
For Review Only
An Evaluation of Basic Protection Mechanisms in Financial

Apps on Mobile Devices

Journal: IISc - Masters Thesis Processing

Thesis ID masters-2022-0022

Manuscript Type: Synopsis and Thesis

Date Submitted by the
Author: 29-Apr-2022

Complete List of Authors: Agrawal, Nikhil; Indian Institute of Science, CSA;

Keywords: Android Financial Apps, Reverse Engineering, OWASP

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

For Review Only

An Evaluation of Basic Protection Mechanisms in Financial

Apps on Mobile Devices

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Technology (Research)

IN THE

Faculty of Engineering

BY

Nikhil Agrawal

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

April, 2022

Page 1 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Declaration of Originality

I, Nikhil Agrawal, with SR No. 04-04-00-10-22-19-1-16620 hereby declare that the mate-

rial presented in the thesis titled

An Evaluation of Basic Protection Mechanisms in Financial Apps on Mobile

Devices

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2019-2022.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name(s):

Prof. Kanchi Gopinath Advisor Signature

Prof. Vinod Ganapathy Advisor Signature

1

Page 2 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Page 3 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

© Nikhil Agrawal

April, 2022

All rights reserved

Page 4 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Page 5 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

DEDICATED TO

My Parents and My Brother

Page 6 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Acknowledgements

Firstly, I am truly grateful to my brother (Niranjan Agrawal) and my mother (Bharti Agrawal)

for always being there for me. Leaving a decent job offer for the GATE preparation was an

easy decision for me only because of their amazing support. They always tried their best to

make sure that my mind state was calm and relaxed, especially during the initial phase of my

research journey. They provided all the resources to ensure that my research was not affected

when I was at home due to the pandemic. They believed in me, and their words motivated me

never to give up. My brother’s guidance and his efforts really helped me to do my research in

a more structured way. He also directed me to the relevant persons who had expertise in my

domain. Almost once every week, he discussed my project with me, which helped me speed up

my work.

Also, I want to thank my advisors, Prof. Kanchi Gopinath and Prof. Vinod Ganapathy,

for always believing in me; giving me sufficient time and space to learn new things. Working

under them was a great experience, and I learned a lot from them. They were always there for

me, like recommended good research papers to get started, gave excellent ideas to work upon,

helped in my writing skills, provided the full financial assistance for my entire stay at IISc,

and provided all the resources required for my research work. I am truly grateful to you for

everything. I would also like to mention Prof. Uday (my initial faculty advisor), who pushed

me to complete my RTP criteria in the 1st semester. Also, I would like to thank Prof. Govind,

for his invaluable support during my tough time at IISc in the 1st semester.

A special thanks to my close friends - Soumya and Utkarsh, for making my stay at IISc

memorable. All the things that we do - like, ordering food, cycling, walking, bounce tripling,

random movie plans, coding discussions for placements, being there for each other in the one’s

tough times, and going for the meals together in D-Mess, really helped me to do my research with

more enthusiasm. I would also like to mention my other close friend Rajat, who was always

concerned about my research work and always tried his best to help me in the coursework

projects and my research work. During the pandemic time, he recommended me to join CSL

weekly reading group. Representing the papers here and the relevant discussions helped me

i

Page 7 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Acknowledgements

understand a few concepts that were beneficial in my research project. I would also like to

mention my friends - Dushyant, Raja, Dhrumil, Gaurav, Madhurima, Akshay, Chaitra, Vinayak,

and Harsh, who were there on my IISc journey.

I am truly grateful for the CASL members - Ajinkya, Abhishek, Amrita, Ashish, Anup,

Pratyush, Nilesh, Parth, Nikita as well as CSSL members- Kripa, Rounak, Chinmay, Nikita,

Isha, Arun, Ajay, Rakesh, Akash, Subhendu, Eikansh, Gokul for being awesome labmates and

for all the discussion related to my research work. Going out with these guys -celebrating

someone’s success, birthday celebration, etc. always refreshed my mind and allowed me to

continue my research work with more enthusiasm.

I would also like to thank Mrs. Kushael and the other non-teaching staff of CSA for all

the administrative work. They always try to help the students in the best possible manner. I

would also like to thank other members of IISc who have taken great care of all the people in

the campus community during the pandemic time (e.g., conducting a vaccination drive) so that

students can focus entirely on their research work. I am grateful to the various cultural classes

in Gymkhana, like Zumba (by Jagadesh), which really helped me to do my research with more

enthusiasm.

I would also like to thank all my relatives, who were there in my IISc journey. Special

thanks to my uncle (Dr. Narendra Agrawal) for taking great care of me during a few times,

when my health does not sound good. I would also like to mention my uncle (R. Anbu) for

all the regular conversations over the call since my childhood and the interesting ideas that he

suggested for my thesis. I would also like to thank Sreesh, Neeraj, and other non-IISc friends

and teachers who tried to help me in my research project.

ii

Page 8 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Abstract

This thesis concerns the robustness of security checks in financial mobile applications (or simply

financial apps). The best practices recommended by OWASP for developing such apps demand

that developers include several checks in these apps, such as detection of running on a rooted

device, certificate checks, and so on. Ideally, these checks must be introduced in a sophisticated

way, and must not be locatable through trivial static analysis, so that attackers cannot bypass

them trivially. In this thesis, we conduct a large-scale study focused on financial apps on the

Android platform and determine the robustness of these checks. Our study shows that among

the apps with at least one security check, > 50% of such apps at least one check can be trivially

bypassed. Some of such financial apps we considered have installation counts exceeding 100

million from Google Play. We believe that the results of our study can guide developers of these

apps in inserting security checks in a more robust fashion.

iii

Page 9 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Contents

Acknowledgements i

Abstract iii

Contents iv

List of Figures vi

List of Tables vii

List of Code Snippets ix

1 Introduction 1

1.1 Outline . 3

2 Background 5

3 Methodology 7

3.1 Threat Model . 7

3.2 Dataset Collection . 8

3.3 SDC Detection . 8

3.4 Bypassing SDCs . 14

3.5 System configuration . 20

4 Experimental Results 22

4.1 Calibration of Automated Approach . 22

4.2 Large-scale Results . 24

5 Case Study 27

iv

Page 10 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

CONTENTS

6 Recommendations 29

7 Limitations 30

8 Related Work 32

9 Conclusion 34

Appendix 35

A Responsible Disclosure . 35

Bibliography 37

v

Page 11 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
List of Figures

3.1 com.freecharge.android exits after showing the toast message in its repackaged

version. 10

3.2 Different UI for the app com.suryodaybank.mobilebanking when original and

its repackaged version is launched . 11

3.3 Error messages shown by the app when it is run on an emulator. 13

3.4 Error messages shown by the app when it is run on a rooted device 13

7.1 com.upi.axispay displays an error message after the selection of the language. . 31

vi

Page 12 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
List of Tables

3.1 Reason-wise count of the excluded financial apps 8

4.1 Manual Analysis of 100 Indian financial Apps. 23

4.2 Automation results for 100 Indian financial Apps. 23

4.3 Large-scale analysis of financial apps for SDCs. 24

4.4 SDCs Bypassed Automation Results. 24

4.5 Various SDCs combinations in apps. 25

4.6 Various SDCs bypass combinations in apps. 25

vii

Page 13 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
List of Algorithms

1 SDC Detection in Android apps. 11

2 SDC Bypass Detection in Android apps. 14

viii

Page 14 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
List of Code Snippets

3.1 Partial View hierarchy for Figure 3.2a in xml Format. 10

3.2 Partial View hierarchy for Figure 3.2b in xml Format. 12

3.3 Anti-tampering check smali code snippet. 15

3.4 Anti-tampering check bypass smali code snippet. 16

3.5 Emulator detection check smali code snippet. 18

3.6 Emulator detection check bypass smali code snippet. 18

3.7 Root detection check smali code snippet snippet. 19

3.8 Root detection check bypass smali code snippet. 19

ix

Page 15 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 1

Introduction

Mobile devices have become an integral part of the payment ecosystem. Payments are facilitated

by financial applications (apps), which have in turn soared in popularity. In 2021, mobile finance

apps reached 573.1 million downloads in the US, which is nearly an increase of 19% from 481.9

million in 2020 [27]. Another study analyzed the installation statistics of over 2,000 financial

apps, reporting over 4.7 billion installations of these apps [33]. Digital wallets have also emerged

as the second-most popular in-store payment method [35]. According to the latest report by

the Reserve Bank of India (RBI), there has been an overall credit transfer amounting to 41.03

trillion rupees for the year 2020-21 using the Unified Payments Interface (UPI) [46]. UPI has

emerged as the de facto mobile payment standard in India, and UPI-based transactions have

increased by 70× over the last four years.

Given the increasing dependence on the financial app ecosystem and the sensitive nature

of the data handled by financial apps (including the bank/card details of the payees and the

payers), we set out to study a fundamental question: Are financial apps vulnerable to the same

security issues as other mobile apps? We focused primarily on the Android ecosystem. We

tried to understand the threats to mobile app security, and whether app developers follow the

best practices to make apps more secure. Chief among the security concerns for mobile apps is

code-tampering/repackaging, which leads to the insertion of malicious logic into the application.

A prior study has shown that 5% to 13% of the apps on alternative marketplaces (i.e., sources

other than Google Play) are repackaged [60]. In fact, code tampering was identified as one of

the top 10 mobile app-related risks by the Open Web Application Security Project (OWASP) in

2016 [44]. Therefore, the OWASP guidelines recommend app developers equip apps with various

self-defense mechanisms to defend against code tampering/repackaging. Although defenses such

as SafetyNet [48] have been proposed and deployed widely, studies have shown that sometimes

their use is improper [47], and the security of mobile apps continues to be reliant on the ability

1

Page 16 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

of developers to incorporate self-defense mechanisms into their apps.

Previous work studied the various self-defense mechanisms in apps but has not been able

to fill some gaps in this field. Kim et al. [58] bypassed root detection and app integrity

checks of popular financial apps available in the Republic of Korea. However, their work is not

entirely automated and did not consider the other self-defense checks recommended by OWASP.

Berlato et al. [53] developed a static analysis tool, ATADetector, that detects anti-debugging

and anti-tampering protection in apps, but did not bypass these protections. Ibrahim et al. [57]

conducted an analysis on utilizing Google’s SafetyNet API (used to perform device integrity

and app integrity checks) and found that none of the analyzed apps invoking the SafetyNet API,

uses it in an entirely correct way. This work manually bypassed the device integrity checks in

21 apps and did not reverse engineer enough to bypass the additional checks (related to device

integrity) of other apps, since their focus was on SafetyNet. Zungur et al. [78] found that

only 10.77% of apps from their dataset employ all the self-defense mechanisms recommended

by OWASP. However, their study did not analyze the ease with which attackers could bypass

these self-defense mechanisms assuming they are present in the app.

The Mobile App Security Verification Standards (MASVS), released by OWASP in 2018

[41], establish baseline security requirements for mobile apps. One of the recommendations for

app developers given by MASVS is that all executable files and libraries belonging to an app

must either be encrypted at the file level and that important code and data segments inside

the executables must be encrypted or packed. Specifically, they recommend that trivial static

analysis must not reveal important code or data.

In this thesis, we study the extent to which the developers of financial apps follow these

recommendations and the robustness of the mechanisms in apps that incorporate them. We

have analyzed 2,854 apps from the FINANCE category of Google Play [21]. To the best of our

knowledge, this is the first work of its kind that has included such a large dataset targeting

only financial apps. Our analysis is composed of two steps: First, we identify various security

checks inside an app; and second, if such checks are present, we determine whether the checks

are bypassable using a combination of static analysis and code instrumentation. Everything

is automated, using open source tools. Recent work by Berlato et al. [53] revealed that app

developers prefer to embed protections implemented within the Java to native code by a ratio of

99 to 1. Hence, our work focuses on protections inserted within the Java code of the application

itself. We first conduct a keyword-based search of APIs used to insert self-defense checks in

apps. If the checks can be located with a simple keyword-based search, an attacker can easily

bypass them. We then attempt to verify whether the checks can indeed be bypassed by adding

instrumentation to the app. This process, therefore, serves to determine the robustness of the

2

Page 17 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

inserted self-defense checks in the apps.

Our study focuses on the four major kinds of self-defense checks that are inserted in apps:

(1) anti-tampering, (2) emulator detection, (3) root detection, and (4) dynamic instrumentation

framework detection. We describe these checks in more detail in the subsequent sections. For

the rest of the thesis, we will use the term self-defense check (SDC) to refer to any of the checks

enlisted above.

To determine whether a particular SDC is active in an app, we observe the differences

between the execution flow of the original app and the compromised app (or the app running

on a compromised device). That is, we run the original app and also run a rewritten version of

the app and look for differences in their execution flow by analyzing the execution logs (using

logcat [40]) and front-end UI (User Interface) elements (using UIAutomator [26]).

Our conclusions are that the SDCs inserted by a significant fraction of app developers are

ineffective and easily bypassable. It is worrisome that many such apps have installation counts

in the order of 10 million in Google Play. In particular, with respect to the SDCs we consider,

we find that out of the 2,854 financial apps studied, anti-tampering, root detection, emulator

detection, and dynamic instrumentation framework detections are present only in 45.8%, 47.7%,

46.5%, and 45.3% of the total apps, respectively. Moreover, we were able to successfully bypass

the corresponding checks in 676, 378, 308, and 338 financial apps, respectively. Our work

successfully bypassed all the SDCs that an app has in 584 instances of financial apps. We

found that, of the apps in our dataset with at least one SDC, more than half have at least one

trivially bypassable SDC.

1.1 Outline

The rest of the thesis is organized as follows:

• Chapter 2: We provide the background required to understand the thesis. We first discuss

the basics of the android app, and then we describe the various SDCs that this work has

focused on and the techniques through which developers can put these checks in their

apps.

• Chapter 3: We first discuss the threat model, followed by how we collected a large number

of apps from Google Play. Then, we discuss the techniques used to detect each of the

SDCs in mobile apps and how we bypassed them.

• Chapter 4: We show the accuracy of our automated approach and the results obtained

after analyzing 2,854 financial apps.

3

Page 18 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

• Chapter 5: We discuss the characteristics of a few Indian financial apps analyzed in-depth.

• Chapter 6: We put up the recommendations for the app developers to make the attacker’s

job very tough to bypass such checks.

• Chapter 7: We discuss the limitations of our approach with respect to declaration of the

SDC detection in apps and bypassing such checks.

• Chapter 8, 9: We mention the previous works related to this area, discussed its limitations,

and finally conclude the thesis.

• Appendix A: We show the list of banks to which we have disclosed the problems.

4

Page 19 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 2

Background

Every Android app has a corresponding Android Package, which is an archive file with a .apk

suffix. There are four different app components: Activities, Services, Broadcast receivers, and

Content providers. While an activity represents a single screen with a UI, a service keeps the

app running in the background. A broadcast receiver component enables the app to receive the

system-related information, and a content provider manages a shared set of app data that one

can store on any other persistent storage location that the app can access [32].

During the apk build process, the Java code of the app is compiled to Dalvik bytecode, and

this bytecode is present in the *.dex file, which is part of the apk. Android also provides a

feature where developers can write the code in C/C++. These C/C++ files are compiled to a

shared object (*.so), and these *.so files are present in the apk under the lib directory.

Android mandates that every apk file must be digitally signed by the developer’s pub-

lic/private key pair [8]. Every time an app is being installed, Android checks whether the apk

is digitally signed. If it is, Android verifies the signature of the apk, with the help of the devel-

oper’s public key certificate, both of which are part of the apk itself. The app is not installed

if the signature verification fails [51]. This section describes the various SDCs this work has

focused on, as well as recommended by OWASP.

• Anti-Tampering: App developers include this check to protect apps against repackaging

attacks. Repackaging of a mobile app is the modification of the existing app by inserting

some code using a reverse engineering tool, then regenerating the apk and signing it with

own ’s public/private key (i.e., with the help of the Java KeyStore (JKS) [17] file). In case

there is no anti-tampering protection in the app, an attacker can get the original app from

Google Play, understand the semantics of the app by disassembling or decompiling the

apk, insert the malicious code, and redistribute this app on unofficial marketplaces. For

5

Page 20 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

example, we have produced repackaged versions of a few Indian financial apps that can

store the end-user’s sensitive details (like credit card number, bank profile login creden-

tials) in our local server. Hence, it is essential to incorporate anti-tampering protection,

and there are a few mechanisms through which developers can do so:

– Certificate Check: Android provides APIs to retrieve the public key certificate

details used to sign the apk. If the victim is using a modified version of the app,

then the public key certificate used to sign the app will differ from the developer’s

public key certificate. Hence using such APIs, the app can determine if its integrity

is compromised.

– Installer Verification: This is an extra layer of protection that the developer can

use to make sure that the user has indeed installed their app from the source (e.g.,

Google Play) where the developer has published it. Android offers APIs [16] that

provide some insights to developers regarding the installation source of the app.

• Root Detection: Root detection checks are ways to ensure that the app is not running

on a compromised device (i.e., on rooted device). If the device is rooted, a user with

superuser privileges has access to modify some directories which is not possible on a

non-rooted device. For example, in our work, we were able to run the unsigned version

of many apps on the rooted device by making relevant changes in the directory where

the apk resides. These checks are related to finding the presence of the superuser (su)

binary, malicious apps (that helps in rooting) on the device, and checking whether any

system-related directories are writable.

• Emulator Detection: This SDC checks whether the app runs on a physical device

or atop a mobile device emulator. Google’s SafetyNet [48] can be used to perform this

check. Another alternative is to get the app’s device-related information (like Brand,

Manufacturer, Model, DeviceId, etc.) using the Android APIs [13],[25]. Comparing these

values against the value of a real physical device is, thus, possible.

• Dynamic Instrumentation Framework Detection: These frameworks can alter the

flow of execution of the app without statically modifying the apk. Many such frameworks,

(e.g., Frida [14], Xposed Framework [52], etc.) are used in the Android ecosystem. App

developers should put this SDC to ensure that such a dynamic instrumentation framework

is not running on the device when their app is running.

6

Page 21 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 3

Methodology

In this chapter, we first discuss the threat model from the user’s side regarding the source

of app installation and the assumptions made for an attacker, followed by the technique for

downloading a large number of apps from Google Play in an automated way. Then, we discuss

the methodology used to find the SDCs in the apps. Later, we discuss the techniques to bypass

these checks in the apps by performing code instrumentation. At last, we discuss the system

configurations in which these apps were launched to determine the SDC.

3.1 Threat Model

To conduct our analysis, we assume that the end-user has given permission to Android for

installing the apps from the sources like WhatsApp, Google Drive, File Transfer Apps, etc.

This assumption is required because, by default, Android does not allow the users to install the

apps from sources other than Google Play. However, we feel that this assumption is reasonable

in many developing countries where alternative app stores are very popular. For example, a

survey shows that 30% of the total app installations in a country like India occur through a file

transfer app [23].

We assume that an adversary does not have raw access to the app’s source code (which

would reveal the location of SDCs) and the developer’s private key. However, we assume that

the adversary has expertise in various static reverse engineering tools (like apktool [7], Ghidra

[37], radare2 [45], JADX [38], etc.) to decipher the semantics of the app for inserting the

malicious code that can bypass the SDCs. Adversaries typically use these methods to produce

tampered apps, then upload them to the alternative marketplaces. Also, prior studies have

shown that 5% to 13% of all the apps in the alternative app marketplaces are repackaged [76].

We also assume that an adversary can compromise the end-user’s Android device by rooting.

7

Page 22 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Following that step, the attacker can alter the execution flow of the running app and perform

various malicious activities like modifying the network traffic, etc.

3.2 Dataset Collection

Every Android app is uniquely identified by its package name. Currently, there is no mechanism

to obtain all the package names under the FINANCE category of Google Play. At first, we used the

“Google Play Scraper” [15] to obtain the package names of around 2,300 apps using keywords

such as UPI (Unified Payment Interface, is an instant mobile payment feature that powers

multiple bank accounts into a single mobile application, seamless fund routing & merchant

payments into one hood [42]), Banking Apps, Gramin (“rural”) bank apps, Small Finance

Banking, Regional Rural Bank, etc., and also through the assigned developer ID used to publish

the app on Google Play. Later, we found that this program does not accurately yield a complete

list of all the package names when queried with a given developer ID. With the help of a front-

end web automation tool (like Selenium [22]), we crawled the web page for the given app’s

package name to find whether it belongs to the FINANCE category and retrieved the developer

ID for that app. Subsequently, we crawled Google Play website for the given developer ID to

get more apps. Using this methodology, we obtained package names of 3,371 financial apps.

However, we found that some of the apps are unavailable in our country, a few are premium

apps, and a few are no longer available in Google Play. Table 3.1 categorizes the unavailable

apps for various reasons.

Apps removed from
Google Play

Premium
Apps

Apps unavailable
for India

301 92 124

Table 3.1: Reason-wise count of the excluded financial apps

Our final dataset count is 2,854 financial apps. We downloaded all of these apps from Google

Play in an automated way using Appium [9] and UIAutomator viewer [28] (which are front-end

automation tools used in the software industry for UI Testing). After the app installation, we

fetched the apk using Android Debug Bridge (adb) [1]; thus, we conducted our analysis on the

latest version of the apps.

3.3 SDC Detection

This section discusses the methodology to find various SDCs in the app. The high-level idea

of our methodology is to observe the execution flow of the original app and the compromised

8

Page 23 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

app (or the app running on a compromised device like rooted device, emulator, etc.). If it is

different, we declare that a SDC is detected in the app. To observe the execution flow, we have

analyzed the UI elements of the app’s activity and logs for each run after it was launched for

a minute. Suppose either different UI elements or logs (after relevant filtering) are observed in

these two launches. We then declare that the execution flow is different.

The SDC related code should get executed in the app’s lifetime, and we believe that it should

get executed immediately after the app’s launch. If it is not the case, it will be straightforward

for the attackers to produce a tampered version of the app in such a way that can steal the

sensitive information about the users (e.g., contact details, getting the device information, login

credentials, etc.) by injecting the malicious code at the appropriate location.

For retrieving UI elements, we first capture the complete hierarchical structure (i.e., the

view hierarchy) of the app’s current activity in xml format using UIAutomator [26], a tool

present in the mobile device. It contains various nodes, and each node represents a UI element

in the app’s activity. (We showed one such node that presents a UI element “customer id” of

type EditText, in Listing 3.1.) Then from each node, we retrieved the value of the attribute

resource-id. If the set of such values fetched differs in the two runs, we conclude that different

UI elements are observed. Zungur et al. [78] have also used the tool UIAutomator to analyze

the app’s UI to determine the SDC detection in the app. Apart from analyzing the UI, we

have also done the log analysis, as sometimes, the UIAutomator fails to capture the app’s UI

elements.

For the log analysis part, we captured the logs using Logcat [40]. We fetched the logs after

allowing the app to run for a minute, using the process ID of the app, and by searching other

log statements that have the package name of the app using the grep command. We cleared

the log buffer before the launch of the app to ensure that we get the logs for the current run

only.

We did the log analysis to identify the difference in the following three behaviors when the

compromised app was launched (or the app launched on the compromised device) with respect

to the original app launched on the non-rooted real device:

• Various activities displayed in the app’s launch.

• App exits after leaving some message to an end-user.

• App crashes immediately after its launch on the device.

So, once the logs were captured, we focused on the log messages from the ActivityTaskManager

[4] and ActivityManager [3] to extract the activity names displayed. If different activities are

9

Page 24 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Figure 3.1: com.freecharge.android exits after showing the toast message in its repackaged
version.

observed in these two launches, there is a different flow of execution. If not, we fetched the

log messages from NotificationManagerService1 [20] to identify whether an app showed an

error message to an end-user (e.g. in the form of a Toast message [49], shown in Figure 3.1)

when being launched in a hostile environment. If that is also not the case, we find whether the

app exits immediately after being launched by retrieving its process ID after the launch for a

minute using dumpsys [36] (a built-in tool, which is present in the mobile device). This tool

provides the process ID of running apps only. So, if the process ID is not retrieved, it means the

app is no longer running on the device. Hence, if any of the these three behaviors is observed

from the logs, we declare that the execution flow is different.

So, if the execution flow is identical in the two runs (i.e., no difference found from the UI

analysis and log analysis), it means SDC is not detected in the app; otherwise, we declare SDC

detection in the app. This is shown in Algorithm 1.

<node index= ‘ ‘0” text ‘ ‘ ” resource-id=“customerId” c l a s s = ‘ ‘ android . widget .

EditText” package= ‘ ‘com . suryodaybank . mobilebanking ” content−desc = ‘ ‘”

checkab le = ‘ ‘ f a l s e ” checked= ‘ ‘ f a l s e ” c l i c k a b l e = ‘ ‘ t rue ” enabled= ‘ ‘ t rue ”

f o cu sab l e = ‘ ‘ t rue ” focused = ‘ ‘ f a l s e ” s c r o l l a b l e = ‘ ‘ f a l s e ” long−c l i c k a b l e = ‘ ‘

f a l s e ” password= ‘ ‘ f a l s e ” s e l e c t e d = ‘ ‘ f a l s e ” bounds = ‘ ‘ [9 9 , 4 27] [9 84 , 529] ” />

Listing 3.1: Partial View hierarchy for Figure 3.2a in xml Format.

1W/NotificationService(1797): Toast already killed. pkg=com.freecharge.android to-
ken=android.os.BinderProxy@29fd2cf

10

Page 25 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Algorithm 1 SDC Detection in Android apps.

Input: Original apk
Output: A boolean value indicating whether SDC is present in the app.

1: Capture the UI elements and logs for the original app launched in non-rooted real device
and compromised device.

2: UIorig ←− App’s UI elements on non-rooted real device.
3: UIcomp ←− App’s UI elements on compromised device.
4: Logsorig ←− App’s logs on non-rooted real device.
5: Logscomp ←− App’s logs on the compromised device.
6: if UIorig ̸= UIcomp OR Logsorig ̸= Logscomp then
7: SDC is detected.
8: else
9: SDC is not detected.
10: end if

(a) Original app’s UI (b) Tampered app’s UI

Figure 3.2: Different UI for the app com.suryodaybank.mobilebanking when original and its
repackaged version is launched

11

Page 26 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

<node index= ‘ ‘0” text=“Application tempered, press ok to exit”
resource-id=“android:id/message” c l a s s = ‘ ‘ android . widget . TextView” package= ‘ ‘

com . suryodaybank . mobilebanking ” content−desc = ‘ ‘” checkable = ‘ ‘ f a l s e ” checked

= ‘ ‘ f a l s e ” c l i c k a b l e = ‘ ‘ f a l s e ” enabled= ‘ ‘ t rue ” f o cu sab l e = ‘ ‘ f a l s e ” focused = ‘ ‘

f a l s e ” s c r o l l a b l e = ‘ ‘ f a l s e ” long−c l i c k a b l e = ‘ ‘ f a l s e ” password= ‘ ‘ f a l s e ”

s e l e c t e d = ‘ ‘ f a l s e ” bounds = ‘ ‘ [72 , 1137] [1008 , 1196] ”/>

Listing 3.2: Partial View hierarchy for Figure 3.2b in xml Format.

Figure 3.2 depicts this method for detecting an SDC by analyzing the app’s UI. Their corre-

sponding partial view hierarchy is shown in Listings 3.1 and 3.2.

For the baseline setup, we first launched the original app on the non-rooted real device for a

minute using adb. Following that, we captured the view hierarchy of the app’s current activity

(dumped in xml) and the logs related to this run. Before launching the app, we found the

runtime permissions that an app may request from the user (using AAPT2 [31]) and provided

the same using package manager (pm) tool through adb to suppress any permission-related

dialog.

For the anti-tampering check, we produced the repackaged version of the app by resigning

the apk through apksigner [6] by using our Java KeyStore (JKS) [17] file, which is a secure

file format used to hold various information like public key, private key, certificate information.

(Some apps are packaged with more than one apk – base apk and one or more “split” apk

[30]. We have handled such scenarios and re-signed the split apk too.) Upon producing the

app’s repackaged version, we install the app using adb, grant all the permissions, launch it

for the same duration of time on the non-rooted real device, instead of a compromised device.

Following that step, we capture the app’s UI-related information and the logs related to this

run. If there is a difference in the UI elements or from the log analysis with respect to the run

of the original app, we declare that the anti-tampering check is present.

We have used the same technique to find the three other SDCs in the app, but the difference

is that we did not produce a repackaged app. For root detection and emulator detection

checks, original app is run on the rooted device and emulator, respectively. For dynamic

instrumentation framework detection, we run the original apps on the device in which such a

framework (e.g., Frida, Xposed Framework) is running. Figures 3.3 and 3.4 show the way app

reacts when it runs on a compromised device. All the app installations across various devices,

launching the app, capturing the logs, and the UI elements - each step is automated through

adb.

We did not use static analysis for SDC detection as it cannot obtain accurate results if the

related code is not included in the apk, but it is in the code loaded dynamically at the runtime

12

Page 27 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

(a) com.bankofbaroda.upi (b) com.snapwork.hdfc

Figure 3.3: Error messages shown by the app when it is run on an emulator.

(a) com.canarabank.mobility (b) com.mobikwik new

Figure 3.4: Error messages shown by the app when it is run on a rooted device

13

Page 28 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

(e.g., from the backend-server or the code is initially encrypted and gets decrypted at runtime).

It will also give false results if the code related to the given SDC is present but not executed

at runtime. Pham et al. [67] found that sensitive Android APIs were not locatable through

static analysis for many apps but found that these APIs are being invoked when the app was

launched. A possible reason they mentioned is that such requests were dynamically loaded at

runtime.

3.4 Bypassing SDCs

After finding SDCs in the apps, the next step is to determine whether the checks can be bypassed

in those apps. This section discusses the approach used to bypass each SDC and the generation

of instrumented apps. Once the instrumented apps are produced, we launch them on the same

device where the untampered app is launched for the detection purpose (e.g., emulator for

emulator detection, rooted device for root detection, etc.). We capture the view hierarchy of

the app’s current activity (dumped as an xml) and the logs for this run. We compare this dump

and the logs with the original app’s run in the non-rooted real device with the same technique

that we used for the SDC detection. If the execution flow is the same, our work concludes that

we have successfully bypassed the check. This is shown in Algorithm 2.

Algorithm 2 SDC Bypass Detection in Android apps.

Input: Original apk (with SDC) and its modified version.
Output: A boolean value for whether SDC is bypassed.

1: Launch these apps for a minute and capture the UI elements and logs for the original app
and the modified app.

2: UIorig ←− UI elements of the original app.
3: UImodif ←− UI elements of the modified app.
4: Logsorig ←− Logs of the original app.
5: Logsmodif ←− Logs of the modified app.
6: if UIorig ̸= UImodif OR Logsorig ̸= Logsmodif then
7: SDC is not bypassed.
8: else
9: SDC is bypassed.
10: end if

For code instrumentation, we used the reverse engineering tool Apktool [7]. For each of the

classes bundled in the dex file (part of the apk), there is a corresponding .smali file generated

after disassembling the apk. These smali files are human-readable, and we therefore instrument

the smali code as an indirect means to modify the Java code and then regenerated the apk

using the same tool and signed it using apksigner [6]. This entire process of doing the code

14

Page 29 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

instrumentation and producing the modified apk is completely automated. For each SDCs, we

find the relevant APIs for the implementations of self-defense checks from the resources like

Android Developers [5], OWASP’s MASVS [41]. After that, we located the smali files in which

these APIs are invoked, using the grep command and then, we made the required modifications

in these smali files. Now, we discuss the methodology used to produce the instrumented apps

to bypass each SDC.

• Anti-Tampering: Certificate check and installer verification are the two ways to have

anti-tampering protection in an app. First, we discuss the methodology adopted to bypass

certificate checks.

We retrieved the public key certificate used by the developer to sign the apk. We resorted

to different strategies based on the developer’s method of signing the apk. If it is signed

using the v1 signing scheme [50] (Android supports three application signing schemes for

signing the apk: v1 signing scheme is one such technique, based on JAR signing [39]), we

first locate the *.RSA file in the META-INF directory of the apk. This *.RSA file contains

the information related to the developer’s public key, certificate details, information about

the subject and the issuer of the certificates, etc. We obtained the certificate details using

this file with the help of openssl [43].

However, app developer need not use the v1 signing scheme; there are approximately 100

such apps in our dataset. To address this scenario, we installed all such apps on our

mobile device and developed an app that retrieves the certificate details of these apps.

Once the certificate details are retrieved, for each of the methods defined in the Signature

[24] class, we locate the smali files in which these methods are invoked to perform the

certificate validation. Just before the instructions, where such methods are invoked, we

injected a smali code segment that will create a new instance of Signature class with the

parameter to its constructor being the developer’s public key certificate (fetched earlier)

in hexadecimal-string format. For this, we first find the unused virtual register to store

this string. Then, we store this Signature instance in the virtual register (vI, where I

∈ W), which is supposed to hold the app’s certificate details fetched during the runtime.

Now, wherever the methods of the Signature class are invoked for the validation, the

return value of these methods will be related to the developer’s certificate details.

1 invoke−v i r t u a l {v0 , v1 , v2 } , Landroid/ content /pm/PackageManager;−>

getPackageInfo (Ljava/ lang / St r ing ; I) Landroid/ content /pm/PackageInfo ;

2 move−r e su l t−ob j e c t v0

15

Page 30 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

3 ige t−ob j e c t v0 , v0 , Landroid/ content /pm/PackageInfo;−> s i g n a t u r e s : [

Landroid/ content /pm/ Signature ;

4 const /4 v1 , 0x0

5 aget−ob j e c t v0 , v0 , v1

6 invoke−v i r t u a l {v0 } , Landroid/ content /pm/ Signature ;−>toCharsStr ing () Ljava

/ lang / St r ing ;

7 move−r e su l t−ob j e c t v1

8 const−s t r i n g v2 , ‘ ‘ Expected C e r t i f i c a t e De t a i l s ”

9 invoke−v i r t u a l {v1 , v2 } , Ljava/ lang / St r ing ;−>equa l s (Ljava/ lang /Object ;) Z

10 move−r e s u l t v3

Listing 3.3: Anti-tampering check smali code snippet.

We discuss the smali code snippet line by line for the anti-tampering protection, shown in

Listing 3.3. At a high level, this code snippet fetches the certificate details of the app and

compares it with the expected one. In line 1, getPackageInfo() method gets invoked,

which is defined in PackageManager class in android.content.pm package. This method

takes two parameters - package name (stored in virtual register v1) and a flag value to

fetch the desired properties of the app (stored in virtual register v2). Its return value is

a PackageInfo object (stored in virtual register v0, shown in line 2). One of its data

members is an array of Signature objects, accessed in line 3. This array stores the app’s

certificate details used while signing the apk. The instructions at lines 4 and 5 access

the first element of this array and store it in the virtual register v0. Now, the certificate

validation is performed through the methods of the Signature class. As shown in line 6,

one such method used is toCharsString(), and its return value is stored in the register

v1 shown in line 7. Virtual register v2 holds the expected certificate details (in the string

format) shown in line 8. The instruction in 9 checks whether the public key certificate

fetched is the same as the expected value, and this result is stored in the virtual register

v3 shown in line 10.

1 invoke−v i r t u a l {v0 , v1 , v2 } , Landroid/ content /pm/PackageManager;−>

getPackageInfo (Ljava/ lang / St r ing ; I) Landroid/ content /pm/PackageInfo ;

2 move−r e su l t−ob j e c t v0

3 ige t−ob j e c t v0 , v0 , Landroid/ content /pm/PackageInfo;−> s i g n a t u r e s : [

Landroid/ content /pm/ Signature ;

4 const /4 v1 , 0x0

5 aget−ob j e c t v0 , v0 , v1

6 const-string v6, “Developer’s Public key Certificate Details in hexa-decimal”

7 invoke-direct {v0, v6}, Landroid/content/pm/Signature;-><init>(Ljava/lang/String;)V

16

Page 31 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

8 invoke−v i r t u a l {v0 } , Landroid/ content /pm/ Signature ;−>toCharsStr ing () Ljava

/ lang / St r ing ;

9 move−r e su l t−ob j e c t v1

10 const−s t r i n g v2 , ‘ ‘ Expected C e r t i f i c a t e De t a i l s ”

11 invoke−v i r t u a l {v1 , v2 } , Ljava/ lang / St r ing ;−>equa l s (Ljava/ lang /Object ;) Z

12 move−r e s u l t v3

Listing 3.4: Anti-tampering check bypass smali code snippet.

Listing 3.4 shows how we bypass this check. Two new instructions have been added before

invoking one of the methods of Signature class. Line 6 makes the virtual register v6 hold

the reference to a string, which is the developer’s public key certificate in hexadecimal.

The next instruction in line 7 creates a new instance of the Signature class with the

developer’s public key certificate passed to its constructor. In instruction 8, virtual register

v0 will store the developer’s certificate information; hence we can bypass the check even

though the installed apk is signed using a different certificate.

This code instrumentation technique can also bypass the check for the scenarios when

the certificate validation happens on the server side as the code related to fetching the

certificate details is part of the apk and can be located by a keyword-based search.

Next, we discuss the technique to bypass installer verification. We first find the Android

APIs used to fetch the source of the app installation. One such API is getInstallSourceInfo()

which takes package name as a parameter. After that, we find the register which is passed

as a parameter to this API. We overwrite this register’s value with com.android.vending,

which is the package name of Google Play. (An attacker can also overwrite the register

value with the package name of any app which has been installed from Google Play on

the mobile device.) Now, whenever this API is invoked regarding the app’s installation

source, the result will be Google Play as the virtual register now holds the package name

of Google Play. We can thus bypass the installer verification check successfully in this

manner.

An app can also have a dependency on third-party libraries to provide some functional-

ity. We excluded these third-party libraries’ equivalent smali files to perform the code

instrumentation as these libraries can have the APIs used to perform the anti-tampering

check, but for different purposes. We relied on ATADetector tool [53] to obtain the list

of such third-party libraries.

• Emulator Detection: The high-level idea to bypass the emulator detection check is by

rewriting the register value that stores the build-related information (like Brand, Man-

17

Page 32 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

ufacturer, Model, DeviceId etc.) of the app’s device with the build information of a

non-rooted real device.

To achieve this goal, we went through the source code of the Build class[12] in android.os

package, to obtain the information about the various data members, methods that can

be used to fetch the build-related details about the app’s device. Next, we developed

an app that runs on the physical device and give the values of these data members and

methods. Now, we locate such data members, methods in the smali files and overwrite

the equivalent register’s value with the corresponding value fetched earlier. Listings 3.5

and 3.6 show the smali code snippet of the emulator detection check and how we bypassed

it, respectively.

1 sget−ob j e c t v2 , Landroid/ os /Build;−>FINGERPRINT:Ljava/ lang / St r ing ;

2 const−s t r i n g v3 , ‘ ‘ g en e r i c ”

3 invoke−v i r t u a l {v2 , v3 } , Ljava/ lang / St r ing ;−>startsWith (Ljava/ lang / St r ing

;) Z

Listing 3.5: Emulator detection check smali code snippet.

1 sget−ob j e c t v2 , Landroid/ os /Build;−>FINGERPRINT:Ljava/ lang / St r ing ;

2 const-string v2, “google /sunfish /sunfish:11 /RQ3A.210605.005/7349499:user
/release-keys”

3 const−s t r i n g v3 , ‘ ‘ g en e r i c ”

4 invoke−v i r t u a l {v2 , v3 } , Ljava/ lang / St r ing ;−>startsWith (Ljava/ lang / St r ing

;) Z

Listing 3.6: Emulator detection check bypass smali code snippet.

In Listing 3.5, line 1 fetches the build-related information of the app’s device with the

help of FINGERPRINT, a static data member of the Build class, and the return value is

stored in virtual register v2. Line 2 makes the virtual register v3 store the reference

to a string “generic”. The instruction in line 3 checks whether the device’s fingerprint

starts with “generic” using the method startsWith() defined in String class. Listing

3.6 shows the code snippet in which we have overwritten the register’s value (which stores

the build information of the app’s device) with that of the real device (fetched earlier).

The injected code is shown in line 2 of Listing 3.6.

• Root Detection: To bypass the root detection check, we first prepared a list of malicious

app package names used for rooting the device and a list of directories that an app checks

either for the presence of the su binary or for the read-write permissions. We found that

if an app has this SDC, then directory names, the package name of these malicious apps,

18

Page 33 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

can be found in the smali code as a string. So, we located the smali files where we

have such names as a string using the grep command, and then we overwrote it with a

different name. Hence, even if the malicious app or the su binary is present, it will not

get detected as we modified the virtual register’s value holding such strings to a different

name. Listings 3.7 and 3.8 shows the code related to the root detection check and how

we bypassed it, respectively.

1 const−s t r i n g v3 , ‘ ‘ / system/xbin/which”

2 const−s t r i n g v4 , ‘ ‘ su”

3 f i l l e d −new−array {v3 , v4 } , [Ljava/ lang / St r ing ;

4 move−r e su l t−ob j e c t v3

5 invoke−v i r t u a l {v2 , v3 } , Ljava/ lang /Runtime;−>exec ([Ljava/ lang / St r ing ;)

Ljava/ lang /Process ;

Listing 3.7: Root detection check smali code snippet snippet.

1 const−s t r i n g v3 , ‘ ‘ / system/xbin/which”

2 const-string v4, “Someword”

3 f i l l e d −new−array {v3 , v4 } , [Ljava/ lang / St r ing ;

4 move−r e su l t−ob j e c t v3

5 invoke−v i r t u a l {v2 , v3 } , Ljava/ lang /Runtime;−>exec ([Ljava/ lang / St r ing ;)

Ljava/ lang /Process ;

Listing 3.8: Root detection check bypass smali code snippet.

Listing 3.7 shows a smali code snippet to find the location of su binary in the device

using which command. The first two instructions at line 1 and 2 make the virtual register

point to the corresponding string used for executing this command. The instructions at

lines 3 and 4 create an array with these strings, and virtual register v3 points to this

array. The last instruction executes the command "/system/xbin/which su" to find the

location of the su binary using the exec() method of the Runtime class. Its return value

is of type Process class, which can be further used to find the location of su binary, if

it exists. Listing 3.8 shows how we bypass this check by renaming the string su with

another word, shown at line 2. When the last instruction gets executed, the output will

reveal the path of the “Someword” binary, which does not exist. So, in this way, we have

bypassed this check.

• Dynamic Instrumentation Framework Detection: We found that if an app has this

SDC, the app will query the presence of such frameworks in the mobile device by checking

whether such a framework (e.g., Frida) is running or by checking whether the related app

19

Page 34 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

is installed (e.g., de.robv.android.xposed.installer [52]). We found that the related

keywords are passed to the desired methods as a string. Similar to the methodology used

in the case of root detection, we also bypassed this check by overwriting such strings with

a different word. So, now even if a hooking framework like Frida runs, it will not be

detected.

If an app has multiple SDCs, then to detect whether we have bypassed a particular SDC,

sometimes, we must bypass the other checks also. For instance, in the case of an app with

both anti-tampering and root detection protections, to identify whether our work has bypassed

the root detection check, it has to bypass the anti-tampering check too because modifying the

code to bypass the root detection check will compromise the integrity of the app. Thus, the

instrumented app must be produced in such a way that it can bypass both root-detection and

anti-tampering protections. Hence, failure to bypass the anti-tampering protection does not

imply that the root-detection check has been bypassed because the UIs of the app for the two

runs would still be different. Therefore, in our work, we first identified the various SDCs for

each of the apps and, accordingly, generated instrumented versions of these apps.

3.5 System configuration

For the baseline setup, we installed and launched all the original apps on Google Pixel 4a with

6 GB LPDDR4* memory and a 64-bit octa-core Qualcomm r5 Snapdragon™ 730G processor.

For the rooted environment, we used LG Nexus 5X with 2GB LPDDR3 memory and a 64-bit

hexa-core Qualcomm Snapdragon™ 808 processor. We used the Magisk app [19] to provide

privileged root access to this device. For the emulated environment, we selected an emulator

with x86 compatible Android 11 (Google APIs) system image. They support ARM by default

and provide dramatically improved performance when compared with full ARM emulation [34].

This emulator is run on a single computer with a quad-core Intel® Core™ i5-10210U, 8 GB of

RAM, and an NVIDIA GeForce MX 250 GPU. For the dynamic instrumentation framework

detection, we had two options to create an environment in which Frida could be launched. This

can be done either by repackaging the app and including the Frida-related native library or

running Frida on the rooted device. Since the former method compromises the app’s integrity,

we decided against that method and chose instead to create an environment to run such a

dynamic instrumentation framework. The limitation of this strategy is that although an app

may not have protection against Frida, it can have that against other dynamic instrumentation

frameworks like Xposed Framework [52]. Zungur et al. [78] have also considered only Frida to

identify this check. So, we ran Frida on the rooted device and then launched all the unmodified

20

Page 35 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

apps here to determine this SDC in the app. We have written the code for the complete

automation in Java, and we have stored all our results using the MySQL.

21

Page 36 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 4

Experimental Results

In this chapter, we first performed the calibration testing to know the accuracy of our automated

approach. After that, we discuss the results of 2,854 Financial Apps.

4.1 Calibration of Automated Approach

In this section, we discuss the results obtained by analyzing 100 Indian financial apps. We used

these results to calibrate the accuracy of our automated approach, which we then used for the

large-scale analysis. For the analysis of 100 Indian financial apps, we selected apps from various

bank categories: public sector banks (i.e., government-backed), private sector banks, regional

rural banks, and small finance banks.

We manually ran these 100 apps on the compromised device. We determined the presence

of a given SDC by observing whether the app showed an error message or abnormal behavior

(e.g., an app crashing, etc.) after the app’s launch. To find the anti-tampering protection, we

ran the repackaged version of the app on the actual device and followed the same methodology.

Table 4.1 shows the manual results of 100 Indian financial apps. The 2nd column gives the

number of apps that have the corresponding check (out of 100 apps) and, from these apps, the

third column mentions the number of apps in which we could bypass these checks successfully.

We obtained the count for the last column by launching these instrumented apps on the same

device (used for the SDC detection) and checking whether the app showed any error message.

If it did not, it implied that we had successfully bypassed the check. Few banking apps for

which we have the login credentials, we analyzed them end-to-end regarding SDC detection and

bypassing it. For other banking apps, we tried to analyze till the point the app is not asking

for any personal details.

Table 4.2 summarizes the results obtained through complete automation. Following the

22

Page 37 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Self-defense check Check Present Check Bypassed

Anti-Tampering 55 36

Root Detection 61 40

Emulator Detection 68 38

Dynamic Instrumentation Framework Detection 62 40

Table 4.1: Manual Analysis of 100 Indian financial Apps.

Self-defense check Check
Present

False
Positive

False
Negative

Check
Bypassed

Accuracy for
check bypassed

Anti-Tampering 41 1 15 32 87.5%

Root Detection 66 3 9 35 82.9%

Emulator Detection 54 1 8 39 82.1%

Dynamic Instrumentation
Framework Detection

58 4 15 28 82.1%

Table 4.2: Automation results for 100 Indian financial Apps.

above-mentioned methodology of finding the presence of a check and bypassing it, we analyzed

the same 100 apps, but this time through automation. Against each row of these checks

we have mentioned the number of apps with these checks, the values corresponding to false

analysis (both false positives and false negatives) with respect to the detection of the check,

and bypassing such checks. The 5th column lists the number of apps, corresponding to each

kind of check that our work has successfully bypassed through automation (we did not verify

whether our work has actually bypassed the check), and the last column provides the accuracy

statistics, i.e., the checks of how many apps have really been bypassed through our automation.

For example, the results from our automation show that it has bypassed the anti-tampering

check in 32 apps. But compared against the list of apps for which our work has actually bypassed

the check, we found that the anti-tampering check was successfully bypassed in 28 out of 32

apps. Similarly, we found three false positives for the root detection check, which implies that

our automated approach incorrectly detected that the root detection check is present for these

three apps. We also noticed eight false negatives for the emulator detection check, which means

that our automated approach incorrectly detected that the emulator detection check is not

there in these apps. The overall accuracy of our automated approach for SDC detection is 86%

and accuracy for bypassing SDCs is 83.6%. The reasons for the false positives, false negatives

and the accuracy with respect to bypassing these checks is discussed in the Limitations chapter

7.

23

Page 38 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

4.2 Large-scale Results

After obtaining the results for 100 apps so as to calibrate, we have analyzed the entire dataset.

We present the results of 2,854 financial apps. Through our study, we have addressed the

following research questions:

• RQ1: How many apps have a particular SDC, and which SDC is the most popular among

financial app developers?

• RQ2: What percentage of apps have at least one SDC?

• RQ3: How many apps have all the SDCs, and how many apps have none of these SDCs?

• RQ4: How many apps have a given SDC bypassable, and which SDC is the most trivial

to bypass?

• RQ5: How many apps have all SDCs bypassable that it has and how many apps have

SDCs, none of which are bypassable?

The results are very alarming. Table 4.3 shows the number of apps with a corresponding

SDC and Table 4.4 provides the number of apps with at least one check and the apps we have

bypassed the related checks. On the other hand, Table 4.5 summarizes the various combinations

of SDCs in the dataset, and Table 4.6 summarizes the multiple combinations of the SDCs that

have been bypassed in the apps with at least one check. E.g., an entry in the 4th row, 5th

column in Table 4.5 shows that 42 financial apps have anti-tampering, root detection, and

emulator detection checks. Similarly, an entry in the last row, last column in Table 4.6, shows

that our automation has bypassed all the 4 SDCs in 37 financial apps.

Apps Anti-
Tampering

Emulator
Detection

Root
Detection

Dynamic Instrumentation
Framework Detection

2854 1308 (45.8%) 1326 (46.4%) 1361 (47.6%) 1292 (45.2%)

Table 4.3: Large-scale analysis of financial apps for SDCs.

Apps with at
least one SDC

Anti-
Tampering

Emulator
Detection

Root
Detection

Dynamic Instrumentation
Framework Detection

2081 676 308 378 338

Table 4.4: SDCs Bypassed Automation Results.

24

Page 39 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

SDCs RD ,ED RD, ED RD, ED RD, ED

AT ,DI 774 108 104 50

AT ,DI 64 42 106 316

AT,DI 346 75 63 42

AT,DI 54 49 35 644

AT:Anti-Tampering
RD:Root Detection
ED:Emulator Detection
DI:Dynamic Instrumentation Framework Detection
X:X SDC is not present.

Table 4.5: Various SDCs combinations in apps.

SDCs RD ,ED RD, ED RD, ED RD, ED

AT ,DI 980 92 78 20

AT ,DI 78 23 47 87

AT,DI 485 25 47 16

AT,DI 12 8 46 37

AT:Anti-Tampering
RD:Root Detection
ED:Emulator Detection
DI:Dynamic Instrumentation Framework Detection
X:X SDC is not bypassed.

Table 4.6: Various SDCs bypass combinations in apps.

We found that any SDC is present in only < 50% of the apps. Table 4.3 shows anti-

tampering, emulator detection, root detection, and dynamic instrumentation framework detec-

tion checks are present in 45.8%, 46.4%, 47.6%, 45.2% of the financial apps, respectively. From

this, Root detection check is the most popular among app developers, which answers RQ1. As

per Table 4.4, 2081 apps (i.e., 72.9%) have at least one SDC, that answers RQ2. Although a

prior study [78] has addressed RQ3, its dataset comprises only a few financial apps compared

to ours. As illustrated in Table 4.5, we found that 644 apps have all the SDCs. Among these,

17.1% of the apps have an installation count of more than a million in Google Play. We also

found 774 apps have none of the SDCs, and among these apps, 113 financial apps have an in-

stallation count of more than one million. To answer RQ4, anti-tampering, emulator detection,

root detection, and dynamic instrumentation framework detection checks are bypassed in 676,

308, 378, and 338 financial apps, respectively. Among the apps with at least one SDC, 1101

apps’ (i.e., >50%) at least one SDC has been trivially bypassed. Among these apps, 37 financial

apps have an installation count of more than 10 million. Our work bypassed the anti-tampering

25

Page 40 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

check the most. As per Table 4.6, we found that out of the 2,081 apps with at least one SDC,

none of the SDCs were bypassed in 980 apps. Our work bypassed all the SDCs that an app has

in 584 financial apps (≈ 28 %) which answers RQ5. Among these 584 apps, 84 financial apps

have an installation count of more than one million on Google Play.

26

Page 41 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 5

Case Study

This chapter discusses the characteristics of a few apps taken from the 100 Indian financial

apps, all of which were analyzed manually.

• Yono Lite SBI - Mobile Banking (com.sbi.SBIFreedomPlus): This application is

for availing the internet banking facilities of the State Bank of India (SBI) [29]. This

app is developed using the Kony framework [18]. We found that many parts of the code

are initially encrypted and get loaded during runtime after appropriate decryption. By

doing the native side analysis (i.e., analyzing the code which the developer has written

in C/C++, which is the part of the apk as the shared object (*.so) file), we found a

constant string of 64 characters in length. Via further inspection, we found this string to

be the SHA-256 hash of the public key certificate used to sign the app. We modified the

code on the native side (using radare2 [45]) to overwrite the value with our public key

certificate, which will be used for signing the app after repackaging. When we launched

this repackaged app, we could access the page where we had to enter the username and

the password, indicating we had bypassed the first level of certificate check successfully.

Without this step, we could not even reach the login page. But, post login, at a later point,

we could no longer use this app, which suggests that there is some other anti-tampering

check in the app that is not locatable by a keyword-based search.

• BHIM App (in.org.npci.upiapp): BHIM is a UPI-enabled initiative to facilitate safe,

easy and instant digital payments through a mobile phone [10]. We observed that this app

stopped working immediately in its repackaged version, and for the scenarios when the

unmodified app was launched on a rooted device. While analyzing this app and inserting

the logs at the appropriate location at the smali code, we found that the anti-tampering

and other checks are at the native code level. But, even on the native side, we could not

27

Page 42 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

locate the APIs corresponding to these checks by a keyword-based search, suggesting that

static analysis alone cannot find the code associated with the SDC in this app.

• APRB MobileBanking (com.mbanking.aprb.aprb): This is the mobile banking ap-

plication for the Arunachal Pradesh Rural Bank users [2]. We found 13 other apps have

the same developer ID as this app in Google Play. The pattern in which the code is

written for these SDCs is the same across all these apps. So, if an attacker can bypass the

SDC in one app, they can bypass the SDCs in the remaining apps without any additional

effort. We were able bypass the SDCs in the remaining 13 apps too.

• BHIM Baroda Pay (com.bankofbaroda.upi): This application is the UPI App from

Bank of Baroda [11] and has all the SDCs. When we disassemble this app using apktool, a

keyword-based search can locate the SDC related code. Our automation could bypass the

anti-tampering check but could not bypass the other checks as this app uses SafetyNet API

to perform device integrity checks. Since the validation is happening at the client side,

we successfully bypassed the root detection and the emulator detection checks manually.

28

Page 43 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 6

Recommendations

Every SDC that an app developer inserts in an app is bypassable in principle; the question,

though, is how hard it is for the attackers to bypass it. Here, we discuss guidelines that app

developers should follow regarding the same. The SDC-related code should not be locatable via

trivial static analysis (i.e., from keyword-based search). App developers should write the same

on the native side of the app, as, compared to the Java level, bypassing the SDC at the native

level is more challenging. Many existing frameworks help to put these checks at the native

side of the app (e.g., Kony Framework [18]). Another technique is to use Google’s SafetyNet

API [48] accurately. The developer should send the JWS Object (a return value from this

API; signed by Google server) to the app’s backend server and correctly perform the validation

there. If developers use the SafetyNet API correctly [47] and the code related to SafetyNet is

not locatable by trivial static analysis, it would be hard for the attackers to bypass the checks.

29

Page 44 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 7

Limitations

In this chapter, we discuss the limitations of our work with respect to how we detect the SDCs

in apps, how we declare that an SDC has been bypassed, and why we cannot bypass the SDC

for some apps.

Our methodology cannot bypass the SDC through automation if:

• The related code is either not locatable by a keyword-based search or present in the native

part of the app.

• The app developer has used SafetyNet attestation.

• We cannot re-build the apk after smali code instrumentation due to the errors produced

by the apktool. Mahmud et al. [64] have also excluded many apps from their dataset as

they failed during reassembly due to errors in apktool.

We think that the SDC related code gets executed immediately after an app is launched. If

this code gets executed at the later point of time (e.g., after user’s successful login), our analysis

could result in false negatives. Also, if the app displays an error message (regarding detection of

compromised app/device) after some user interaction (e.g., after performing swipes, or clicking

the “Next” button, etc.), our analysis cannot detect the check as the app’s UI will be identical

for both the runs until any user interaction (Figure 7.1). Similarly, if instrumented apps do

not work at a later point of time, our approach will yield false results that we have successfully

bypassed the check.

Consider a scenario when the app is launched on a compromised device. Even though it

does not have the corresponding SDC, we may see a different UI compared with the original

app’s launch on the non-rooted device. It could be due to delay in the code execution in one of

the runs (a probable reason could be a delay in response from app’s backend server). If that is

30

Page 45 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

(a) First Activity after launch. (b) Error message.

Figure 7.1: com.upi.axispay displays an error message after the selection of the language.

the case, our analysis could result in a false positive regarding SDC detection. We launched the

app for a minute to ensure that a good amount of code was executed in both runs to account

for such a possibility.

We also observed that a few apps display ads during their run. For those apps, due to such

dynamic UI changes, we get different xml dumps (irrespective of the check present) when the

app runs in the non-rooted real device and compromised device. Hence, we have not performed

the entire xml comparison for the two runs, but instead checked the resource-id attribute of

the xml dump to minimize the false positives.

The following are the drawbacks of UIAutomator that would have impacted our results:

• For the same app’s UI, there is a difference between the UI elements fetched from xml

dump when captured multiple times. For the sake of consistency, we consecutively cap-

tured the view hierarchy of the app’s UI till the point when two consecutive xml dumps

(i.e., the set of values retrieved from the resource-id attribute) are same.

• For some apps, it could not produce the app’s view hierarchy because of not getting the

ideal state of the app’s UI (even after the launch for a minute). So apart from the UI

analysis, we have done the log analysis to handle such scenarios.

31

Page 46 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 8

Related Work

Many previous works have analyzed the presence of SDCs in Android apps and how they can

be bypassed. Sun et al. [70] have developed a semi-automated tool RDAnalyzer to bypass the

root detection checks via API hooking both in Java and native code. Nguyen Vu et al. [66] have

also shown that many root detection checks can be evaded through API hooking and static file

renaming. They had taken 18 financial banking apps of Korea and were able to bypass 10 out

of 18 apps by changing the su binary filename to different name. Kim et al. [58] manually

analyzed the 76 popular financial apps of the Republic of Korea. They bypassed 67 out of 73

apps that check device integrity and 39 out of 44 apps that check app integrity. Ibrahim et

al. [57] performed the analysis on Google’s SafetyNet API, and they manually bypassed the

device integrity checks for 21 apps that use SafetyNet. However, all these studies that bypassed

various checks were based on manual approaches; our work has tried to bypass these checks

through automation.

Much has been accomplished in Android app repackaging and its countermeasures. Zhou

et al. [77] found that 86% of the malware samples originate from repackaged versions of le-

gitimate apps corrupted with a malicious payload. Their follow-up work [76] analyzed apps

from the third-party Android marketplaces and found that 5% to 13% of the apps over there

are repackaged. Earlier works [62],[71],[74] developed a mechanism that stops the working of

a repackaged version of the original app on the real device. Merlo et al. [65] reviewed various

anti-repackaging measures that have been proposed in the past. Berlato et al. [53] developed a

static analysis tool, ATADetector, that detects anti-debugging and anti-tampering protection

in their apps. However, they do not analyze the ease with which an attacker can bypass these

checks.

Some research has also been done on the Android apps that provide payment services.

Mahmud et al. [64] developed a static analysis tool, Cardpliance, to identify whether PCI DSS

32

Page 47 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

(Payment Card Industry Data Security Standards) standards are being followed in the Android

apps that ask the users to enter a credit card number. They found that only 1.67% of analyzed

apps are not compliant with the PCI DSS. Z Din et al. [55] developed a system that other apps

can integrate as an SDK that will help in preventing Card Not Present fraudulent transactions.

There has been a lot of research focused on financial apps. Reaves et al. [68] analyzed

46 well-known Android financial apps and found that majority of these apps fail to provide

the necessary protection essential for financial services. Chen et al. [54] analyzed 693 banking

apps across 83 countries and found 2,157 weaknesses on these apps. However, this work does

not examine the self-defense checks recommended by OWASP. Kumar et al. [59] performed

the security analysis of the UPI Protocol by manually analyzing and reverse engineering the

BHIM App and confirmed their findings on other UPI Apps. Uddin et al. [72] developed a

semi-automated security assessment framework, Horus, to analyze the crypto-wallet apps and

validate the security standards critical for such apps. However, they also did not consider

OWASP guidelines. Zungur et al. [78] analyzed financial apps to check if app developers are

following guidelines recommended by OWASP to make their apps more secure. But, they do

not identify the robustness of these checks.

Finally, UI analysis and log analysis techniques have been used by many other works in

the past. Zhou et al. [75] found that UIAutomator can only capture the view hierarchy of

the topmost focused window. Other works [69],[63],[61] have used the UIAutomator to capture

the view hierarchies to find a particular view component. Zungur et al. [78] also detected the

presence of the various checks in the app by analyzing the UI elements using UIAutomator.

Girei et al. [56] proposed botnet detection techniques for mobile devices using log analysis.

Yoo et al. [73] used the Logcat as a listener for automatic mobile app testing.

33

Page 48 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 9

Conclusion

This work focuses on the ease with which attackers can bypass the self-defense checks recom-

mended by OWASP in Android apps. To the best of our knowledge, this is the first work that

has performed the analysis at such a large-scale targeting 2,854 FINANCE category apps from

Google Play and tried to bypass the checks through automation. Our work reveals that only

22.5% of the financial apps have all the SDCs and 27.1% of the financial apps have none of

the SDCs we considered. Our work has bypassed the SDCs of some popular financial apps

having installation count in the order of millions from Google Play. Furthermore, each of the

self-defense checks we have considered in this work is present in only < 50% of the apps. With

the help of various tools, this work successfully bypassed at least one self-defense check in more

than 50% of the financial apps. We believe that this work will be beneficial for app developers to

appreciate the value of the self-defense checks and insert these checks in a more non-bypassable

manner.

34

Page 49 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Appendix

A Responsible Disclosure

In April 2022, we reach out to following banks whose banking apps do not have the SDCs, or

the SDC has been bypassed:

• HDFC Bank

• SBI Bank

• Axis Bank

• Bank of Baroda

• Kotak Mahindra Bank

• ICICI Bank

• IDBI Bank

• Suryoday Small Finance Bank

• Arunachal Pradesh Rural Bank

• Amreli Jilla Madhyastha Sahakari Bank

• Bellary District Co-operative Central Bank

• Chikmagalur District Central Cooperative Bank

• Jila Sahakari Kendariya Bank Maryadit Durg

• Indore Premier Co-operative Bank

• Kodagu District Cooperative Central Bank

35

Page 50 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

• Jila Sahakari Kendriya Bank Maryadit Khargone

• Kurmanchal Nagar Sahkari Bank

• Karnataka State Cooperative Apex Bank

• Mahalakshmi Co-operative Bank

• Mysore & Chamarajanagar District Co-operative Central Bank

• Mangalore Town Bank

• Vijayapura District Co-operative Central Bank

• Vyavsayik Sahakri Bank

• Prathama UP Grahmin Bank

• Dakshin Bihar Grahmin Bank

• Sarva Haryana Grahmin Bank

• Himachal Pradesh Grahmin Bank

• Punjab Grahmin Bank

We shared our results, including the technical details (with respect to how we bypassed the

checks) and recommendations for the app developers to make the job really hard for the at-

tackers to bypass such checks. Unfortunately, as of the date (29th April, 2022), only one bank

have responded back to us.

36

Page 51 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Bibliography

[1] Android Debug Bridge (adb). URL https://developer.android.com/studio/

command-line/adb. 8

[2] APRBMobile Banking. URL https://play.google.com/store/apps/details?id=com.

mbanking.aprb.aprb. 28

[3] ActivityManager, . URL https://developer.android.com/reference/android/app/

ActivityManager. 9

[4] ActivityTaskManager Source Code, . URL https://android.googlesource.

com/platform/frameworks/base/+/master/core/java/android/app/

ActivityTaskManager.java. 9

[5] Android Developers. URL https://developer.android.com/. 15

[6] Apksigner, . URL https://developer.android.com/studio/command-line/apksigner.

12, 14

[7] Apktool: A tool for reverse engineering android apk files, . URL https://ibotpeaches.

github.io/Apktool/. 7, 14

[8] Google-Play-Signing, . URL https://developer.android.com/studio/publish/

app-signing. 5

[9] Appium, . URL https://appium.io/. 8

[10] BHIM UPI App, . URL https://play.google.com/store/apps/details?id=in.org.

npci.upiapp. 27

[11] BHIM Baroda Pay, . URL https://play.google.com/store/apps/details?id=com.

bankofbaroda.upi. 28

37

Page 52 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://play.google.com/store/apps/details?id=com.mbanking.aprb.aprb
https://play.google.com/store/apps/details?id=com.mbanking.aprb.aprb
https://developer.android.com/reference/android/app/ActivityManager
https://developer.android.com/reference/android/app/ActivityManager
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/app/ActivityTaskManager.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/app/ActivityTaskManager.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/app/ActivityTaskManager.java
https://developer.android.com/
https://developer.android.com/studio/command-line/apksigner
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://appium.io/
https://play.google.com/store/apps/details?id=in.org.npci.upiapp
https://play.google.com/store/apps/details?id=in.org.npci.upiapp
https://play.google.com/store/apps/details?id=com.bankofbaroda.upi
https://play.google.com/store/apps/details?id=com.bankofbaroda.upi

For Review Only

BIBLIOGRAPHY

[12] Build Source Code, . URL https://android.googlesource.com/platform/

frameworks/base/+/master/core/java/android/os/Build.java. 18

[13] Build — Android Developers, . URL https://developer.android.com/reference/

android/os/Build. 6

[14] Frida. URL (https://frida.re/). 6

[15] Google-Play-Scrapper. URL https://github.com/facundoolano/

google-play-scraper. 8

[16] PackageManager — Android Developers. URL https://developer.android.com/

reference/android/content/pm/PackageManager#getInstallerPackageName(java.

lang.String). 6

[17] Creating a KeyStore in JKS Format. URL https://docs.oracle.com/cd/E19509-01/

820-3503/ggfen/index.html. 5, 12

[18] Kony Docs. URL https://docs.kony.com/7_3/konylibrary/visualizer/visualizer_

user_guide/Content/ApplicationSecurity.htm. 27, 29

[19] Magisk App. URL https://github.com/topjohnwu/Magisk. 20

[20] NotificationManagerService Source Code. URL https://android.googlesource.com/

platform/frameworks/base/+/master/services/core/java/com/android/server/

notification/NotificationManagerService.java. 10

[21] Google Play Store. URL https://play.google.com/store. 2

[22] Selenium. URL (https://www.selenium.dev/). 8

[23] ShareIt India. URL https://yourstory.com/2018/10/

creating-tribes-conquer-karam-malhotra-tells-shareits-india-story/amp?

utm_pageloadtype=scroll. 7

[24] Signature Class Source Code. URL https://android.googlesource.com/platform/

frameworks/base/+/master/core/java/android/content/pm/Signature.java. 15

[25] Telephony Manager Android Developers. URL https://developer.android.com/

reference/android/telephony/TelephonyManager. 6

38

Page 53 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/os/Build.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/os/Build.java
https://developer.android.com/reference/android/os/Build
https://developer.android.com/reference/android/os/Build
(https://frida.re/)
https://github.com/facundoolano/google-play-scraper
https://github.com/facundoolano/google-play-scraper
https://developer.android.com/reference/android/content/pm/PackageManager#getInstallerPackageName(java.lang.String)
https://developer.android.com/reference/android/content/pm/PackageManager#getInstallerPackageName(java.lang.String)
https://developer.android.com/reference/android/content/pm/PackageManager#getInstallerPackageName(java.lang.String)
https://docs.oracle.com/cd/E19509-01/820-3503/ggfen/index.html
https://docs.oracle.com/cd/E19509-01/820-3503/ggfen/index.html
https://docs.kony.com/7_3/konylibrary/visualizer/visualizer_user_guide/Content/ApplicationSecurity.htm
https://docs.kony.com/7_3/konylibrary/visualizer/visualizer_user_guide/Content/ApplicationSecurity.htm
https://github.com/topjohnwu/Magisk
https://android.googlesource.com/platform/frameworks/base/+/master/services/core/java/com/android/server/notification/NotificationManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/master/services/core/java/com/android/server/notification/NotificationManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/master/services/core/java/com/android/server/notification/NotificationManagerService.java
https://play.google.com/store
(https://www.selenium.dev/)
https://yourstory.com/2018/10/creating-tribes-conquer-karam-malhotra-tells-shareits-india-story/amp?utm_pageloadtype=scroll
https://yourstory.com/2018/10/creating-tribes-conquer-karam-malhotra-tells-shareits-india-story/amp?utm_pageloadtype=scroll
https://yourstory.com/2018/10/creating-tribes-conquer-karam-malhotra-tells-shareits-india-story/amp?utm_pageloadtype=scroll
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/Signature.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/Signature.java
https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/reference/android/telephony/TelephonyManager

For Review Only

BIBLIOGRAPHY

[26] UI Automator. URL https://developer.android.com/training/testing/

ui-automator. 3, 9

[27] Financial Apps US Statistics. URL https://www.emarketer.com/content/

finance-apps-downloads. 1

[28] UI Automator Viewer. URL https://developer.android.com/training/testing/

ui-automator#ui-automator-viewer. 8

[29] Yono Lite SBI - Mobile Banking. URL https://play.google.com/store/apps/details?

id=com.sbi.SBIFreedomPlus. 27

[30] Android App Bundles. URL https://developer.android.com/guide/app-bundle. 12

[31] AAPT2. URL https://developer.android.com/studio/command-line/aapt2. 12

[32] Application Fundamentals, . URL https://developer.android.com/guide/

components/fundamentals. 5

[33] State of Finance App Marketing, . URL https://www.appsflyer.com/resources/

reports/finance-app-marketing-global/. 1

[34] ARM Apps on Emulator. URL https://developer.android.com/studio/releases/

emulator#support_for_arm_binaries_on_android_9_and_11_system_images. 20

[35] Digital Wallets Popularity. URL https://www.financialexpress.com/industry/

banking-finance/digital-wallets-emerge-second-most-popular-in-store-payment-method/

2218021/. 1

[36] Dumpsys. URL https://developer.android.com/studio/command-line/dumpsys. 10

[37] Ghidra. URL https://ghidra-sre.org/. 7

[38] JADX - Dex to Java Decompiler. URL https://github.com/skylot/jadx. 7

[39] JAR File Specification. URL https://docs.oracle.com/javase/8/docs/technotes/

guides/jar/jar.html#Signed_JAR_File. 15

[40] Logcat command-line tool. URL https://developer.android.com/studio/

command-line/logcat. 3, 9

39

Page 54 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://www.emarketer.com/content/finance-apps-downloads
https://www.emarketer.com/content/finance-apps-downloads
https://developer.android.com/training/testing/ui-automator#ui-automator-viewer
https://developer.android.com/training/testing/ui-automator#ui-automator-viewer
https://play.google.com/store/apps/details?id=com.sbi.SBIFreedomPlus
https://play.google.com/store/apps/details?id=com.sbi.SBIFreedomPlus
https://developer.android.com/guide/app-bundle
https://developer.android.com/studio/command-line/aapt2
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://www.appsflyer.com/resources/reports/finance-app-marketing-global/
https://www.appsflyer.com/resources/reports/finance-app-marketing-global/
https://developer.android.com/studio/releases/emulator#support_for_arm_binaries_on_android_9_and_11_system_images
https://developer.android.com/studio/releases/emulator#support_for_arm_binaries_on_android_9_and_11_system_images
https://www.financialexpress.com/industry/banking-finance/digital-wallets-emerge-second-most-popular-in-store-payment-method/2218021/
https://www.financialexpress.com/industry/banking-finance/digital-wallets-emerge-second-most-popular-in-store-payment-method/2218021/
https://www.financialexpress.com/industry/banking-finance/digital-wallets-emerge-second-most-popular-in-store-payment-method/2218021/
https://developer.android.com/studio/command-line/dumpsys
https://ghidra-sre.org/
https://github.com/skylot/jadx
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Signed_JAR_File
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Signed_JAR_File
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat

For Review Only

BIBLIOGRAPHY

[41] OWASP Mobile Application Security Verification Stan-

dard. URL https://github.com/OWASP/owasp-masvs#

owasp-mobile-application-security-verification-standard-masvs. 2, 15

[42] NPCI UPI. URL https://www.npci.org.in/what-we-do/upi/product-overview. 8

[43] OpenSSL. URL http://manpages.ubuntu.com/manpages/trusty/man1/openssl.1ssl.

html. 15

[44] OWASP Mobile Top 10. URL https://owasp.org/www-project-mobile-top-10/. 1

[45] Radare2. URL https://github.com/radareorg/radare2. 7, 27

[46] Reserve Bank of India Annual Report. URL https://m.rbi.org.in/Scripts/

AnnualReportPublications.aspx?Id=1322. 1

[47] SafetyNet Misuse, . URL https://android-developers.googleblog.com/2017/11/

10-things-you-might-be-doing-wrong-when.html. 1, 29

[48] SafetyNet, . URL https://developer.android.com/training/safetynet. 1, 6, 29

[49] Toast Message. URL https://developer.android.com/guide/topics/ui/notifiers/

toasts. 10

[50] APK Signature Scheme v1. URL https://source.android.com/security/apksigning#

v1. 15

[51] APK Signature Scheme v2. URL https://source.android.com/security/apksigning/

v2#verification. 5

[52] Xposed Framework. URL https://repo.xposed.info/module/de.robv.android.

xposed.installer. 6, 20

[53] Stefano Berlato and Mariano Ceccato. A large-scale study on the adoption of anti-

debugging and anti-tampering protections in android apps. Journal of Information Se-

curity and Applications, 2020. 2, 17, 32

[54] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue, Yang Liu, and

Lihua Xu. An empirical assessment of security risks of global android banking apps. In

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE), 2020.

33

40

Page 55 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/OWASP/owasp-masvs#owasp-mobile-application-security-verification-standard-masvs
https://github.com/OWASP/owasp-masvs#owasp-mobile-application-security-verification-standard-masvs
https://www.npci.org.in/what-we-do/upi/product-overview
http://manpages.ubuntu.com/manpages/trusty/man1/openssl.1ssl.html
http://manpages.ubuntu.com/manpages/trusty/man1/openssl.1ssl.html
https://owasp.org/www-project-mobile-top-10/
https://github.com/radareorg/radare2
https://m.rbi.org.in/Scripts/AnnualReportPublications.aspx?Id=1322
https://m.rbi.org.in/Scripts/AnnualReportPublications.aspx?Id=1322
https://android-developers.googleblog.com/2017/11/10-things-you-might-be-doing-wrong-when.html
https://android-developers.googleblog.com/2017/11/10-things-you-might-be-doing-wrong-when.html
https://developer.android.com/training/safetynet
https://developer.android.com/guide/topics/ui/notifiers/toasts
https://developer.android.com/guide/topics/ui/notifiers/toasts
https://source.android.com/security/apksigning#v1
https://source.android.com/security/apksigning#v1
https://source.android.com/security/apksigning/v2#verification
https://source.android.com/security/apksigning/v2#verification
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://repo.xposed.info/module/de.robv.android.xposed.installer

For Review Only

BIBLIOGRAPHY

[55] Zainul Abi Din, Hari Venugopalan, Jaime Park, Andy Li, Weisu Yin, HaoHui Mai,

Yong Jae Lee, Steven Liu, and Samuel T. King. Boxer: Preventing fraud by scanning

credit cards. In 29th USENIX Security Symposium (USENIX Security 20), 2020. 33

[56] Daifur Abubakar Girei, Munam Ali Shah, and Muhammad Bilal Shahid. An enhanced

botnet detection technique for mobile devices using log analysis. In 2016 22nd International

Conference on Automation and Computing (ICAC), 2016. 33

[57] Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi. Safetynot: on the usage of

the safetynet attestation api in android. In Proceedings of the 19th Annual International

Conference on Mobile Systems, Applications, and Services, 2021. 2, 32

[58] Taehun Kim, Hyeonmin Ha, Seoyoon Choi, Jaeyeon Jung, and Byung-Gon Chun. Breaking

ad-hoc runtime integrity protection mechanisms in android financial apps. In Proceedings

of the 2017 ACM on Asia Conference on Computer and Communications Security, 2017.

2, 32

[59] Renuka Kumar, Sreesh Kishore, Hao Lu, and Atul Prakash. Security analysis of unified

payments interface and payment apps in india. In 29th USENIX Security Symposium

(USENIX Security 20), 2020. 33

[60] Li Li, Tegawendé F. Bissyandé, and Jacques Klein. Rebooting research on detecting repack-

aged android apps: Literature review and benchmark. IEEE Transactions on Software

Engineering, 2021. 1

[61] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Droidbot: a lightweight ui-guided

test input generator for android. In 2017 IEEE/ACM 39th International Conference on

Software Engineering Companion (ICSE-C), 2017. 33

[62] Lannan Luo, Yu Fu, Dinghao Wu, Sencun Zhu, and Peng Liu. Repackage-proofing android

apps. In 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN), 2016. 32

[63] Yun Ma, Yangyang Huang, Ziniu Hu, Xusheng Xiao, and Xuanzhe Liu. Paladin: Auto-

mated generation of reproducible test cases for android apps. In Proceedings of the 20th

International Workshop on Mobile Computing Systems and Applications, 2019. 33

[64] Samin Yaseer Mahmud, Akhil Acharya, Benjamin Andow, William Enck, and Bradley

Reaves. Cardpliance: PCI DSS compliance of android applications. In 29th USENIX

Security Symposium (USENIX Security 20), 2020. 30, 32

41

Page 56 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

BIBLIOGRAPHY

[65] Alessio Merlo, Antonio Ruggia, Luigi Sciolla, and Luca Verderame. You shall not repack-

age! demystifying anti-repackaging on android. Computers & Security, 2021. 32

[66] Long Nguyen-Vu, Ngoc-Tu Chau, Seongeun Kang, Souhwan Jung, and Zonghua Zhang.

Android rooting: An arms race between evasion and detection. Sec. and Commun. Netw.,

2017. 32

[67] Anh Pham, Italo Dacosta, Eleonora Losiouk, John Stephan, Kevin Huguenin, and Jean-

Pierre Hubaux. HideMyApp: Hiding the presence of sensitive apps on android. In 28th

USENIX Security Symposium (USENIX Security 19), 2019. 14

[68] Bradley Reaves, Nolen Scaife, Adam Bates, Patrick Traynor, and Kevin R.B. Butler.

Mo(bile) money, mo(bile) problems: Analysis of branchless banking applications in the

developing world. In 24th USENIX Security Symposium (USENIX Security 15), 2015. 33

[69] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu,

Yang Liu, and Zhendong Su. Guided, stochastic model-based gui testing of android apps.

In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,

2017. 33

[70] San-Tsai Sun, Andrea Cuadros, and Konstantin Beznosov. Android rooting: Methods,

detection, and evasion. In Proceedings of the 5th Annual ACM CCS Workshop on Security

and Privacy in Smartphones and Mobile Devices, 2015. 32

[71] Simon Tanner, Ilian Vogels, and Roger Wattenhofer. Protecting android apps from repack-

aging using native code. In FPS, 2019. 32

[72] Md Shahab Uddin, Mohammad Mannan, and Amr Youssef. Horus: A security assessment

framework for android crypto wallets. In International Conference on Security and Privacy

in Communication Systems, 2021. 33

[73] Hyunsik Yoo and Youngseok Lee. An automatic mobile app testing method with user

event scenario. In 2017 18th IEEE International Conference on Mobile Data Management

(MDM), 2017. 33

[74] Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, Zhoujun Li, Chin-Tser Huang, and

Csilla Farkas. Resilient user-side android application repackaging and tampering detection

using cryptographically obfuscated logic bombs. IEEE Transactions on Dependable and

Secure Computing, 2021. 32

42

Page 57 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

BIBLIOGRAPHY

[75] Hao Zhou, Ting Chen, Haoyu Wang, Le Yu, Xiapu Luo, Ting Wang, and Wei Zhang.

Ui obfuscation and its effects on automated ui analysis for android apps. In 2020 35th

IEEE/ACM International Conference on Automated Software Engineering (ASE), 2020.

33

[76] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting repackaged smartphone

applications in third-party android marketplaces. In Proceedings of the Second ACM Con-

ference on Data and Application Security and Privacy, 2012. 7, 32

[77] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and evolu-

tion. In 2012 IEEE symposium on security and privacy, 2012. 32

[78] Onur Zungur, Antonio Bianchi, Gianluca Stringhini, and Manuel Egele. Appjitsu: In-

vestigating the resiliency of android applications. In 2021 IEEE European Symposium on

Security and Privacy (EuroS&P), 2021. 2, 9, 20, 25, 33

43

Page 58 of 58

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

