter in C

Table 3.4: Applications used in our evaluation.
enclave thread with the corresponding thread data structure of that enclave thread’s user-

space counterpart. As the wrapped arch prctl call updates the pointer to the thread data

structure in the process (by modifying the %fs register), Porpoise identifies the corresponding

in-enclave thread to which this %fs corresponds, and updates the thread-control structure to

resume executing that thread during enclave entry (without exiting the enclave).

A related problem happens with other data structures of the pthread library, where the

kernel directly modifies data structures. For example, the kernel modifies the detach state

data structure in the pthread library to denote the current state of a thread (e.g., EXITED,

JOINABLE, . . .). On an enclave-based system, this data structure cannot be stored within the

enclave, because it will not be accessible to the kernel. Porpoise addresses this problem by

maintaining two copies of the data structure: one within the enclave, and one in the user-space

process. As the kernel modifies the data structure within the process, Porpoise modifies the

corresponding copy within the enclave.

• brk and dynamic memory allocation. The current version of Intel SGX does not allow

dynamic memory allocation within enclaves, although this has been proposed for future versions

of SGX [165]. Instead, the Intel SGX SDK implements functionality that simulates the effect

of dynamic memory allocation. It pre-allocates a certain amount of memory for use by the

enclave, and maintains an internal break point to denote the top of the heap. This break point

is modified by a “malloc” call that simply returns memory by modifying this break point.

We redirect brk system calls to this implementation to offer the illusion of dynamic memory

allocation for legacy applications.

3.5 Evaluation

We now quantitatively evaluate the costs and benefits of the three models discussed in the

previous section. Our methodology is as follows: We consider one concrete prototype as a

representative of each model—Graphene-SGX for the library OS model, Panoply for the library

wrapper model, and Porpoise for the instruction wrapper model, and port a suite of applications

(see Table 3.4) to enclaves using each of these models (not all applications work in all settings,

as we will see) to answer the following research questions:
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Application Graphene-SGX Panoply Porpoise

Bzip2 " " "

Memcached " $ "

OpenSSL " " "

H2O " " "

Cpython " $ "

Table 3.5: Evaluating the ability to port applications to enclaves using each framework (RQ1).

(RQ1) Porting effort. From an end-user’s point of view, what is the effort required to port

the application and get it running within the enclave?

(RQ2) Application re-engineering effort. Suppose that an application developer wishes to

re-engineer the application by deciding that he only wants to run a portion of the application

within the enclave. After the application developer has decided what code to run within the

enclave, what is the amount that he needs to invest to get the code running within the enclave?

(RQ3) TCB size. How much trusted code runs within the enclave, in addition to the appli-

cation’s own enclave code?

(RQ4) Runtime performance. What is the runtime performance overhead of each of these

approaches, and how do they compare to native execution (i.e., executing the code without

enclaves)?

3.5.1 RQ1: Porting Effort

To answer RQ1, we attempted to port the applications from Table 3.4 using each of the three

methods. For this research question, we ported the entire application to run within the enclave.

The application that starts the enclave is simply a dummy main function, that starts the

application, but then has no further role to play in the execution of the application. Other

than this main function, only the untrusted portion of the Intel SGX SDK, and any other code

required by the framework (e.g., the untrusted shim of Porpoise) run in user-space. Table 3.5

presents the results of our experiments.

Of the three methods, Graphene-SGX provides the smoothest porting experience. We sim-

ply wrote a manifest file that describes (among other things) the set of libraries used by the

benchmark, and Graphene-SGX is able to execute the applications.

The effort to port these applications to run with Porpoise is comparable to that of Graphene.

We only had to compile the application with Porpoise’s version of musl-libc, and build it as a

statically-linked, position-independent binary. We could port all five applications successfully

to Porpoise.

Panoply is the most cumbersome of the three approaches to which to port applications. In
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fact, the authors of Panoply themselves ported OpenSSL (version 1.0.1) and H2O (version 2.0.0),

and reported having to modify 307 SLOC and 154 SLOC in these applications, respectively. In

our experiments, we used the same code-base for OpenSSL and H2O as provided by the authors of

Panoply. As a result, we chose OpenSSL version 1.0.1 and H2O version 2.0.0 for our experiments

with Graphene-SGX and Porpoise (so that we could compare them across the same versions for

our research questions), even though both Graphene-SGX and Porpoise can execute the latest

versions of both OpenSSL and H2O.

To understand the complexity of porting an application afresh to Panoply, we attempted

to port Bzip2 from scratch. We found that Bzip2 uses 10 API calls from the standard C

library that were not wrapped in the Panoply prototype available to us (Panoply currently has

about 250 wrappers implemented); we therefore implemented these 10 wrappers. However, we

were still unable to successfully run Bzip2. Further investigation revealed that Bzip2 uses the

FILE structure in its code. The FILE structure includes a pointer. Panoply does not currently

support such structures that have pointers in them as part of its library wrapper interface.

Instead, it maps each FILE structure to an index (of type int), and uses the index as part of

the library wrapper. The Panoply code outside the enclave uses the index to look up the FILE

structure, now maintained outside the enclave, and performs the operation. We therefore had

to modify Bzip2 to replace all occurrences of the FILE structure with an index instead. In

all, this and other changes required 149 SLOC of modifications to Bzip2. Given this rather

cumbersome and time-consuming experience attempting to port Bzip2 to Panoply, and the

number of invasive changes needed to its source code, we did not attempt to port Cpython and

Memcached to Panoply, because they use many more interfaces from the standard C library.

Summary (RQ1): The library OS and instruction-wrapping approaches provide a

seamless enclave-porting experience. The library-wrapping approach, as implemented by

Panoply, requires modifying a few hundred lines of code within the application.

3.5.2 RQ2: Application Re-engineering Effort

While RQ1 concerned the effort to port an application in its entirety into the enclave, RQ2

concerns the effort that an application developer would invest to port an application after

deciding to re-engineer it. For example, an application developer may decide that it is not

necessary to execute the entire application inside the enclave, and that it suffices to execute

just certain security-critical parts of it within the enclave. RQ2 asks the following question:

how different is the experience in building enclave code with each of these frameworks after

such application re-engineering?
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Application #Interfaces SLOC added

Bzip2 3 29
OpenSSL 1 8
Cpython 24 277

Table 3.6: Number of new interfaces required and code added for application re-engineering
with Porpoise (RQ2)
. The research literature does contain examples of tools that assist with such porting, notably

Glamdring [85] and the gcc-based tool described by the authors of lxcsgx [149]. These tools

assist the programmer with the core task of re-engineering the application. Given a specification

of sensitive data that must be protected (e.g., in the form of annotations), and hence execute

within the enclave, these techniques use static taint analysis to identify the other dependent

code that must also execute within the enclave. Note that these tools assume the existence of

an enclave execution framework.

Our goal in RQ2 is not to identify the sensitive data that must execute within the enclave

or assess the difficulty of splitting the application. Rather, assuming that a suitable split has

been identified, we wish to determine how much effort it is to re-engineer the application after

such a split has been identified. We assume that the split is identified at the function-level

of granularity, i.e., certain functions have been identified to execute within the enclave, while

the rest execute within the untrusted code. Because we manually analyzed the applications

to identify this split for RQ2, we restricted ourselves to three of the application benchmarks,

viz., Bzip2, OpenSSL, and Cpython, as described below.

• Bzip2. We split Bzip2 so that only the main file compression algorithm executes inside the

enclave. This results in an enclave interface of three functions, BZ compressInit, BZ2 compress

and BZ2 compressEnd, with which the the re-engineered Bzip2 application interacts with the

compression algorithm

• OpenSSL. We moved the functionality that generates RSA keys to the enclave. The enclave

interface to do so consists of just one function, (genrsa main).

• Cpython. The Cpython application consists of code to parse, compile and then interpret

an input python program. In real-world settings, the interpreter is responsible for running the

python code on sensitive data. Therefore, we decided to port only the interpreter to the enclave.

The interpreter’s enclave interface has 24 functions.

We only re-engineer our benchmarks to execute atop Porpoise and Panoply (only atop

Porpoise for cpython), where the effort to build the enclave part of the code after splitting is

comparable. This is because both Porpoise and Panoply have a similar enclave/non-enclave
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filename: enclave.edl

public ecall_PyArena* PyArena_New(void);

filename: pythonrun.c

PyArena * ecall_PyArena_New(void);

#define PyArena_New ecall_PyArena_New

filename: function_wrapper.c

PyArena* ecall_PyArena_New(void){

PyArena *ret = NULL;

sgx_status_t status = SGX_SUCCESS;

status = ecall_PyArena_New(enclave_id, &ret);

// ret will point to a buffer that stores

// the return value from the enclave

assert(status == SGX_SUCCESS);

return ret;

}

Figure 3.3: Example of new code required to introduce an enclave interface in Cpython with
Porpoise (RQ2).

interaction interface.

Figure 3.3 shows the new code that we write to create a new enclave interface in Porpoise

for the Cpython application. As this code shows, an application that wishes to invoke a func-

tion in the enclave interface must simply perform an ecall to that function together with its

arguments, and the enclave ID. A new entry for this interface is also included as part of the

enclave’s interface definition file. Table 3.6 shows the number of lines of such code that we had

to write in total to create enclaves for each of the re-engineered applications.

We did not attempt to re-engineer our benchmarks to run atop Graphene-SGX. This is

because Graphene-SGX was originally designed to run applications in their entirety within the

enclave. This is reflected in the design of their enclave interface, which is a low-level interface

that communicates with a platform-specific adaptation layer (called the Graphene-PAL). By

design, the Graphene-PAL invokes a fixed entrypoint inside the enclave, typically the equivalent

of the start function in a traditional application. As a result, re-engineering an application to

work atop Graphene-SGX, with part of its code running in the enclave, would require invasive

changes to the Graphene-SGX platform itself—an activity that we did not wish to undertake,

since our goal is to understand the platforms as-is.

It would be possible to re-engineer an application atop Graphene-SGX, so that the sensitive

portion runs in its own process (with its own enclave), and interacts over IPC with the remaining

parts of the application. However, this would require a fundamental rewrite of the application

to make it a distributed client/server system. We view this change as being rather invasive to
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Graphene Panoply Porpoise
Component SLOC Component SLOC Component SLOC

Trusted Code
LibOS 31,742 Panoply shim 14,506 Porpoise shim 1,934
glibc-2.27 1,222,912 - musl-1.1.9 82,978
- Intel SDK 119,545 Intel SDK 119,545

Untrusted Code
Graphene PAL 40,493 Panoply shim 3,004 Porpoise shim 1,209

Table 3.7: Amount of trusted (and untrusted) code that executes within each of the frameworks
(RQ3).

the application’s code base, and therefore do not evaluate this method.

Summary (RQ2): The effort required to re-engineer applications with the library-

wrapping and instruction-wrapping models is similar. The enclave interface exposed by

library OSes does not facilitate easy re-engineering of the application into an enclave and

non-enclave portion.

3.5.3 RQ3: TCB Size

We evaluated the amount of trusted code that must execute within the enclave for each of

the three frameworks. For RQ3, we did not consider the trusted code of the application itself

(i.e., its enclave code), because that number would depend on the application itself, and how

the developer has decided to engineer the enclave. Rather, we only consider the code that is

core to the framework itself. In addition, both Panoply and Porpoise use the Intel SGX SDK

to bootstrap basic enclave functionality (Graphene-SGX does not), and this code is therefore

part of their trusted code base. SCONE [13], an instruction-wrapping framework, also does not

use the Intel SGX SDK within the enclave, relying instead on a home-grown library for basic

enclave functionality. The source code for SCONE is not publicly available, but their paper

reports a TCB of size of approximately 187,000 lines of code for the version of SCONE that

implements shielding against IAGO-style attacks.

Table 3.7 presents the results of our evaluation. It shows the number of lines of trusted

code that executes in each of these frameworks (measured using the sloccount utility). It also

shows the amount of untrusted support code provided by the infrastructure (i.e., the code that

executes outside the enclave, and interacts with the enclave).

We see that Panoply emerges as the framework that reduces the amount of code that

executes within the TCB. However, they do this at the cost of implementing wrappers at the

library level of abstraction, which means that many more wrappers have to be written and
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Application Workload
Bzip2 zipping and unzipping files of various sizes

Memcached memtier benchmark [98]
OpenSSL HMAC (md5), DES-CBC, AES-256-CBC, SHA-256, MD5, RSA-2048-sign and RSA-

2048-verify from OpenSSL speed benchmark
H2O wrk2 http workload generator [164]

Cpython benchmarks from pyperformance using timeit

Table 3.8: Workloads used to run applications (RQ4).

that these wrappers have to evolve as the libraries evolve. Recall from Table 3.2 and Table 3.3

that the library API evolves much more than the relatively-stable system-call API. Thus, while

Porpoise has more trusted code (in particular, the musl-libc library, which it modifies), its

interface is more stable and requires fewer changes as the code evolves. Graphene-SGX requires

the most trusted code, because it includes the library OS in the enclave.

Summary (RQ3): Library-wrappers, as implemented in Panoply, require the least

amount of support code within the enclave. However, this code must also evolve to support

changes to the library API. The instruction-wrapper approach requires more code within

the enclave, but is likely to be stabler with respect to code evolution. The library OS

approach requires the largest amount of trusted code within the enclave.

3.5.4 RQ4: Runtime Performance

We conducted experiments to understand the runtime performance implications of the three

models. We studied both the overall performance impact on the applications that we ported,

as well as microbenchmarks to stress the enclave/non-enclave interface.

We conducted all our experiments on an Intel(R) Core(TM) i7-7700 CPU (3.60GHz) with 4

cores and 2 threads per core (8 hyper-core) and an 8192KB cache and 16GB of RAM. We used

Ubuntu 16.04 LTS (Linux 4.4.0-169) as the underlying OS for Graphene-SGX, Panoply and

Porpoise. (Panoply works only atop Linux 4.4.0-169; we therefore used it for our evaluation.

However, Porpoise works even on the latest version of the Linux kernel (5.3.8).) For experiments

with our application benchmarks, we run the entire application within the enclave under each

of the frameworks. However, we are unable to report performance numbers for each application

on all frameworks, because we were unable to port all the applications to Panoply. Table 3.8

shows the workloads with which we ran the applications, while Table 3.9 reports the results of

our experiments

Table 3.9 shows the performance of each of the applications, running the benchmarks from

Table 3.8 on Graphene-SGX, Panoply (where applicable), and Porpoise. It also shows the

native performance of the application, i.e., when run outside the enclave. We find that across
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Figure 3.4: Time taken by Bzip2 to compress and decompress files of various file sizes with
each framework.

the benchmarks, neither Graphene-SGX, Panoply nor Porpoise consistently outperforms the

other. For example, on Memcached and H2O, Porpoise provides higher throughput and lower

latency than Graphene-SGX. However, Graphene-SGX outperforms Porpoise on Bzip2 and

Cpython.

The Bzip2 benchmark reads files in fixed-size chunks as it passes the file contents to the en-

clave. Thus, as the file size increases, the number of enclave/non-enclave interactions increases.

However, Graphene-SGX, being a library OS implements file caching techniques, which fulfil

some of the read requests, thereby ameliorating the number of domain crossings required. For

the Bzip2 benchmark, Panoply offers performance roughly comparable to Graphene-SGX, both

outperforming Porpoise, especially as file sizes increase, Figure 3.4. This is because Porpoise

executes the standard C library inside the enclave, in contrast to Panoply, which executes it

outside the enclave. A number of library calls such as fopen, read, and so on, result in multiple

domain crossings for Porpoise, and the number of such domain crossings increases with file size.
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Figure 3.5: Throughput of popular cryptographic functions with different enclave porting frame-
works.

In contrast, the number of domain crossings does not grow proportionally with the file size in

the case of Panoply, thus explaining the performance difference.

For OpenSSL, we found that Panoply outperforms both Graphene-SGX and Porpoise, Fig-

ure 3.5. This is because the version of OpenSSL ported to Panoply makes extensive changes

to optimize the performance. For example, as explained earlier this version replaces the ran-

dom number generation code included in the OpenSSL release with calls to sgx read rand, a

function provided by Intel SGX SDK, which uses the rdrand hardware instruction to source

randomness.

Both Memcached and H2O run I/O intensive workloads, making them both network-bound.

For both these benchmarks, we find that Graphene-SGX is significantly slower than Porpoise in

terms of both throughput and latency. In case of H2O, the version running atop Graphene-SGX
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Figure 3.6: Performance of Memcached on Memtier workload running 4 threads, 50 connections,
and 10,000 requests per client.

saturates at around 10,000 requests per second, with all requests exceeding that threshold being

dropped by the Web server. The latency is also rather large, at 132ms per request. Both the

versions running atop Panoply and the Porpoise are able to sustain a larger number of requests

per second, however, the Panoply version saturates at around 33,000 requests per second,

offering a latency of more than 1 second per request. The version running on Porpoise saturates

above 40,000 requests per second. With Memcached, the version on Porpoise outperforms the

version on Graphene-SGX even as we vary the number of server threads, as shown in Figure 3.6.

For the Cpython benchmark, both the Graphene-SGX and Porpoise have similar perfor-

mance on the pyperformance benchmark as shown in Figure 3.7.

Evaluation with Microbenchmarks. To understand the raw overheads of enclave crossings

imposed by each of the frameworks, we also evaluated them with microbenchmarks. Our

microbenchmarks consist of enclave code that cause an enclave crossing by requesting the

execution of a system call a million times. We considered a set of system calls shown in

Table 3.10.

We find that Graphene-SGX offers the best performance for sequential read operations,

comparing favourably even with native performance. This is because Graphene-SGX, being

a library OS, implements several file caching techniques that avoid costly domain crossings.

However, the benefit of these optimizations does not apply when the read operations seek

to random locations in the file, as shown in Table 3.10. In this case, both Porpoise and
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App Workload Graphene-SGX Panoply Porpoise Native (no enclaves)

Bzip2

File size (MB) Time (s) Time (s) Time (s) Time (s)

16 4.134 9.410 5.585 1.979
32 7.212 12.738 9.592 3.971
64 11.732 17.688 17.850 7.957
128 21.157 27.690 36.438 17.373
256 44.347 49.921 67.302 32.578

Memcached

Memtier
Params

Throughput (MBps), Latency
(ms)

Throughput
(MBps), Latency
(ms)

Throughput (MBps), Latency
(ms)

Throughput (MBps), Latency
(ms)

memtier is config-
ured to run with
4 threads, 50 con-
nections/thread,
10,000 req/client

Threads Throughput Latency

1 0.4 9.77
2 1.15 3.83
3 1.67 2.52
4 2.37 1.81
5 2.42 1.86

N/A

Threads Throughput Latency

1 2.11 2.73
2 4.24 1.70
3 6.46 1.17
4 8.23 0.79
5 7.78 0.78

Threads Throughput Latency

1 6.46 0.95
2 12.38 0.51
3 17.83 0.39
4 16.34 0.41
5 11.32 0.49

OpenSSL

Workload Throughput (KBps) Throughput
(KBps)

Throughput (KBps) Throughput (KBps)

HMAC (md5) 390,626 416,091 381,300 455,747
DES-CBC 103,768 97,886 103,723 103,883
AES256-CBC 250,578 135,932 250,406 259,107
SHA-256 188,996 238,508 183,482 186,413
MD5 242,736 405,965 242,270 373,865
RSA-2048-sign 303 ops/sec 1284 ops/sec 305 ops/sec 327 ops/sec
RSA-2048-
verify

14,540 ops/sec 37,678 ops/sec 14,562 ops/sec 14,893 ops/sec

H2O

Requests/sec Latency (ms) Latency (ms) Latency (ms) Latency (ms)

10,000 132 1.61 1.28 1.29
20,000 * 1.61 2.30 1.32
30,000 * 2.65 1.93 1.36
40,000 * > 1 sec 18.21 1.77
50,000 * > 1 sec > 1 sec > 2.13

Cpython

pyperformance Time (ms) Time (ms) Time (ms) Time (ms)

html5lib 260 269 106
pyres 1940 1980 890
json load 0.348 N/A 1.030 0.171
float 432 396 122
fannkuch 1805 1806 566

Table 3.9: Comparing the performance of various application benchmarks running atop
Graphene-SGX, Panoply and Porpoise (RQ4). Memcached and Cpython are not available atop
Panoply (see Table 3.5).

56



html5lib pyres float frannkuch
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

T
im

e
(m

s)

Graphene-SGX Porpoise Native (no enclave)

Figure 3.7: Execution time for pyperformance benchmarks.

syscall Graphene-SGX Panoply Porpoise Native

read (sequential) 0.405 3.133 4.295 0.209
write 13.268 3.471 4.742 0.609

open+close 24.946 6.973 9.192 1.103
lseek+read 3489.270 6.186 8.637 0.716
gettimeofday 4.134 2.479 3.668 0.019

getpid 0.0707 2.549 3.9308 0.0022

Table 3.10: Measuring the performance of the frameworks using microbenchmarks. The time
reported (in seconds) is for 1 million executions of the system calls (RQ4).

Panoply outperform Graphene-SGX. Graphene-SGX also offers poorer performance for write

and open+close, likely due to the additional operations within its shield. The performance of

Panoply and Porpoise is roughly comparable.

Summary (RQ4): No one model appears as the clear favourite with respect to runtime

performance. Using a library OS can provide the benefits of file caching for some appli-

cations. Both the library-wrapping and instruction-wrapping models perform better for

network-bound applications than the library OS model.
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3.6 Discussion on Other TEEs

Some of the insights from this work can apply to other TEEs as well. In the case of VM-

based TEEs, e.g., Intel TDX, AMD SEV, and Arm CCA, they will face challenges similar

to library OS models. Developers will be able to quickly port their workloads due to native

binary execution in a VM-based environment. However, they won’t be easily re-engineer the

application as the entire workload executes within the VM. The overall system will have a larger

attack surface due to the inclusion of the guest kernel in the TCB of the application. Recent

work [102] performs an empirical evaluation of Intel TDX and AMD SEV-SNP, and reports the

performance of confidential virtual machines against native virtual machines. The performance

of the confidential virtual machine is impacted due to the cryptographic operations.

Porting applications to Arm TrustZone is challenging as it runs a separate minimal operating

system. As Arm TrustZone also has fixed protected memory similar to Intel SGX, splitting

the application would be challenging, as there is a narrow interface between the secure world

and the normal world. However, due to the minimal trusted operating systems, the TCB

of the trusted application would be smaller than the standard confidential virtual machine.

However, the main memory is not encrypted, which makes trusted applications prone to physical

attacks [142, 78, 53, 52, 167, 95]. Recent work [60] reports a performance comparison between

Arm TrustZone and Arm CCA. Both of them have similar performance on memory and CPU-

intensive workloads, but Arm CCA outperforms Arm TrustZone on file system workloads.

3.7 Conclusions

No clear consensus has emerged thus far in the community on the right abstractions for enclave

programming, especially as concerns porting legacy code to enclaves. We considered the three

models that have been proposed in the research literature, namely the library OS, library-

wrapping and instruction-wrapping models. Based on our experience porting a number of

application benchmarks to Graphene-SGX, Panoply, and Porpoise, we conclude that the choice

of the enclave programming model to be used depends on the factors that application developers

wish to optimize for:

• Rapid prototyping. Developers may wish to quickly prototype an in-enclave version of their

application. This can serve as a stop-gap solution that provides the benefits of enclaves as a

team develops a version of the application customized for the enclave. The library OS and

instruction wrapper models are ideally suited for this setting.

• Source code availability. With a legacy application, source code may often be unavailable or

recompilation may not be feasible, e.g., due to library compatibility issues. In such settings,

58



only the library OS model allows developers to create enclave versions of the application. Both

the instruction wrapper model and the library wrapper model either require access to source

code, or require the legacy binary to be linked with suitable wrappers.

• Flexibility to re-engineer. With a quick first-cut of their application executing in the enclave,

application developers may wish to optimize the execution of the enclave, e.g., by reducing the

number of domain crossings, or reducing the amount of code executing in the enclave. It goes

without saying that the application’s source code is required for such re-engineering. Both the

instruction wrapper and library wrapper models are best suited for this setting.

• Concerns about TCB size. Application developers may wish to reduce the amount of code

executing within the enclave in an effort to reduce the size of the attack surface of their security-

critical code. Only the Panoply implementation of the library wrapper model optimizes for this

criterion. However, it also entails executing much of the standard C library outside the enclave

(Figure 3.1), and the in-enclave application must take suitable precautions when it makes library

calls (e.g., by checking return values, in a manner similar to shields for IAGO attacks).

• Performance. In our evaluation, no one model emerged as a clear winner with respect to

runtime performance, and the developer must choose the enclave programming model that

works best for the application at hand. Library OSes can provide good performance for some

applications, e.g., by offering caching and avoiding domain crossings, as saw with Bzip2 and

Cpython. However, because enclave execution by itself imposes overheads, and library OSes

execute entirely within the enclave, they may also offer poor performance in some cases, as we

saw with Memcached and H2O. The instruction wrapper and library wrapper models do offer

the potential for better performance if software developers have the flexibility to profile and

re-engineer their applications by reducing domain crossings.

• Support for evolution. Finally, with respect to code evolution, the library OS and instruction

wrapper models are better suited with respect to application code evolution than the library

wrapper model. As discussed in this work, the system call interface evolves much slower than

the library call interface, thereby allowing the library OS and instruction wrapper models to

provide better support than the instruction wrapper model as the enclave application code

evolves to newer versions.
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Chapter 4

MazeNet: Protecting DNN Models on

Untrusted Cloud Platforms with

Trusted Hardware

Machine Learning-as-a-Service (MLaaS) enables DL model owners to outsource inference tasks

to a public cloud platform. The model owner trains a deep learning model in-house and uploads

the trained model to an MLaaS. For the uploaded model, the MLaaS platform exposes an API

endpoint to query the uploaded model with inputs and obtain predictions. However, uploading

the trained model to public cloud platforms exposes the model owner to security and privacy

risks, as the model is available in plaintext to the cloud provider during inference.

In this work, we present a set of techniques to secure deep learning models with trusted

execution environments and propose a secure outsourcing scheme to offload portions of the

DL model computations during inference to faster untrusted processors. We implement the

presented techniques in MazeNet, a framework to transform pre-trained models into MazeNet

models and deploy them on a public cloud platform to provide inference services.

We evaluate MazeNet on popular convolutional neural networks, and the results demonstrate

that MazeNet improves the performance of DNN models as compared to a secure baseline model,

where the model runs within a trusted environment. MazeNet increases the throughput of the

inference task up to 30x and decreases the latency up to 5x for the benchmark models in our

experimental evaluation.
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4.1 Introduction

Machine Learning-as-a-Service (MLaaS) enables deep learning model owners to deploy trained

models on public cloud platforms to provide inference services. The model owner pre-trains a

deep learning model in-house and uploads the trained model to a public cloud platform. In

turn, MLaaS exposes an API endpoint to the uploaded model to query the model with inputs

and obtain predictions.

However, moving the deep learning workload to a public cloud platform exposes the model

owner and the uploaded model to security and privacy risks. First, a compromised or malicious

MLaaS provider can easily steal the deployed models as the model is available in plain text

during inference because the cloud vendor controls the entire hardware and software stack at

its data centres. A stolen model leads to financial losses and legal troubles for the model

owner. Most of the time, organisations have invested significant financial resources to train

state-of-the-art models [67] that solve critical business problems.

Second, having access to model parameters and intermediate states, the DL model can

leak sensitive information about their private training dataset through membership inference

attacks [137]. Often, these models are trained on private datasets to improve the accuracy of

the learning task. Legal laws in many countries require that private data, such as financial

transactions [1], electronic health records [2], insurance, etc., be protected. Otherwise, the

defaulting organisation will be penalised heavily [1, 2].

Third, the MLaaS provider can tamper with the uploaded model to influence the results.

Therefore, it becomes crucial to protect the integrity and confidentiality of the uploaded models

on public cloud platforms.

A naive solution to protect the model on an MLaaS platform would be to run the model

within a Trusted Execution Environment (TEE) such as Intel Software Guard Extensions

(SGX). The TEE will be responsible for ensuring the confidentiality and integrity of the DL

model during the inference process. However, directly running the DL model within the TEE

is suboptimal.

First, TEEs often have fixed and usually smaller protected memory than the main memory.

For example, SGXv1 offers only 128 MB of protected memory. Therefore, a DL model larger

than protected memory incurs a performance penalty. Second, TEEs cannot securely utilise

untrusted but powerful resources such as co-located processors, main memory, and storage

available on the system.

In this work, we present MazeNet, a framework to transform pre-trained models into

MazeNet models and securely run them on heterogeneous and distributed systems consisting
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Figure 4.1: End-to-end workflow of MazeNet system.

of trusted execution environments and untrusted runtimes. MazeNet uses three key techniques

to overcome the limitations of TEEs and provides a secure and fast inference solution.

First, to overcome the fixed protected memory of SGX enclaves, MazeNet splits the DNN

model into smaller models, referred to as submodels, such that the maximum memory usage

of each submodel during inference is less than the size of the protected memory offered by the

SGX enclaves. During inference, MazeNet distributes the submodels to different SGX enclaves.

Splitting avoids the performance penalty due to swapping when submodels execute within SGX

enclaves. Figure 4.1a shows an illustration of splitting, where a model M is split 1 into five

submodels S1 . . . S5.

Second, running submodels only within TEEs leaves other untrusted resources underutilised.

Therefore, to maximise the system utilisation and improve the performance, a subset of sub-

models is outsourced to untrusted runtime environments. However, outsourcing to an untrusted

environment raises privacy risks for the outsourced submodels. Therefore, MazeNet employs its

second technique, cloaking, a secure outsourcing scheme to offload submodel evaluation to un-

trusted hardware. In cloaking, synthetic layers and neurons are added to the submodel, which
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Data transfer (MB)

Model TEE→GPU GPU→TEE Total

VGG16 34.77 51.71 86.48
ResNet50 38.70 40.39 79.09
DenseNet201 91.43 29.96 121.39

Table 4.1: Data transfers between the TEE and GPU when only linear layers are outsourced
to GPUs, while non-linear layer executes within the TEE.

hides the original weights within the synthetic weights to protect the privacy of the outsourced

submodel. In the Figure 4.1a, after splitting, submodel S2, S4 are cloaked 2 to produce final

MazeNet Model.

Third, during inference, the adversary can tamper with any data or computation outside

the TEEs, which includes cloaked submodel weights and operations. MazeNet employs digital

signatures to detect tampering in offloaded computations. It requires the cloud vendor to sign

3 the inputs for the cloaked submodels and the outputs produced by the cloaked submodels,

as shown in Figure 4.1b, to commit to submodel evaluation results. The signatures are later

used during an audit phase, where MazeNet independently verifies some of the outsourced

computations by re-executing some of them.

Figure 4.1 shows the end-to-end workflow for the MazeNet framework. First, a cloud tenant

transforms the pre-trained model into a MazeNet model with Model Builder and uploads the

generated model to a public cloud platform, where a Model Manager securely deploys the

uploaded model and exposes an API endpoint to query the model.

Prior works [143, 55, 152] have proposed secure outsourcing schemes to outsource linear

layers of DL models to hardware accelerators. However, outsourcing only linear layers is subop-

timal, as linear layers are frequently followed by non-linear layers. As a result, the intermediate

state needs to be constantly moved between the TEE and the GPUs. Table 4.1 shows the data

transferred between TEE and non-TEE for prior works. MazeNet overcomes this limitation by

outsourcing both the linear and the non-linear layers to GPUs, thereby reducing communication

costs. MazeNet can reduce up to 90% of the data transfer cost.

To evaluate the benefits and costs of the proposed techniques, we have built a prototype of

the MazeNet framework on top of TensorFlow [48]. We transform popular convolutional neural

networks, VGG [138], ResNet [56], and DenseNet [59], into MazeNet models and compare them

against a secure baseline model, where the whole unmodified model runs within a TEE. Our

evaluation shows that MazeNet can improve the throughput up to 30x and reduce the latency

up to 5x for the convolutional neural networks in our experimental evaluation.

63



To summarise, the following are the main contributions of this work:

• This work presents MazeNet, a framework to secure trained deep learning models on

public cloud with trusted execution environments.

• It proposes an outsourcing scheme to offload both linear and non-linear layers to untrusted

environments to accelerate the model inference.

• Our evaluation shows that MazeNet can significantly improve the throughput and the

latency of DL models as compared to the secure baseline models.

4.2 Background

4.2.1 Deep Neural Networks

Deep Neural Networks (DNNs) consist of layers that are chained together to form a graph. Each

node in the graph represents a layer, and each edge represents a tensor, a multi-dimensional

array. A layer can take one or more inputs and produce one or more outputs. When the output

of layers is input to the following layers, such networks are referred to as feed-forward neural

networks. Each layer in the network has a set of parameters or weights that can be fixed or

learned during the training phase.

DNNs for image classification tasks contain convolutional layers and are commonly referred

to as convolutional neural networks (CNNs). Convolutional layers contain a set of filters –

also referred to as kernels – that are applied to the input image or data during a convolution

operation to produce feature maps. Filters detect distinct features present in the input data,

and enable the sharing of parameters or weights across multiple neurons to reduce the overall

number of parameters in the network. The output of the convolution operation may pass

through a non-linear activation function such as ReLU [138], which enables the network to learn

arbitrarily continuous functions [121]. Convolutional layers can be followed by pooling layers,

which downsample the feature maps to limit overfitting and reduce the number of parameters

and operations in the following layers [43]. The last layers in CNNs consist of a few fully

connected layers, which take the feature maps and produce confidence scores for each class of

the classification tasks [59, 138, 56].

4.2.2 Privacy Risks in Trained DNN Models

Deep Neural Networks are expensive to train due to the costs associated with the different stages

of training. First, training highly accurate models for complex tasks requires a large and diverse
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training dataset to generalise better for the learning task. For instance, the ImageNet[126]

dataset used for training state-of-the-art convolutional networks for image classification tasks

consists of a curated set of 14 million photos divided into 1000 classes. It takes time to collect,

clean and annotate a comprehensive training dataset. Further, the model needs to be fine-

tuned with different architectures and hyperparameters to maximise the accuracy of the target

task, which further escalates the training cost. To put this in perspective, the XLNet [166]

architecture incurred around $60K during training. Thus, it is important for any organisation

to guard the privacy of the trained models, as it has invested considerable resources in the

training.

Further, private models are often trained on sensitive training datasets that may contain

patient health records, medical scans and reports, and financial transactions, to name a few.

Prior works have shown that trained models can leak sensitive information about the training

dataset through membership inference attacks [29, 137]. Many countries have strict laws on

the privacy of medical [2] and financial data [1], and leaking the private data can lead the data

owner to financial and legal troubles.

4.2.3 Attacks on DNN Models

Prior work has shown that DNN models are vulnerable to exposing trade secrets [15], leaking

training dataset [23], model inversion attacks [40, 41], model stealing attacks [113, 153], adver-

sarial attacks [47, 112, 111, 144], and membership inference attacks [29, 80, 128, 127, 137].

These attacks can be broadly classified into two categories: white-box attacks [19, 47, 112,

144] and black-box attacks [23, 29, 111, 113]. In white-box attacks, the attacker has full access

to model parameters and intermediate states to carry out the attacks. The attacker can query

the model with inputs, observe the intermediate states during inference, and retrieve prediction

scores. Under the black-box setting, the adversary does not have access to the model internals;

it can only query the model through an API and obtain prediction scores or labels.

Researchers have demonstrated methods to steal deep learning models even if the adversary

has black-box access to the model. However, these attacks focus on stealing the functionality

of the model instead of trained parameters or weights. In these attacks, the attacker builds

a shadow training dataset by querying the model and recording the input-output pair. The

attacker can use public datasets such as CIFAR or ImageNet[126] to query the model, or it

can use learning algorithms to sample input data points [109]. With this training dataset, the

attacker trains a shadow model that tries to approximate the functionality of the target model

that the attacker wants to steal. However, the weights and architecture of the shadow model

in these model extraction attacks are entirely different from the target model.
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In addition to model stealing attacks, having white-box access to the model enables the

attacker to carry out adversarial attacks [47] on the model, where an attacker crafts malicious

input samples that look benign to the human eye, but the model misclassifies the input into a

class of the attacker’s choice. Another line of work has focused on the membership inference

attacks [137] where the attacker wishes to determine whether the input data point was part of

the training dataset on which the model was trained.

4.2.4 Defences Against Model Stealing Attacks

The research community has proposed several solutions to defend against model-stealing at-

tacks. These solutions can be broadly categorised as follows: cryptography-based approaches

[27, 44, 69, 76, 87] and solutions based on hardware-based trusted execution environments

[17, 54, 55, 77, 79]. Cryptography-based approaches provide stronger security guarantees but

incur performance penalties due to high communication costs and heavy cryptographic op-

erations. On the other hand, hardware-based trusted execution environments provide higher

performance with limited security guarantees. TEE-based solutions look promising on the un-

trusted cloud platforms to provide real-time inference services with high throughput and low

latency to meet required service level agreements. Table 4.2 lists the security guarantees and

performance scaling of prior works.

4.3 Building MazeNet Models

In this section, we describe the process of transforming a given model into MazeNet models. In

the next section, we will look at how to securely deploy the generated model on a public cloud

platform to offer inference services.

4.3.1 Threat Model

A cloud tenant owns a model trained on private training data and wants to outsource the model

inference service to a public cloud provider without compromising the privacy of the trained

model. Our aim is to prevent the cloud vendor from learning the trained parameter weights

from the deployed model on its platform. We assume that the cloud vendor does not have

access to the training data and is not aware of the architecture of the pre-trained model.

MazeNet admits a strong adversary based on the standard threat model of Intel SGX. It

only trusts the Intel SGX platform and the code and data located within SGX enclaves. The

adversary controls the privileged system software, including the operating system, firmware,

and BIOS. It can read, analyse, and modify arbitrary code and data located outside the Intel

SGX enclave. However, it cannot observe or modify any data within SGX enclaves.
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Prior Work Model
Privacy

Input
Privacy

Outsource to Un-
trusted Hardware

Scalable to
Large Models

Platform /
Technique

(server) ( server)

Securenets[27] ✓ ✓ ✓ SMM
Cryptonets[44] FHE
Chameleon[123] ✓ GC
DeepSecure[125] ✓ ✓ GC
Crypflow[76] ✓ ✓ MPC
SecureML[105] ✓ MPC
MiniONN[87] ✓ FHE and GC
Gazelle[69] ✓ FHE and MPC
Shadownet [143] ✓ ✓ ARM TrustZone
DarknetTZ[103] ✓ ARM TrustZone
OMG[17] ✓ ARM TrustZone
Occlumency[79] ✓ SGX
TensorScone [77] ✓ SGX
DarkNight [55] ✓ ✓ SGX
MLCapsule[54] ✓ ✓ SGX
Slalom [152] ✓ SGX
MazeNet ✓ ✓ ✓ SGX

Table 4.2: Feature comparsion of prior works with respect to the privacy of models and user
inputs. SMM: Secure Matrix Multiplication, SGX: Intel Software Guard eXention. FHE: Fully
Homomorphic Encryption. MPC: Multi-Party Compuation. GC: Garbled Circuits

Adversary Capabilities. The adversary has full access to the outsourced computations that

run on untrusted devices, e.g. GPUs and untrusted processors. The adversary can inspect

and alter the outsourced DL model computations along with the input and output of those

computations. The adversary can obstruct access to resources, e.g., memory and CPU time,

such that the enclave application does not make any progress.

Adversary Information. The adversary is not aware of the model architecture and trained

weights that the model owner has trained on its premises. However, during the inference

process, the adversary can learn from the data and computations delegated outside the enclave.

The adversary is aware of all the defence strategies used to protect the privacy of the model,

but it does not know about the keys or data that may be generated at runtime within the

enclave, unless that data leaves the enclave without any encryption.

The main goal of this work is to protect the privacy of trained parameters of a deep learning

model. This work does not aim to protect the privacy of user inputs, which are fed to the model

during the inference process, as it is orthogonal to the goal of the model’s privacy.

Prior research has demonstrated several side-channel attacks against SGX [161, 26], and

Intel is actively working to fix those side-channel attacks [63]. Therefore, side-channel attacks

are outside the scope of this work.
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4.3.2 Overview of MazeNet

MazeNet enables a cloud tenant to securely deploy a private pre-trained model on a public

cloud platform to provide inference services to users, while protecting the privacy of the model

from the host platform. It relies on hardware-based trusted execution environments for the

privacy of the model, and uses untrusted but powerful co-processors, e.g., low-cost commercial

GPUs, to speed up the inference task.

A cloud tenant pre-trains a DNN model on-premises and uses the MazeNet framework to

transform it into a MazeNet model. Then, the tenant uploads the generated model to a public

cloud platform to provide inference services.

MazeNet framework consists of two parts: MazeNet Model Builder and Model Manager.

Given a pre-trained model, Model Builder transforms the given model to a MazeNet model,

while the Model Manager carefully deploys the generated model on trusted and untrusted

environments to provide inference services.

In the next section, we describe the process of transforming pre-training models into MazeNet

models, and Section 4.4 describes the process of running the generated model on public cloud

platforms.

4.3.3 Splitting DNN Models

The size of DNN models is increasing as new state-of-the-art architectures are introduced, and

larger models are trained to achieve high accuracy on the learning task. Recent report [10]

states that computing resources needed for DNNs double every 3.4 months, with GPT-3 model

reaching 175 billion parameters [21].

Due to their large size, many DNN models do not fit within the fixed protected memory

offered by TEEs. In case of SGX enclaves, the hardware can only cryptographically protect a

small portion of main memory [55, 146]. Therefore, models larger than the size of main memory

incur a performance penalty due to swapping.

Intel SGX reserves a portion of main memory called Processor Reserved Memory (PRM)

during the boot process to store the encrypted pages of the enclaves in the main memory.

This portion of memory is referred to as Enclave Page Cache (EPC), whose confidentiality

and integrity are backed by the SGX hardware. As this is a fixed portion of memory, enclave

applications and DNN models that need more memory than the protected memory incur EPC

swapping, where the SGX driver in the kernel seals a few pages of EPC, which were not recently

used, and stores them on the unprotected memory. Thus freeing a few pages in the EPC for

enclave applications. When the enclave applications need to access any of the swapped pages,
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Figure 4.2: Given a DNN, MazeNet splits it into multiple smaller models called submodels
based on the split specifications provided by the user.

the SGX driver restores the swapped-out page after checking for integrity violations when the

pages were residing in the unprotected memory.

The EPC swapping process is computationally expensive due to the cryptographic opera-

tions required to seal encrypted memory pages. Further, if any page is swapped out and it is

required by the enclave application, the application stalls until those pages are restored. Thus,

the performance of the enclave application is severely degraded. In the case of deep learning

workloads, the throughput and latency of the inference task are affected. We conducted an

experiment to determine the impact of EPC swapping on inference workflows. We observed

that the throughput in the VGG16 model decreased from 3 images/s to 0.3 images/s, a 10x

decrease in throughput, due to EPC swapping. Thus, only a small portion of the DNN models

should be placed within SGX enclaves to avoid swapping.

To overcome this limitation of fixed protected memory, MazeNet splits large DNN models

into smaller models referred to as submodels, such that each submodel fits within the protected

memory of the SGX enclave. After splitting, each submodel can be deployed on different TEEs

to avoid swapping.

Splitting DNN models is challenging due to diverse model architectures and complex inter-

actions between layers consisting of residual or skip connections and densely connected layers.

The model owner should consider the following parameters when splitting a DNN model.

First, because the model is split across TEEs, the output from one submodel must be

transferred to the next submodel residing in a different TEE. Depending on where the model

is split, the size of the outputs produced by the submodel can vary significantly. As a result,
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Figure 4.3: An instance of splitting the GoogleNet model [145] consisting of inception modules
containing parallel layers, where the model is split at the block or module level.

it is important to choose a split that minimises the size of the inputs and outputs exchanged

between submodels to reduce communication overhead across enclaves.

Second, the number of parameters varies across layers, leading to differing computational

workloads – particularly in terms of additions and multiplications. As a result, each layer

requires a different amount of time to compute results. To ensure efficient execution, the model

should be split in a way that balances the computational load across submodels. An imbalanced

split may cause stalling, where one submodel waits for data from the previous submodel, which

is still computing the results. Such stalls degrade throughput and increase the overall latency

of the inference task.

Third, the peak memory usage of each submodel during inference must remain within the

bounds of the protected memory. The model should be split in a way that ensures no sub-

model exceeds this limit; otherwise, EPC swapping may occur, which significantly increases the

execution time.

To find a suitable split, a model owner can use either analytical or empirical methods. In

the analytical method, the model owner can estimate the execution time by computing the

70



number of operations, additions and multiplications present in layers. These estimates can be

used to balance operations across submodels. Similarly, for the data transfers, the model owner

computes the input and output size of each layer and tries to find a split that minimizes the

input-output size of the resulting submodels. In the empirical case, the model owner executes

the unmodified model and measures the execution time and input-output size of individual

layers to determine the split. Once the owner has determined the split, they can proceed with

the model splitting.

Figure 4.2 shows one such splitting of the VGG16 model, where it is split into smaller

submodels. The VGG16 model consists of 16 trainable layers whose weights are learned during

the training, e.g., convolutional and dense layers, and a few non-trainable layers, e.g., flatten and

pooling layers. In the given split, the VGG16 model is split after each pooling layer, as it reduces

the output size. Therefore, we have six submodels. Five submodels are convolutional blocks

containing convolutional and pooling layers, and the last block contains dense layers. The first

submodel consists of the first three layers of the VGG16 model. The second submodel consists

of the following three layers, and so on. In case of models with more complex architecture, for

example, models with residual or skip connections, e.g., ResNet [56], DenseNet [59], models can

be split at block levels, where a group of layers highly interconnected than other layers. Figure

4.3 shows one such split of a GoogleNet model.

Formally, a feed-forward DNN model M can be represented as a directed acyclic graph. In

this graph, the layers of the models are represented as nodes of the graph, and the input-output

relationship between layers is represented as edges of the graph. A single split of the graph cuts

the graph into two disjoint subsets of vertices, and the size of the cut is the number of edges

whose vertices are in different subsets. The splitting of a model will consist of multiple such

cuts of its graph.

Consider the model M = {L1, L2, . . . , Ln} with n layers, where the layers Li are arranged in

a topological ordering of the vertices of the corresponding graph. A split or cut partitions the

vertices into subsets. The first subset is referred to as the submodel S1 = {L1, L2, . . . , Lk1} and

it consists of first k1 layers. The remaining subgraph is cut again to obtain second submodel

S2 = {Lk1+1, Lk1+2, . . . , Lk1+k2} with k2 layers. The process is continued for the remaining

subgraph. The number of layers, k1, k2, . . . , km, in each submodel is provided by the model

developer after the analytical or empirical evaluation.

4.3.4 Submodel Cloaking

The submodels obtained from splitting can be hosted on TEEs to provide secure inference ser-

vices. However, deploying submodels only on TEEs leaves other powerful but untrusted system
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resources underutilised. These untrusted resources can range from unprotected main memory,

faster processors such as GPUs, Tensor Processing Units (TPUs), and Neural Processing Units

(NPUs). Therefore, a subset of the submodels is deployed in the untrusted runtime environ-

ment to boost the performance of the inference service. The submodels deployed on TEEs

are referred to as in-TEE submodels, while the submodels deployed outside the enclaves are

referred to as non-TEE submodels.

However, outsourcing submodels to untrusted environments poses the following security and

privacy risks, which were earlier mitigated by TEEs. First, a passive adversary can observe

the delegated submodels in plain text, and therefore, they can learn the connection between

different layers along with their parameters and weights. Second, an active adversary can

tamper with outsourced computation. It can replace the weights of outsourced submodels,

change the results, or perform replay attacks on outsourced computations.

To protect the privacy of outsourced submodels, we employ our second technique of cloaking,

where the submodels are cloaked before deploying them to untrusted environments. In cloaking,

synthetic layers and neurons are added to the submodel to produce a cloaked submodel, where

the original submodel is embedded within the cloaked submodel.

Key idea. The key idea behind cloaking is that parameters or weights of a layer are a set of

matrices, and it is difficult to distinguish whether a given matrix is part of a trained model,

if the matrices were drawn from a trained model and a sample distribution containing trained

parameters. For example, filters in convolutional layers detect different features. Given two

filters, each detecting different features, it is difficult to determine which one of the filters is

part of the trained model.

Prior work on model explanations that tries to reason about the working of DL models

suggests that individual filters and units need a global view of the entire model to reason about

the usefulness or role of individual units or filters in the predictions [144].

Often, there is no unique solution to the learning task on which a DL model is trained.

A DL model tries to learn an internal representation of the training dataset. Training a DL

model with different initial weights yields entirely different model weights. This problem is

further exacerbated by over-parameterisation, where the model may contain a higher number

of parameters than required. Thus, there exists a large set of trained weights that can be part

of trained models.

Therefore, when synthetic weights are added in submodels, an adversary cannot distinguish

between the embedded weights of the original models and the newly added synthetic weights.

It can only observe the partial computation, which contains a mix of actual and synthetic

computation. The keys to recover results from cloaked submodels are securely stored within
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layer 1

layer 2

layer 3 layer 4

Input Output

Figure 4.4: Cloaking Phase 1: Adding synthetic neurons in a four layer neural network. Syn-
thetic neurons (○␣) are added between existing neurons (○) during the first phase of cloaking.
Currently, the output of synthetic neurons (○␣) are not connected to the input of following layers
as it will affect the correctness of embedded neurons (○). The output of synthetic neurons will
be used later as input to synthetic layers which will be added in the second phase of cloaking.

the TEEs.

Selection of submodels for cloaking. The submodels obtained after splitting are categorised

into in-TEE and non-TEE submodels. The submodel containing the first layer always runs

within a TEE as it operates on plain text user input and can leak privacy of input sample

[38]. Therefore, the first layer is always categorised as an in-TEE submodel. Similarly, the last

layer of the DNN model computes the confidence score or prediction label. Thus, the submodel

containing the last layer is also categorised as an in-TEE submodel. The remaining submodels

are selected alternatively to be categorised as in-TEE and non-TEE submodels. The in-TEE

submodels are deployed on TEEs, whereas non-TEE submodels are cloaked and deployed on

untrusted environments.

From the previous example of splitting VGG16 model in Figure 4.2b, We obtained five

submodels S1, S2, . . . , S5. Out of these five submodels, three submodels S1, S3, S5 are categorised

as in-TEE submodels; recall that the first and last layer should execute within TEE. The

remaining two submodels S2, S4 are labelled non-TEE, thus each of them is cloaked.

4.3.5 Cloaking Process

A non-TEE submodel is cloaked in two phases. In the first phase, synthetic neurons are inserted

into the layers of a non-TEE submodel, which hides the embedded neurons within a layer. Then,

in the second phase, synthetic layers are added to the submodel obtained from the first phase

to hide embedded layers. To steal the embedded submodel from the cloaked submodel, an

adversary has to first guess the layers and then the neurons to recover the embedded submodel.
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4.3.5.1 Phase 1: Adding Synthetic Neurons.

In the first phase of cloaking, synthetic neurons are added to the existing layers. A neuron

computes a weighted sum of the input and applies a non-linear activation function, e.g., ReLU,

to compute the output. The weights for the synthetic neurons are sampled from the same

probability distribution as that of the existing neurons in the layer to which the synthetic

neurons are added.

Sample weight distributions. The synthetic weights for neurons should be drawn from

the probability distribution of trained parameters for the corresponding layer. However, the

probability distribution for each layer is unknown beforehand, and during the training, layers

learn one of the instances of these weights from the probability distribution. The probability

distribution differs across layers as each layer is responsible for learning a specific level of

features. A sample population of weights can be created for each layer of the model during the

training and hyperparameter tuning phase by recording the weights of each layer. Moreover,

a sample population can also be generated by training the model multiple times with different

initial weights.

Synthetic filters. Convolutional layers contain filters with dimension (h,w, cin, cout), where h

and w is height and width of filters, cin is the number of input channels, cout is the number of

feature maps produced by the convolutional layers. To add s synthetic filters, s matrices with

the same height, width and input channels are drawn from the sample distribution for the given

convolutional layer, and stacked with the existing filters, which changes the filters dimension

of the convolutional layer to (h,w, cin, cout + s). As filters are independent of each other, they

are shuffled to hide the newly added filter from the existing ones.

Synthetic neurons. To add synthetic neurons in dense layers, column vectors are sampled

from a sample weights distribution and inserted into the weight matrix. If the size of the vector

on which the neuron performs the weighted sum is n and the dense layer has m neurons, then

the size of the existing weight matrix is (n,m). To add s synthetic neurons, s column vectors

are sampled from the distribution and added to the weight matrix. Then, the vectors within

the weight matrix are shuffled to hide new column vectors. The final weight matrix will have

(n,m + s) size.

Adding synthetic neurons and filters increases the size of the output produced by layers,

which affects the following layers due to a mismatch in the expected input dimension and actual

input. For example, a dense layer initially has 16 neurons and produces a vector of size 16. If

16 neurons are added, then it produces a vector of size 32 instead of 16, which is not compatible

with the following layer, which was expecting the input size to be 16. Therefore, the output of
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layer 1
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Input

Embedded Output

Synthetic Output

Figure 4.5: Cloaking Phase 2: Adding a synthetic layer, layer 2a, to a two layer, layer 1 and
layer 2, fully connected neural network where layer 1 contains one synthetic neuron (○␣) and
layer 2 contains 2 synthetic neurons (○␣) that were added during the first phase of cloaking.
Only the correct output of layer 1 produced by embedded neurons (○) are input to layer 2,
whereas a compatible subset is selected as input to layer 2b.

the cloaked layer is filtered before feeding it to the following layers. Figure 4.5 shows that the

output of synthetic neurons is filtered before feeding them to the following layer. The output

of the synthetic neurons is used later in the second phase of cloaking when synthetic layers are

added.

Further, shuffling the filter and weight matrices of a layer to hide the synthetic neurons

changes the ordering of elements in the output tensor, which causes the following dense and

convolution operations to compute incorrect results during the dot product operation between

the shuffled output from the previous layer and the layer’s weights. Therefore, the weights of

the following layers are also reordered such that dot products compute the same results before

the synthetic neurons were added.

After synthetic neurons are added, embedded weights are hidden from the adversary. How-

ever, the adversary still knows that a subset of the weights are from the embedded model for

any given layer. To further hide the embedded layer as well, we add synthetic layers.

4.3.5.2 Phase 2: Adding Synthetic Layers

In the second phase of cloaking, synthetic layers are added in non-TEE submodels obtained

from phase 1 to build the final cloaked submodel. Synthetic layers hide the embedded layers of

the submodel in cloaked submodels.
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Figure 4.6: Cloaking Phase 2: Adding synthetic layers, Layer , to one of the inception modules

of the GoogleNet model [145].

A submodel can be hidden in another model as new architectures have been introduced,

which move away from the traditional sequential architecture where the output of one layer

is input to the immediately following layer. State-of-the-art models differ widely in their ar-

chitecture from the introduction of skip connections in ResNet [56], densely connected layers

in DenseNet [59], parallel layers in the Inception module of GoogleNet [145], and ensemble

models, [56, 42], which combine multiple independent models to form a bigger model. Thus,

a submodel may appear to be part of multiple architectures. Further, adding synthetic layers

increases the difficulty of identifying embedded layers based on the input-output relationship

between the layers in the cloaked submodels.

A synthetic layer can be attached to a submodel by selecting intermediate outputs of existing
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layers as inputs. In contrast to phase 1 of cloaking, adding synthetic layers does not alter

computations of other layers present in the submodel, as the output of the synthetic layer is

not fed to any embedded layer. A synthetic layer will be followed by a set of synthetic layers,

and the final or last synthetic layers in the cloaked submodel will produce synthetic outputs

that are forwarded to enclaves for further processing. During the inference phase, the enclaves

have access to keys that can filter synthetic output from embedded outputs.

Input of synthetic layers. To add a synthetic layer to the submodel, the intermediate output

of one of the intermediate layers is selected as an input to the new layer. However, the output

will contain both synthetic and embedded output as synthetic neurons were added in phase

one of cloaking. Therefore, a subset of values compatible with the synthetic layer is selected to

create input for the synthetic layer. The number of selected values will depend on the type of

the synthetic layer.

Convolutional synthetic layer. To add convolutional layers, the filter weights are drawn

from the sample distributions. The sample distributions differ depending on the depth of the

synthetic layer in the overall model. For example, initial layers detect simple features such as

edges, while deeper layers detect complex features such as facial expression. The filter weights

of the given size are drawn from the sample distribution corresponding to the depth of the

synthetic layer.

Dense synthetic layer. Similarly, for dense synthetic layers, weight matrices of compatible

size are drawn from the sample distribution and added to the synthetic layer.

The synthetic outputs produced by the synthetic layers are later eliminated by the TEEs.

MazeNet uses taints to track the status of each value produced by the layers in the cloaked

submodel. The taint produced during cloaking is transferred securely to SGX enclaves, which

filter synthetic and embedded outputs.

Tracking of synthetic and embedded outputs: For each input, intermediate, or output

tensor, a corresponding taint tensor is maintained. Each value in the taint tensor indicates

whether the corresponding value in the actual tensor is real or synthetic. For the initial user

input, the taint tensor is initialised with real label. As the input passes through the synthetic

layers and synthetic neurons, the corresponding value in the taint tensor is set to synthetic.

Similarly, real label is set for values produced by embedded layers or neurons. Figure 4.7

shows the rules for taint propagation when the input passes through different layers.

The taint tensors of the last layers in a submodel are stored and used later in enclaves to

filter real output from synthetic output. As the input flows through the same order of synthetic

layers – the same set of computations is performed – the taint tensor is static and computed

during the cloaking process. During inference, the enclave loads taint tensors to filter synthetic

77



<Model> ::= Model(< layers >,< inputs >,< outputs>) input.taint = new real taint(shape=input.shape) (4.1)

<inputs> ::= <tensors> (4.2)

<outputs> ::= <tensors> (4.3)

< input > ::= Tensor (4.4)

< output > ::= Tensor (4.5)

<tensors> ::= Tensor|Tensor<tensors> (4.6)

<layers> ::= <layer>|<layer><layers> (4.7)

<layer> ::= <dense>|<conv>|<flatten>|<merge> (4.8)

<dense> ::= <output> = Dense(units)<input> {output.taint = dense taint(neurons info)} (4.9)

<conv> ::= <output> = Conv(filters)<input> {output.taint = convolution taint(neurons info)} (4.10)

<flatten> ::= <output> = Flatten<input> {output.taint = flatten(input.taint)} (4.11)

<merge> ::= <output> = Merge<inputs> {output.taint = merge(inputs.taint)} (4.12)

Figure 4.7: Taint propagation rules for different types of layers in a feed-forward neural network
where terminal symbols in bold, Terminal, and non-terminal symbols are in brackets, <non-
terminal>. Rule 4.1 initializes the taint for the model’s input. The function new real taint()

in this rule sets the taint for the input tensor, and all values in the taint tensor are labeled as
real. For dense layers, the taint is determined based on the position of embedded and synthetic
neurons, as described by neurons info. The function dense taint() in rule 4.9 assigns a
real label for outputs corresponding to embedded neurons, and a synthetic label for outputs
from synthetic neurons. Similarly, for convolutional layers, the function convolution taint()

calculates the taint, assigning real to values produced by embedded filters and synthetic to
those produced by synthetic filters. In flatten and merge layers, as defined in rules 4.11 and
4.12, the transformations applied to the input taint tensor are the same as those applied to the
input tensor itself.

and real values. The synthetic values are discarded, and the real values are fed to the in-TEE

submodel.

Figure 4.8 shows the grammar for generating synthetic layers and corresponding taint during

cloaking. Initially, the taint tensor corresponding to the input is initialised with real label.

Function gen dense() and gen conv() samples weights for the given layer and generates the

taint tensor based on the position of synthetic and embedded neurons. Other layers, such as

Flatten or pooling, apply the same transformation on the taint tensor as they apply to the

input tensor.

Figure 4.9 shows an end-to-end MazeNet model for one of the instances of the VGG16

MazeNet model obtained from splitting and cloaking. After splitting VGG16 model, the sub-

models S1, S2, . . . , Sn were alternatively divided into in-TEE {S1, S3, . . . , Sn} and non-TEE

{S2, S4, . . . , Sn−1} submodels. Then, non-TEE submodels were cloaked to produce cloaked

submodels. In this instance, the first submodel for cloaking, S2, consists of three layers: Conv

2-1, Conv 2-2, and Pooling Layers. During cloaking, one additional layer of Conv 2-1 type

78



Model → Model(input, output, Layers) {cloakedModel = model(input, output, Layers)}

(4.13)

input → in = Input(Shape) {in.taint = real(Shape); } (4.14)

Layers → out = Dense(units)(in);Layers

{out.taint, Dense.weights = gen dense(in.taint, Dense.weights, synthetic)}
(4.15)

Layers → out = Conv(filters)(in);Layers

{out.taint, Conv.weights = gen conv(in.taint, Conv.weights, synthetic)}
(4.16)

Layers → out = Flatten(in);Layers

{out.taint = flatten(in.taint)}
(4.17)

Layers → ϵ (4.18)

out → Identifier (4.19)

in → Identifier (4.20)

units → Int (4.21)

shape → Tuple (4.22)

filters → Int (4.23)

weights → Tensor (4.24)

Figure 4.8: Grammar defining the generation of a cloaked submodel, including input process-
ing, layer transformations, and weight modifications. Terminal symbols are in bold, Termi-
nal, and non-terminal in normal text. Rule 4.14 initialises the taint tensor with real label
through real() function which creates a tensor of given shape filled with real label. Function
gen dense() and gen conv() samples synthetic parameters and shuffles the sampled parame-
ters with embedded parameters, and returns the new weights along with taint.

is added, followed by three additional layers of Conv 2-2 type. Finally, a pooling layer is added

after Conv 2-2 type layer. Similarly, the remaining non-TEE submodels were cloaked.

4.4 Running MazeNet Models

A MazeNet model obtained after splitting and cloaking is deployed on a public cloud platform

to provide interference services. A Model Manager on the cloud manages the life cycle of the

uploaded MazeNet models, from deploying the models to orchestrating the inference workflow.

The Model Manager runs within a TEE enclave and provides API endpoints to manage the

deep learning life cycle. First, the model owner attests the Model Manager instance to verify

that the cloud vendor is running a genuine instance of Model Manager on a TEE platform.

Then, the model owner transfers the MazeNet model to Model Manager through a secure

channel such as an SSL connection terminating within the TEE. Then, the Model Manager

79



In
p
u
t

C
o
n
v
1
-1

C
on

v
1
-2

P
o
ol
in
g

In-TEE submodel T1

C
o
n
v
2-
1a

C
on

v
2
-2
a

P
o
o
li
n
g

C
on

v
2
-2
b

P
o
o
li
n
g

C
o
n
v
2-
1b

C
on

v
2
-2
c

P
o
o
li
n
g

C
on

v
2
-2
d

P
o
o
li
n
g

Cloaked non-TEE submodel T̂2

C
o
n
v
3
-1

C
o
n
v
3
-2

C
o
n
v
3
-3

P
o
ol
in
g

In-TEE submodel T3

C
o
n
v
4
-1
a

C
on

v
4
-2
a

C
on

v
4
-3
a

P
o
ol
in
g

C
o
n
v
4
-2
b

C
o
n
v
4
-3
b

P
o
ol
in
g

C
on

v
4-
1
b

C
on

v
4-
2
c

C
on

v
4-
3
c

P
o
ol
in
g

C
o
n
v
4
-2
d

C
o
n
v
4
-3
d

P
o
o
li
n
g

Cloaked non-TEE submodel T̂4

..
.

..
.

..
.

..
.

In-TEE submodel Tk

Figure 4.9: One of the instance of VGG16 MazeNet model obtained after splitting and cloaking.
Layers with solid rectangles, Layer , in the cloaked submodels are embedded layers from non-

TEE submodels, whereas layers with the dotted rectangles, Layer , are synthetic layers.

deploys in-TEE submodels within TEEs and deploys non-TEE cloaked submodels on untrusted

runtime environments, and exposes an API to query the deployed models.

Integrity of Cloaked Submodel Evaluation. During the inference process, an adversary

on the cloud can observe the cloaked submodels and their evaluation in plain text. It can

examine the inputs to the cloaked submodels and its weights, intermediate results, and flow

of intermediate results through different layers of the cloaked submodel. Further, an active

adversary can alter any data in untrusted environment during any stage of submodel evaluation.

It can alter the inputs to the cloaked submodel, change the weights, or replace results computed

by different layers to influence the results of the inference process. Moreover, it can perform

replay attacks where it replaces the intermediate results with prior results that it observed in

earlier queries. For instance, during an image classification task, the adversary queries the

model with a cat image and records the intermediate results. Later, during any other query,

the adversary can replace the intermediate results with previous state recorded during earlier

query. As a result, the last in-TEE submodel will produce confidence scores or labels chosen

by adversary even if the adversary does not control in-TEE submodels.

To detect integrity violation during cloaked submodel evaluation, MazeNet relies on digital

signatures. The cloud vendor computes a signature Signsk(hi), where sk is cloud vendor private
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Figure 4.10: During inference, the cloud vendor signs the inputs and outputs of the cloaked
submodels with their private key sk. MazeNet can later verify the correctness of outsourced
computation by re-executing the computation and verifying the signatures. In addition to the
outputs, the cloud vendor submits the input and output signatures to the following enclave,
which verifies the validity of the signatures against the outputs.

key, for each input hi and output hi+1 corresponding to each cloaked submodel. The enclave

which receives the intermediate output hi+1 as input for the in-TEE submodel matches the in-

termediate outputs and corresponding signatures. On successful verification, the enclave filters

embedded outputs from synthetic outputs and feeds the filtered output to in-TEE submodel

to proceed with the inference process. The enclave sends both the signatures to the Model

Manager for auditing.

The Model Manager can randomly verify some of the outsourced computation by re-executing

those computations within a TEE, or outsource them to a non-colluding party, such as other

cloud vendors or in-premise execution. For the verification, the Model Manager saves the output

of the first in-TEE submodel in secure storage to asynchronously authenticate the outsourced

computations. It stores the output of the first in-TEE submodel instead of raw input to re-

duce privacy leaks as fine details are removed once the input passes through initial layers of

convolutional networks [38].

Figure 4.10 shows signature computation in a MazeNet model consisting of three in-TEE

submodels and two cloaked submodels. The TEE hosting the first in-TEE submodel saves

the submodel output and passes it to the cloaked submodel. The cloud vendor computes the

signature with its private key sk and proceeds with submodel evaluation on the inputs. Once the

results are available, the cloud vendor again signs the output and sends both the signatures and

outputs to the following TEE, which validates the signature with the results. Upon successful

validation, the input is filtered and fed to the in-TEE submodel. This process is repeated for

each cloaked submodel.

Filtering of embedded and synthetic outputs. After verifying the digital signatures, the

enclave filters the embedded outputs from synthetic outputs within the results received from the

cloaked submodel. The output of a cloaked submodel contains both synthetic and embedded
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outputs due to the presence of synthetic layers and neurons, which were added during the

cloaking phase. The taint tensors obtained during the cloaking phase, which contain labels, are

securely pre-loaded into the enclave, based on which the enclave filters the embedded outputs

from synthetic outputs. After filtering, the embedded outputs are fed into the in-TEE submodel

while the synthetic outputs are discarded.

Inference API. To query the model, users send their inputs to the API endpoints exposed

by the Model Manager. The model manager scales and crops the user input to adhere to the

requirements of the queried model. Then, it routes the user input through an ordered series

of in-TEE submodels and cloaked submodels to evaluate the inference task. At the end, the

results obtained from the last in-TEE submodel are returned to the user.

4.5 Security Analysis of MazeNet Models

All the in-TEE submodels run within TEEs, therefore in-TEE submodel weights are secured

by the hardware from adversaries. In the case of non-TEE submodels, each non-TEE submodel

T̂ ∈ T̂ is cloaked to get corresponding cloaked submodel C ∈ C. To steal the weights of the

embedded non-TEE submodel T̂ from cloaked submodel C, the adversary needs to correctly

identify embedded layers and neurons from synthetic ones. Equivalently, the adversary can

steal the submodel if it can correctly guess the synthetic outputs from the embedded outputs,

which are filtered by the enclaves.

Each subset of the output from the cloaked model corresponds to a unique model. However,

only one of them corresponds to the embedded model. Thus, the problem of submodel stealing

for the adversary reduces to correctly identifying a subset from all possible subsets of a given set.

For a set of size |S|, there are 2|S| − 1 possible subsets, excluding the empty subset. Therefore,

if a cloaked submodel produces N tensors as outputs, then the probability that an adversary

can correctly guess the embedded non-TEE submodel T̂ is

P (T̂ ) =
1

2N − 1

For the entire model, the number of expected weights that would be presented in a randomly

extracted submodels would be the sum of expected weights in the individual cloaked submodel.

Therefore, the number of weights present randomly extracted model by the adversary would

be:

E[Embedded Weights] =
∑
C∈C

|WC |
2||C|| − 1
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Here, |WC | is the number of embedded weights or parameters present in cloaked submodel

C, and ||C|| is the number of output tensor produced by the cloaked submodel C.

4.6 Implementation

We have built the MazeNet framework on TensorFlow [48]. It consists of two components:

MazeNet Model Builder and Model Manager.

A model owner runs MazeNet Model Builder on its premises to build a MazeNet model for a

given pre-trained model. As enclaves have memory constraints, MazeNet uses TensorFlow Lite

framework for running in-TEE submodels. However, the untrusted environment does not have

such constraints, so cloaked models are deployed with the standard TensorFlow framework.

Model Builder accepts pre-trained models in TensorFlow SavedModel format, and produces

MazeNet models consisting of in-TEE and cloaked submodels. The in-TEE submodels are

exported in TFLite format, and the cloaked submodels in SavedModel format. In addition to

the MazeNet model, the Model Builder produces taint tensors that are required during the

inference process. The in-TEE submodels and taint tensors are confidential; therefore, they are

delivered to the enclave over a secure channel.

On the cloud, Model Manager manages the life cycle of MazeNet models. It is responsible

for securely deploying in-TEE submodels within the TEEs and cloaked submodels in untrusted

environments. It exposes an API endpoint to query the model and orchestrates the inference

process.

Our implementation relies on Intel SGX as a TEE. As applications do not run out-of-box

on Intel SGX, the research community and industry have developed multiple frameworks to

run applications on SGX. These include Graphene-SGX [155], Porpoise [132], Panoply [136],

SGX-LKL [118]. Among these, we have selected Graphene-SGX as it supports the Python

programming environment and the TensorFlow deep learning framework.

To implement the MazeNet framework, we have added cloaking support for popular layers in

the TensorFlow framework which were present in our benchmark models – VGG16, ResNet50,

and DenseNet201. Table 4.3 lists the various types of layers present in each model. In to-

tal, TensorFlow has around 150 types of layers, and we implemented cloaking support for 20

TensorFLow layers for the benchmark models.

In the implementation, adding cloaking support for TensorFlow layers required 715 lines

of Python code in Model Builder, and around 510 lines for Model Manager as reported by

pygount [5]. Further, MazeNet can be easily extended to other models by implementing cloaking

for unsupported layers present in the model.
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Model Types of TensorFlow Layers Present in Model

VGG16 Conv2D, Dense, MaxPooling2D, Flatten
ResNet50 Conv2D, Dense, BatchNormalization, Add, GlobalAveragePooling2D,

MaxPooling2D, ZeroPadding2D, Activation
DenseNet201 Conv2D, Dense, BatchNormalization, Concatenate, GlobalAveragePooling2D,

MaxPooling2D, ZeroPadding2D, AveragePooling2D

Table 4.3: Different types of TensorFlow layers present in the benchmark models.

4.7 Evaluation

To find the benefits and costs of the presented techniques, we transform popular convolutional

neural networks into MazeNet models and evaluate the performance of the MazeNet models.

Our evaluation focuses on two key aspects of deep learning inference services: throughput and

latency. Furthermore, we quantify the overheads arising from different sources in the MazeNet

inference system.

Benchmark models. For a comprehensive evaluation, we identified networks with diverse

architectures to cover a broad range of models. For the sequential models, where the output of

one layer is input to the immediately following layer, we have selected the VGG16 model [74].

In the case of functional models, where the output can be input to more than one following

layer, we have taken the ResNet50 model [56]. Further, for the highly connected architectures,

we have chosen the DenseNet201 model [59], where a layer takes outputs of all preceding layers

within a block as inputs.

4.7.1 Experimental Setup

MazeNet models consist of two types of submodels: in-TEE submodels and cloaked submodels.

During inference, the in-TEE submodels are deployed on TEE-equipped systems, while the

cloaked submodels are deployed on non-TEE systems.

1. TEE systems: The in-TEE submodels obtained from splitting are deployed on TEE

systems. Based on the parameters in Table 4.4 to split models, the Model Builder produces

three in-TEE submodels and two cloaked submodels. The in-TEE submodels are deployed

on three TEE systems that are equipped with an Intel i7-7700 desktop-class CPU, which

supports SGXv1 with 128 MB of cryptographically protected memory, and 32 GB of main

memory.

2. Non-TEE systems: The remaining two cloaked submodels are deployed on non-TEE

systems without SGX support. The cloaked submodels are provisioned on a server-class
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Xeon Gold 6150 CPU, having 36 cores and 72 threads, along with 256 GB of main memory.

As the server-class machine has a high core count and ample main memory, we deploy all

the cloaked submodels on the same machine.

Secure baseline. To evaluate the performance of MazeNet models, we compare them against

a secure baseline. The secure baseline system is the same TEE (i7-7700) system described above

for MazeNet. The secure baseline system executes unmodified pre-trained DL models within

an Intel SGX enclave. It can run models that are larger than the size of the protected memory

with EPC swapping at the cost of a performance penalty. We do not have a secure baseline

for the Non-TEE system (Xeon 6150) described above for MazeNet, as it does not support any

trusted execution environment.

Non-secure baseline. Similarly, we have two non-secure baseline systems where the entire

unmodified model runs within a single system. The two non-secure baseline systems consist of

the TEE (i7-7700) and non-TEE (Xeon 6150) systems described above for MazeNet.

Generating MazeNet models. As pre-trained model weights are required to generate

MazeNet models, we have used the trained models provided by the Keras library [28]. Keras

is a library built on top of TensorFlow [48] to enable developers to quickly build and ship DL

models. It contains a few popular models along with pre-trained weights. In Keras, the model

architecture is stored as a TensorFlow computation graph, and weights are stored in a custom

SavedModel format. MazeNet Model Builder takes a model stored in SavedModel format as

input, along with splitting and cloaking parameters, to build a corresponding MazeNet model.

In MazeNet, the model developer provides the set of synthetic layers to be added during

the cloaking phase. For evaluation, existing layers of the submodels were duplicated and added

to the submodels to produce cloaked submodels.

There are three key configuration parameters (model split, cloak factor, and submodel

width) for building a MazeNet model, which influence the performance of the generated model.

Table 4.4 lists the configuration parameters used in our evaluation for building MazeNet models.

1. Split states how the given model should be split into smaller submodels. For instance,

the VGG16 model consists of 16 trainable layers (convolutional layers and dense layers)

and 6 non-trainable layers (pooling layers and flatten layers). According to the Table 4.4,

layers 1, 11 and 22 of the VGG16 model are designated as in-TEE layers. Based on

this, the Model Builder produces three in-TEE submodels: S1 = {L1}, S2 = {L11}, S3 =

{L22}, while the remaining layers {L2, . . . , L10}, {L12, . . . , L21} are be part of two cloaked

submodels.
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Model Cloak factor Cloaked Submodel width In-TEE layers

VGG16 10% 10 1, 11, 22
ResNet50 10% 10 1-7, 92-102, 174-177

DenseNet201 10% 10 1-7, 49-137, 477-709

Table 4.4: Configuration parameters used to generate MazeNet models for the benchmark
models considered in the evaluation.

2. Cloak factor represents the percentage of synthetic parameters or weights (neurons in

dense layers and filters in convolutional layers) to be added to build a cloaked layer.

Consider the layer 2 of the VGG16 model, which is a convolutional layer with 64 filters,

and a cloak factor of 10%, from the Table 4.4, will add 10% synthetic filters. Therefore,

the cloaked convolutional will have 72 filters instead of 64.

3. Cloaked submodel width limits the maximum width during cloaking. When a syn-

thetic layer is added at depth d, it increases the width of the submodel, where the width is

the number of layers present at a given depth. An increase in the width of the cloaked sub-

model corresponds to extra computations and higher data transfer costs during inference.

Thus, this parameter limits the maximum width of cloaked submodels.

Model deployment. Once a MazeNet model is built, an instance of Model Manager loads the

in-TEE submodels on the TEE systems and the cloaked submodels on the non-TEE systems.

The Model Manager exposes an API endpoint for the user to query the deployed model with

inputs and obtain prediction results. When a user queries the MazeNet model with inputs, the

Model Manager routes the inputs through a series of in-TEE and cloaked submodels, ultimately

computing the inference results and returning the prediction scores or labels to the user.

The first query to the models after model deployment takes an inordinate amount of time

to return the inference results. In the first query, internal states are set up in the TensorFlow

framework to store the intermediate states. Therefore, the results from the first query are

excluded from the measurements.

Inference task. The inference service hosting models performs image classification on im-

ages drawn from the ImageNet [126] dataset. The ImageNet dataset consists of curated high-

resolution images of different sizes that were collected from the internet. Furthermore, the

images are labelled into 1,000 categories. As the benchmark models accept fixed-size inputs,

the images are cropped and scaled before feeding them to the model under evaluation. The

models compute confidence scores on inputs that assign the probabilities of the input belonging

to 1,000 categories.
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Clients. In real-world deployments, a single model would handle requests from multiple users.

To evaluate how MazeNet models perform under such conditions, we measured their throughput

and latency when queried by concurrent clients running as processes. Each client instance

simulates a unique user and sends one query at a time, waits for the response before issuing

the next.

Batch size. In standard deep learning workloads, models are queried in batches instead of a

single input instance. In batching, multiple individual inputs are grouped to form a batch, and

the model performs the evaluation on the whole batch in one forward pass. Batching benefits

from the parallelism available on modern hardware, where multiple data and instructions are

executed in parallel.

4.7.2 Throughput Results

First, we evaluate the throughput of MazeNet models and compare them against the secure

baseline models. The MazeNet models are generated from the configuration parameters given

in Table 4.4 and deployed as per the experimental setup in Section 4.7.1.

To evaluate throughput, we query the models with 128 input samples that are split across

eight clients, which query the models in parallel. We repeat this experiment with different batch

sizes and report the maximum throughput, across batch sizes, for each model in Figure 4.11.

The results demonstrate that MazeNet models achieve higher throughput when compared to the

secure baseline models. MazeNet models benefit from the faster untrusted processors, whereas

the secure baseline models are limited by the weak computational power of the trusted CPU.

However, the speedup observed across models differs significantly from 30x in VGG16 to 2x

in DenseNet201. The speedup is more significant in VGG16 as it is computationally expensive,

requiring 30.96 GFLOPs as compared to ResNet50 and DenseNet201 models, which require 7.73

GFLOPs and 8.58 GFLOPs, respectively. Thus, the VGG16 MazeNet model benefits more from

powerful untrusted processors. Further, the speedup will vary with the computational power

of the untrusted hardware.

During the experiments, we observed that each MazeNet model achieved maximum through-

put at a different batch size. Therefore, we next measure the role of batch size in the throughput

of MazeNet models. In standard deep learning workflows, increasing the batch size increases

the throughput of the system. However, the throughput saturates at some batch size.

To measure the impact of batch size, eight clients query the model in batches. The clients

draw multiple input samples from the ImageNet dataset, form a batch of a given size, and

query the model with the batch. The experiment is repeated for different batch sizes, and the

results are presented in Figure 4.12. Indeed, increasing the batch size improves the throughput
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Figure 4.11: Maximum throughput observed in secure baseline models and MazeNet models,
where MazeNet models were generated from the parameters given in Table 4.4.

of MazeNet models. The VGG16 and DenseNet201 models achieve the highest throughput at

a batch size of eight, whereas ResNet50 achieves maximum throughput at a batch size of four.

However, increasing the batch size beyond the optimal point leads to a significant decline

in throughput, whereas throughput saturates in standard deep learning workloads. The pri-

mary reason for this degradation of throughput is EPC swapping in enclaves due to the large

intermediate state produced by in-TEE submodels. Doubling the batch size doubles the size of

the intermediate state produced by layers and submodels. This EPC swapping of intermediate

states is different from the earlier EPC swapping of model weights, where the weights of large

DL models do not fit within the protected memory and incur swapping. Therefore, selecting

the right batch size becomes crucial for maximising the throughput of MazeNet models.

Finally, we evaluate how the throughput scales with increasing inference workload. Initially,

a single client queries the model with a fixed batch size of one. Then, the number of clients

is progressively increased over a period of time, while keeping the batch size fixed, to simulate

the increasing workload.

Figure 4.13 shows the throughput of MazeNet models at varying workloads. Initially, the

overall throughput of the MazeNet inference system increases with an increase in workload.

However, the throughput saturates when the number of clients crosses six. In MazeNet, the
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Figure 4.12: Throughput of MazeNet models at different batch sizes. Increasing the batch size
improves the throughput of MazeNet models. However, increasing the batch size beyond a
certain point reduces the throughput due to EPC swapping as the enclaves cannot store the
entire intermediate state in the protected main memory.

submodels are deployed on different systems. When the Model Manager receives an input and

routes it through a sequence of submodels, only one submodel is actively processing the input,

while the other submodels are idle as they have either already processed the input or waiting

for the intermediate results to begin processing. As the number of clients increases, the Model

Manager schedules the pending queries in pipelined mode, where the next query is scheduled

for execution on the first submodel, while the second submodel is still processing the earlier

query. As the workload keeps increasing, the throughput saturates when all the submodels are

actively processing different queries, or one of the submodels becomes the bottleneck in the

pipelined execution.

From the previous two experiments, the throughput of models increases with both the

increase in batch size and the increase in the number of clients. The system achieves maximum

throughput when the batch size is around four to eight, while the number of clients is around

six to eight. This set of parameters results in maximum utilisation of system resources to obtain

the highest throughput.
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Figure 4.13: Throughput of MazeNet models at different workloads. The x-axis represents the
number of clients simultaneously querying the model with a fixed batch size of one. As the
number of clients increases, the workload applied to the inference services increases.

4.7.3 Latency Results

Next, we shift our focus to query latency of models, which indicates the user experience. A

lower latency results in a responsive session for the user.

In our experiments, query latency is the time duration a client has to wait, after sending the

inputs to the model, until it receives inference results. To measure the latency of models, we

query the model with a single client that sends a single input (batch size=1) to the model and

waits for results before sending the next query. The client measures the time between sending

the inputs and obtaining results. The experiment is repeated 100 times with different inputs,

and the average latency is reported in Figure 4.14. The results show a significant improvement

in latency for the VGG16 MazeNet model as compared to the secure baseline model, where the

latency drops from 3 seconds to 0.6 seconds, a 5x reduction in latency.

However, there is no latency improvement for the ResNet50 and DenseNet201 MazeNet

models. There are two main sources that contribute to the latency of MazeNet models, in

addition to computational operations. First is the time spent on computing the digital sig-

natures by cloaked submodels and verification of signatures by enclaves. Second is the time

spent on data transfers between cloaked and in-TEE submodels. As compared to the VGG16

MazeNet Model, the ResNet50 and DenseNet201 MazeNet models spend more time on com-

puting digital signatures and data transfers than performing deep learning operations, which

can be accelerated by untrusted hardware.
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Figure 4.14: Latency of baseline and MazeNet models when a single client queries the model
with a single input image. The Y-axis denotes the time (milliseconds) the client has to wait for
the results.

Latency with multiple Clients. Next, we evaluate how the latency is impacted when

multiple clients simultaneously query the models to simulate the scenario where a single model

handles multiple users. Initially, we began with a single client which queries the model with a

single input. Then, progressively, we increase the number of clients over time.

Figure 4.15 presents the latency trends of MazeNet models under varying numbers of clients.

Initially, the latency increases slightly when the number of clients is increased from one to

five. As the number of clients increases, the number of active models in the inference pipeline

increases. However, when the pipeline is full or saturated, further increasing the number of

clients proportionally increases the latency as the new input queries are put in the wait queue

by the Model Manager.

Latency at different batch sizes. Next, we investigate the impact of batch size on the latency

of MazeNet models. We measure the latency of MazeNet models at different batch sizes while

keeping the number of clients constant (one) to avoid queueing by the Model Manager. Initially,

the client sends the query containing a single input image and records the time taken by the

model to return the results. Then, it gradually increases the number of input samples in the

batch.
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Figure 4.15: Latency of MazeNet models when they are queried by multiple clients in parallel.
The x-axis denotes the number of clients simultaneously querying the model, while the y-axis
shows the average latency observed by each client.

Figure 4.16 reports the latency for the entire batch. For all the models, the latencies at

different batch sizes follow the same pattern. The batch latency increases with an increase in

batch size. However, the average time spent per input sample within a batch reduces from

0.60 seconds to 0.30 seconds when the batch size is increased from one to fifteen. Similarly,

it decreases from 0.56 seconds to 0.40 seconds for ResNet50, and from 0.71 seconds to 0.41

seconds for DenseNet201. The results show that batching can reduce the average time spent

per single input instance during inference, while the overall latency increases due to the higher

time spent in evaluating multiple inputs in the batch.

4.7.4 Overheads

During the MazeNet inference, there are three key sources of overhead when compared to

standard inference without any splitting and cloaking. First is the overhead of executing in-

TEE submodels within SGX enclaves, as applications run slower within enclaves due to the

overheads intrinsic to SGX enclaves, e.g., domain crossing, copying data to and from enclave

memory. Second is the overhead of network communication costs arising from data transfers

between the in-TEE and cloaked submodels that are located on different hosts. Third is the

additional computations due to the presence of synthetic layers and synthetic neurons that were

added in the cloaked submodels during the cloaking process. In this section, we will quantify

individual overheads of these three sources and discuss a few optimisations that can help to

reduce these overheads.
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Figure 4.16: Latency of MazeNet models at different batch sizes, where they are queried from
a single client. The y-axis reports the latency for the entire batch.

Overhead of enclave execution. Applications run slowly within enclaves due to the over-

heads intrinsic to enclave execution, such as a memory copy of data between the enclave and

the user space memory, entry and exit of control flow to the enclaves, and other overheads. In

MazeNet, the intermediate data is frequently transferred across submodels, which necessitates

memory copy and context switches for enclave processes.

To quantify the overhead of enclave execution, we measure the throughput of MazeNet

models in two configurations: in-TEE submodels within TEEs and in-TEE submodels outside

TEEs. In the first configuration, we run MazeNet models in the standard configuration as per

the experimental setup described in Section 4.7.1. In the second configuration, in-TEE submod-

els are deployed in an untrusted environment to avoid the overheads of enclave execution, while

the remaining setup remains the same. We measure the throughput of the VGG16 MazeNet

model in both configurations at multiple batch sizes from eight clients.

Figure 4.17 plots the throughput of the MazeNet model in both configurations, in-TEE

submodels within the TEEs and outside the TEEs, for the VGG16 MazeNet model. The

throughput of standard configuration, in-TEE submodels with TEEs, is within 20% of the

other configuration for batch sizes up to eight, as the throughput is bottlenecked by cloaked

submodel execution time instead of the enclave execution. However, at higher batch sizes, EPC
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Figure 4.17: Overhead of enclave execution. Throughput of the VGG16 MazeNet model
when the in-TEE submodels are deployed within TEEs v/s outside the TEEs. Deploying
the in-TEE submodels outside TEEs avoids enclave execution costs. The overhead of enclave
execution is low at small batch sizes, but it increases with the batch size.

swapping occurs due to the larger intermediate state produced by the in-TEE submodels, which

shifts the bottleneck from the cloaked submodel to EPC swapping in enclaves. Consequently,

the throughput of in-TEE submodels within the TEEs configuration starts to decrease with

higher batch sizes. Thus, the overhead of enclave execution is more prominent when there is

EPC swapping, while the overhead is minimal without EPC swapping.

Network Overhead. Intermediate results produced by the in-TEE and cloaked submodels are

transferred over the network, which introduces network overhead during the inference process.

We evaluate the overhead due to the 1 Gigabit Ethernet network used in our experimental

evaluation.

To isolate network overhead, we run both the in-TEE and cloaked submodels on the same

non-TEE system, the server machine described in the experimental setup, Section 4.7.1. This

setup eliminates the need for network transfers during the inference process. As the in-TEE

submodels run outside the enclave, similar to the previous experiment, we can offset the perfor-

mance gains arising from running in-TEE submodels outside the enclave, up to 20% for smaller

batch sizes.
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Figure 4.18:
Network overhead. Throughput of the VGG16 MazeNet model when the in-TEE and cloaked
submodels are deployed on the same host to avoid network transfers.

We compare the throughput of the VGG16 MazeNet model in the above new configu-

ration, when the in-TEE and cloaked submodels are co-located on the same host, with the

standard configuration, where the in-TEE submodels are located on TEEs on different hosts.

The throughput in both cases is similar, as the inference process is compute-bound. During

inference, submodels of the VGG16 MazeNet model transfer around 10 MB of data per single

input inference. The MazeNet model in standard configuration achieves around eight inferences

per second; therefore, the network bandwidth of one Gigabit does not introduce any significant

overhead.

However, with more powerful untrusted processors, the network bandwidth may become

the bottleneck. One of the optimisation strategies to reduce the amount of data transfers is

to reduce the precision of the intermediate results when they are transferred across submodels,

while the submodel performs the remaining computation on standard precision. But reducing

the floating point precision may reduce the accuracy. To evaluate the drop in accuracy, we

measured the accuracy when the floating point precision was reduced from 32 bits to 16 bits.

For the VGG16 MazeNet model, the top-1 accuracy remains the same at 68%, although the
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Model Standard
MazeNet Model

in-TEE Submodels Cloaked Submodels Total Increase

(GFLOPs)

VGG16 30.96 1.85 151.76 153.60 5x
ResNet50 7.73 0.684 60.85 61.54 8x

DenseNet201 8.58 3.17 51.18 54.36 6x

Table 4.5: Number of Floating-Points Operations (FLOPs) in standard benchmark models and
Mazenet models when the models were cloaked with the configuration parameters in Table 4.4.

raw confidence scores differ slightly due to the drop in precision.

Overhead of additional computations.: The synthetic layers and neurons added during the

cloaking phase to produce the cloaked submodels add additional computations that were not

present in the original model. To quantify the overhead due to the additional computations,

we compare the number of floating-point operations required to compute inference results in

unmodified models and MazeNet models.

Table 4.5 lists the number of floating point operations (FLOPs) in unmodified and MazeNet

models, which were generated from the parameters given in Table 4.4. The number of floating-

point operations increases by 5x to 8x in MazeNet models as compared to unmodified models.

However, the additional operations in cloaked submodels execute on faster and powerful un-

trusted hardware, which is an order of magnitude faster than the TEEs, 4 cores on the TEE

system v/s 36 cores on non-TEE systems in our experimental setup. Other hardware accelera-

tors, such as GPUs and TPUs, can even provide up to 10x to 100x more computational power

than CPUs.

The additional operations can be further broken down into operations from the synthetic

neurons and synthetic layers. Thus, we evaluate how different amounts of synthetic neurons

and synthetic layers affect the throughput of MazeNet models by adding different amounts of

synthetic layers and neurons in the MazeNet model.

Overheads due to synthetic neurons. First, we focus on how additional synthetic neurons

affect the throughput of MazeNet models. Specifically, we assess the change in throughput

when varying the proportion of synthetic neurons (10%, 100%, and 200%) during the cloaking

phase, while keeping all other parameters constant with those listed in Table 4.4 to generate

the MazeNet models. Figure 4.19a illustrates the throughput of VGG16-based MazeNet models

across different batch sizes for each configuration. The throughput halves when the amount

of synthetic neurons is increased from 10% to 100%. The throughput further drops by an
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Figure 4.19: Throughput of the VGG16 MazeNet model when different amounts of synthetic
computations were added during the cloaking phase by adding synthetic neurons and layers.

additional 25% when the amount of synthetic neurons is increased again from 100% to 200%.

These findings demonstrate the rate at which the throughput of MazeNet models declines as

the proportion of synthetic neurons increases.

Next, we evaluate the impact of synthetic layers on the throughput of MazeNet models.

During the cloaking phase, different numbers of synthetic layers are added to obtain MazeNet

models. Figure 4.19b shows the throughput of three models, each having different amounts

of synthetic layers. Both the synthetic neurons and the synthetic layers increase the number

of computations in cloaked submodels and increase the amount of data transfer from cloaked

submodels to in-TEE submodels. Therefore, the throughput of MazeNet models is affected

based on the cloaking parameters, which control the number of synthetic neurons and synthetic

layers to be added during the cloaking phase.

Overhead of digital signatures. Apart from synthetic computations, the input and output

of the cloaked submodels are signed by the cloud vendor’s private key, and the signatures

are verified within the enclave. We measured the overhead due to signature computations.

The throughput remains largely unaffected as the signature computations are overlapped with

submodel evaluation. However, the latency in the VGG16 model drops from 0.60 seconds to

0.30 seconds without digital signatures.
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4.8 Limitations

There are a few limitations of this work. First, MazeNet only protects the privacy of the models

and does not protect the privacy of the inputs. When the input image is processed by the first

few convolution layers of the first in-TEE submodel, the intermediate output sent to the cloaked

submodel located outside the enclave may reveal high-level details, e.g., the user input to the

model is an image of an animal. Second, the developer needs to provide the optimal split

and the synthetic layers’ architecture. A random split of the model can adversely affect the

performance due to higher data transfer across submodels or an imbalance in the number of

operations across submodels, which causes one of the models to become a bottleneck in the

pipelined execution, leaving other submodels idle or underutilized.

4.9 Protecting DNNs With Other TEEs

In the place of Intel SGX, other TEEs can be used for running deep learning inference workloads.

VM-based TEEs, Intel TDX, AMD SEV-SNP, and Arm CCA, do not suffer from fixed protected

memory as was the case with SGX. Therefore, splitting of the model is not required. However,

they still cannot securely use general-purpose hardware accelerators. Therefore, in those cases,

they can use MazeNet to offload a portion of computations to untrusted computing devices to

meet the performance requirements. The VM-based TEE can host the set of in-TEE submodels,

while the cloaked submodels are outsourced to untrusted devices to speed up the inference

process.

MazeNet, however, is not suitable for TEEs on mobile devices, Arm TrustZone and Arm

CCA, as deep learning operations are computationally expensive and rapidly drain the device’s

battery. Further, transferring data across the mobile network will hamper the inference perfor-

mance. Instead, the model should be optimized with techniques like quantization and model

distillation [50] to reduce the cost and the number of DL operations.

In the case of recent high-end server-grade Nvidia GPUs that are available with confidential

compute capability, DNNs can be directly deployed on these GPUs within the GPU-TEE,

while the VM-based CPU TEE can orchestrate the DL model provisioning and expose the

APIs required to query the model. In the case of older GPUs, where the TEE is not available,

or in the case of GPUs from other manufacturers, MazeNet can be used to speed up the inference

task.
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4.10 Conclusion

In this work, we presented MazeNet to protect the privacy models on public cloud platforms

with TEEs, and introduced methods to outsource portions of computation during inference

to untrusted hardware. Our outsourcing scheme outsources both the linear and non-linear

layers. We implemented the presented techniques in a prototype framework, MazeNet, to build

MazeNet models from given pre-trained models and deploy the MazeNet models on a public

cloud platform to provide inference services. Our evaluation of popular convolutional networks

demonstrates that MazeNet models can improve the throughput by up to 30x and the latency

by up to 5x as compared to the secure baseline models considered in our evaluation.
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Chapter 5

Related Works

5.1 Extensions of TEEs

The research community has proposed a plethora of solutions to extend the scope of trusted

execution environments beyond traditional CPU-based TEEs to encompass GPUs and other

discrete and integrated peripheral devices. Some of the work further isolates various components

within trusted compute base, thus reducing the attack surface and enhancing the security.

Sanctuary [20] presents a new security architecture that leverages ARM TrustZone to run

applications in an isolated environment in the normal world with assistance from TrustZone

Address Space Controllers [12]. It protects the applications, referred to as Sanctuary Apps,

in this isolated environment from the malicious operating system and as well as protects the

operating system from malicious Sanctuary Apps. Moving applications from the secure world

to the normal world into an isolated environment reduces the trusted computing base of the

secure world and reduces the attack surface. Another work vTZ [58] proposes to virtualise

ARM TrustZone to enable multiple virtual machines to have separate TEEs.

StrongBox [35] proposes an isolated execution environment for Arm mobile integrated GPUs

by leveraging the hardware-based memory protection offered by ARM TrustZone. It allows

a GPU to be configured in secure mode such that the host hypervisor cannot access GPU

data. It uses the Arm TrustZone Address Space Controller to protect GPU memory from

untrusted DMA devices and extends stage-2 address translation to protect GPU memory from

the hypervisor and kernel.

ACAI [141] presents an Arm CCA-based design to extend the trusted execution environment

of realm VMs to PCIe devices such as discrete GPUs and FGPAs. It uses existing ARM CAA-

aware system buses and memory protections to protect communication between realm VM and

PCIe devices. A device can be allocated to a realm VM to work in realm mode during realm
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creation, where the host hypervisor and other realm VMs cannot access real-mode devices. It

uses existing memory encryption to protect confidentiality during data transfers over PCIe.

Targeting ARM mobile SoCs, Portal [129] introduces a secure device I/O mechanism that

avoids the overhead of memory encryption. Instead, it relies on the memory isolation features

of ARM CCA to establish a protected plaintext memory region that is accessible only to the

Realm VM and designated devices. This design enables efficient and secure I/O operations

without compromising confidentiality.

Aster [75] explores mutual isolation between the secure world and the normal world. While

TrustZone prevents normal-world access to secure-world resources, Aster complements this by

employing ARM CCA’s Granular Protection Checks (GPC) to prevent secure-world access to

the normal world.

5.2 Frameworks to Ease Enclave Development

The key pieces of work related to our own are of course the frameworks used to port legacy

applications to enclaves: Haven [16], Graphene-SGX [155], Panoply [135], LKL-SGX [118],

SCONE [13] and lxcsgx [149]. Since we have discussed these projects at length, we will focus

our discussion in this section on other related work.

Porting applications to enclaves. Prior work has ported applications in several specific do-

mains to enclaves. These include frameworks for MapReduce tasks [131], language environments

for JavaScipt [46] and Rust [36], BitCoin and Blockchain applications [154, 168], in-memory

databases [117], object stores [73], and middleboxes [151]. SCONE [13] and lxcsgx [149] use the

instruction-wrapping model to port containers (Docker in case of SCONE and lxc containers in

case of lxcsgx) into enclaves.

Each of these projects focused on providing an enclave version of a specific application or

class of applications. Our focus, in contrast, is on generic frameworks that can be used to

port any application to enclaves. Naturally, because the projects cited above are tailored to

individual applications, we expect the resulting enclaves to perform better than applications

ported using the generic frameworks. Since they are tailored from scratch for specific application

domains, they also are better engineered to just run the sensitive portions of the applications

within the enclaves, rather than the entire application, as we did in this paper. Thus, we

view the frameworks discussed in this paper as stop-gaps, that can be used to get enclave

applications up and running quickly, as developers work on rewriting the applications to tailor

them to enclaves.

Finally, there is also work on creating secure in-enclave file systems [100, 6]. The main goal

here is to ensure that file accesses that cross the enclave boundary do not reveal any information
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about the data being accessed inside the enclave. These file systems use techniques inspired

from the oblivious-RAM literature to provide such guarantees. The frameworks discussed in

this paper do not offer such guarantees, and may leak information (e.g., about the files accessed,

the number of bytes read) even if the data is stored encrypted in the files. However, they can

be integrated with such ORAM-inspired file systems to provide stronger guarantees.

Tool support to write enclave code. Glamdring [85] and Civet [156] offer tool support to au-

tomatically partition a legacy application into an enclave and non-enclave part. An application

developer provides a specification of the portions of the code/data that are sensitive. These

tools perform static taint analysis of the application to identify data and control dependen-

cies, and identify the enclave boundary. Following this, they automatically partition the code

and create the enclave; they rely on one of the models described in this paper as the enclave

execution framework.

Researchers have also developed tools to help developers build secure enclaves from scratch.

The key consideration for these tools is to ensure that enclaves do not accidentally leak sensitive

data to untrusted code. Sinha et al. [140] developed a programming framework that ensures

information-release confinement, i.e., that cleartext data never leaves the enclave. To do this,

they provide a verified, in-enclave trusted library and a simple API consisting of just a few simple

calls (send, recv) to interact with non-enclave code. Provided that an application developer

adheres to this simple interface, they can guarantee that the enclave will not accidentally leak

data to untrusted code. Moat [139] is a similar analysis tool that analyzes the machine code

of enclaves and determines whether there are any unintended information leaks to untrusted

code.

5.3 Trusted Execution of Deep Neural Networks

To protect deep learning models, previous research has leveraged both cryptography-based

methods and hardware-assisted trusted execution environments (TEEs) to secure various stages

of deep learning workflows, including protecting the privacy of training data, safeguarding user

inputs during inference, and enabling the training of confidential models across data distributed

among multiple parties.

Trusted hardware-based solutions. A number of existing solutions have leveraged

hardware-based Trusted Execution Environments (TEEs) to secure deep learning workloads,

particularly focusing on inference on edge devices and in cloud environments.

Offline Model Guard (OMG) [17] protects the privacy of models and user inputs by ex-

tending ARM TrustZone with Sanctuary [20], a user-space enclave built on ARM TrustZone

Address Space Controller. It loads the model within the Sanctuary enclave which protects the
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confidentiality and integrity of the model from the untrusted normal world during inference.

For training, Chiron [62] protects the privacy of training datasets from the cloud provider.

It loads the training dataset in a Royan sandbox built on Intel SGX. The sandbox provides

confidentiality to the dataset during training. TensorScone [77] extends Scone [14] to support

the TensorFlow framework on Intel SGX enclaves for private training and inference of deep

learning models. PPFL [104] presents a solution for federated learning learning, where multiple

parties train a joint model while protecting the privacy of their training dataset. It relies on

TEEs present on both the edge devices and a central server to privately compute the gradient

updates inside the TEEs during the training process to prevent privacy violations.

These approaches based on trusted hardware provide strong security grantees, but the per-

formance of the systems is limited as they rely only on TEEs, and leave other powerful resources

available on the system underutilized.

TEE and GPU-based approaches. To address the computational limitations of the CPU-

based trusted execution environments, several approaches have presented techniques to offload

portions of deep learning workloads to untrusted yet high-performance hardware accelerators

like GPUs.

Slalom [152] introduces a secure outsourcing framework that enables the delegation of linear

layers in deep learning models to a nearby, untrusted but high-performance co-processor. The

model is partitioned such that linear layers are executed on the untrusted hardware, while

non-linear layers are processed securely within the TEE. To preserve the confidentiality of user

inputs during inference, Slalom applies a masking technique to the inputs inside the trusted

environment – adding a random vector that serves as a one-time pad – before sending the

inputs outside the TEE. Later, the output from the outsourced computation on masked data is

then recovered inside the TEE. To ensure the integrity of the results, Slalom employs Freivalds’

algorithm within the TEE to verify the correctness of the outsourced computation. While

Slalom protects the privacy of the inputs and integrity of the outsourced computation, it does

not safeguard the confidentiality of the model’s weights.

ShadowNet [143] presents another method based on linear transformations to protect the

privacy of model weights in addition to the privacy of the user input. It outsources the linear

layers of the model to mobile GPUs and runs non-linear layers within the Arm TrustZone. The

linear transformations ensure the privacy of the outsourced model weights and the input when

the computation is outsourced to GPUs located outside the secure world.

To speed up the training on private datasets with TEE and GPUs, Darknight [55] presents

an input encoding scheme based on matrix masking. The training dataset is encoded within the

TEE to protect privacy. Then, it outsources the linear computations to a set of non-colluding
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GPUs to speed up the training without compromising the privacy of the training dataset. The

results from multiple GPUs are collected within the TEE, and the final result is computed by

combining the results from a subset of the GPUs.

Instead of protecting the privacy of the model after training, TEESlice [171] proposes to split

the model before training. In contrast to previous approaches which only run non-linear layers

within TEE, TEESlice run small privacy-sensitive linear layers within TEE in addition to non-

linear layers. TEESlice consists of two types of layers: public layers and privacy-sensitive layers.

The public layers are taken from publicly available models which are trained on the public

dataset, whereas the privacy-sensitive weights are learned during the training on the private

dataset. The public layers are outsourced to untrusted GPUs, whereas the privacy-sensitive

layers execute within TEE. Therefore, the adversary does not learn additional information from

the outsourced layers.

The main limitation of these techniques based on linear transformation is that they only

outsource linear layers to an untrusted environment for fast and efficient execution. However,

most of the time linear layers are followed by a non-linear layer. Therefore, the intermediate

states or outputs of the linear layers need to be constantly moved between the TEE and the

GPUs. MazeNet overcomes this limitation by outsourcing both linear and non-linear layers to

untrusted environments, thus reducing the constant need to transfer data between TEE and

the GPUs.

Cryptographic Solutions. Cryptography-based solution uses homomorphic encryption schemes

[44, 130, 33] and multi-party computation [88, 125, 105, 76, 122, 123] protocols or a combination

of both techniques [101, 69] to secure the privacy of training dataset during training, and the

privacy of user inputs and trained model during inference.

CryptoNets [44] transforms neural networks into CryptoNets using homomorphic encryption

that performs predictions over encrypted data. The user encrypts the private input with a public

key and sends the encrypted input to a cloud server hosting CryptoNets. The cloud server

applies the CryptoNet on the encrypted input to compute encrypted results. The encrypted

results are sent to the user who owns the private key to decrypt the results.

SecureNets [27] proposes a secure matrix transformation scheme to outsource matrix mul-

tiplication operations in deep neural networks to untrusted cloud providers. For each layer of

a DNN model containing matrix multiplications, the user securely transforms the input and

layer weights matrix, and sends the transformed matrices to a cloud server. The cloud server

performs the matrix multiplication operation and sends the results back to the user. The user

verifies the correctness of the outsourced matrix multiplication using Freivalds’ algorithm. On

successful verification, the results are recovered, and non-linear transformations are applied to
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the results. The process is repeated for the remaining layer to compute the inference results.

In secure multi-party computation approaches [88, 125, 101, 105, 76, 122], multiple par-

ties execute a interactive protocol to jointly evaluate a function on their private data without

revealing their private data to other parties. SecureML [105] presents a secure two-party com-

putation scheme where two non-colluding servers jointly train a model on their private training

dataset. CryptFlow [76] and CryptFlow2 [122] transform a TensorFlow inference code into

a secure multi-party computation protocol. Gazelle [69] uses a combination of homomorphic

encryption scheme for linear layers and Yao’s garbled circuits for non-linear layers to perform

secure inference.

Cryptography-based techniques face two primary challenges when applied in real-world de-

ployments. The first is the significant computational overhead associated with cryptographic

operations. The second is the high communication cost incurred by interactive protocols. To-

gether, these limitations make such approaches less practical for applications where low latency

and high throughput are critical.

Apart from intellectual property loss from a stolen model, having access to model weights

makes the deep learning model vulnerable to different attacks.

Membership Inference Attacks. Having white-box access to deep learning models where

an adversary can observe the model weights and intermediate state during inference makes the

deep learning model vulnerable to Membership Inference Attacks [137] and Adversarial Attacks

[47]. In membership inference attacks, an adversary wants to breach the privacy of the training

dataset. The adversary wants to learn whether a given input sample was part of the training

dataset. To learn about the membership of the given input sample, the adversary queries the

model with the input and observes the intermediate state and results. Models tend to produce

higher confidence scores for inputs they were trained on, especially the deeper layers closer to

the output are more prone to leaking membership information. To protect against membership

inference attacks, DarknetTZ [103] proposes to run sensitive layers, which leak membership

information, within a TEE.

Models are vulnerable to membership inference attacks even if the adversary has only black-

box access to the model, where only the confidence score or label is revealed to the user [29].

ModelGuard [147] proposes to perturb the output by adding noise such that the output class

label remains the same but confidence scores are changed so that the adversary cannot infer

the membership.

In MazeNet, the adversary either does not have access to model weights, in-TEE layers, or

cannot distinguish between embedded and synthetic layers. Therefore, membership inference

attacks are prevented. In case of black-box access, the enclave can securely add the noise, as
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proposed by prior works, within the enclave to protect against membership inference attacks

in black-box settings.

Adversarial Attacks. Another popular class of attack on deep learning models are adversarial-

example attacks [47, 110] where the adversary finds adversarial examples from the input space

which appear benign to human eyes but the model misclassifies them to a label of attacker

choice. In these attack, the adversary queries the model with inputs and observes the interme-

diate state to fine-tune the inputs such that the model predicts the target class selected by the

adversary. Thus, preventing access to model weights and intermediate states limit the discovery

of adversarial examples.

In MazeNet, the adversary can observe the intermediate of cloaked submodel, but the in-

termediate state can be misleading due to the presence on synthetic weights and synthetic

output.

Model Extraction Attacks. The goal of model extraction attacks [68, 108, 109] is different

from model stealing attacks [67] where the attackers want to steal the weights of a trained model.

In model extraction attacks, the adversary’s goal is to steal the functionality of the model, i.e.

produce the same output for a given input as of the target model. In model extract attacks, the

adversary builds a shadow training dataset by querying the model with samples from public

datasets or synthetic samples produced by learning algorithms. The attacker queries the model

and records the input-output pair. Once the attacker has collected enough pairs, the attacker

trains a shadow model on the shadow training dataset which tries to replicate the functionality

of the target model.

To protect deep learning models against model extraction attacks, prior works have pre-

sented different techniques that either detect that the model is under model extraction attacks

or perturb the output [170, 70, 68] such that the attackers perform poorly when they train

the model on the shadow training dataset. The model extraction attacks and defences are

orthogonal to model weights stealing.
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Chapter 6

Conclusion

In the last decade, the development of deep learning models has exploded in popularity, with

deep learning models getting integrated into everyday applications from text messaging to soft-

ware development. Deep learning models have become the core part of enterprise applications,

and well-trained models are essential for the growth of businesses. A stolen model can result

in financial losses and forgone revenue for the business owners. Thus, it becomes important to

protect deep learning models.

This dissertation presents methods to protect the privacy of trained deep learning models

on public cloud platforms through hardware-based trusted execution environments. Traditional

cloud services do not provide sufficient security guarantees to protect private and sensitive client

workloads from compromised or privileged cloud service providers. Hardware-based trusted ex-

ecution environments are promising candidates to secure private workloads from privileged

adversaries on public cloud platforms. However, hardware-based trusted execution environ-

ments impose restrictions on the applications that run within the trusted runtime to provide

security guarantees. These restrictions increase the barrier to the adoption of trusted execution

environments for running diverse workloads.

In this dissertation, we studied the challenges involved in porting deep learning workloads

to trusted execution environments. It uncovers the challenges faced by application developers

when they want to run their existing workload on trusted execution environments. In this

dissertation, we have focused on Intel SGX as it was recently launched at the beginning of

this work, and it offered a strong threat model that was suitable for running sensitive appli-

cations on public cloud platforms. Furthermore, it was commercially available on inexpensive

consumer desktop processors in addition to server-grade processors. However, the insights and

techniques presented in this work can be applied to other trusted execution environments offered

by competing silicon vendors.
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As the applications do not run out-of-the-box on SGX, the first part of the dissertation fo-

cuses on the efforts required to port existing applications to Intel SGX enclaves. The software

community had developed various frameworks to port existing applications to SGX enclaves.

However, in the beginning, it was not clear which framework should be used to port deep

learning workloads to Intel SGX enclaves. Therefore, we performed a detailed study of the

frameworks for porting commodity applications to the SGX enclaves. The porting frameworks

can be broadly classified into three categories: the library OS model, the library wrapper

model, and the instruction wrapper model. Unfortunately, there was no publicly available

implementation for the instruction wrapper model to port applications. Therefore, we built

a candidate implementation, Porpoise, to port applications to SGX enclaves. Porpoise is a

secondary contribution of this dissertation. Once we had a candidate implementation of the in-

struction wrapper model, we resumed our study, which focuses on four key parameters: porting

effort, re-engineering effort, security and runtime performance. We ourselves ported a handful

of popular applications with each method to find the benefits and costs of each model.

From the study, we discovered that applications with high memory usage, such as deep

learning applications, incur a significant performance penalty within the SGX enclaves. Thus,

the second part of the dissertation focuses on overcoming the memory and computational

limitations of SGX enclaves and improving the performance of deep learning workloads.

In the second part of the dissertation, we present MazeNet, a framework to accelerate deep

learning inference workflows on TEEs by outsourcing a portion of computation to untrusted

processors, where the TEE ensures the security of the model and inference workflow, and the

untrusted process improves the performance. MazeNet relies on a secure outsourcing scheme

that offloads both linear and non-linear layers to untrusted runtime environments. MazeNet

transforms pre-trained models into MazeNet models and runs them on heterogeneous environ-

ments consisting of TEE and non-TEE systems. We implemented a prototype of MazeNet on

TensorFlow and transformed popular convolutional neural networks into MazeNet models to

evaluate the benefits and costs. Our experimental evaluation demonstrates that MazeNet can

improve the throughput by 30x and the latency by 5x.

The methods presented in the dissertation were evaluated on Intel SGX enclaves. However,

the methods can be applied to other trusted execution environments as well. Chapter 2 reviewed

alternative trusted execution environments offered by different processor vendors that can be

used to protect deep learning models on the cloud and other platforms. These TEEs target

different workloads from mobile applications to confidential virtual machines and employ various

hardware and software-based protection mechanisms to ensure the security of trusted execution

environments. However, TEEs cannot securely access the untrusted processors present on the
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system and can use techniques presented in Chapter 4 to improve the performance of inference

workloads.

Although the techniques presented in this dissertation enable tenants to run private deep

learning models on public cloud platforms, there are a few limitations that can be handled in

future work.

6.1 Future Work

1. Training of deep learning models. The techniques presented in Chapter 4 focus on the

inference of deep learning models. Training is another important aspect of the deep learn-

ing pipeline. The privacy of deep learning models and training datasets can be protected

with trusted execution environments by running the entire training process within TEEs.

However, this approach would be very inefficient due to the following reasons. First, the

intermediate states produced by each layer during the forward pass need to be stored

much longer for the backward pass in backpropagation to compute gradients and update

the model weights. Thus, the overall memory requirement of training is much higher

than that of inference. Second, the models are trained on large training datasets, which

requires high computational power. Therefore, hardware accelerators become essential for

training. We need innovative solutions to offload training to hardware accelerators while

ensuring the privacy of models and training datasets.

2. Privacy of user inputs. MazeNet in Chapter 4 does not provide privacy to the inputs

of the deep learning model during the inference process. Privacy of inputs is necessary for

certain financial and medical data. One of the possible directions to explore the privacy of

inputs can be based on input encoding schemes and data augmentation schemes [169, 61],

where the input data is transformed before being fed into a deep learning model, and the

model performs predictions on the transformed instance.

3. Recurrent neural networks. It will be interesting to extend MazeNet to recurrent

neural networks, where a layer may additionally take input from the following layers

as feedback. During the splitting phase, care must be taken to ensure that there are

no backwards edges between submodels, i.e., a submodel should not depend on the input

produced by later submodels. However, if such a split does not exist, then new approaches

are needed to securely outsource recurrent neural networks to untrusted hardware accel-

erators.

4. Large language models. With the release of GPT-3 [22] and ChatGPT, large language
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models have gained popularity in commercial deployments to offer services ranging from

writing text, summaries, and code. Large language models are multiple orders of magni-

tude bigger than convolutional neural networks in size and computational power required

to perform tasks, 138 million parameters in VGG16 [138] v/s 65 billion in LLaMa [150]

and 671 billion in DeepSeek-V3 [86]. Thus, a single model often does not fit within a

single GPU. Further, the architecture of large language models varies significantly from

recurrent neural networks-based encoder and decoder models, transformers [162], and

Mixture of Experts [150]. Generally, individual layers of large language models are more

computationally expensive than convolutional neural networks. Thus, it is challenging

to split large language models and offload them securely and efficiently to hardware ac-

celerators, as even a single layer may struggle to execute within TEEs because of high

computational and memory requirements due to the scaled dot-product attention mech-

anism [163]. Thus, we need techniques that can scale secure outsourcing schemes to very

large and computationally expensive models. One solution to fit large memory-intensive

models within TEEs is to reduce the size of the model with model quantization [172],

model distillation [50], and model pruning techniques [90]. In model quantization, the

inference is performed with lower precision for floating-point operations, e.g., Float16,

Float8, rather than the higher precision on which the model was trained, i.e., Float32.

Recent hardware advances have introduced new formats that reduce the accuracy loss due

to quantization, e.g., Nvidia FVFP4 [7]. While quantization reduces the model size, it

adversely affects the accuracy of the model by 5% to 10% [89], which is huge as compared

to recent advances in model accuracy. In model distillation, smaller models referred to

as student models are trained from a larger model, referred to as the teacher model. In

model pruning, inactive weights are removed based on certain criteria, such as the neurons

that were not active during the validation phase or were active in a small set of inputs.

These techniques aim to reduce the size of the model so that it can fit within the limited

memory of edge and mobile devices and use less computational power.

The expanding scope and availability of hardware-based trusted execution environments

offer attractive solutions to run confidential computations on cloud platforms and edge de-

vices. This dissertation identifies challenges in protecting deep learning workloads with trusted

execution environments and presents solutions to overcome some of the limitations of trusted ex-

ecution environments. However, there are still challenges in software support and performance

limitations that need to be handled to enable wider adoption of trusted execution environments,

enabling the transition from legacy workloads to confidential workloads.
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