Whole-Program and Non-Bare-Metal Control-Flow
Attestation

A THESIS
SUBMITTED FOR THE DEGREE OF
Doctor of *Philosophy
IN THE
Saculty of Engineering

BY
Nikita Yadav

Computer Science and Automation
Indian Institute of Science
Bangalore — 560 012 (INDIA)

January 19, 2026

Declaration of Originality

I, Nikita Yadav, with SR No. 04-04-00-10-12-20-1-18606 hereby declare that the material
presented in the thesis titled

Whole-Program and Non-Bare-Metal Control-Flow Attestation

represents original work carried out by me in the Department of Computer Science and
Automation at Indian Institute of Science during the years 2020-2025.
With my signature, I certify that:

e [have not manipulated any of the data or results.

e [have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.
e [have explicitly acknowledged all collaborative research and discussions.
e [have understood that any false claim will result in severe disciplinary action.

e [have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements
are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Vinod Ganapathy Advisor Signature

(© Nikita Yadav
January 19, 2026
All rights reserved

DEDICATED TO

My Mentors

whose guidance and support have shaped my journey

Acknowledgements

I would like to express my deepest gratitude to my Ph.D. advisor, Prof. Vinod Ganapathy, for
being the greatest source of inspiration and a steadfast pillar throughout my academic journey.
I owe much of my growth and achievements to his unwavering support, trust in my abilities, and
insightful guidance. His immense patience and eagerness to discuss and brainstorm research
ideas made our interactions both intellectually stimulating and encouraging. I always felt safe
going to him with half-baked ideas or even just confusion, he never rushed me and always took
the time to talk things through.

Prof. Vinod’s enthusiasm and encouragement energized me, even during the most challeng-
ing times. I am also really thankful for how much he supported my applications and encouraged
me to follow my research pursuits. I greatly appreciated his advising style, he gave me the free-
dom to explore new directions while always helping me stay grounded and focused. I feel truly
honored to have been his student, and I cannot thank him enough for his unwavering support.

I am also thankful to my collaborators, whose contributions have shaped much of my re-
search. At IBM Research, I worked with Dushyant Behl and Praveen Jayachandran. Dushyant
mentored me during my internship and remained a steady source of support long after. I learned
a great deal from his clear and thoughtful problem-solving approach, and always appreciated
his generosity and clarity. At Witness Chain, I had the pleasure of working with Prof. Hi-
manshu Tyagi, Vishal Sevani, and Peyaio Sheng. Prof. Himanshu’s passion for research and
high energy were inspiring. Vishal is one of the most hardworking and patient person I have
worked with, and I truly enjoyed our collaboration. I also appreciated working with Peyaio
and the good memories we shared at the CCS conference. I am grateful to Prof. Ahmad-Reza
Sadeghi for the opportunity to work with his group at TU Darmstadt—it was a truly enriching
experience. [also extend my sincere thanks to Prof. Georgios Smaragdakis and Prof. Alexios
Voulimeneas at TU Delft for their support and collaboration.

Warm thanks to my colleagues at the CSSL lab—Arun, Kripa, Hrushikesh, Kunal, Vivek,
Eikansh, Isha, Dev, Gokul, Himanshu, Kanmani, Rakesh, Rounak, and Shivraj—for creating

a cheerful and supportive environment. I collaborated with Arun on multiple projects and

admired his calm, composed approach even under pressure. Kripa was always eager to help,
especially with debugging; his energy made the lab a more vibrant place. Hrushikesh was a
great collaborator, and I also appreciated working with Kunal and Dev.

I would like to thank Ms. Padmavathi, Ms. Kushael, and the other staff at the CSA office
for their kind assistance on the administrative front. I gratefully acknowledge financial support
from the Prime Minister’s Research Fellowship, the Google PhD Fellowship, the CROSSING
Fellowship at TU Darmstadt and the Murthy-Govindaraju Research Endowment Award, es-
tablished by IISc alumnus Dr. Madhukar Govindaraju and Dr. Chaya Murthy. This generous
financial assistance helped make my Ph.D. journey smoother and largely worry-free.

I have truly cherished my time at IISc, and one of the biggest reasons has been its beautiful,
green campus. The serene environment never ceased to captivate me and brought a sense of
peace and grounding that I will deeply miss. The excellent campus facilities including the mess,
health center, and gymkhana, played a crucial role in helping me stay healthy and focused,
allowing me to devote most of my time to my research without worrying about day-to-day
needs. It has truly been a blissful home, the place I have enjoyed the most in my entire life. I

tried to capture my feelings for IISc in a short poem, with some help from ChatGPT:

Like a wanderer lost in an endless wood,
In awe, I stand, feeling blessed under your hood.
Though years have passed, I still can’t comprehend
Will this feeling fade, or stay with me till the end!

Last but not least, I thank my friends at 1ISc for standing by me in difficult times and
making this journey joyful. I am especially grateful to Rohit, Nabanita, Sukeerti, and Srishty
for their unwavering friendship and support. A special thanks to Marco Chilese and Franziska
Vollmer at TU Darmstadt for helping me settle in and making my time there memorable.

Finally, I thank my family for believing in my decision to pursue a Ph.D. I am especially
grateful to my mother for her endless support, and to my brothers, Chetan and Ketan, for
standing by me in every phase. Special thanks to my sister-in-laws, Naina and Vandana, for
being more like sisters and encouraging me through tough times.

Thank you!

1

Abstract

Software attestation enables a remote entity to verify that a program executed as intended
on an untrusted platform, with applications in domains such as embedded systems, Internet of
Things (IoT), and cloud-edge computing. Control-Flow Attestation (CFA) is one such approach
that verifies a program’s control-flow integrity by recording the path taken during its execution.
In CFA, a prover platform convinces a remote verifier of the integrity of the prover program by
recording the path that the program takes as it executes a particular input. While a number
of techniques have been developed for CFA, there are two critical issues that have not been
addressed. First, prior techniques have generally been applied to record paths only for parts of
the prover program’s execution and does not scale to attestation of whole programs. Second,
they are designed for bare-metal environments and are therefore not applicable in non-bare-
metal environments. CFA measurements must be collected and stored securely, e.g., within
a Trusted Execution Environment(TEE) on the platform where the program executes, failing
which it will not be an accurate record of the program’s execution. These requirements are
satisfied relatively easily when the program executes atop bare-metal hardware, as most prior
CFA approaches have assumed.

This dissertation develops new tools and techniques to address these two key challenges of
the prior CFA techniques. It proposes efficient path measurement strategy and demonstrates
that CFA can be applied securely to attest userspace programs running in non-bare-metal
environments.

Specifically, this dissertation makes the following contributions. First, it considers the prob-
lem of whole program control-flow attestation, i.e., to attest the execution of the entire prover
program. It shows that prior approaches for CFA use sub-optimal techniques that fundamen-
tally fail to scale to whole program paths, and impose a large runtime overhead on the execution
of the prover program. It then develops BLAST, an approach that reduces these overheads us-
ing a number of novel techniques inspired by prior work from the program profiling literature.
Experimental results show that BLAST enables whole-program CFA with an average runtime

overhead of 67% on a suite of embedded benchmarks, making it practical for a wide range of

11

applications.

Second, it considers non-bare-metal control-flow attestation, in which the prover program ex-
ecutes as a user-level process atop an operating system (OS) on the remote computing platform.
It shows that prior approaches to CFA are insecure in the presence of OS-level adversaries. It
describes the design and implementation of a system called SULFUR that securely enables CFA
of user-space applications in non-bare-metal settings. SULFUR accomplishes this goal via a co-
developed OS called SULFUROS. SULFUROS makes novel use of security extensions available in
commodity AArch64 hardware—Privileged-Access Never (PAN) and Privileged-Execute Never
(PXN). It experimentally shows that SULFUR enables secure CFA with low additional runtime
overheads in non-bare-metal environments. Specifically, SULFUR contributes only an additional
1.94% overhead for CFA-based attestation of a program, compared to CFA-based attestation
atop a commodity Linux OS.

Together, these contributions advance the state-of-the-art in CFA by enabling scalable

whole-program attestation and extending its applicability to non-bare-metal environments.

v

Publications based on this Thesis

1. Nikita Yadav, and Vinod Ganapathy. Whole-Program Control-Flow Path Attestation.
In Proceedings of CCS’23, the 30th ACM SIGSAC Conference on Computer and Com-
munications Security, Copenhagen, Denmark, November 2023, ACM Press. [95]

2. Nikita Yadav, Hrushikesh Salunke, Dev Tejas Gandhi, and Vinod Ganapathy. Non-
Bare-Metal User-Space Control-Flow Attestation, In Proceedings of ACSAC’25, the 41st
Annual Computer Security Applications Conference, Honolulu, Hawaii, USA, December.
2025 [97]

Publications outside of this Thesis

1. Arun Joseph, Nikita Yadav, Vinod Ganapathy, Dushyant Behl, and Praveen Jayachan-
dran. Data Protection in Permissioned Blockchains using Privilege Separation. In Pro-
ceedings of COMSNETS’23, the 15th International Conference on Communication Sys-
tems and Networks, Bangalore, India, January 2023. [60]

2. Arun Joseph, Nikita Yadav, Vinod Ganapathy, and Dushyant Behl. A Contribu-
tory Public-Event Recording and Querying System. In Proceedings of SEC’23, the 8th
ACM/IEEE Symposium on Edge Computing, Wilmington, Delaware, December 2023. [59]

3. Peiyao Sheng, Nikita Yadav, Vishal Sevani, Arun Babu, SVR Anand, Himanshu Tyagi,
Pramod Vishwanath. Proof of Backhaul: Trustfree Measurement of Broadband Band-
width. In Proceedings of NDSS’24, the 31st Annual Network and Distributed System
Security Symposium, San Diego, California, February/March 2024, Internet Society. [85]

4. Nikita Yadav, Franziska Vollmer, Ahmad-Reza Sadeghi, Georgios Smaragdakis, Alex-
ios Voulimeneas. Orbital Shield: Rethinking Satellite Security in the Commercial Off-

the-Shelf FEra. In Proceedings of 35’24, the 1st Security for Space Systems Conference,
Noordwijk, Netherlands, May 2024. [96]

5. David Koisser, Richard Mitev, Nikita Yadav, Franziska Vollmer, Ahmad-Reza Sadeghi.
Orbital Trust and Privacy: SoK on PKI and Location Privacy Challenges in Space Net-
works. In Proceedings of the 33rd USENIX SECURITY Symposium, Philadelphia, PA,
USA, August 2024. [65]

vi

Contents

Acknowledgements

Abstract

Publications based on this Thesis
Publications outside of this Thesis
Contents

List of Figures

List of Tables

1 Introduction
1.1 Motivation and CFA
1.2 Threat Model and Assumptions of CFA
1.3 Prior Art in CFA
1.4 Gaps in Prior Art and Our Advances
1.4.1 Scaling CFA to Whole Program Attestation
1.4.2 Enhancing Applicability of CFA

1.5 Problem Statement, Thesis Statement, and Details of Technical Contributions

2 Whole-Program Control-Flow Attestation
2.1 Motivation oL e
2.2 Backgroundo
2.2.1 ARM Trustzone
2.2.2 Threat Model of BLAST
2.2.3 TEE Domain Switchesin CFA

vii

iii

vi

vii

xii

2.3 Design and Implementation of BLAST 19
2.3.1 Avoiding TEE Domain Switches 20
2.3.2 Ball-Larus Numbering for Optimal Logging 21
2.3.3 Log Integrity using Software Fault Isolation 28
2.3.4 Path Measurement and Verification 29
2.3.5 Implementation 32
2.3.6 Qualitative Security Analysis L. 32

24 Evaluationo 34
2.4.1 Performance Analysis 35
2.4.2 Library Attestation with BLAST 38
2.4.3 Evaluating Energy Consumption in BLAST 40
2.4.4 Effectiveness of the WPP Representation 41
2.4.5 Case Study: Open Syringe Pump Benchmark 41

2.5 Sampling: A Strawman Approach to Reduce Overheads of CFA 46
2.5.1 Instrumentation and Verification with Sampling 46
2.5.2 Security Ramifications of Sampling 48
2.5.3 Performance with Sampling 48
2.5.4 Shortcomings of Sampling L. 49

2.6 Summary of BLAST 50

Non-Bare-Metal User-Space Control-Flow Attestation 51

3.1 Motivation 51

3.2 System-Level Adversaries and CFA 53

3.3 SULFUR: Assumptions and Design 56
3.3.1 Overview of SULFUR 58
3.3.2 S-Vault: A Protected, User-Space Region for CFA 59

3.4 Implementation of SULFUR 62
3.4.1 CFA-Centric Protections 62

3.4.1.1 Protecting Code Integrity of P 62
3.4.1.2 Protecting Integrity of P’s Execution Context 63
3.4.1.3 Protecting Integrity of CFA Measurements in REE 67
3.4.1.4 Protecting Integrity of Attestation Calls 68
3.4.2 System Integrity Guardrails 69
3.4.2.1 System Configuration Protection 69
3.4.2.2 Protecting Integrity of SULFUROS 70

viil

3.5 Security Evaluation

3.6 Performance Evaluation
3.6.1 Microbenchmark Evaluation
3.6.2 Scalability Evaluation 0oL

3.7 Summary of SULFUR

4 Related Work
4.1 Remote Attestation

4.2 Control-Flow Attestation

4.3 OS-level Protection

5 Conclusion and Open Problems
5.1 Summary of Contributions
5.2 Potential Avenues for Future Research
Bibliography

X

82
82
83
85

86
86
87

89

List of Figures

1.1

1.2

2.1

2.2
2.3

2.4
2.5

2.6

2.7

2.8
2.9

Basic setup for CFA. Instrumentation inserted in P, executing in the REE, stores
the CFA measurements in the TEE. The shaded region in the REE indicates that
the CFA report is encrypted within the TEE, forming a secure channel through
which it is transmitted via the REE to the verifier V.
(a) Code snippet of running example program P, (b) its corresponding control-
flow graph (CFG), (¢) CFG instrumented using CFLAT [5], and (d) CFG instru-
mented using OAT [87]. CFG edges with the black squares have instrumentation
that domain switch into the TEE.

Overview of ARM TrustZone architecture. TrustZone divides the system into
a secure world (TEE) and a non-secure/normal world (REE), with isolation
enforced by hardware. The secure monitor (running at highest privilege level,
Exception Level 3) manages transitions between the two worlds.
Structure of the log in BLAST.
Ball-Larus numbering and corresponding instrumentation. We also show how
Ball-Larus numbering handles loops.
Impact of reserving registers for BLReg and LogReg.
BLAST’s instrumentation inserted before a function call to store the path index
and function ID.
SFET check inserted after a store instruction to ensure that store address does not
corrupt the log.
Fragment of a log produced by BLAST. Each entry is a tuple of the form
<func_name, Ball_Larus_PathID>. Each unique entry is mapped to a distinct
terminal symbol to represent it in the WPP.
Workflow for verification of CFA.
Contribution of SFI, Ball-Larus instrumentation, and log commit operations to

overhead. L.

14

26

29

31

2.10 Code snippet of Open Syringe Pump showing the Ball Larus path numbers (we

3.1

3.2

3.3

3.4

3.5

3.6

have omitted the function names for brevity), accompanied with execution path

traces and WPPs for different bolus amounts, 10 L and 11 pL. 0 . ..

Overview of SULFUR’s architecture.

SFI check inserted before a STTR instruction in a user-access function.

Entry/exit gates in SULFUR save/restore process context in S-Vault using un-

privileged loads/stores. Lo

SULFUROS code that checks whether the process P (in whose context this code

executes) is being attested by CFA.

Entry gate in SULFUROS: Saving user-space register values to S-Vault during

kernel entry. L

Exit gate in SULFUROS: Restoring user-space registers from process context

saved in S-Vault. L

x1

List of Tables

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Control-flow edges in CFLAT and OAT that contain instrumentation to perform
a domain switch to the TEE. 0oL 7

Control-flow edges in CFLAT and OAT that contain instrumentation to perform
a domain switch to the TEE. Although BLAST also instruments some of these
edges as shown in the table (with v/ o), BLAST’s instrumentation stores the path
measurement in a local log and does not trigger a domain switch (see Section 2.3). 16
Number of TEE domain switches seen at runtime with CFLAT’s and OAT’s
instrumentation for the Embench-IOT benchmark suite. 17
Number of control-flow events with BLAST’s instrumentation that result in en-
tries into the local log. The last two columns show how many fewer entries
the Ball-Larus instrumentation approach inserts into the log compared to the
approaches used by CFLAT and OAT (reported as TEE domain switches in
Table 2.2). 28
Performance of BLAST on the Embench-IOT benchmark suite. Numbers re-
ported are average of 10 runs, and the standard deviation is < 0.2%. BLAST
preallocated a log of size 1MB split into two 512KB symmetric halves with sen-
tinel pages. L 36
Performance of library attestation with BLAST on Embench-IOT benchmarks.
Both the program and the musl libc library are instrumented with BLAST in-
strumentation. Numbers reported are preliminary results. 39
Energy consumption with and without BLAST on Embench-IOT benchmarks.
The input voltage to the Raspberry Pi3 is constant at 5.1V, and the overall energy

consumption is the product of the voltage, current draw, and the execution time

of the benchmark. 40
Comparison of the size of the raw log against a log compressed with two lossless
approaches: bzip2 and WPP. oo 42

xii

2.8

2.9

2.10

3.1
3.2

3.3

3.4

3.5

Performance evaluation for different bolus amounts. Bolus (mL) is the dose of

Performance of the file hashing and encryption/decryption workloads in Mbed-
TLS instrumented with sampling, for various values of 8.

Performance of Embench-IOT benchmarks when instrumented with sampling.

Summary of SULFUR’s protections.
Performance of SULFUR on Embench-IoT benchmarks. Number reported are
average of 10 Tuns.
Performance of SULFUR on embedded applications. Number reported are average
of 10 runs.
Overhead incurred by SULFUR on system operations measured using LMBench
micro-benchmarks.
Performance of SULFUR on concurrent execution of embedded applications. Mul-

tiple CFA-traced applications are run simultaneously.

xiil

44
45

Chapter 1
Introduction

Our focus in this dissertation is on control-flow path attestation, or simply, control-flow attes-
tation (CFA). This dissertation presents techniques to strengthen CFA by scaling it to attest
entire program executions and by making it robust for deployment in non-bare-metal environ-

ments.

1.1 Motivation and CFA

Modern computing systems are increasingly distributed, spanning devices across the cloud,
edge, and Internet of Things (IoT). In such environments, software often executes on remote
or untrusted platforms that may be compromised or tampered with. Ensuring that remote
software executes as intended (without unauthorized modifications) has therefore become a
critical challenge in building trustworthy systems.

Attestation allows a remote verifier to establish trust in the integrity of a remote system,
called the prover. An agent on the prover measures the state of the system to be verified, and
sends these measurements to the verifier, who uses them to reason about the integrity of the
prover. Because the verifier does not trust the prover, the measurements are generally tied to
a root of trust on the prover platform, such as trusted platform modules (TPM) [79] on early
systems, or other hardware-based trusted execution environments (TEE) such as the ARM
TrustZone [18] or Intel SGX [56] in more recent systems. Integrity measurements can attest
to a variety of properties, such as whether the prover booted up with a particular software
stack [9, 48], that the system satisfies certain properties [35, 36, 63, 78], or executed certain
operations [87].

Control-flow attestation (CFA) is a security technology that enables fine-grained verification

Prover Platform

REE TEE

Input Z Program P

nonce

v
N
1

- "-’.| | Measurement
o of
J~~1» - /| | executed path

v 2 A

Verifier V

A

CFA Report

Figure 1.1: Basic setup for CFA. Instrumentation inserted in P, executing in the
REE, stores the CFA measurements in the TEE. The shaded region in the REE
indicates that the CFA report is encrypted within the TEE, forming a secure
channel through which it is transmitted via the REE to the verifier V.

of the execution of a program running on a computing platform. In CFA, an input J is given to a
program P running on a (remote) computing platform, which is expected to be equipped with a
TEE, such as ARM TrustZone [10, 18] or similar. In response to input J, the computing platform
records the execution path (or relevant portions thereof) of the program P as it executes J, while
interfacing with the TEE to store the recorded information (called a measurement) securely.
The computing platform then sends the measurement recorded in the TEE (together with the
input J) to a verifier V, typically in response to a challenge from V—this information is digitally
signed by the TEE. V can then use the recorded measurement to check that P indeed executed
as expected on input J. The computing platform and P are collectively called the prover, which
must offer proof of execution of input J on P.

Figure 1.1 shows the basic setup for CFA. CFA monitors the functionality of a program P
as it executes on a remote computing platform, and processes inputs, e.g., J as shown in the
figure. P typically executes within the rich execution environment (REE) of that platform.
For example, on an ARM TrustZone-based compute platform, P executes within the normal
world/REE. Before P starts executing, the TEE performs static binary attestation of P that
allows the verifier V to ensure that the binary has not been replaced.

The CFA process consists of the following two phases:

e CFA Measurement, where control-flow measurements are collected. P is instru-
mented so that it records the control-flow path taken by the program. As P executes on J,

the instrumentation in it tracks the path followed and stores this information—the CFA

measurement—in the TEE. Prior works on CFA have proposed several instrumentation

strategies as discussed in Section 1.3.

e CFA Verification, where the measurements are checked by the verifier. Upon
request, the prover platform sends the recorded CFA measurements to the verifier V,
which can use it for verification and audit. The verifier V checks the freshness of the
signed measurements and then determines whether the control-flow path to which P has
committed in the measurement is acceptable for that input. The precise details of the
method that V uses to make this determination depend upon the amount of informa-
tion available in the measurement sent by P. Most prior methods for CFA require V to
have access to a measurement database, which consists of the attestation measurements
(e.g., hashes, branch history) obtained by running P on several inputs in a benign environ-
ment. V simply matches the measurement obtained from the prover platform against this
database to determine whether the path taken corresponds to the input J that was pro-
vided to the prover. Recent advances in CFA have improved upon this CFA measurement

database to instead use more advanced data structures (e.g., [38], Chapter 2).

The main advantage of CFA is that it provides the verifier with a non-repudiable proof of
execution of the prover program P on the input J. This form of attestation is particularly valu-
able for embedded systems, in which a remote verifier can obtain a proof that some requested
action was indeed performed by an embedded device. For example, CFA can be used to assure a
verifier that a syringe pump embedded within a patient has indeed delivered the desired dosage
of a drug [5], or that a robot arm has indeed completed a task in response to a command from
a remote operator [87]. Because CFA works on individual runs of the program, it attests the
integrity of each run, and makes any attacks on the program more readily detectable by the
verifier. CFA can also be seen as a lighter-weight alternative to verifiable computation [91].
Deviations from the expected measurement either indicate that the input was corrupted during
transmission, or that there was a security compromise or malfunction in the prover platform
(i.e., robot or embedded device), e.g., due to a control-flow hijacking attack in P running on
the platform. The measurement obtained by V can also be used as an audit trail to verify

claims, e.g., insurance or legal claims, made by the computing platform or the operator.

1.2 Threat Model and Assumptions of CFA

This section discusses the threat model and assumptions commonly made by CFA approaches.

All the approaches discussed in this thesis rely on instrumenting P to collect CFA measurements

3

at runtime. The verifier V does not trust the prover platform, but expects it to be equipped
with a TEE, which it trusts. The verifier V assumes that the prover program P can be hijacked
by an adversary, e.g., by feeding malicious inputs that exploit zero-day vulnerabilities in P.

CFA approaches assume that the prover platform has implemented standard data-execution
prevention (DEP) techniques that are available on almost all modern hardware platforms, to
prevent code injection attacks in P. Preventing code injection attacks is important because the
inserted instrumentation in P is key to precisely computing the CFA measurement that the
verifier V will check.

Code-reuse attacks (e.g., return-oriented [83] or jump-oriented programming [29, 34]), and
attacks that maliciously modify program data [53] that alter the program path followed in P
can readily be detected because the CFA measurement that is collected by the TEE on the
prover will diverge from the value that V expects. Our focus in this thesis is only on attacks
that alter the control-flow path in P. Attacks that modify the value of a sensitive variable
without altering control-flow path can be detected using additional instrumentation to record
their values (e.g., as done in OAT [87]), but such instrumentation is orthogonal to the discussion
in this thesis. The specific threat models for the two works (Chapter 2 and Chapter 3) presented
in this thesis differ slightly; their precise assumptions and adversary capabilities are detailed

separately in their respective chapters.

1.3 Prior Art in CFA

Prior work on CFA (e.g., [5, 6, 44, 55, 74, 87, 89, 101]) has largely focused on programs
that run atop embedded devices. Most of these approaches work by instrumenting the prover
program so that at runtime, the instrumentation collects measurements that are committed to
the TEE, e.g., the secure world of an ARM TrustZone-enabled chip on the embedded device
(Section 2.2.1). This measurement is signed by the TEE and provided to the verifier, who can
then check whether the path followed by the program is the one expected for the program input
J.

We now describe prior work on CFA with a focus on CFLAT [5] and OAT [87] as represen-
tative approaches. Other approaches [6, 44, 55, 74, 89, 101] use largely similar methods. We
use the code snippet in Figure 1.2(a) as a running example denoting P. Figure 1.2(b) shows the
control-flow graph (CFG) of P. Both CFLAT and OAT instrument the program P to collect
control-flow path measurements. However, they differ in the information collected and in the
kind of locations where instrumentation is inserted.

CFLAT instruments the CFG of each function to store a rolling hash of the code of the

4

F

T
BB2: BB3:

if (!'isValid(userID)) { [checkPasswd(...) [%eax=gmzom:]
return ERRONE;

} BB4: T/
if (checkPasswd (userID, passwd)) { F

if (checkPerms (userID)) { T F
do_authorized computation(); BB5:
return SUCCESS; [%eax=SUCCESS] BBG:[%eax=ERRTWO]

}
} \J(

return ERRTWO;

1.2(a) Code snippet of program P.

BB7:| return %eax

1.2(b) CFG of Figure 1.2(a).

R=0 T=¢
BB1
R=7{(BB1||R) R=#(BB1||R) T=7||T T=T||F
(BB2 | (B3| (B2] (BB3]
R=#(BB2||R) .,
(BB2||R) T=T||F
R=H
(BB4||R) R=#(BB3J|R) T=T7||T
R=%(BB6||R)

R=7{(BB5||R)

Store return
address in TEE

1.2(d) Instrumented by OAT.

R=#(BB7||R)
1.2(c) Instrumented by CFLAT.

Figure 1.2: (a) Code snippet of running example program P, (b) its corresponding
control-flow graph (CFG), (c) CFG instrumented using CFLAT [5], and (d) CFG
instrumented using OAT [87]. CFG edges with the black squares have instrumen-
tation that domain switch into the TEE.

basic block IDs encountered during the execution of the function. CFLAT’s CFA measurement
is a set of hash values for each function encountered during P’s execution. For example, if
the execution follows the path BB1—+BB3—BB7 in the CFG shown in Figure 1.2(b), CFLAT
records the hash value H(BBT7||H(BB3||H(BB1||0))), where 3(.) is a suitable collision-resistant
hash function (BLAKE-2 in case of CFLAT') and || is a suitable concatenation operator.
Figure 1.2(c) shows how CFLAT instruments the CFG to compute the above hash value
at runtime—each rectangle on an edge denotes that instrumentation is added to the edge.
Recall that P runs in the REE. CFLAT maintains the CFA measurement in the TEE, and

each instrumentation contains a trampoline that performs a domain switch from REE into the

TEE—a world switch to the secure world in ARM TrustZone using the smc instruction. At each
such domain switch, CFLAT incorporates the hash of the preceding basic block ID into the
CFA measurement that is maintained in the TEE, and transfers control back to P to resume
execution (i.e., a world switch into the normal world in ARM TrustZone). On entry to each
function, the instrumentation initializes the hash value to 0. At each edge of the CFG, the
instrumentation computes the hash of the basic block ID that executed preceding that hash,
and appends the value to a per-function rolling hash maintained during the execution of that
function. At function exit, the accumulated hash value(s) is reported as the CFA measurement
of the function. A loop-free function that does not call any other functions will accumulate a
single hash value, denoting the path taken by the function as it processed the input.

CFLAT supports functions that have loops or call other functions, by storing a set of hash
values per function. To handle loops, CFLAT adds instrumentation on back-edges that saves
the hash value computed thus far, and re-initializes the hash computation to zero for the next
iteration of the loop. Thus, CFLAT performs a domain switch at each loop header and collects
a set of accumulated hash values, each accumulated hash corresponding to the execution of
one acyclic fragment of the CFG. The number of accumulated hash values in the set also
provides information (to V) about the number of times each loop iterated. To support function
calls, CFLAT’s instrumentation saves and restores the value of the hash across call instructions
encountered in a function. CFLAT adds instrumentation to save to the TEE the accumulated
hash preceding a call instruction. When the called function returns, it adds instrumentation
that restores the saved value from the TEE and resumes execution within the caller.

CFLAT reports CFA measurements on a per-function basis. A verifier presented with
CFLAT’s CFA measurements simply performs a lookup in a measurement database to check
whether the computed hash values corresponds to the hash values of (one of) the acceptable
path(s) for the input provided to the program. CFLAT assumes that the verifier has access to
such a measurement database that is pre-populated with a list of acceptable hash values, e.g., by
profiling the program with various regression tests under a non-adversarial environment. In the
absence of an entry in this database for a particular input, CFLAT’s verifier must re-execute a
local copy of P on that input, compute the CFA measurement, and check that it matches the
value provided by the prover.

OAT requires application developers to annotate P to demarcate “operations.” OAT’s goal
is to check the integrity of these operations via attestation. Each operation consists of a top-level
function that can itself invoke other functions. However, in OAT, one operation must proceed
to completion before another operation is invoked (i.e., operations cannot nest). OAT reports

one CFA measurement for each operation. The CFA measurement consists of: (a) a bit trace

CFG edge CFLAT OAT

Conditional branch v v
Unconditional branch v X
Direct function call v X
Indirect function call v v
Return/function exit v v

Table 1.1: Control-flow edges in CFLAT and OAT that contain instrumentation to
perform a domain switch to the TEE.

denoting the direction of conditional branches encountered during operation execution; (b) the
return addresses of functions invoked during operation execution; and (c) addresses of functions
invoked by indirect call instructions that were executed as the operation was performed. This
CFA measurement is stored in the TEE and updated via the instrumentation that OAT inserts
in P.

To collect the bit-trace, OAT initializes the bit-trace when a new operation is started. At
each control-flow edge following a conditional jump, OAT’s instrumentation appends a single
bit to the bit-trace, denoting the direction of the conditional. Figure 1.2(d) shows the CFG
edges at which OAT adds instrumentation (this denotes a single function’s CFG). Because
the bit-trace is stored securely in the TEE, each instrumented edge will result in a domain
switch to the TEE. The key difference from CFLAT is that OAT only instruments the edges
following conditional statements, unlike CFLAT, where every CFG edge is instrumented. This,
in turn, translates to fewer TEE switches at runtime, and therefore potentially lower runtime
performance overheads. At the end of each function, OAT’s instrumentation collects in the TEE
the return address to which the present function returns (i.e., the return address within the
callee). OAT does not instrument direct call instructions because they unconditionally jump
to the referenced function. However, OAT instruments indirect call sites to store the address
of the called function in the TEE. OAT reports CFA measurements on a per-operation basis.
The verifier V uses the direction of each conditional branch, and address of each indirect call
or jump in CFA report, together with abstract execution (akin to symbolic execution) of P to
determine the control-flow path followed in P. However, as mentioned before, OAT does not
attest whole program paths, and only records these measurements for a portion of the actual
control-flow path in P, namely, the parts of the path manually annotated as “operations”.
Table 1.1 summarizes the CFG locations instrumented by CFLAT and OAT, each of which
involves a domain switch from REE to the TEE.

1.4 Gaps in Prior Art and Our Advances

CFA has emerged as a powerful technique for verifying the integrity of program execution on re-
mote devices. However, despite significant progress in this area, prior CFA approaches face two
key limitations that restrict their applicability in real-world systems. First, existing approaches
attest control-flow paths within specific regions of a program, such as annotated “operations,”
they fail to scale attestation for the program’s entire execution. Partial path attestation leaves
programs vulnerable to attacks targeting unmeasured regions, and we develop techniques to
overcome this limitation and scale CFA to whole program attestation. Second, prior work
predominantly assumes that the prover program runs directly on bare-metal hardware, an as-
sumption that does not hold for higher-end embedded systems, where an operating system
(OS) is typically present. This thesis shows that trusting the OS, as prior non-bare-metal CFA
approaches have done, introduces critical vulnerabilities. We propose techniques to secure CFA
even when programs execute atop potentially compromised operating systems.

The following subsections delve into these two advances in detail.

1.4.1 Scaling CFA to Whole Program Attestation

Unfortunately, as we show in this thesis, prior approaches do not scale up to whole-program
path attestation, i.e., to attest the entire control-flow path taken by the prover program P. For
example, OAT is tailored to attest the integrity of “operations” in embedded programs, which
are specific regions of the program (manually demarcated using annotations) that accomplish
some well-defined task. The code that implements the movement of a robot hand would be
demarcated as an operation, for instance. When the prover executes, the verifier only obtains
an attestation measurement of the control-flow path pertaining to the operation, but not for
the entire embedded program. Prior work has shown that the verifier can miss attacks directed
against the vulnerabilities in the prover program when paths are attested only in certain parts
of the prover’s execution [54, Table IV]. Thus, it is desirable for a verifier to be able to attest
the entire execution of the embedded program, rather than parts of it. Also, most prior work
(e.g., [5, 44, 74, 89]) has only been applied to small programs or those that work in specialized
environments. When applied to these small programs or when path attestation is applied
to record only a part of the program’s behavior (e.g., only “operations”), the corresponding
program paths span only a few hundred or few thousand control-flow events. By avoiding
whole-program path attestation, these methods are able to report a relatively modest runtime
overhead on the prover’s execution. Thus, we aim to develop techniques to scale CFA to attest

entire execution of a program.

We develop novel techniques to reduce runtime overhead of CFA and propose BLAST (Chap-
ter 2). BLAST adapts a classic technique from the program profiling literature, called Ball-Larus
profiling, to ensure optimal placement of the instrumentation in the program P that runs on
the embedded device. We observed that the main reason for the high overheads incurred by
prior methods was frequent invocations of the TEE. BLAST develops a novel method that used
a combination of local logging and software-fault isolation to reduce this overhead. Further,
BLAST adapts another classic idea called Whole-Program Paths from the program profiling
literature to compactify the data gathered on the embedded device and reported to the verifier.
In all, these methods brought down the overheads of CFA to an acceptable value of 67% from

several orders of magnitude compared to prior works.

1.4.2 Enhancing Applicability of CFA

Significantly, prior works have largely targeted the bare-metal setting, i.e., the setting in which
P executes directly atop the bare-metal hardware of the underlying computing platform. These
works consider TEE as the trusted computing base (TCB), and the prover program P as
running atop bare-metal hardware in the untrusted REE. While the assumption of bare-metal
execution may hold for specialized embedded devices, it does not hold for higher-end devices.
For example, many embedded devices, robots and even satellites [45] contain powerful processors
and allow concurrent execution of multiple applications. The presence of an REE OS greatly
eases application development and isolation by enabling abstraction and virtualization of the
hardware.

Although some projects [7, 89, 101] have considered CFA in the non-bare-metal setting in
which P runs atop an operating system (OS) in the REE, they have generally trusted the
REE OS. Their primary focus has been to scale CFA to attest complex user-space applications.
Blindly trusting this REE OS risks bringing a large, potentially vulnerable OS code base into
the TCB [24, 62].

As we show in this thesis, in non-bare-metal settings, the security assumptions made by
prior CFA methods do not hold. Adversaries with control over the REE OS can completely
subvert the assumptions required for CFA to operate securely. These attacks greatly limit the
scenarios where CFA can be securely used.

To address these challenges, this thesis presents SULFUR, a system that enables robust
CFA in non-bare-metal settings. SULFUR introduces a co-designed architecture comprising
a trusted monitor and a modified operating system (SULFUROS) that leverage commodity
hardware features available on AArch64 platforms. Specifically, SULFUR uses hardware feature,

ARM privilege-access never (PAN), to protect CFA logs from a compromised OS, ensuring
that the measurements remain untampered. It also integrates kernel-level instrumentation
to protect the assumptions required for CFA to operate securely, e.g., SULFUR ensures that
DEP is never disabled, and the instrumentation in P remains untampered. Further, SULFUR
protects the runtime state of P and the system by mediating all updates through the trusted
monitor, which verifies each update before it is applied. By combining OS instrumentation, and
hardware isolation, SULFUR secures CFA in non-bare-metal environments and supports CFA

of applications with low performance overhead.

1.5 Problem Statement, Thesis Statement, and Details

of Technical Contributions

Problem Statement: Prior CFA techniques incur high runtime overheads on whole-
program attestation and are not secure in non-bare-metal settings. This thesis aims

to develop whole-program and non-bare-metal control-flow attestation techniques.

Thesis Statement: We can scale CFA to whole programs and apply it in non-bare-metal

settings by the novel use of hardware and software-based isolation techniques.

This dissertation supports the above problem and thesis statements and makes the following

contributions:

e We demonstrate that the prior CFA approaches incur prohibitive runtime overheads and

performed a detailed analysis to identify the causes of the runtime overheads (Chapter 2).

e We present, BLAST (Chapter 2), an approach to scale attestation to whole program
paths. With the novel use of path profiling algorithm—2Ball Larus Profiling—for CFA
and local logging of CFA measurements, BLAST achieves an average runtime overhead
of 67% for whole-program path attestation on embedded benchmarks (Embench-IOT),

outperforming prior approaches that incur up to 100x-1000x slowdowns.

e We incorporate another idea from program-profiling literature— Whole-Program Paths—
to offer a compact yet expressive representation of the recorded path measurement (Chap-
ter 2). This reduces the CFA measurement log size from few hundred MBs to only few
hundred bytes.

10

e We show that prior methods for CFA, which have focused on bare-metal settings, are

insecure when applied to programs that run in Non-Bare-Metal settings (Chapter 3).

e We present the design and implementation of SULFUR (Chapter 3), a system that securely
enables user-space CFA in non-bare-metal settings. SULFUR allows robust CFA measure-
ment of a user-space program P that runs on top of a customized OS—SULFUROS—that
leverages hardware support (PAN and PXN) to protect CFA state before it is committed
to the TEE.

e Our evaluation of SULFUR (Chapter 3) with various benchmarks shows that it accom-

plishes its goals without excessive runtime performance overheads.

11

Chapter 2

Whole-Program Control-Flow
Attestation

2.1 Motivation

When we applied prior approaches to attest whole program paths, i.e., to attest the entire
control-flow path taken by the program, in a suite of embedded benchmarks, we found that the
approaches impose a prohibitive overhead on the runtime of the program (see Section 2.2). To
mitigate this, we explored a sampling-based selective attestation approach (see Section 2.5),
where only a fraction of function calls are instrumented for CFA. However, even at low sampling
rates (e.g., 1% of function calls), benchmarks exhibited extreme slowdowns, up to 12,000%.
These findings revealed that existing CFA designs fundamentally do not scale to whole-program
attestation. We further show that the performance bottleneck stems from the sub-optimal way
in which prior approaches instrument the prover program to measure the control-flow path
taken This instrumentation causes a large number of domain transitions to the TEE of the
prover device (where measurements are stored securely), thereby imposing a heavy runtime
overhead on the program.

This chapter presents BLAST, an approach to scale attestation to whole program paths.
BLAST incorporates several new ideas based on the lessons learned from our detailed analysis
of the overheads of prior approaches. It aims to reduce the number of TEE transitions that
are used by prior approaches to record CFA measurements (Section 2.3). BLAST does so using
local logging—i.e., it stores measurements generated by the instrumentation in a log within the
program’s address space. Logging operations therefore do not require domain transitions and

can be performed with a store instruction into the program’s own address space. It isolates the

12

log from the rest of the program by instrumenting the program to implement software fault
isolation (SFI) [90]. BLAST commits the log periodically to the TEE when the space allocated
for the log is exhausted. Once committed, BLAST reuses the log to continue recording CFA
measurements.

BLAST uses improved methods to record path measurements. We observe that prior ap-
proaches use sub-optimal ways to measure paths, which unnecessarily leads to more entries in
the log. For example, CFLAT stores a path measurement at the end of every basic block while
OAT does so at each branch. Such sub-optimal event recording fills up the log faster than neces-
sary, which in turn triggers a TEE transition to commit the log. BLAST instead adapts the idea
of Ball-Larus numbering [26] from the program profiling literature. For an acyclic control-flow
graph (CFG) of a function with N paths, Ball-Larus numbering selectively instruments edges of
the CFG so that they together compute an integer in the range [0, N — 1] at function exit. This
integer serves as a unique identifier of the path taken through the CFG. (Ball-Larus numbering
also supports CFGs with loops; details in Section 2.3). Ball-Larus numbering is provably bet-
ter than bit-tracing or other approaches to instrumentation in that it places instrumentation
optimally, thereby resulting in lower runtime performance overheads than other approaches.
Ball-Larus numbering also affords the flexibility of placing instrumentation so that the number
of instrumented CFG edges along heavily-executed paths in the CFG is minimized. Using the
Ball-Larus numbering approach, BLAST reduces instrumentation encountered at runtime com-
pared to both CFLAT and OAT. This in turn reduces the frequency at which BLAST needs to
commit the log to the TEE.

BLAST incorporates a compact yet expressive representation of the recorded path mea-
surement. Ball-Larus numbering records path numbers at a per-procedure level. Larus [66]
extended Ball-Larus numbering to store whole-program path profiles using a grammar-based
representation. In this approach, the log of Ball-Larus path numbers encountered is compressed
to produce a compact context-free grammar that represents the whole program path. Although
compact, the context-free grammar suffices to precisely reconstruct the entire path through the
program. BLAST offers the option of presenting this context-free grammar based representation
of whole program paths to the verifier. The verifier can use this to easily reconstruct the precise
path taken by the prover to process the input. BLAST also supports the option of simply stor-
ing a hash-based commitment of the log, similar to the approach used by CFLAT. This option
simply presents the verifier with a single hash-based measurement of the program path, which
is checked against a database of acceptable values.

Our results show that BLAST brings whole-program control-flow attestation to the realm
of feasibility. On a set of embedded benchmarks (Embench-IOT [1]), BLAST is able to attest

13

Normal World (REE) Secure World (TEE)

4 4
Normal ||Normal Trusted || Trusted
App App L App App ELO

Secure Monitor EL3

Figure 2.1: Overview of ARM TrustZone architecture. TrustZone divides the
system into a secure world (TEE) and a non-secure/normal world (REE), with
isolation enforced by hardware. The secure monitor (running at highest privilege
level, Exception Level 3) manages transitions between the two worlds.

whole-program control-flow paths while imposing an average runtime overhead of 67%. This is
significantly smaller than the overheads of competing CFA approaches when applied to whole
program paths, which can slow the execution of the program by up to 100x-1000x.

2.2 Background

2.2.1 ARM Trustzone

This section introduces ARM Trustzone. The CFA techniques in this thesis rely on the use
of ARM TrustZone as the TEE for CFA. ARM TrustZone is a widely deployed security archi-
tecture available in modern embedded devices. It provides a hardware-enforced mechanism to
separate the system into two distinct environments as shown in Figure 2.1: the secure world or
TEE and normal world or REE. The TEE hosts security-critical applications and data atop a
trusted operating system, while the REE runs the general-purpose operating system and user
applications.

TrustZone ensures strong isolation between these two environments. Specifically, the REE
cannot access hardware resources, memory regions, software, interrupts, or peripherals assigned
to the TEE. This separation is enforced by the hardware’s security extensions, which label each
transaction or access request as secure or non-secure, ensuring that only the TEE can access

its designated resources.

14

The transitions between the TEE and REE are managed by the secure monitor, which
executes at the highest privileged level. The secure monitor handles context switching between
the two environments while preserving the integrity and confidentiality of the secure world.

This thesis leverages two key capabilities of ARM TrustZone. First, Trustzone provides
secure storage that cannot be accessed by any software running in the REE, ensuring confi-
dentiality and integrity of critical data. Second, TrustZone enables the generation of digital
signatures using private keys securely stored within the TEE, providing strong authentication

guarantees for measurements and attestation results.

2.2.2 Threat Model of BLAST

BLAST relies on a compiler pass to insert the path measurement instrumentation, but the
compiler does not have to be trusted because the correctness of the inserted instrumentation
can be verified via a simple linear pass over the resulting executable. Similar to prior works,
BLAST assume that the prover platform is equipped with a TEE, which the verifier V trusts.
The prover program P can be hijacked by an adversary, e.g., by feeding malicious inputs that
exploit zero-day vulnerabilities in P.

Further, prover platform has implemented standard data-execution prevention techniques
to prevent code injection attacks in P. Commodity operating systems generally provide data-
execution prevention in concert with the hardware (e.g., WdX). However, embedded programs
often execute atop bare-metal hardware, e.g., ARM Cortex-M microcontrollers. Prior work has
developed methods for data-execution prevention even for bare-metal settings [39, 64]. Such
work is orthogonal to the focus of this work, and as in prior work [5, 87], we simply assume
that the prover platform provides bare-metal data-execution prevention, and can attest to the
verifier V via boot-time integrity measurements that the defense is enabled.

BLAST targets ARM TrustZone-based prover platforms and its design does not require V
to trust any software running outside the TEE (i.e., the secure world). For a program P
executing atop a bare-metal normal world (i.e., the rich-execution environment, or REE, of an
ARM TrustZone platform), we show that BLAST securely records paths measurements. Our
prototype implementation uses OPTEE [76] to ease communication with the TEE, and OPTEE
requires an operating system in the normal world. As we outline in Section 2.3.6, BLAST can
also be adapted to work in non-bare-metal settings, provided the normal world operating system
is modified to incorporate safeguards that let the TEE protect BLAST’s security-critical state.
Because the need for a normal world operating system is not germane to BLAST’s design, we

chose not to incorporate these modifications in our prototype’s OPTEE normal world, and

15

CFG edge CFLAT OAT | Blast
Conditional branch Ve v v och
Unconditional branch v X X
Direct function call Ve X vLoc
Indirect function call v v v LoG
Return/function exit v v V106

{In BLAST, path measurements are committed to the local log only on conditional
branches that are loop headers.

Table 2.1: Control-flow edges in CFLAT and OAT that contain instrumentation
to perform a domain switch to the TEE. Although Blast also instruments some
of these edges as shown in the table (with v/ og), Blast’s instrumentation stores
the path measurement in a local log and does not trigger a domain switch (see
Section 2.3).

assume it is benign in intent.

Code-reuse attacks (e.g., return-oriented [83] or jump-oriented programming [29, 34]), and
attacks that maliciously modify program data [53] that alter the program path followed in P
can readily be detected because the path measurement that is collected by the TEE in the
prover will diverge from the value that V expects. Our focus in this work is only on attacks
that alter the control-flow path in P. Attacks that modify the value of a sensitive variable
without altering control-flow path can be detected using additional instrumentation to record
their values (e.g., as done in OAT), but such instrumentation is orthogonal to the discussion

in this work.

2.2.3 TEE Domain Switches in CFA

As must be clear from the description in Section 1.3, CFA requires extensive instrumentation to
be inserted into the program P. Table 2.1 summarizes the CFG locations instrumented by prior
works—CFLAT and OAT, each of which involves a domain switch to the TEE. We have also
shown BLAST’s instrumentation for comparison; as will be explained in Section 2.3, BLAST’s
approach does not trigger a domain switch at these instrumentation locations. Despite such
intrusive instrumentation and the need for frequent domain switches, both CFLAT and OAT
reported relatively low runtime overheads on P’s execution. CFLAT was evaluated on a syringe
pump application and the paper reports an absolute runtime overhead of a couple of seconds
to collect CFA measurements. OAT was applied to attest operation integrity of operations in
five embedded applications, and reported an average runtime overhead on P of 2.7%.

In an effort to understand CFLAT and OAT’s performance when applied to attest whole

program paths, we implemented their instrumentation approaches as compiler passes in LLVM-

16

*99INs YIewypuaq I OI-youaquuy oy3
J0J uoljejuowInNJIIsul s, VO PU® S, LVTAD YHM SWIUNI Je UddS SoYD}IMS Uurewiop oI, Jo JoquinN :g'Z 9[qel,

"SOLIUS SO[SHIOSUT LSVTIE UOIYM IR SaypuRIq
ATUO o) 9Ie DIYM ‘Sa8pa Topray doOo[oI Jey) SaUdURI(JO IQUINU S} SMOTS OS[R 9IN3Y SIYT, "T°Z O[(R], [IM IS[10807) ‘D107
umoys sodA) Juess mop [013u00 o) woly pajnduwod oq urd [y Pue L[V 14D I10J SIOqUINU (810} 9Y], "UOIOUNJ JIRWDUS]
[0A9]-d0g oed JO SUNI JO JoquInu o} Surjouap Ijeurered e ‘)00 T=2ZHWN NdD 10S oM ‘ [,O[-Youoquur] M syuawlIodxo Ino [[e 10]

600°0¥8°CT¥ STOFTFI‘TEOT | 900'SLV'T 900°8LV'T 000769°G5% £00°92€9T9 €00°29¢°21V pn
0ST'9ET'LTT 098°209°29T | 900°TEE'9¢ 900°TEE9E FLV' 008y ¥ev'OVOTIT V& C06°08 puyre)
0TO‘SOTALT 610'62E°EY 900'706°L 900°'706°L 000°€TT 6 €00°LTE ST 7007026 18
9TF‘89G°LGL TE6'099°TOF'T | R0E'ST9'9L 80£'8T9°9L 00V FRRFFT 80T T.LV .29 S0T‘0G6°089 | PoUIqUIOI-(I[3S
800°90Z°088 9T0‘08T‘L09°T | 900°'T 900°'T 000°182'C8C T00°€L6°9TL 200502 088 junoosourtid
GZ0°'00Z‘¥¢ 0S0°0SZ°€2C | 900°008°¢ 900°008°¢ 800°G2¢'¥¢ 610°0GC 'S8T 610°00%°0€ 9GgRYS-I[}1U
LL.‘8G8‘8L 862 6T LTT 900°8S8 900°8S8 9GZ'SIT'TG GIS'TEL LV 1LL°000°]L Sor-9[}jou
0.0°62€°9 9ZT1'6LT LT 900°'T0T 900°T0T 020°'129'¥ 0G0'678°0T 790'822°9 Apoqu
ZVO'OFF'STT 6L0°00S°LLT | 900°G0OT'9 900°G0T'9 Z10°0T9'9G TE€0°GS6°GST 9¢0°'GEE 60T IoAuTIL
169°GZ8‘90F TTT'STO‘TOT‘T | L0S'T6 L08°T6 078°99€°L8¢ 7L 660°76L 788°2€L90¥ JurT-j e
800°C06‘96% 9T0‘9ELZ‘¥86 | 900'SL0°T 900°8L0°T 000°992°€€C T00'CST 98F 200°GZ8'S6¥ PuLqHNY
TTO0‘TC9°TLE 0TO‘STTI90T‘T | 900°969 900969 000°9.8°09¢ €00°TOS'CEL G00'CT6'T.LE upo
€10°098 TT0‘0€0°T 900°00% 900°00% 000°0T¢€ €00°0L6 L00°099 21N
800°0¥8‘'8¥E 9T0‘0€6°TL8 | 900°0ZF'FLT 900°0CFFLT 000°0SZFLT T00'0L9'SFE 200°0CF VLT TEOm
800°L96°C6E 9TO‘FPF8‘LS8 | 900°09%'S 900°'09¥'] 000°.26°68T 00 LT1¥°9S¥ 200°L0S 7]¢ Fojuot-eye
IVO IVTIAD SHXAH pue sTRD SIopeoH sopuRIg soypueIg

QWIIUNY Y POIOJUNOIUN SUINGOY 100I1(] doory [RUOT)IPUODU[) [RUOIIIPUO)) 1T wrea3oadg

seypymg urewroq AL [210L

sodA) 08po HID Aq) SJUSAH MO[J-[0IJUO0)) JO ISqUUINN]
ps OHAD Aq 141 OF) q

LOI-y2uaquig

17

11.0.0, and instrumented benchmarks from the Embench-IOT suite [1]. Embench-IOT is a set
of benchmarks that represents the requirements of modern connected embedded systems.

Table 2.2 reports the results of whole program CFA on these benchmarks using the corre-
sponding inputs provided as part of the suite. Recall that OAT requires developers to demarcate
operations, whose integrity it attests; for the purposes of evaluation, we considered the whole
program as one “operation.” Because the raw runtimes depend heavily on the actual hardware
platform used by the prover, for this part of our evaluation, we restricted ourselves to measur-
ing the number of relevant control-flow events (classified using CFG edge types) encountered
at runtime. We report raw runtimes with BLAST on our hardware platform in Section 2.3.

For this experiment, we only instrumented direct call instructions and elided instrument-
ing indirect calls. Recall that OAT’s approach instruments only conditional branches, unlike
CFLAT. Note also that OAT avoids instrumenting direct call instructions (¢f. Table 2.1), while
they are instrumented by CFLAT. We merged the functionality implemented at function exits,
and at the return point of the callee function into a single switch into the TEE, and Table 2.2
reports the consolidated number of TEE domain switches for that control-flow event.

To understand the raw performance implications of these numbers, recall from our prior
discussion that both CFLAT and OAT make a TEE domain switch for each of the control-flow
events for which they insert instrumentation. The time taken for a TEE domain switch differs
based on the hardware platform, but OAT reported a TrustZone world switch time (switching
to the TEE and returning) of 45usec on their HiKey (with an ARM Cortex A53 processor)
evaluation platform ([87, Table II]); CFLAT’s evaluation also suggests an overhead of ~40usec
on their Raspberry Pi 2 evaluation platform ([5, Figure 8]). We used a Raspberry Pi 3 Model
B+, for our evaluation of BLAST, and observed an average world switch time of 190usec on our
platform. Observe that with such overheads for TEE domain switches and the numbers reported
in Table 2.2, the raw runtimes for whole-program CFA of the benchmarks in Embench-1IOT will
run into several hours. Given that the baseline execution time of these benchmarks is just a few
seconds (under 35 seconds in all cases, cf., Table 2.4), whole-program CFA would impose more
than a 1000x overhead for most of these benchmarks. We contrast this with BLAST’s results,
where the overhead for Embench-IOT benchmarks is an average of just 1.67x (Section 2.4.1).

On further analysis, we noted that the benchmarks or “operations” measured in the exper-
iments reported in both the CFLAT and OAT papers contain only a few thousand control-flow
events. For example, the attestation reports in the five benchmarks to which OAT was applied
were all smaller than a kilobyte in size. These attestation reports contain the bit-trace that
records the direction of each conditional branch encountered, and addresses of indirect calls

and jumps. This suggests that the operations in these benchmarks whose paths were measured

18

consisted of fewer than a thousand control-flow events. This contrasts sharply with the numbers
observed in whole program paths encountered in a modern embedded benchmark suite such as
Embench-IOT (which denote the characteristics of a wide-variety of embedded applications),
which contain hundreds of millions of control-flow events. We conclude that prior approaches

to CFA do not scale to whole program CFA, thereby motivating us to develop BLAST.

2.3 Design and Implementation of BLAST

The analysis reported in the prior section shows that the key bottleneck that prevents prior
methods from scaling to whole-program CFA is the number of TEE domain transitions that
they perform. BLAST aims to reduce the number of TEE domain transitions encountered
during CFA by performing local logging of control-flow events (Section 2.3.1). That is, the
instrumentation inserted by BLAST writes out information to a local log in P’s address space,
rather than performing a domain transition on each control-flow event. The log accumulates a
history of control-flow events, is periodically flushed to the TEE as it reaches capacity, and is
reused to continue logging events until the program terminates.

However, this approach of local logging requires some care:

e Optimizing events to be logged. Local logging of control flow events can immediately
improve the performance of prior approaches by reducing the number of TEE domain
transitions. However, prior approaches are sub-optimal in the set of control-flow events
that they instrument. BLAST uses Ball-Larus numbering [26], an approach to optimally
place instrumentation in the control-flow graph, to reduce the number of entries that are
logged. This in turn reduces the rate at which the log is populated, and therefore the
number of domain transitions required to commit the log to the TEE when it reaches

capacity (Section 2.3.2).

e Protecting log integrity. Because the log is stored in the P’s address space, it is vulnerable
to attacks launched on the prover platform. Such attacks can alter the log state, and
the resulting path measurement presented to V will no longer faithfully represent P’s
behavior on the prover platform. BLAST protects the integrity of the log using software-
fault isolation in P (Section 2.3.3).

BLAST processes the log to present a commitment of the whole-program control-flow path
followed by P to V (Section 2.3.4). It creates a compact grammar-based representation of the
log [66], which can be presented to V to unambiguously reconstruct the path followed within

P. Finally, we qualitatively analyze the security of BLAST (Section 2.3.6).

19

Log

1
s> ! EE
—— Log —] |
—— entries — Loah dI
—— (_og ead |
‘ (LogReg), Accumulated
path
: measurement
: |
Sentinel
pages I Commit log state to
I TEE when log head
Log I reaches sentinel pages
end > I
|

Figure 2.2: Structure of the log in Blast.
2.3.1 Avoiding TEE Domain Switches

In BLAST, control events are committed to a log that is allocated locally within P’s own address
space. This avoids TEE domain switches on control events that contribute to the overhead of
prior systems. Both CFLAT and OAT can be adapted to commit path measurements to a log
rather than to the TEE.

Figure 2.2 shows how BLAST structures the log. The memory required for the log is pre-
allocated at the start of P’s execution. On an ARM TrustZone system, BLAST sets up the log
from the TEE (i.e., secure world) as a memory region that is shared between the TEE and the
normal world. The program P executes in the normal world and writes entries into the shared
region, and the log is readily accessible to the TEE as well. The size of the log is decided
at the time when P is instrumented, and is aligned to start at a page boundary; both these
requirements allow us to ease the instrumentation required to protect the log (in Section 2.3.3).

Each control event simply commits the relevant information to the log and increments the
log header. The address of the log header is stored in a dedicated register that we call LogReg.
BLAST is implemented as an LLVM compiler pass, and can easily ensure that LogReg is reserved
for exclusive use as the pointer to the log header by making this register unavailable for general
register allocation when P is compiled. We quantify the cost of dedicating an exclusive register
for LogReg later in the paper (Figure 2.4).

BLAST logically divides the log into two symmetric halves. When one half is completely
filled with log entries, its state is committed to the TEE. The program P can continue to

execute and populate the other half of the log even as the first half is committed. Provided

20

sufficient hardware resources are available on the prover platform (i.e., a second CPU core), the
execution of P and the operation to commit the log state to the TEE can proceed in parallel.

BLAST’s instrumentation to insert entries into the log simply adds the corresponding entry
into the log and increments the value of LogReg. In particular, BLAST does not perform any
range checks on LogReg during each write, which would impose additional overhead on each
store to the log. Instead, BLAST uses the approach of inserting sentinel pages, one at the end
of each half of the log, which are write-protected by the TEE. This approach ensures that a
hardware fault is generated when LogReg points to a location in the sentinel page, indicating
that the corresponding half of the log is full and that it is time to commit that half of the log
to the TEE. The fault handler executes in the TEE and initiates the operation of committing
the log state to the TEE in a separate thread. It changes LogReg in the main thread to point
to the beginning of the other half of the log, and allows P to continue execution and generate
log entries. BLAST’s fault handler write-protects the portion of the log that is being committed
to the TEE, and makes this half writable only after the operation to commit it to the TEE is
completed. This ensures that the log is not overwritten even if P exhausts the other half of the
log even as the current half is committed to the TEE. We discuss the operations to commit the
log into the TEE in more detail in Section 2.3.4.

2.3.2 Ball-Larus Numbering for Optimal Logging

BLAST builds upon the influential idea of Ball-Larus numbering [26]. The Ball-Larus algorithm
places instrumentation in an optimal fashion by selectively adding instrumentation to the edges
of a control-flow graph that increments the value of a counter in specific ways along specific
edges. The instrumentation satisfies the invariant that the value accumulated in the counter will
be between 0 and N — 1, where N is the number of acyclic paths in the control-flow graph. The
value in the counter uniquely determines the runtime path that was followed in the function.
Ball-Larus numbering is provably up to 2x more compact than instrumentation for bit-tracing

(d la OAT) [26, Section 2|, and places instrumentation at fewer locations.

Background on the Ball-Larus Algorithm. The Ball-Larus algorithm works at a per-
function level and adds instrumentation to the edges of the CFG of that function. The algorithm
works in two steps: edge numbering, followed by edge instrumentation. We first describe the
algorithm for acylic CFGs, and then generalize.

Given an acyclic CFG with uniquely-designated entry and exit nodes, the number of paths in

the CFG is finite, say N. Ball-Larus numbering assigns a numeric value to each edge (valEdge(.))

21

2.3(a) Ball-Larus numbering of CFG 2.3(b) Instrumentation to compute

in Figure 1.2(b). path numbers (one alternative).

¥ R=0

StoreLog(R);
R=5;

2.3(c) Instrumented CFG from Figure 1.2(b) with a loop added.

PathNum Path

BB0—BB1—+BB2—BB4—BB5—BB7
BB0—BB1—+BB2—BB4—BB6—BB7
BB0—BB1—+BB2—BB6—BB7
BB0—BB1—+BB3—BB7

BB0—BBS8
BB7—BB0—BB1—-BB2—BB4—+BB5—BB7
BB7—BB0—BB1—-BB2—BB4—+BB6—BB7
BB7—BB0—BB1—-BB2—BB6—BB7
BB7—BB0—BB1—-BB3—BB7

9 BB7—BB0—BBS

0 J O UL~ Wi+~ O

2.3(d) Path numbers for the CFG in Figure 2.3(c) obtained from
the associated instrumentation.

Figure 2.3: Ball-Larus numbering and corresponding instrumentation.
show how Ball-Larus numbering handles loops.

22

We also

of the CFG so that a runtime path from the entry to the exit node produces an integer identifier
€ [0, N — 1] unique to that path. The identifier of the path is the sum of the valEdge(.) values
of the edges in that path. Intuitively, the algorithm iterates over the edges of the CFG in
reverse topologically-sorted order, and assigns to each node p a value valNode(p) that denotes
the number of paths from p to the exit node. At each step, it assigns values valEdge(e) to each
outgoing edge e from p so that the following invariant is maintained—the sum of the valEdge(.)
values of the edges from p to the exit node is a unique integer € [0, valNode(p) —1]. Algorithm 1,
adapted from the original Ball-Larus paper [26], shows how valNode and valEdge are calculated
for an acyclic CFG.

We are interested in the valEdge(.) values assigned to the edges of the CFG. Figure 2.3(a)
shows one possible assignment of valEdge(.) values, for the reverse-topological ordering BB7,
BB6, BB5, BB3, BB4, BB2, BB1 (there can be multiple assignments, based on how the nodes
are sorted). Each path from the entry to the exit gets a unique value € [0, 3] as there are 4
paths in this CFG.

Algorithm 1: Ball-Larus acyclic CFG edge numbering.
Input: Control-flow graph (CFG) of a function
Output: valEdge(p—q) for each edge of the CFG

1 nodeList = nodes of CFG, in reverse topologically sorted order

2 for (each p € nodeList) do

3 if (p is a leaf node) then

4 | valNode(p) =1

5 else

6

7

8

9

valNode(p) = 0

for (each edge p—q) do
valEdge(p—¢q) = valNode(p)
valNode(p) += valNode(q)

10 end
11 end
12 end

With edges numbered with valEdge(.) values, the instrumentation algorithm places instruc-
tions along edges that compute the value of each path. One obvious approach would be to
simply increment the path counter using the valEdge(.) value of each edge. However, the Ball-
Larus approach provides significant flexibility in how instrumentation is inserted. In particular,
it allows weights to be assigned to edges, and the Ball-Larus approach places instrumentation
so that the overall weight of the instrumented edges is minimized. It does so by identifying a

maximum weight spanning tree of the CFG so that the weight of the chords (i.e., the edges of

23

the CFG that are omitted from the spanning tree) is minimized. It places the instrumentation
on the chords. There can therefore be multiple ways in which to instrument the CFG, and
the edge weights provide significant flexibility in minimizing instrumentation along hot paths.
Figure 2.3(b) shows one way to instrument the CFG to compute path numbers.

The Ball-Larus algorithm generalizes to loops much like CFLAT. Each loop induces a back-
edge in the graph. We insert instrumentation on back-edges that records the path number
recorded until execution reaches that edge, and reset the path number on that edge, effectively
breaking the CFG into acyclic portions. A small modification to the original Ball Larus num-
bering algorithm also yields unique path identifiers for the loop in its entirety as illustrated in
Figure 2.3(c), which adds a loop to the CFGs from our running example. As can be seen, the
Ball-Larus approach adds instrumentation to the back-edge BB7—BB0 to increment the value
of BLReg computed thus far, store it in the log, and then reset the value of BLReg to 5. When
reading the acyclic paths ending in BB7, the register operation BLReg+=3 must also be added
to obtain the path number of the corresponding acyclic path (i.e., the path number of the path
is the value of BLReg just before it is committed to the log). This is akin to the final operation
performed on the exit of a function with an acyclic CFG. The corresponding path numbers in
this CFG for the acyclic portions are as shown in the adjoining table in the figure. We refer
the reader to the original paper [26] for complete details on handling loops.

We have described the Ball-Larus algorithm at a per-function level for a single-threaded
program. BLAST records whole program paths by storing the path numbers taken in each func-
tion encountered along the path. In Section 2.3.4, we describe BLAST’s compact representation
of the whole program path that builds on prior work in this area [66]. The Ball-Larus algorithm
can also soundly record path numbers in multi-threaded programs (path numbers are recorded
per thread), but our BLAST prototype currently works for single-threaded programs. CFLAT

and OAT’s approaches do not work on multi-threaded programs as presented.

Ball-Larus Instrumentation for Logging. BLAST directly leverages Ball-Larus instrumen-
tation placement. In BLAST, we dedicate a register (BLReg) that computes the path number
at runtime. On entry into a function’s CFG, BLAST’s instrumentation initializes BLReg to 0.
It adds operations to increment or decrement BLReg to the CFG’s edges as determined by the
Ball-Larus algorithm (e.g., Figure 2.3(b)). At the exit edge, BLAST adds instrumentation to
store the value of BLReg to the log. Thus, for an acyclic CFG that does not invoke any other
functions (i.e., a call-graph leaf node), BLAST appends only a single entry to the log. Loopy
CFGs and function calls require additional log entries, as will be explained.

It is important to note a key point of difference between CFLAT, OAT, and BLAST’s ap-

24

proaches. Note that in both CFLAT and OAT the inserted instrumentation performs a domain
switch to store path measurements in the TEE. Even if CFLAT and OAT were modified to
use local logging, each instrumented CFG edge would be a control-flow event that must be
appended to the log. In contrast, BLAST computes the path number via register operations
to BLReg for the most part, and only commits the value of BLReg at certain CFG locations
(at function exits, calls to other functions, and loop back edges). This also means that BLAST
must protect the path number being computed in BLReg from malicious modifications until
it is committed to the log. The register BLReg must also not be overwritten by other benign
operations in P.

To protect BLReg from attack and to prevent it from being overwritten, we implement
BLAST’s instrumentation as an LLVM compiler pass, and remove BLReg from the pool of
available registers for general register allocation for P (just as it did with LogReg). Thus, the
only occurrence of BLReg and LogReg is at instrumentation locations, and the contents of BLReg
and LogReg are not spilled to or stored in P’s memory. Because we assume that the prover
runs P with data-execution prevention enabled, the attacker is also unable to insert code that
can otherwise modify BLReg and LogReg. That leaves code-reuse attacks as the only remaining
threat vector. However, even such attacks are readily detected by BLAST if they alter the
control-flow path in P (see Section 2.3.6).

BLAST’s approach requires two registers—BLReg and LogReg—to be exclusively reserved for
the required instrumentation. In the absence of these registers, operations that could otherwise
use these two additional registers would instead have to be implemented with memory oper-
ations instead, which leads to runtime overhead. Figure 2.4 quantifies the impact of register
reservation for the Embench-IOT benchmark suite. We ran these experiments on a Raspberry
Pi 3 Model B+ platform with an ARM Cortex A53 Quad core 64-bit processor clocked at
1.4GHz, equipped with 1GB LPDDR2 SRAM. We compared the performance of the baseline
(i.e., the benchmark executing with all available registers) both with a single register reserved,
as well as with two registers reserved. As this figure shows, except for matmult-int, the per-
formance of the remaining benchmarks remains unaffected if a single register is reserved. If
two registers are reserved for instrumentation, as required in BLAST, more benchmarks are
impacted, but in all cases, the runtime overhead remains under 0.25%. While it is true that
reserving registers will in general result in runtime performance overhead, we can conclude that
at least for the Embench-IOT suite, the impact of reserving registers is minimal.

We now discuss how BLAST works on CFGs with loops and function calls. Loops introduce
cycles in the CFG and therefore lead to an unbounded number of paths. BLAST uses Ball-Larus’

trick of resetting the path number (to a non-zero value) at the back-edge of the loop (i.e., the

25

One Register Reserved
@ Two Registers Reserved

0 0.15
L
[
20.10 .
7 7
005 7 7 2
7 7 %
0.00
> O O S 2 P & R > QO
o S » S &) &) @ N N>
& & FL LS E
's(\fb' (\0 &ef Q‘\(‘\ '00
& N
9

Figure 2.4: Impact of reserving registers for BLReg and LogReg.

entry point into the loop header) to split the CFG into a set of acyclic components, each of
which computes path numbers independently. Because the path number is reset at loop entry,
BLAST saves the value of BLReg into the log. Thus, for a loopy CFG, the integrity measurement
of a function is a set of path numbers, each denoting the execution of one acyclic component of
the CFG. The path number at the loop header is reset in such a way that the the resulting path
numbers of each acyclic component are unique across the function, and help identify the acyclic
component being executed. A fresh measurement is stored in the log for each loop iteration,
thereby also helping identify the number of times a loop iterated. See Figure 2.3(c)/(d) for an
example.

Because BLAST records path numbers at function granularity, a function call (direct or
indirect) requires a reset of the path counter in BLReg to store the value of the path counter.
In BLAST, we insert instrumentation at function call instructions to record the address of the
called function in the log, and also commit the current value of BLReg to the log, so that it can
be reset for use in the called function. As with our handling of loops, this also requires a slight
redefinition of how path numbers are computed. In particular, CFG edges leading into a basic
block containing a procedure call terminate acyclic paths (as also discussed in prior work [66]),
and path numbers are computed afresh for subsequent segments of the control-flow graph of
the function. The called function resets BLReg and computes a path number, which is similarly
committed to the log. Following the call instruction, BLReg is initialized to suitably so that
the following acylic path fragment in the CFG also yields a unique path number within that
function (as with loops). Figure 2.5 shows an example of BLAST’s instrumentation inserted
before a function call (check_alarm is the called function, shown in bold). BLAST uses ARM64
register x19 for LogReg and w20 for BLReg:

26

str w20, [x19], #4 // store path walue in log before call
mov w8, #func_id // store ID of called function in log
str w8, [x19], #4 // (continuation of above step)

bl func_addr <check_alarm> // function call

mov w20, #init_val // reset BLReg as per Ball-Larus

Figure 2.5: Blast’s instrumentation inserted before a function call to store the path
index and function ID.

To summarize, the integrity measurement recorded during the execution of P includes,
for each function: (a) the full set of acyclic path numbers encountered within the function;
(b) addresses of functions called by that function (both directly and indirectly); (c) addresses
of the locations in the caller to which called functions return. This information is available
for each function. The last column in Table 2.1 qualitatively compares the instrumentation in
Brast to CFLAT and OAT.

Empirically, we found that Ball-Larus numbering results in many fewer control events re-
quiring entries in the log when compared to CFLAT and OAT adapted for local logging (instead
of TEE domain switches to store measurements). Table 2.4(c) shows that BLAST outperforms
CFLAT and OAT even when they are adapted for local logging. In this section, we show that
this is empirically because BLAST’s Ball-Larus approach results in many fewer control events
requiring entries in the log when compared to CFLAT and OAT adapted for local logging (in-
stead of TEE domain switches to store measurements). Table 2.3 shows the total number of
log entries that result using BLAST’s approach for each of the Embench-IOT benchmarks, and
also how this compares to the corresponding number of log entries in a log-based adaptation of
CFLAT and OAT. Recall that BLAST creates log entries only for loop headers, function calls,
and returns/function exits (¢f. Table 2.1). The number of log entries reported in Table 2.3 is
therefore simply the sum of the corresponding control events reported in Table 2.2.

As Table 2.3 shows, BLAST reduces the number of log entries by up to 7x compared to
CFLAT, and up to 3.18x compared to OAT. For a handful of benchmarks (crc32, st, and
tarfind), we observed that BLAST results in more log entries than a log-based adaptation
of OAT. Upon further analysis, we found that this was because these benchmarks contain a
large number of (direct) function calls. Recall (from Table 2.1) that direct function calls are
uninstrumented in OAT, but do require instrumentation in BLAST to commit the current value
of BLReg to the log. In these cases, inlining can help BLAST significantly reduce the number
of control-events that can be logged by eliminating direct function calls. For example, inlining
function calls in crc32, a benchmark in which there are a large number of direct function

calls to small functions, completely eliminates the need to insert log entries into direct calls,

27

Embench-I0OT | # Log entries using | CFLAT OAT
Program | Blast’s approach | Blast Blast
aha-mont64 206,847,012 | 4.14x 1.90x
cre32 523,090,012 | 1.66x 0.66x
cubic 710,012 | 2.85x 1.21x
edn 362,268,012 | 3.95x 1.03x
huffbench 235,422,012 | 4.18x 2.11x
malmult-int 387,552,454 | 3.09x 1.05x
minver 68,820,024 | 4.03x 1.68x
nbody 4,823,032 | 3.58x 1.31x
nettle-aes 52,884,268 | 4.30x 1.49x
nettle-sha256 31,825,020 | 7.01x 1.07x
primecount 282,283,012 | 5.69x 3.18x
sglib-combined 298,121,016 | 4.90x 2.54X
st 24921,012 | 1.74x 0.68x
tarfind 121,062,486 | 2.21x 0.97x
ud 258,650,012 | 2.21x 1.60x

Table 2.3: Number of control-flow events with Blast’s instrumentation that re-
sult in entries into the local log. The last two columns show how many fewer
entries the Ball-Larus instrumentation approach inserts into the log compared to
the approaches used by CFLAT and OAT (reported as TEE domain switches in
Table 2.2).

thereby resulting in a total of 348,670,006 log entries, which marginally improves upon OAT
(348,840,008 entries, as reported in Table 2.2). Section 2.4 presents detailed results showing

the impact of inlining.

2.3.3 Log Integrity using Software Fault Isolation

BLAST must protect the integrity of the log from unauthorized writes. In particular, only the
instructions inserted as part of BLAST’s instrumentation are allowed to append entries into the
log. While BLAST uses register reservation to ensure that LogReg cannot be modified in P, it
must also ensure that memory store instructions in P do not target the log region.

As mentioned in Section 2.3.1, BLAST sets up the log as a memory region that is shared
between the secure world and normal world of an ARM TrustZone prover platform. The size of
the log is fixed prior to instrumenting P. Because the size of the log is known, the instrumen-
tation can hard-code this size in the fault isolation range checks that BLAST’s instrumentation
inserts in P. The log is page aligned so that sentinel pages cleanly represent the boundaries of

the log halves. BLAST’s implementation uses the TEEC_AllocateSharedMemory from the OPTEE

28

str w8, [x29, #4] // perform the store

add x9, x29, #4 // obtain the store address

and x9, x9, #Ox7Tffffffff£f£f00000 // mask the store address
ldr x10, log_start_addr // 1MB-aligned log start

subs x9, x9, x10 // <f equal, then abort

b.e _abort

Figure 2.6: SFI check inserted after a store instruction to ensure that store address
does not corrupt the log.

library [76] that helps set up shared memory regions that are cleanly aligned with page bound-
aries. BLAST stores and write-protects the start address of the log in the global area so that it
is not modified during P’s execution.

After every memory store instruction, BLAST adds instrumentation to fetch the address of
the store, retrieves the start address of the log, and ensures that the store address does not
target the log. Figure 2.6 shows the instrumentation inserted after a store instruction assuming
a 1MB log.

The store instruction in this snippet writes the memory address [x29+4] (x29 is an ARM64
register). We ensure in the shared memory allocator (from TEEC_AllocateSharedMemory that
creates the log) that the log starts at a 1MB aligned address for a 1IMB log, which allows us
to implement the fault isolation check using just a mask instruction rather than a range check.
The instrumentation masks the memory address of the store on the third line (in x9), and
obtains the 1MB aligned start address of the log in x10. The masked value in x9 will be equal
to the value in x10 only if the store address pointed to a location within the log; this in turn
aborts execution.

Unlike traditional SFI [90], we insert the check after the store. If the check was placed
before the store, then it may be possible for a control-flow integrity attack [4] on P to bypass
the preceding SFI check and directly transfer control to the store instruction. In our approach,
the store will necessarily be followed by the SFT check, thereby aborting execution if the store
address targets the log.

2.3.4 Path Measurement and Verification

BrAsT’s fault handler is triggered when one half of the log is filled to capacity (via the write
to the sentinel page). This fault handler creates a new thread that executes in the TEE and
begins the operation of committing the log to the TEE. We note that the log itself need not be

copied into the TEE—it suffices to obtain a commitment of its state. For example, it suffices

29

to store a hash of the contents of the log in the TEE. If required, the log’s contents can be
saved within the untrusted partition, e.g., the normal world of an ARM TrustZone platform.
Its integrity can be checked at any time using the hash value committed to the TEE. BLAST
stores a single hash value as the commitment of the log. When the next half of the log is full, its
hash is integrated with the value already in the TEE, thereby resulting in a cumulative hash.

Recall that the log is set up in memory that is shared between the TEE and the normal world.
The thread that is tasked with committing the log’s state to the TEE can work concurrently
with the thread that continues P’s execution. Note that the former thread must perform a
domain switch (e.g., via an smec, switching the processor into the secure world), while the latter
thread executes in the normal world. On a multicore prover platform, the thread that commits
the log state to the TEE can execute in parallel with P, thus eliminating log commitment cost
from P’s execution.

The prover can present (a signed, nonced) hash that serves as the log commitment to V.
Provided that V has a measurement database of acceptable hash values, indexed by input (as in
CFLAT [5]), this hash value itself serves as a commitment from the prover to V on the control-
flow path followed within P. However, there are several situations in which the hash value by
itself proves insufficient for V to learn about the path followed in P. As examples, (1) V may not
have an entry in its measurement database of the acceptable hash value for a particular input;
(2) P’s execution may involve executions of loops in its code, and the number of iterations is not
known to V a priori; or (3) P’s execution may be non-deterministic because of signal handlers
in its code that are triggered during P’s execution, or because P is multi-threaded.

In each of these cases, presenting V with the full log of control-flow events allows it to
reconstruct the execution of P step by step. The hash received from the prover’s TEE serves
as the commitment of the log’s state, and V can verify that the hash indeed corresponds to the
log that it receives from the prover.

However, the key challenge is that the log itself can be very large, and this can result in
the prover having to transfer several megabytes of data to V. BLAST draws upon a classic idea
from the program profiling literature—that of compactly representing a log of the program’s
execution using a context-free grammar, called the WPP [66]. WPPs build upon Ball-Larus
numbering, and compactly represent a single control flow path through the whole program,
including calls and returns from functions (with acyclic path fragments represented in the
WPP using its Ball-Larus number), as well as precisely capturing loop iterations.

WPP construction from a log of control-events proceeds as follows. As collected, each
entry in the log generated by BLAST can be thought of as a tuple <func, PathiD>, that

represents the acyclic Ball-Larus path number PathID followed within the function name func.

30

Log entries 1d WPP grammar: S — aXdX

<foobar, 2> — a

<foo, §> — b X = be

<bar, 9> = C

<foobar, 5> +— d Each line is a production rule in the context-free grammar, S
<foo, §> = b and X are the non-terminals output by the WPP generation
<bar, 9> — C

...... algorithm and the lower-case symbols are terminal symbols.

Figure 2.7: Fragment of a log produced by Blast. Each entry is a tuple of the
form <func_name, Ball_Larus_PathID>. Each unique entry is mapped to a distinct
terminal symbol to represent it in the WPP.

Prover platform Verifier 9
1
/ Normal world i E\ _ Request path
<€ Generate nonce
: measurement
Program 80 !
| | Hash Return signed 1) Verify digital
Log i | oflog > signature; Path
<foobar, 2> i g—[hash ‘7{‘ 2) Check £ “ Hash
<foo, 8> : against DB; DB
<bar, 9> - Request WPP 3) Return verified |
1 < i
\ : / or WPP needed. |
1) Generate log from WPP;
2) Verify that log produced
corresponds to hash H;
Compute WPP Return WPP 3) Reconstruct the whole
representation > program path from log;
from the log in the 4) Return verified or path
normal world violation detected.

Figure 2.8: Workflow for verification of CFA.

Each such tuple is assigned an identifier that then becomes a terminal symbol in the resulting
grammar. The WPP construction algorithm [66] identifies common fragments in the log, and
“lifts” them to non-terminal symbols. Consider, for example, a fragment from a log shown in
Figure 2.7. This log fragment can be represented symbolically as abcdbc, and its compressed
WPP representation would be as shown on the right in Figure 2.7. Intuitively, the WPP
construcion algorithm identifies repeated sequences of control-events that appear in the log
(e.g., generated by execution of loops or repeated invocations of functions) and compresses
their occurrence into a non-terminal symbol. The WPP grammar satisfies two properties:
(1) it is a more compact representation of the “string” representation of the log (i.e., the string
obtained by composing the terminal symbol identifiers assigned to each <func, PathID> tupe);
and (2) the log is the only “string” that can be generated from the starting non-terminal symbol
of this context-free grammar (S). We refer the reader to the original paper [66] for full details
on the algorithm to construct the WPP.

31

If the value presented by the prover does not suffice (for any of the reasons outlined earlier),
V can request the prover send it the WPP representation of the log. The prover can run the
WPP construction algorithm offline on the log, and send the WPP to V. The verifier can
independently reconstruct the log from the WPP, check that the hash it received from the
prover’s TEE can be obtained from this log, and then uses the log to identify the control-flow

path followed in P. Figure 2.8 summarizes the workflow for path measurement verification.

2.3.5 Implementation

We have implemented BLAST’s instrumentation as an LLVM (version 11.0.0) compiler pass that
uses LogReg and BLReg exclusively to store a pointer to the log, and to accumulate path counter
information, respectively. As it instruments P, it also emits the list of program locations where
instrumentation is inserted. Although we trust the compiler to instrument the P correctly,
compilers are complex and could be buggy. The list of program locations emitted by the
compiler allows us to build a simple static binary analyzer that performs a linear pass over P
to ensure that LogReg and BLReg are used exclusively at the instrumentation points (i.e., that
it does not appear anywhere else in the program’s text). In practice, we target the ARM-64
bit architecture. We use the register x19 as LogReg and w20 as BLReg. We therefore disallow
these registers (and also w19, which are the 32 LSB bits of x19 and x20, whose 32 LSB bits w20
represents) for general-purpose register allocation during compilation. Our implementation
uses the ARM TrustZone as the TEE, and we link P with the OPTEE library [76] to ease
domain switching when the log state must be committed to the TEE. This allows us to include
just the logically simple static analyzer in the TCB, which can check the work of the benign
(but potentially buggy) program instrumenter. Our prototype uses the BLAKE2S function
to hash the log and we configured it to produce a 32-byte hash. Because of the associated
engineering overheads, we have built the BLAST prototype to only supports single-threaded
programs, although BLAST’s instrumentation and verification approaches readily extend to

multi-threaded programs.

2.3.6 Qualitative Security Analysis

In BLAST, an attacker is a malicious prover that alters the execution of P while ensuring that the
path measurement reflects a “correct” execution to V. We show that BLAST’s design makes this
task difficult for the attacker. Code corruption attacks that simply replace P’s code are easily
detected because the path numbers and addresses of function calls/return addresses collected

in the path measurement will not match. We assume that the prover platform implements

32

data-execution prevention in the normal world to eliminate code injection attacks on P. With
BLAsT’s SFI instrumentation, this ensures that any memory stores from instructions that are
already in P do not impact the integrity of the log.

We are thus left with the possibility of the attacker launching code-reuse attacks on P.
Because BLAST’s goal is to faithfully record the program path followed in P, a successful attack
would have to cause the path measurement recorded in the log to deviate from the actual path
followed in P. Thus, the attack must not leave any trace in the log that will be visible to
V. For this to be possible, the attacker must either (a) modify BLReg suitably (to reflect a
different path number than the one actually followed) between two control-flow events that
result in entries being appended to the log; or (b) violate the append-only property of the log
by modifying LogReg to point to an earlier fragment of the log that will then cause any log
entries inserted during the attack to be overwritten. We argue that neither case is possible.

For case (a) to happen, the attacker must identify and chain together gadgets that modify
the BLReg register suitably. Recall that BLAST reserves BLReg for exclusive use at instrumen-
tation locations, and this register cannot be used elsewhere in the program. Thus, the gadgets
will have to be composed using instrumentation inserted by BLAST. However, any attempt in
the attack to chain together gadgets using non-local control-flow instructions (such as returns
or jumps) will result in a log entry because BLAST inserts log entries at such locations (Ta-
ble 2.1). Moreover, BLAST’s instrumentation at all return or indirect jump locations records
the corresponding return/jump addresses in the log. For case (b), the attack must reset the
value of LogReg to point to an earlier fragment of the log. BLAST reserves LogReg for exclusive
use at instrumentation locations, and every such location only increments LogReg. Its value is
only reset within BLAST’s fault handler, but the fault handler also causes the log to be com-
mitted to the TEE. Thus, the attacker cannot reset LogReg without leaving a detectable trace.
Although BLAST can generalize to any architecture, our prototype currently targets ARM64,
a RISC architecture with fixed-length instructions that start at word-aligned boundaries, and
for which gadget construction is more challenging than on the x86 [30, 40].

The discussion above assumes that P executes atop a bare-metal normal world, and that the
entire program P is instrumented with BLAST, including any interrupt handlers in P (as was
also assumed in OAT). However, the presence of an operating system in the untrusted normal
world could undermine security. For example, the operating system could maliciously modify
the stack-saved values of BLReg, LogReg or the log itself when it gets control via a system
call or during interrupt/exception handling. Neto and Nunes [69] provide a detailed overview
of the security implications of interrupt handling to CFA. Prior work [24, 49] developed an

approach that modifies the normal world operating system to allow security-sensitive operations

33

to be mediated by the TEE, thus protecting the integrity of key normal world data structures
(e.g., page tables). BLAST can build on this approach by additionally requiring control transfers
from P to the operating system to be mediated by the TEE. The TEE saves the values of BLReg
and LogReg, and computes a checksum over the log before allowing the normal world operating
system to perform its task. Once the task is complete, the TEE restores BLReg, LogReg, and
ensures using the checksum that the log is unmodified. The TEE must ensure via boot-time
attestation that this modified operating system is loaded into the normal world and protect it
from unauthorized modification [24, 49]. These methods have been developed in our next work
(Chapter 3).

BLAST’s focus is on control-flow path measurement, i.e., to ensure that the verifier has an
accurate picture of the control-flow path followed in P. It does not aim to attest the integrity of
data operations. Attacks or unauthorized modifications of program data that alter the control-
flow path followed will still be detectable by V using BLAST’s path measurement. However, it
may still be possible for an attacker to modify the value of a sensitive variable in P that does
not alter the program path taken. Such attacks are not within the threat model or the scope of
BLAST, and can be addressed using additional instrumentation to also log the values of these

sensitive variables in the integrity measurement [87].

2.4 Evaluation

We evaluated BLAST using the Embench-IOT benchmark suite atop a Raspberry Pi 3 Model B+
that runs an ARM Cortex A53 Quad-core 64-bit processor clocked at 1.4GHz and is equipped
with 1GB LPDDR2 SRAM. In our evaluation:

1. Table 2.4 presents the runtime overhead and memory overhead imposed by BLAST’s in-
strumentation on P’s execution. It also compares BLAST with CFLAT and OAT adapted

to use local logging;

2. Figure 2.9 breaks down the contribution of each of Ball-Larus instrumentation, SFI, and

log commit operations to this overhead;

3. Table 2.5 presents the runtime overhead imposed by BLAST for attesting musl libc along

with P’s execution.
4. Table 2.6 analyzes the energy consumption of BLAST;

5. Table 2.7 quantifies the benefits of WPP for log compression;

34

6. Section 2.4.5 shows the effectiveness of BLAST at detecting anomalous behavior in P using

a case study.

2.4.1 Performance Analysis

Recall that BLAST’s fault handler spawns a new thread to commit the log state to the TEE
via hashing. This thread is logically concurrent with P’s execution, and provided sufficient
hardware resources are available (i.e., an additional CPU core on which it can switch into the
TEE and execute), P’s execution and the log commit operation can execute in parallel. In this
section, we first evaluate BLAST assuming the presence of an additional core to periodically
execute the commit thread. We then analyze BLAST’s performance for the case where an
additional thread is not available, and the commit thread’s execution interleaves with P on the

same CPU core.

Performance with parallel log commit. Table 2.4(a) compares the execution time and
the size of the instrumented binary of P with a baseline in which P runs without any instru-
mentation. The thread that commits the log executes on a separate CPU core than P and
computes a rolling BLAKE2S hash of the log in the TEE. The log is a 1MB region pre-allocated
in P’s address space.

The first set of results (without function inlining) shows that BLAST’s instrumentation
results in an average runtime overhead of 185% across all the benchmarks. The instrumented
binary is 64% bigger than the uninstrumented version of P—this metric is called bloat. While
most of the benchmarks have an overhead of less than 100%, there was significant slowdown
for a handful of benchmarks, namely crc32 (808%), sglib-combined (215%), st (528%), and
tarfind (518%). Upon further analysis, we found that these benchmarks have a large number
of direct function calls. BLAST commits the value of BLReg to the log at direct function calls,
and for these benchmarks, the log is filled faster than the thread that commits its state to the
TEE can complete execution. Thus, P is forced to wait until the log is committed before it can
resume execution.

The performance of these benchmarks improves significantly with function inlining, which
eliminates the instrumentation at the direct calls that are inlined. We configure the compiler
to inline small functions (with fewer than 1000 LLVM IR instructions) up to a call-depth of
5. That is, at each direct call site, we check whether the called function has fewer than 1000
LLVM IR instructions; if so, we inline it. We recurse similarly for all direct calls in the inlined

code, and repeat this at a call depth of 5. Such inlining improves the runtime performance

35

Embench-10T Baseline Blast w/o func. inlining Blast with func. inlining Best
Program | Time Code Time (s) & Code (KB) Time (s) & Code (KB) case

(sec) (KBs) Overhead & Bloat Overhead & Bloat ovhd.
aha-mont64 11.62 15| 29.15 (151%)] 29 (93%) | 28.10 (141%) 53 (253%) | 141%
cre32 11.58 19 | 105.23 (808%) | 29 (52%) | 18.33 (58%) | 33 (73%) | 58%
cubic 177 115 | 2.04 (15%) 125 (8%) | 2.02 (14%) 149 (29%) | 14%
edn 26.03 23| 45.72 (75%) | 37 (60%) | 55.88 (114%) | 53 (130%) | 75%
huffbench 13.72 19| 25.61 (86%) | 33 (73%) | 26.01 (89%) (221%) 86%
matmult-int 33.42 19| 44.21 (32%) | 29 (52%) | 4547 (36%) | 37 (94%) | 32%
minver 439 19| 8.88 (102%) | 29 (52%)| 7.96 (81%) (242%) 81%
nbody 052 15| 0.82 (57%) | 25 (66%)| 0.84 (61%)| 37 (146%) | 57%
nettle-aes 1647 32| 2157 (31%) | 46 (43%) | 21.47 (30%) | 90 (181%) | 30%
nettle-sha256 | 12.04 27| 1324 (9%)| 37 (37%) | 13.14 (9%) 45 (66%) | 9%
primecount 15.34 14 | 28.44 (85%) 4 (711%) | 28.48 (85%) | 32 (128%) | 85%
sglib-combined | 16.84 39| 53.11 (215%) 101(158%) 32.98 (95%) 145 (271%) | 95%
st 0.80 15| 5.03 (528%) | 25 (66%)| 1.47 (83%) | 49 (226%) | 83%
tarfind 3.76 15| 23.26 (518%) 25 (66%) | 6.89 (83%) | 41 (173%) | 83%
ud 18.14 15| 30.90 (70%) | 25 (66%) | 31.79 (75%) | 45 (200%) | 70%
Average Overhead: 185% 64% 70% 162% | 67%

2.4(a) Log commit thread parallely executing with P on dedicated CPU core. We compare
the runtime overhead/code bloat of Blast with and without function inlining and report
the best case.

Embench-IOT | Blast w/o parallellism Embench-I1I0T Blast versus CFLAT & OAT
Program | Time (s) & Waiting ~ Program | CFLAT CFLAT | OAT OAT
Overhead Time (s) time (s) BLAST | time (s) BLAST
aha-mont64 46.10 (296%) 18.5 aha-mont64 87.12 (3.10x) | 404 (1.44x)
cre32 35.05 (202%) 17.13 crc32 105 23 (5.74x) | 52.64 (2.87x)
cubic 2.05 (15%) 0.03 cubic .08 (1.03x) | 2.03 (1.00x%)
edn 80.51 (209%) 35.81 edn 111 24 (2.43x) | 45.29 (0.99x)
huffbench 48.44 (253%) 23.58 huffbench 9.2 (3.87x) | 50.09 (1.96x)
matmult-int 81.51 (143%) 38.01 matmult-int 120 68 (2.73x) | 43.83 (0.99x)
minver 13.31 (203%) 5.6 minver 28 61 (3.59x) | 12.34 (1.55x)
nbody 1.26 (142%) 0.45 nbody 90 (2.32x) | 0.83 (1.01x)
nettle-aes 26.37 (60%) 5.05 nettle-aes 23 60 (1.10x) | 22.30 (1.04x)
nettle-sha256 16.38 (36%) 3.42 nettle-sha256 22.90 (1.74x) | 13.24 (1.01x)
primecount 50.6 (229%) 27.31 primecount 161.59 (5.68x) | 88.63 (3.12x)
sglib-combined [55.96 (232%) 23.61 sglib-combined 154 74 (4.69%) | 83.89 (2.54x)
st 2.32 (190%) 0.9 st 30 (3.61x)| 2.66 (1.81x)
tarfind 11.51 (206%) 4.74 tarfind 30 68 (4.45%) | 15.56 (2.26x)
ud 56.03 (208%) 26.11 ud 103.95 (3.36x) | 41.79 (1.35x)
Avg. Ovhd. 175% Avg.: 3.30% 1.66x

2.4(b) Log commit thread inter- 2.4(c) Blast versus CFLAT and OAT adapted to
leaved with P. local logging.

Table 2.4: Performance of Blast on the Embench-IOT benchmark suite. Numbers
reported are average of 10 runs, and the standard deviation is < 0.2%. Blast
preallocated a log of size 1MB split into two 512KB symmetric halves with sentinel

pages.

36

& SFI instrumentation Ball Larus instrumentation m Log Hashing
100% o IO s IO B |
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Fraction of overhead

7
é
_

Figure 2.9: Contribution of SFI, Ball-Larus instrumentation, and log commit op-
erations to overhead.

of most benchmarks compared to the non-inlined counterpart, reducing the average runtime
overhead across all benchmarks to 70%. The runtime overheads of crc32, sglib-combined, st,
and tarfind reduces to 58%, 95%, 83%, and 83%, respectively, post-inlining. While inlining
does increase the size of the binary by 162%, we note that this cost is offset by the fact
that it results in many fewer log entries—effectively setting up a time-space tradeoff. Some
benchmarks, such as edn perform worse with inlining, and hence we do not advocate blind use
of function inlining. Considering the best of P’s performance with and without inlining, we
observe an average runtime overhead of 67% for whole-program CFA across all our benchmarks.

Three factors contribute to the runtime overhead of BLAST-instrumented binaries—Ball-
Larus instrumentation, SFI instrumentation, and the log commit operation. Figure 2.9 shows
how each of these factors contributes to the runtime overhead of the benchmarks. For this
experiment, we show the breakdown of the overhead only for the inlined version of P. Our
results indicate that the log commit operation, which proceeds in parallel to P, contributes
negligibly to the overhead of most benchmarks, except in the case of primecount (the overhead
manifests as waiting time in P). The bulk of the overhead is due to Ball-Larus instrumentation,

which is uniformly more than the overhead due to SFI instrumentation.

Performance with serial log commit. When an extra CPU core is not available for the
log commit thread to execute, that thread must execute interleaved with P. Because the
CPU can either be in the normal world or in the TEE (secure world) at any given time, its

state must be toggled based upon whether the thread performing the log commit operation is

37

executing or whether P’s thread is executing. Moreover, P may be required to wait if it has
written a log half to capacity while the other half has not yet been committed. These factors
contribute to overhead in the execution of P. Table 2.4(b) reports the overhead observed
with such serial execution on a single CPU core. For each benchmark, we report the lower
of the runtime overheads observed for with either the inlined or non-inlined version of that
benchmark. Observe that the average runtime overhead is 175%, compared to 67% when the
log is committed in parallel. Some benchmarks, such as crc32, matmul-int, primecount, and
ud, spend close to 50% of their total runtime waiting, showing the benefit of committing the

log in parallel if an extra CPU core is available.

Comparison with CFLAT and OAT. As previously discussed, the number of domain
switches in CFLAT and OAT imposes an unacceptably large overhead on the raw runtimes
of the Embench-IOT programs. However, it is possible to adapt CFLAT and OAT to also
perform local logging. Even in this setting, BLAST’s approach inserts fewer entries into the log
compared to CFLAT and OAT. We modified CFLAT and OAT to perform local logging, and
integrated them with SFT to protect LogReg, as done in BLAST.

Table 2.4(c) shows the performance of the benchmarks on the local-logging versions of
CFLAT and OAT. We assume the presence of a dedicated CPU core to execute the log commit
thread, i.e., the parallel log commit setting. BLAST outperforms CFLAT and OAT by up
to 5.74x and 3.12x, respectively, and on average, by 3.30x and 1.66x, respectively. The
improvement is because BLAST inserts fewer entries into the log as compared to CFLAT and
OAT, thus triggering fewer log flushes to the TEE. However, note that the multiplicative factor
by which BLAST outperforms CFLAT or OAT as reported in Table 2.4(c) is somewhat smaller
than the multiplicative factor by which BLAST reduces the number of log entries as compared
to CFLAT and OAT (as reported in Table 2.3). This is because of the additional register
operations to BLReg in BLAST that are required by the Ball-Larus approach, which are absent
in both CFLAT and OAT.

2.4.2 Library Attestation with BLAST

We also extend BLAST to attest library code, demonstrating that whole-program attestation,
including standard libraries like musl libc, is practical with low additional overhead. Libraries
are often overlooked during CFA of the program P, even though commonly used libraries such
as libc have been shown to be attractive targets for control-flow hijacking attacks [83]. This

makes it critical to attest the execution of libraries in conjunction with the main program. To

38

Embench-10T Execution Time(s)
Program | #Library | Baseline | Only Program | Program

Calls + Library (Overhead)
aha-mont64 1 11.16 24.53 24.73 (0.82%)
cre_32 2 10.7 17.78 17.91 (0.73%)
cubic 20 1.65 1.96 232 (18.37%)
edn 5 25.35 44.06 44.57 (1.16%)
huffbench 11 13.38 24.34 2516 (3.37%)
matmult-int 5 32.64 46.96 47.22 (0.55%)
minver 7 4.3 7.3 7.47 (2.33%)
nbody 6 0.5 0.81 0.83 (2.47%)
nettle-aes 8 16.05 23.3 23.57 (1.16%)
nettle-sha256 11 11.76 17.51 1796 (2.57%)
primecount 1 15 28.78 2894 (0.56%)
sglib-combined 4 16.1 30.68 31.06 (1.24%)
st 7 0.76 1.4 1.6 (14.29%)
tarfind 3 3.56 6.53 6.69 (2.45%)
ud 3 17.4 28.62 28.72 (0.35%)
Average overhead: 3.49%

Table 2.5: Performance of library attestation with Blast on Embench-IOT bench-
marks. Both the program and the musl libc library are instrumented with Blast
instrumentation. Numbers reported are preliminary results.

evaluate this, we apply BLAST to the musl libc [46] library. We choose musl libc instead of
GNU libc as it is lightweight and allows efficient static linking.

Embench-IOT programs are designed for bare-metal embedded devices and invoke only few
library calls as shown in Table 2.5. For these experiments, we use the best-case configuration
of BLAST for Embench-IOT programs which minimizes runtime overhead by leveraging Ball-
Larus instrumentation, local logging with parallel flushing, and selective inlining (Table 2.4
(a)). We statically link musl libc with each main program. Note that the performance numbers
for attesting only the main program may differ slightly from previous results due to changes in
the evaluation setup, including the underlying library and OP-TEE version.

A key observation is that attesting library code introduces only a modest overhead on top
of attesting the main program as shown in Table 2.5. On average, the added overhead is just
3.49%, demonstrating the practicality of extending CFA to libraries. This is encouraging, given
that libraries such as musl libc are widely used and often targeted in control-flow hijacking
attacks, e.g.,, via gadgets in libc.

Most benchmarks show overheads below 3%, when the number of library calls ranges be-

tween 3 and 11 (e.g., matmult-int, primecount, huffbench). Only a few programs such as cubic

39

Embench-IOT | Energy Consumption in Joules

Program | Baseline Blast (Overhead)

aha-mont64 34.37 | 88.59 (158.52%)
cre32 34.24 | 59.84 (74.75%)
cubic 5.24 6.03 (15.14%)
edn 76.19 | 146.42 (92.17%)
huffbench 40.57 | 82.93 (104.39%)
matmult-int 97.48 | 141.38 (45.03%)
minver 12.74 | 25.17 (97.57%)
nbody 1.50 2.53 (68.54%)
nettle-aes 48.28 | 64.61 (33.80%)
nettle-sha256 35.00 | 39.80 (13.71%)
primecount 44.92 | 91.23 (103.71%)
sglib-combined 49.29 | 104.77 (112.58%)
st 231 | 4.64 (101.01%)
tarfind 10.93 | 21.80 (99.43%)
ud 52.74 | 99.77 (89.16%)
Average overhead: 80.60%

Table 2.6: Energy consumption with and without Blast on Embench-IOT bench-
marks. The input voltage to the Raspberry Pi3 is constant at 5.1V, and the overall
energy consumption is the product of the voltage, current draw, and the execution
time of the benchmark.

and st exhibit higher overheads (18.37% and 14.29%, respectively), which is attributed to the
maths-related library function calls in these workloads. Importantly, the low incremental cost
of library attestation reinforces our claim that whole-program attestation, encompassing both
application and libraries, is feasible with BLAST and it supports the inclusion of library code

in the attestation boundary for stronger security guarantees.

2.4.3 Evaluating Energy Consumption in BLAST

BLAST-instrumented programs have additional instructions to enable path measurement, log-
ging, and periodic commitment of the log state to the TEE. We conducted an experiment to
evaluate the energy overhead of executing these additional instructions on our Raspberry Pi3
Model B+ evaluation platform.

To conduct these experiments, we connected a Hioki 3274 current probe to the 5.1V DC
power supply of the Raspberry Pi3 board. We paired this with a Tektronix TBS1064 four
channel digital storage oscilloscope that runs at 60MHz, and has a sampling rate of 1GS/s.
This setup measures the current (in mA) drawn by the Raspberry Pi3 board every 50ms.

40

Multiplied with the constant input voltage of 5.1V, this yields the instantaneous power draw
(in mW), which we integrated over the execution time of each benchmark to obtain the overall
energy consumption.

We compared the energy consumption of unmodified Embench-IOT benchmarks with the
best performing BLAST-instrumented variant from Table 2.4(a). Table 2.6 reports the results of
these experiments, which show an average increase in energy consumption of about 80% across
the Embench-IOT benchmarks.

2.4.4 Effectiveness of the WPP Representation

We observe hundreds of millions of control-flow events when we execute BLAST-instrumented
versions of each benchmark (see Table 2.3 for raw log entry numbers). The size of the resulting
log can therefore run into MBs (or even GBs), as shown in Table 2.7. Recall that BLAST
computes the cumulative hash over the log during the program execution and sends only a
nonced, and digitally-signed 32-byte hash value to the verifier V. However, as discussed in
Section 2.3.4, V may request more information from the prover. In such cases, transmitting
large raw log files is infeasible, and the prover resorts to computing and sending a WPP.
Table 2.7 compares the raw size of the log, a version of the log compressed with the bzip2
utility [82], and the WPP representation of the log. Bzip2 uses a lossless compression technique
based on the Burrows-Wheeler block sorting text compression algorithm and Huffman coding.
The WPP construction algorithm identifies and compactly represents repeated fragments in
structure of the log using a context-free grammar. Table 2.7 clearly shows the benefits of the

WPP representation, which is just a few hundred bytes in each case.

2.4.5 Case Study: Open Syringe Pump Benchmark

We evaluated BLAST using the Open Syringe pump benchmark [92], an implementation of a
medical syringe pump for low-end embedded devices. We chose this benchmark because it has
also been used by prior work to evaluate the security and performance of their systems. We
used the publicly-available version of the application that the CFLAT authors ported for their
work. The application takes a numeric input which sets the quantity of bolus (set-quantity),
and a trigger input (4 /-) which moves the syringe pump to dispense or withdraw the set bolus
(move-syringe).

We conducted a performance evaluation of the instrumented Open Syringe pump benchmark
similar to CFLAT by executing it with different bolus quantities. As shown in Table 2.8, the

raw whole-program CFA overhead incurred using the BLAST-instrumented application is 0.14s

41

Embench-IOT | Raw log bzip2 file WPP

Program | size (MB) | size (bytes) | size (bytes)
aha-mont64 724.5MB 475,740 bytes 768 bytes
cre32 664.7MB 33,490 bytes 147 bytes
cubic 1.2MB 233 bytes 216 bytes
edn 1376.6MB 211,078 bytes 818 bytes
huffbench 889.8MB | 4,706,860 bytes 9750 bytes
matmult-int 1477.7TMB 105,882 bytes 370 bytes
minver 215.9MB 63,145 bytes 699 bytes
nbody 17.6MB 2,051 bytes 408 bytes
nettle-aes 195.2MB 40,022 bytes 843 bytes
nettle-sha256 132.3MB 35,055 bytes 336 bytes
primecount 1076.8MB | 23,034,525 bytes | 73,478 bytes
sglib-combined 910.0MB 421,6020 bytes 6,716 bytes
st 34.7TMB 3,784 bytes 476 bytes
tarfind 184.6MB 382,229 bytes | 257,756 bytes
ud 975.4MB 297,473 bytes 533 bytes

Table 2.7: Comparison of the size of the raw log against a log compressed with two
lossless approaches: bzip2 and WPP.

Open Syringe Pump | Baseline Blast

Bolus (ml) | Time (s) | Time (s) Overhead
0.5 ml 1.28 142 (+10.93%)
1 ml 2.56 2.71 (+5.86%)
2 ml 5.12 5.28 (+3.13%)

Table 2.8: Performance evaluation for different bolus amounts. Bolus (mL) is the
dose of drug.

for 0.5ml, 0.15s for 1ml, and 0.16s for 2ml. In contrast, the raw performance overhead of the
corresponding CFLAT-instrumented benchmark is 1.2s for 0.5ml, 2.4s for 1ml, and 4.8s for
2ml for attesting paths only in the set-quantity and move-syringe functions [5, Section 6.3].
Further, we observed only a single TEE domain switch in the BLAST-instrumented version of
the application. This is because the number of control-flow events observed during the execution
of this application did not fill the log to capacity, i.e., there were fewer entries than to even fill
one half of the space allocated for the log. In contrast, CFLAT makes a TEE domain switch
on every basic block.

Next, we illustrate the effectiveness of WPP at detecting anomalous behaviour of the
set-quantity function. The functionality of the application is such that depending on the

bolus amount, the stepper motor runs a different number of steps, which is implemented as a

42

Open Syringe Pump Code

Code Paths

1

\ 6
dispenseMedicine();

9

for (i=0; i<steps; i++)
dispenseMedicine();

WPPs
Bolus = 0.010 ml Bolus = 0.011 ml
Execution path trace: Execution path trace:
1 8 (repeated 67 times) 9 1 8 (repeated 74 times) 9
S -> 1 AAEF 9 S -> 1 AACE 9
A -> BB A -> BB
B -> CC B -> CC
C -> DD C -> DD
D -> EE D -> EE
E -> FF E -> FF
F ->8 F ->8

Figure 2.10: Code snippet of Open Syringe Pump showing the Ball Larus path
numbers (we have omitted the function names for brevity), accompanied with
execution path traces and WPPs for different bolus amounts, 10 yL and 11 pL.

loop in the ported application. The CFG consists of three acyclic paths: a loop entry path
with Ball-Larus value 1, a loop iteration path with value 8, and a loop exit path with value
9 as shown in Figure 2.10. The loop runs 68 iterations for 10uL, and 75 iterations for 11uL,
i.e., path number 8 occurs 67 times in path trace for 10uL, and 74 times in path trace for
11pL. Both path traces start and end with path numbers 1 (loop entry) and 9 (loop exit).
We consider an attack on the program that causes it to pump 11ul. when it is expected to
pump 10uL.. The WPPs capture the differing number of loop iterations in the path traces and
are easily distinguishable to a verifier V based on the number of bolus given as input. BLAST
similarly detects errant behavior in the move-syringe function since the trigger inputs (+/-)

causes the program to take different paths in the CFG.

43

‘Q JO sonfeA snotrea Jaoj ‘Surduwes yjum
pajuswnIIsul §.I,-PoqIA Ul speopsjiom uorpdLidep /uorpdLious pue Sulysey o[l oY} JO 9dURULIOLID] :6°T 9[qRL,

‘(Burdures ou/3unjoey [ng 2-2) =g osed oY) 10J STSMF# o3 9snl 110doI oA\ “UOIIRIUSWNIISUL AUR JNOYIIM JIRUYIUDC Y} 9INIOXO
0} w1y o1} SI dUI[PSR] O], ‘%7 () URY) SSO] SeM UOIJRIADD PIRPURIS) PUR ‘SUNI ()] I9AO Padelosr ole polrodal sIoquuny ‘SY20[q
gg sosn §H(J oYM ‘S¥00[q 9T oSN VIV Pue SHV—=rIep Jo Y20[q duo sasseo01d suonjerodo uorydAep /uondAnus ()9 oyl Jo yoer

(%ST'68%) TT'0 GLE (%92'8G2) <€0 L10°T |(%8¢126'€) ¥9'T 60S°L [FOLT9T |1F0°0 009 VIaVv
(%L€°€08°T) 920 029 (%66°220'C) 660 TLL (%L6°SPTT) 860 1SC'C GE6'61 ¥10°0 009 SHd
(%0S°CT6'T) 920 €19 (%8¢°6zz'c) €0 €18 (%0z°90LF) 290 LTF'T |6L9'6T €10°0 009 SAV
PYAQ/(998) SuwIL], STSM#| PUAQ/(998) dwiL], STSM#| PUAQ/(99s) dui], SISM# |SLSM# |(998) o, suonerado
100°0=8 10°0=S 1'0=S [=§ |oumeseqg |jo oquuuy| WYILOS[Y
STIL-PoqIA ul speorsjiom uoiydALide(/uorpdLrouy

(%TT'LT) T€LI 9F20T | (%9S°ThT) S8C¢ POF'TOT [(%8F9¥0T) S¥69T TI0'FT0T|0CTFOL'S |SLFI 001

(%ET1°8T) €L'8 TEI'S (%TLEPT) TOST T0TT1S [(%LT'68€T) SO°0IT GIOGIS |0GT'TSE'T |6€°L 0g 09TANAJTT
(%8L°€€) 660 85 (%9V°6ST) 26T SIT'G [(%SETOF'T) IT'TT CIE'1¢ |02€'sey |FL0 G

(%L2°9L) LT'T¥ 01L'06 (%S2°0G2) 68°€0% 263806 (%05 98%°L) LI 6I8T Z06'C80°6|£SS T€6°06|86°€T 00T

(%96°9L) TTT TSe'Sh | (%L9°TGL) €0°TOT SPTFSH [(%ELL6VL) 9T'0T6 TP TFSCT|€S6°COV ST |S6°TT 0% CISVHS
(%L998) ¥2C 8PSV (%L1°66L) TEOT T98'Sh [(%00°66%'L) FT'T6 991VSh |€16'9VS'Y |TT G

(%€97¥F) 88°0¢ F08°9L (%C97¢F) 60°S8T F00°89L |(%86°02EF) €GSGST FT0°089°L|T6E LVSTL|81°GE 00T

(%80°6¥) TG'ST TOV'SE | (%S0FER) 7666 FOOFSE [(%C6FTET) 6G°9LL FI00FS‘C|T6LELT LE|6S LT 0% 96ZVHS
(%0L'TG) 29T THS'E (%SV'1FY) €56 TOV'SE |(%86'8TEF) G6'LL FIOVSE |28s'LTl'e |9L'T G

(%9€TV) ¥€'8 9FZ'0T | (%8G¥5E) T89Z FOF'TOT [(%TT€Iv'e) €2°01¢ TI0'FTOT|FOTFOL'S |6°G 001

(%eL€y) T ¥ TeI'S (%19°9¢¢) LV'ET ¥0T1¢ [(%ILT9F'E) 1G0T GIOTIS |POT'TSET |S6°C 0g SN
(%99'68) €5°0 8TS (%06'90%) L¥'1T SIT'G |(%29'85G'e) 1901 TIT'TIC |FOE'SEy |62°0 G

pyAQ/(9es)ouL], STSM#| ‘PUAQ/(P0s)owiL], STSM#| PUAQ/(00s)owl], STSM# |[SLSM# | (99s) ewry,|(sgIN)

100°0=S 10°0=S 1'0=S [=S |ourpseqg |o[l] T LIOS[Y

STL-PPqIA Ul speop{iom Surysey oL]

44

‘Surpdwes yjm po
I I uawt
Py NIJSUL UayM SJIewouaq [O[-yd2uaquijif JO aduewt
I0JI9d :0T°
porrodor soqunN °Q e o
o3 303 (5L 043’ 0> ST UOTIRIAD
(STSMF#) PoAISSqO SOUDYIMS PLIOM HH T, JO Ioquunu @qw mﬁwnwwwmw MMMQ@A@VEW LS
I "(g) soger Surduwres NOWId
. ! d

SNOLIRA [[IM YIRUIDUS
H Q. 9 (0]
) JO SWIIUNI o) 0} +¢ ¢-1J ALqdsey] ® U0 PIAISSO YIRWDUD
Am\w@mm ¢) 1981 1481 (%1128) S1'ce LOF6L | (U0 O} JO PN AM2SEY A dxecIon oM
. 0, . n
o 09) €0'9 6L (%82°96) 8L 69Z'L [€18) 699 660°G6T | (%98°921°T) G6'€ —
A&.@M wmw Lol (%GT'TTT) 69T €8S°T Mm% ThY) 1702 ©99°7L | (%4Ge'808°€) a.mm e T bt
¢) €Vl ‘ : 00°G9% : ‘ €29'9% .
(%29°21) wm.% MMMBM Mwwmmww 66°9¢ CFI‘6C (5465808 W mew meﬁmwm Mo&mm €ec'9) L0°€S mwoﬁmwm m.nom pugre)}
(%2L°0) SPeT € ¢) L00z S89FT | (%6¥Lig) 9¢ YIV'TIV'E) 67165 698°088°C | V8’ 38
. . 0067 L16201 | (8°088°C | 78°9T PoUIqUIOD-
§$ 6C) 76T £9%° (%e50) eret € (% : %61'82C'T) VLI 9LV 0GLT | 19 [qUI0d-q 1SS
cogt | (%08'L0T) 60° h 6v'e9e) T'IL 982°28T | (€V°09L°T | T9°CT oumpab
(%Ve'T) 1€TT 92) 60'8€ 998'8F | (%€8'L8¢) 80'9 : %66'629°¢) 8T'TLG €T8TL8T | Ve b
) oo 2T <62'887 | (9 : ¢\ Vel yumoosud
(%0L°T) 9L°9T (%99°2) 9€°TL 0FC (9 : %8T EEE'C) T6'CH6 £T6TI|T | €€ 8
07C (0veL) 69 %EL'9) G8TT 8LEC N C6'088'F | £€°8T Sodl.
(%1€28) 2990 €L) 69°LT 16T°C (o : (%z1°68) SL'9T €GL' . odloord
0 (4T€T0) T %9879) LOLE G8T'TS 0 ¢Lec |v0TT 9GzeYs-
(%85°71) €0°¢ cr) vL0 87Y (%2 : (%08°€29) €6'02T £a8' : GgrUs-o[eu
769 (%460°€F) ST) L'60T) 69T SaL'¥ (o ¢8'1es |8791 sou-
(%28°0) TL€E € ¥) 829 6189 (%1 : %ET6IST) 86'6 €4T : SJRIE
s (%66'0) 92 pIge) ¢8T 89889 | (9 zLy {250 .
@%@ 0) P8ET T 9L°€€ 198 C© i %TS680°C) TO0FT €99° : poqu
p (460" . h %S0°T) 8L'€E LT0'T . 289 | 6EF
(%ov'7) sTLE IT'e | (%ee 0) £272C 0EVTY | (%ST'EL9) FOOOT LV (%7272) 8T7E 669 |€FEe P
(%L1°01) S6'T L Aamm QW 6,28 T6L'RS | (%LTTSP) TIEVT %a% 2oc Mﬁmo 8TL'9) GLVE6 EFVP'TIOT|TLET T
)T . 6°C6S 0 . plecs}
(%12°96) 7225 €9¢° %LUOT) G6'T €F (9 : %LOTLY'T) V699 £8TLETE| 20 oA
€9y (%91708) €2 “ %8€°9T) 90c €0F ; 8C'LST'E | 20°9¢C
o . €ese €0469 | (0 . A (%0999) 202 : . upo
Rl bl ol el ol oy o7 oot
. —U.Q\r oY) ; @H 0 . ¢
100000 = S 0/ (99s) .EEH SISM# | puaQ/(0os) owt], SISM# .A&wﬁ G6c) 88'GY €08'69T | T9°TT cE212
10000 = § = SM pyaQ/(o9s) oumy, s poyIOT-RIR
1000 =8 T0=s ISM# | (o0s) ouny | 1 wreadorg
ouleseyq HOHuQOCQQEm

45

2.5 Sampling: A Strawman Approach to Reduce Over-
heads of CFA

Following the approach of prior works [5, 87], which attest only parts of a program’s execution,
we explored sampling as a means to reduce the overheads of CFA. We show that while reducing
the granularity of attestation via sampling does lower performance overheads, it is not sufficient
on its own to achieve practical overheads and significantly impacts the security guarantees of
the attestation approach.

We adapt the idea of sampling to selectively decide whether to measure the paths in a
function. We give the verifier V control over which parts of program P are subject to path
attestation. While it is possible to implement such control at the granularity of individual
domain switch trampolines, we chose to implement it at the granularity of functions. That is,
for each function (or at each function call) of P, the verifier can make a choice as to whether
to measure the paths of that function (or not). For example, V can decide not to measure the
paths of a function foo, but may decide that all the paths of a function bar called by foo must
be measured. The function bar may in turn call a third function zoo that V is not interested
in measuring. We provide this level of flexibility to control path measurement at function call

granularity.

2.5.1 Instrumentation and Verification with Sampling

We integrate sampling into the workflow of CFA. The verifier V supplies a bit-string B indicating
the function calls in P that it is interested in attesting. Each slot in B is reserved for a function
in P, and a True (or False) in the corresponding slot denotes that whether the function must be
sampled (or not). The prover also stores B in the TEE as it is included as part of the integrity
measurement that it sends in response.

We add instrumentation to P to copy B into its address space in the normal world when it
starts execution. This step is to avoid performing a world switch to lookup B from the TEE
at each function call. To support sampling, we create two copies of each function F. One
copy, Fpr, is instrumented in full with Ball-Larus numbering for instrumentation placement,
as described in Section 2.3.2. In the second copy, Fyone, we do not insert instrumentation
(either for world switches or operations on BLReg), except at any function call instructions in
F (i.e., functions that are called by F). Preceding each function call site in Fyone, we add
instrumentation that consults B to determine how to handle the called function §. Because

this happens just preceding the call site, we can resolve the target of indirect calls as well. If

46

B determines that paths in § must be attested, the instrumentation inserted by us invokes the
instrumented copy Gpgr; else it invokes Gnone.

Note that there are no world switches during the execution of Fyone 0r Gyone because B is
stored in P’s address space. World switches are initiated only if B determines, say, that paths
in G must be attested. In that case, when §G is invoked in &, the instrumentation in Fy e
performs a world switch to record the Gg;’s address in the TEE, and then calls Gg;,. When
Gpr returns to Fyone, execution resumes with no further world switches until the next function
call for which B determines that path attestation is required.

At first blush, it may appear that our approach doubles code size, and increases memory
pressure on resource-constrained embedded devices. However, note that B is supplied upfront
by V. This allows the prover to selectively load the corresponding function copies into physical
memory, while keeping the other copies on disk. This strategy effectively retains the original
memory footprint of P on the prover’s platform.

Further, sampling can be configured to either be targeted or probabilitistic. In targeted
sampling, the verifier V identifies a specific set of functions whose paths must be attested. Our
instrumentation ensures that each call to those functions will invoke the fully-instrumented
copies of those functions. Our sampling approach discussed thus far assumed targeted sampling.
With targeted sampling, the verifier V only gets the path attestation measurements of functions
it specifies in B, and these can be checked with the measurement DB, as before.

We also provide the choice of probabilistic sampling, in which V does not identify a specific
set of functions to attest. Instead, the decision on whether to invoke the fully-instrumented or
uninstrumented copy of each function is made at each call site (i.e., an independent Bernoulli
trial [75]). Such Bernoulli sampling can be useful if V wishes to attest paths in some functions
of P (probabilistically) without incurring the high overheads associated with running the fully
instrumented version of P. Our approach naturally extends to probabilisitic sampling as well.
The verifier V simply supplies a long bitstring B each of whose entries is set independently to
true or false with a fixed probability 8 (as is routine for Bernoulli sampling). B is parameterized
by the Bernoulli sampling probability 8, which indicates the probability of each bit being set to
True in B. If configured for probabilisitic sampling, our instrumentation at each call site reads
the leading bit in B, takes the decision on which copy of the function to call, and left-shifts the
B. Thus, the probability of running an instrumented copy of a function is 8. The verification
algorithm in V must also be suitably adapted if probabilistic sampling is used. In essence, V
must replay the execution of P locally using the same bitstring B supplied in the challenge,
and check that the path numbers collected at the prover match those obtained locally. This

verifier design is akin to that proposed in OAT, which uses abstract execution of P to verify

47

the correctness of the collected integrity measurements.

2.5.2 Security Ramifications of Sampling

The main new consideration with sampling is the bitstring B, which we copy into P’s address
space, exposing it to the attacker. However, note that if the attacker modifies B, then it
directly impacts the integrity measurement. The integrity measurement notes the address of
the function invoked, return addresses, as well as path numbers. If the attacker modifies B,
paths in a different set of functions will be attested, and the integrity measurements will differ
from those expected by V. In targeted sampling, this involves straightforward matching against
the measurement DB in targeted sampling. In probabilistic sampling, V detects attack during
replay.

Sampling comes at a cost—it cannot detect attacks that occur in the execution of uninstru-
mented versions of functions in P. Because these uninstrumented executions do not generate
attestation measurements, any control-flow deviations or injected malicious behavior within
them remain undetected by V. Sampling weakens the security guarantees of CFA by introduc-

ing blind spots in program execution coverage.

2.5.3 Performance with Sampling

We evaluate the performance benefits of sampling by configuring our tool to use probabilistic
sampling and present preliminary results. We chose probabilistic sampling for this evalua-
tion because it allows us to evaluate the effect of varying sampling probability & on runtime
performance overhead.

Table 2.9 shows the results of running sampling approach on file hashing and encryption/de-
cryption functionality of Mbed-TLS. The “baseline” column reports the wallclock time to ex-
ecute the uninstrumented benchmark on our Raspberry Pi 3 Model B+ platform (with an
ARM Cortex A53 Quad core 64-bit processor clocked at 1.4GHz and 1GB LPDDR2 SRAM).
We report both the number of world-switches encountered, and the corresponding runtime for
various sampling probabilities ranging from §=0.1 to §=0.001. Recall that, the sampling rate 8
indicates the probability of executing the instrumented copy of a function at each call site. For
example, a sampling rate of 8=0.1 implies that on average only 10% of function calls are instru-
mented. We considered various hashing and encryption algorithms, and varied the sizes of the
files used as the workload. We report both the baseline execution time of an uninstrumented
version, as well as the number of world switches seen with a fully instrumented version (under

the 8=1 column). As we can see, several of the functionalities we tested in Mbed-TLS result

48

in millions or tens of millions of world switches. With a world switching overhead of 190usec
on our Raspberry Pi 3 B+, running fully instrumented versions of these applications will be
impractical. Sampling reduces the number of world switches, thereby reducing the runtime
overheads of the workloads to feasible levels (e.g., with Bernoulli sampling rate §=0.001).
Table 2.10 reports the results of using sampling on Embench-IOT benchmarks [1]. We
report both the number of world-switches encountered, and the corresponding runtime for
various sampling probabilities ranging from 8=0.01 to 8=0.00001. We observe that even at
relatively low sampling rate of §=0.01 (on average only 1% of function calls are instrumented),
most benchmarks incur extremely high overheads. crc32 incurs a runtime overhead of nearly
12,000%, increasing execution time from 11.56s to 1,396.46s. huffbench sees an overhead of
6,718%, while picojpeg incurs 5,333%. Even benchmarks with shorter baseline runtimes, such
as nbody and st, observe overheads of 1,819% and 6,534%, respectively. As expected, the
performance overhead reduces as 8 reduces. At §=0.00001, performance overheads become
relatively modest for most benchmarks, with many showing overheads under 10%. However, it

does so at the cost of significantly weakened security guarantees.

2.5.4 Shortcomings of Sampling

We explored sampling as a technique to reduce the performance overhead of CFA by instru-
menting only a subset of the program’s execution events. However, our evaluation shows that
sampling suffers from fundamental shortcomings that limit its practicality as an attestation

strategy.

1. Fails to provide complete security guarantees. By design, sampling attests only
a fraction of the execution events or function calls in the program. This inherently
prevents V from obtaining a complete attestation of the program’s control-flow path.
For applications requiring assurance over the entire execution, such partial attestation is
inadequate, as it fails to provide strong guarantees about uninstrumented regions of the

program.

2. Does not sufficiently reduce performance overheads. While sampling aims to
limit instrumentation overhead by reducing the number of monitored events, our results
demonstrate that overheads remain impractically high for many programs even at ex-
tremely low sampling rates. For instance, with 8=0.01, benchmarks such as crc32 and
huffbench incurred overheads exceeding 6,000-12,000%, and even at §=0.00001, crc32
still showed nearly 100% overhead. Thus, sampling alone is insufficient to achieve practi-

cal performance for CFA.

49

In summary, sampling reduces the security guarantees by failing to cover the whole-program ex-
ecution and does not sufficiently reduce performance costs, making it unsuitable as a standalone

approach for scalable CFA.

2.6 Summary of BLAST

Whole program CFA has proven to be an elusive goal. This paper showed that prior meth-
ods for CFA fail to scale to whole program paths because of the prohibitive number of TEE
domain transitions that they make. We then proposed BLAST, which combines local logging,
optimal instrumentation placement in P and software fault isolation in a novel way, thereby
enabling whole-program CFA with runtime performance overheads of 67% on a set of embedded

benchmarks.

20

Chapter 3

Non-Bare-Metal User-Space
Control-Flow Attestation

3.1 Motivation

CFA assumes that the path measurements of P are integrity-protected as they are recorded and
communicated to the TEE. Instrumentation in P invokes the TEE to either store path measure-
ments as soon as an event of interest is recorded [5, 87] (e.g., when a branch is taken) or caches
them in a CFA log and periodically flushes them to the TEE as was done in BLAST (Chapter 2).
The latter case vastly improves the performance of CFA, but requires protecting the state of
the log from unauthorized modification. This is enabled in P via either software-fault isolation
(SFI) [90] or hardware support (e.g., Intel MPK [57, 101]).

Section 3.2 shows that in non-bare-metal settings, the security assumptions made by prior
CFA methods do not hold. Attacks on the REE OS may compromise P’s TEE invocations
and/or the corrupt the measurements cached in the CFA log. These attacks completely subvert
the guarantees offered by CFA, thereby greatly limiting the scenarios where it can be securely
used. While the assumption of bare-metal execution may hold for specialized embedded de-
vices, it does not hold for higher-end devices. For example, many embedded devices, robots
and even satellites [45] contain powerful processors and allow concurrent execution of multiple
applications. The presence of an REE OS greatly eases application development and isolation
by enabling abstraction and virtualization of the hardware. Blindly trusting this REE OS, as
prior non-bare-metal CFA approaches [7, 89, 101] have done, risks bringing a large, potentially
vulnerable OS code base into the TCB [24, 62]. System-level adversaries with control over this

REE OS can completely subvert the guarantees required for CFA to operate securely.

o1

The main contribution described in this chapter is Sulfur, a system architecture that enables
robust CFA of user-space applications in non-bare-metal settings. We use the term robust to
mean that the program trace recorded by CFA is an accurate record of the user-space program
P’s execution—see Section 3.5 for a formal treatment of robustness. CFA methods are able to
record correct information regarding program execution paths only when certain assumptions
regarding the execution environment hold. SULFUR achieves this goal via a co-developed REE
OS, SULFUROS, atop which the CFA measurements collected during the execution of a user-
space program P remain secure despite the presence of a system-level adversary (that may have
hijacked SULFUROS at runtime). The co-developed REE OS incorporates defenses to protect
critical components in the REE OS and user space from adversaries. Having a secure foundation
in the REE allows SULFUR to protect the assumptions required for CFA and robustly attest the
execution of user-space programs in non-bare-metal settings. Our SULFUROS prototype, which
targets the AArch64 architecture and is based on Linux, accomplishes this goal using A Arch64’s
privileged-access never (PAN) [13] and privileged-execute never (PXN) [14] to ensure that
SULFUROS cannot access data or execute instructions in P’s address space. Similar features
exist on x86 CPUs as well—supervisor-mode access prevention (SMAP) and supervisor-mode
execution prevention (SMEP) [57].

SULFUROS uses an approach akin to paravirtualization [24, 27] to ensure that any security-
critical changes that can potentially violate the guarantees required for CFA, e.g., modifications
to system-control registers, are shepherded via the TEE where a trusted SULFUR MONITOR
performs these modifications after suitable security verification. SULFUROS is compiled with
control-flow integrity (CFI) protection [3] enabled using AArch64’s branch-target instructions
(BTI) and pointer-authentication codes (PAC) [77]. Once SULFUROS’ image is attested and
verified at boot-time by TEE, CFI restricts the power of any run-time attacks that can be
launched by an adversary against SULFUROS. Section 3.3 and Section 3.4 describe the design
and implementation of SULFUR and SULFUROS.

Our evaluation shows that SULFUR imposes only minimal additional runtime performance
overhead on existing CFA systems. For example, using the Embench-IoT embedded benchmark
suite [1], we found that SULFUR imposes an average additional overhead of just 1.95% (on
average) for CFA-based attestation of a program, compared to CFA-based attestation atop
a commodity Linux OS. This overhead primarily stems from the additional security checks
performed within SULFUROS and the TEE to protect the security state of a program P as it is
traced using CFA’s mechanisms. As SULFUR enables non-bare-metal execution of P, i.e., atop
an OS, other programs that are not CFA-instrumented can also execute concurrently with P—a

feature not easily possible in bare-metal settings. Such programs suffer a runtime overhead of

52

just 1.73% on average when running atop SULFUROS, again using the Embench-IoT benchmark
suite.

To summarize the main contributions described in this chapter:

e We show that prior methods for CFA, which have focused on bare-metal settings, are

insecure when applied to programs that run in non-bare-metal settings (Section 3.2).

e We present the design (Section 3.3) and implementation (Section 3.4) of SULFUR, a
system that securely enables user-space CFA in non-bare-metal settings. SULFUR allows
robust CFA measurement of a user-space program P that runs on top of a customized
OS—SULFUROS—that leverages hardware support (PAN and PXN) to protect CFA state
before it is committed to the TEE.

e Our evaluation of SULFUR (Section 3.6) with various benchmarks shows that it accom-

plishes its goals without excessive runtime performance overheads.

3.2 System-Level Adversaries and CFA

Most prior CFA methods operate under the assumption of a bare metal setting, where the
program P being attested runs directly on the hardware in privileged mode. P interfaces with
hardware via interrupt service routines (ISRs) and CFA approaches attest the execution of
the main program P. ISRs execute non-deterministically because they are invoked whenever
interrupts arrive. To ensure the integrity of CFA during ISR execution, P’s context must be
saved and restored from the TEE [69]. Alternatively, the execution of the ISR itself can be
traced with CFA [87]. However, because ISRs execute non-deterministically, CFA measurements
of ISRs must be stored separately from P’s CFA measurements as non-determinism complicates
the task of the verifier V. CFA techniques primarily focus exclusively on control-flow behavior,
but can be supplemented to record sensitive data values as well [87, 93]. Because only one
application runs in this setting, attesting P suffices to ensure execution integrity, and the TCB
is typically the TEE, consisting of a secure-boot mechanism and a security monitor.

In the few instances when CFA has been applied in non-bare-metal settings [7, 89, 101], the
focus has been on scale and performance. These methods have extended CFA to efficiently attest
complex user-space applications. However, these methods fundamentally trust the underlying
OS, which is therefore part of the TCB. Including the large, vulnerable code-base of the OS
in the TCB is fraught with risks. A vulnerable OS can be compromised (e.g., with kernel-
level rootkits) and as we describe below, can subvert many assumptions that CFA requires for

security.

23

System-Level Adversaries in Non-Bare-Metal Settings. In non-bare-metal settings,
CFA relies critically on the underlying REE OS to be trustworthy, failing which CFA cannot be
trusted to robustly record the execution of a user-space program P. Traditional CFA methods
are robust against application-level adversaries that tamper with P’s control-flow, e.g., by
modifying condition variables, code pointers and return addresses. However, they do not work
if the REE OS is under the control of a system-level adversary, SysAdv. Such an adversary in
the OS can compromise the foundational requirements for CFA of P viz., integrity of P’s code,
execution state, and the CFA measurement generated by the CFA mechanism, as described
below. Moreover, unlike application-level adversaries, whose actions will leave a detectable
trace in the CFA measurement, SysAdv can subvert CFA stealthily by corrupting the execution
state of P. The measurement report in the presence of SysAdv can therefore no longer serve
as a robust record of P’s execution. The presence of SysAdv compromises the following key

foundational requirements required for CFA:

e [R1] Write eXecute Never (WXN): Disabling WXN enables code injection or modi-
fication in P. Without exception, all CFA approaches assume that WXN is enabled (also
colloquially called data-execution prevention), and all of them are subverted by violating

this invariant.

e [R2] Secure communication with the TEE: All interactions between P and TEE pass
through the REE OS, which the SysAdv can intercept or manipulate, thereby corrupting

the CFA measurement.

e [R3] Integrity of execution state during interrupts: SysAdv can alter return ad-
dresses saved during interrupts and context switches, causing the application to resume
execution from incorrect locations. Some CFA approaches use dedicated registers to store
CFA state (Chapter 2, [7]), and SysAdv can corrupt those registers as well. SysAdv, with
full control over the REE OS, can control when interrupts occur and use them to stitch
together gadgets that can bypass CFA instrumentation in P entirely. Such attacks have
even been demonstrated in bare-metal environments through ISR compromise [69], show-
ing that even minimal underlying software layers can be exploited. A full-fledged REE

OS presents a much larger attack surface with multiple threat vectors available to SysAdv.

e [R4] Integrity of CFA,,: Prior methods have suggested that CFA measurements can
be cached in P’s address space (CFA[,,) using suitable methods to isolate them from P
(e.g., Chapter 2, [74, 93, 101]) or in a kernel-protected region [89]. This approach has

o4

enabled massive efficiency gains, but the integrity of CFA,, can be compromised by
SysAdv.

Consequently, CFA mechanisms in P cannot be considered robust in the presence of a

system-level adversary that compromises the REE OS, thereby violating the above assumptions.

Additional protections are required to ensure that the CFA measurements are recorded securely

and accurately reflects P’s true control-flow execution.

Why Not Apply CFA to the REE OS? Given these threats, it is natural to ask why
CFA methods cannot be extended to the REE OS code also, thereby providing comprehensive

system-level measurement. There are two reasons why this approach is challenging:

1. Performance overheads. By design, CFA records the proof of execution of a program P

on input J. This requires CFA to trace every aspects of a program P’s control-flow, thereby
making it a performance-intensive technology. Early work [5, 6, 87] only applied it to
fragments of P, but subsequent optimizations have reduced the overhead of running CFA
on whole programs to between 42%-67% across various benchmarks (Chapter 2,[74, 101]).
That said, extending CFA to the REE OS code base would impose significant performance
overheads and result in vast measurement logs. For example, we estimated that the
execution of a single write system call to commit a 1MB file to disk would result in about
415,000 control-flow events being added to the measurement log. Executing the attendant
instrumentation to write these measurements, and protect CFA,, if measurements are

cached in the REE, results in large performance penalties.

. Non-determinism in the OS. Support for concurrency, external I/O and interrupts are
sources of non-determinism in an OS. CFA tracing records control-flow events of interest in
a measurement log that a V must then be able to interpret and verify. It is challenging to
interpret entries in the measurement log with multiple sources of non-determinism. Even
in bare-metal settings with a single program P executing, the CFA traces of ISRs must
be recorded separately [87] to allow easy interpretation of the log to trace P’s execution.
These problems will exacerbate in a full-fledged REE OS.

SULFUR addresses these challenges by exploring a novel point in the design space. Our co-

developed REE OS, SULFUROS incorporates CFA-centric defenses using PAN/PXN in AArch64
to ensure that user-space CFA state cannot be accessed by SysAdv. SULFUROS incorporates

safeguards to protect its own runtime integrity from SysAdv. Its execution is constrained by
CFI protection using AArch64’s PACBTI [20] to restrict the power of control-hijacking attacks,
and by TEE-mediated security checks [24, 49] that restrict its ability to modify its own state.

95

3.3 SULFUR: Assumptions and Design

Before presenting the threat model and assumptions of SULFUR, we first outline the traditional
CFA threat model and assumptions. This separation clarifies how SULFUR extends the standard
CFA setting and helps situate SULFUR within the prior literature.

Traditional CFA Threat Model and Assumptions. The prover platform is assumed to
be equipped with a hardware-based TEE, such as the ARM TrustZone. The adversary typically
includes a software attacker who can manipulate user-space code or data but cannot compromise
the trusted component (e.g., the TEE or TPM). Prior works generally assumes either a bare-
metal environment, where the program runs directly on hardware, or a trusted OS in the REE,
which isolates the attested program from untrusted entities. The platform performs a secure
boot process rooted in the hardware, ensuring that only verified code executes in both the REE
and the TEE.

Goal and Scope of Sulfur. SULFUR aims to ensure that the CFA measurement collected
when P executes J is an accurate evidence of P’s execution. With SULFUR, this evidence is
robust even in the presence of SysAdv in the REE. See Section 3.5 for a formal definition of
robustness of CFA. Our focus is on control-flow attacks on P, though it can also be extended
to record data values of interest in a manner similar to prior work [87, 93]. Unlike prior works
that either assume a bare-metal setting or a fully-trusted REE OS, SULFUR targets a practical
middle ground—it operates in non-bare-metal settings with SULFUROS—an REE OS that is
specifically co-developed to ensure that CFA artifacts cannot be compromised by SysAdv. In
SULFUR, CFA measurements only record the user-space operations of a program P. P may
invoke system calls to SULFUROS, but in-kernel program paths followed by system calls are
not recorded in CFA measurements. We rely on CFI and other system integrity guardrails to
ensure that system calls proceed to completion. Successful completion of I/O by peripherals is
beyond the scope of CFA and SULFUR.

Assumptions. Similar to the traditional CFA settings, SULFUR requires the prover platform
to be equipped with a TEE, viz., the ARM TrustZone in our prototype. P runs as a user-
mode process in the REE and is managed by the REE OS. We assume that the TEE, i.e., the
secure world in ARM Trustzone, cannot be tampered with by any software running in the REE,
including the REE OS. The prover platform is booted securely, with a hardware root of trust

storing boot-time measurements, and the memory is assumed to have been configured properly

o6

REE(Normal World) TEE(Secure World)

- e
P | cra
§ S-Vault : \Trusted Agent| ELO
SULFUR OS : TEE OS EL1
' [/, SULFUR
: MONITOR EL3

SULFUR’s components (shown with hatching), include S-Vault and SULFUROS in the normal
world (i.e., the REE) and SULFUR MONITOR in the secure world (the TEE). Exception level
(abbreviated EL) is the privilege level in ARM, higher values represent higher privilege. The
TEE contains a trusted user-space application (abbreviated TA) that interfaces with P in the
REE to collect and store path measurements. SULFUR’s TCB includes SULFUR MONITOR
and the components executing in the TEE.

Figure 3.1: Overview of Sulfur’s architecture.

at boot time by the TEE. This boot process ensures that the correct OS image is loaded for
execution within the REE, i.e., a boot-time static measurement of this OS is recorded in the
TEE. We additionally also assume that the AArch64-based prover platform supports PAN [13],
PXN [14], and PACBTI [20], as introduced in ARMv8.3-A and above.

Threat Model. SULFUR operates under the assumption of a system-level adversary SysAdv
in the REE. SULFUR’s TCB consists of SULFUR MONITOR and the components running in
the ARM secure world. The TEE measures and boots SULFUROS in the REE, whose code
incorporates system-integrity guardrails and CFA-specific mechanisms, to ensure that CFA
works as intended on user-space programs in the REE. We disallow dynamic loading of kernel
modules after SULFUROS has booted, which prevents introduction of any new kernel-mode
code after boot time. SysAdv may attempt to exploit vulnerabilities in SULFUROS or user-
space to violate CFA requirements (i.e., R1-R4 in Section 3.2), but user-space CFA must still
be robust. SULFUR inherits all the standard assumptions made about a user-space program
P in bare-metal CFA, e.g., that P is instrumented suitably for CFA and its image is attested
before it executes. In non-bare-metal settings, CFA relies on the REE OS to provide features
such as WXN, facilitate interaction with the TEE and to set up a secure region for CFA .

SULFUR’s CFA-specific mechanisms securely enable these features in the presence of SysAdv.

57

3.3.1 Overview of SULFUR

Figure 3.1 illustrates the key components of SULFUR on the prover platform. SULFUR intro-
duces a set of carefully engineered defenses that protect CFA from SysAdv in the REE. These
defenses (Table 3.1) are broadly classified as:

e System integrity guardrails: These guardrails are incorporated into SULFUROS to
ensure that security-sensitive operations, e.g., changes to system configuration or SUL-
FUROS’s page tables, are redirected to and shepherded by SULFUR MONITOR. SULFUROS
is compiled with CFI, limiting the power of kernel code-reuse attacks by SysAdv.

e CFA-centric protections: These mechanisms safeguard the execution state of P, CFA-
related artifacts, e.g., CFA,,, and REE/TEE communication from SysAdv.

System integrity guardrails aim to protect both the integrity of the OS and the critical
state of the system from SysAdv. Guardrails inserted at security-sensitive locations in the
SULFUROS kernel invoke the TEE. These invocations are akin to paravirtualization [27]—
they invoke SULFUR MONITOR via an ARM secure monitor call (SMC), which in turn invokes a
trusted agent in the secure world. This trusted agent ensures that key system configurations
are not tampered (e.g., that WXN remains enabled), prevents any compromise of SULFUROS
and application code integrity, and mediates all changes to SULFUROS page tables. This
approach is inspired by Knox [24, 49], and ensures the integrity of SULFUROS system state
and code throughout the lifetime of the system, thus enabling other defenses to operate reliably.
SULFUROS is hardened against control hijacking by enabling PACBTI-based CFI [20] within
the kernel. PACBTI-based CFI is now deployed in most commodity compilers. Section 3.4.2
describes the implementation of these guardrails.

SULFUR’s CFA-centric protections are a novel set of mechanisms that focus on securing user-
space CFA artifacts using hardware support. The centerpiece of these protections is a dedicated
memory region called S-Vault (Section 3.3.2) in the address space of the program P being
traced by CFA. S-Vault serves as a storage space for three CFA artifacts: @ as a cache of CFA
measurements, i.e., CFA1,,, @) to store P’s context during entry/exit to the SULFUROS kernel,
and @ to hold arguments during TEE invocations to store CFA ,,. Although S-Vault resides
in user-level, SULFUR protects it from SysAdv using PAN. Specifically, PAN disallows privileged
code (thus SysAdv) from accessing user-space addresses, and memory load/store operations in
SULFUROS’s code are restricted by PAN (with a few exceptions). Section 3.4.1 details the

implementation of these protections.

o8

Threats to — ‘ Protected by — ‘ Refer —
System Integrity Guardrails

REE system configuration SULFUR MONITOR §3.4.2.1
SULFUROS code integrity SULFUR MONITOR §3.4.2.2
SULFUROS control-flow PACBTI-based CFI §3.4.2.2
CFA-Centric Protections

P’s code integrity SULFUR MONITOR §3.4.1.1
P’s execution context SULFUROS gates & S-Vault | §3.4.1.2
CFA L., S-Vault §3.4.1.3
Attestation call State bit & S-Vault §3.4.1.4

Table 3.1: Summary of Sulfur’s protections.

Together, these two sets of defenses enable SULFUR to offer robust user-space CFA measure-
ments. They isolate and protect P’ execution state and its CFA measurements, ensuring that
any deviation in P’s control flow, whether due to attacks in P or SULFUROS, either cannot
modify or leave a detectable attack trail in CFA measurements. SULFUR’s use of hardware
features (PAN/PXN/PACBTI) allows the defenses to be lightweight.

3.3.2 S-Vault: A Protected, User-Space Region for CFA

At the core of SULFUR’s design is S-Vault, a protected user-space memory region for CFA. For
a user-space program P that is to be attested via CFA, SULFUR MONITOR allocates space for
S-Vault in P’s address space. We choose to create S-Vault in P’s address space instead of the
TEE because that approach would then require an expensive REE/TEE transition for each
access to S-Vault. Prior work ([89, 93], Chapter 2) has shown that that minimizing REE/TEE
transitions is key to reducing performance overheads of CFA. SULFUR uses AArch64’s PAN
and SFT to protect S-Vault from unauthorized accesses in the REE.

PAN [13] is a security feature introduced in ARMvS8.1-A that prevents privileged OS code
(executing at EL1) from accessing user-space memory (EL0) using standard load/store instruc-
tions (i.e., LDR/STR). With PAN enabled, user-space memory access from the OS results in a
fault. To access user memory intentionally, the OS must use PAN-aware instructions, called
unprivileged load (LDTR) and store (STTR) instructions, which are checked against ELO page
permissions, even when executed in privileged mode. PAN is enabled by setting the PAN bit
in the SCTLR_EL1 system control register. SULFUROS is designed to only use LDR/STR instruc-
tions for all kernel memory accesses. This ensures that user-space memory, including S-Vault,
remains inaccessible to SULFUROS.

However, there are situations in which SULFUROS does legitimately need to access user-

29

and x3, addr, #Ox7ffffffffffff000 // mask store addr
cmp x3, =S-Vault_addr // compare masked store address
b.e abort // Branch to abort if equal
sttr reg, [addr] // store instruction

Figure 3.2: SFI check inserted before a STTR instruction in a user-access function.

space memory regions, for example, to read/write data from user-space for I/O. In fact,
OS kernels have dedicated user-access functions, e.g., get_user, put_user, copy_from user,
copy_to_user, strncpy_from user, that are used for this purpose. Such functions in SULFUROS
use LDTR/STTR instructions, suitably protected using SFI as described below, to access user-space

application buffers.

SFI-protection in SulfurOS. User-access functions in SULFUROS that have the LDTR/STTR
instructions must not be allowed to modify S-Vault. To ensure this, SULFUROS incorporates
SFT checks on STTR instructions within these functions. Figure 3.2 shows SFI checks inserted
before a STTR instruction in copy_to_user, with the mask-based checks ensuring that the store
does not target the memory region allocated to S-Vault.

The STTR instruction writes the value of the register reg to the address addr. The size
of S-Vault is configurable for a given platform. In the example above, we illustrate the SFI
instrumentation in SULFUROS assuming that the size of S-Vault is 4KB (i.e., one page). It
is allocated at a fixed virtual address within each CFA-traced user process P’s virtual address
space by SULFUR MONITOR before execution. The instrumentation above applies an address
mask to the store address to obtain a page-aligned memory address. Address masking based
SFT is possible when the size of the S-Vault is a multiple of the page size, and is generally more
efficient than performing address range checks [88, 90]. The masked address is then compared
against the fixed start address of the S-Vault, provided as an immediate operand value in the
cmp instruction. If the two values are equal, it indicates that addr is within S-Vault. The abort
code terminates P and in turn the collection of CFA measurement; the attack attempt will thus
be visible to V.

The above SFT instrumentation is secure only if arbitrary control transfers are restricted in
SULFUROS. In particular, control-hijacks in SULFUROS must not be able to bypass the SFI
checks before STTR. We ensure this by enforcing PACBTI-based CFI in SULFUROS. PACBTT is
a security extension introduced in the Armv8.6-A architecture. It combines two complementary
mechanisms, BTI and PAC, to defend against control-flow hijacking attacks. BTI inserts special
instructions to identify valid landing pads and provides forward-edge CFI. BTT instructions (bti

60

c/bti j) serve as designated control-flow landing pads. When BTT is enabled, the processor
ensures that indirect branches can only target these landing pads, failing which the hardware
raises an exception. PAC provides pointer authentication using reserved upper-order bits in a
64-bit pointer to store a signature (using new AArch64 instructions). This signature, called
a pointer authentication code, is formed from the pointer address itself, a cryptographic key
(stored in dedicated 64-bit system registers), and a modifier (e.g., stack pointer). PAC is used to
sign and verify pointers, e.g., return addresses, function pointers. For example, at the start of a
function, the return address in the LR register is signed, and is authenticated using the signature
before returning. If the check fails, the hardware throws an exception, thereby ensuring that
PAC provides backward-edge CFI.

By enabling PACBTI in SULFUROS and protecting the PAC keys stored in system registers
(Section 3.4.2.1), we ensure that SysAdv cannot arbitrarily redirect control flow to instructions
in the middle of a basic block. In particular, by ensure that no BTT landing pad exists between
the SFI check and the corresponding STTR instruction, any potential control-flow hijacks within

SULFUROS cannot bypass the SFI check and thus protecting S-Vault from SysAdv.

SFI-protection in P. Protecting S-Vault from unauthorized access within the CFA-traced
program P is also crucial. We add SFT checks in P to prevent unauthorized accesses to S-Vault,
as described in prior work (Chapter 2, [74]).

These methods, which cache CFA measurements in the process address space (CFAL,,),
create an isolated memory region for storing measurements using SFI. In SULFUR, we place
CFA o4 in S-Vault and use SFI address range checks with store instructions in P to safeguard
S-Vault. P can only access S-Vault through CFA instrumentation explicitly added to store path
measurements. A key difference between the SFI instrumentation in P and the instrumentation
in SULFUROS shown earlier is the placement of the SFI checks. Using the same trick as in
Chapter 2, the SFI check is placed after the store instruction, unlike conventional SFI. This
is necessary because we do not require P to be CFI-protected, as is standard in most prior
CFA work (except CFA+ [7] which was the first to combine CFI and CFA). In the absence of
CF1I, control can be hijacked to execute the store instruction. Placing the SFI check after the
store ensures that it will necessarily execute afterwards and detect attempts to target S-Vault.
S-Vault also doubles as the storage space for arguments to TEE calls from P (to flush CFA,,)

and to store P’s execution context during system calls, context switches and other interrupts.

61

3.4 Implementation of SULFUR

Our prototype targets an AArch64 TrustZone-based prover platform equipped with PAN/PXN /-
PACBTI. The REE (normal world) of this platform runs SULFUROS, which is built as a general-
purpose OS by modifying Linux-6.7.0. It can execute arbitrary user-space processes, only some
of which may be instrumented for CFA. For the TEE, our prototype uses OP-TEE [76], which
runs OP-TEE OS as the TEE OS, and ARM Trusted Firmware [17] as the secure monitor
running at EL3. We implement SULFUR MONITOR as a security service in the secure monitor,
running at EL3. SULFUR MONITOR initializes platform-specific configurations—creating its page
tables, enabling the MMU, and setting up runtime services for handling SMCs. It verifies SMC
validity and directs control to the specified SMC handler routine [21]. After booting the TEE
OS (in the secure world), SULFUR MONITOR initializes the processor context for REE (nor-
mal world) boot and transitions control to the SULFUROS at the highest available exception
level (EL2/EL1). SULFUROS incorporates SMC hooks that facilitate seamless control transfer
to SULFUR MONITOR at strategic points to protect system state and OS integrity as discussed
in Section 3.4.2. We first discuss the main contributions of SULFUR, which focus on ensuring
robust CFA of P.

3.4.1 CFA-Centric Protections

Software-based CFA approaches require P’s code integrity to be protected. SULFUR ensures
the integrity of P’s code and thus the associated CFA instrumentation. In addition, SUL-
FUR protects the integrity of P’s execution context, CFA measurements stored in the REE
(i.e., CFA o4, dedicated registers) and attestation calls made to the TEE via SULFUROS. Re-
call that SULFUROS is a full-service OS on which a program P being CFA-attested can co-exist
with other programs that are not being attested. SULFUR distinguishes a program P to be CFA
attested from other programs using a unique identifier that we add to the binary header of P

(e.g., when P is being instrumented for CFA).

3.4.1.1 Protecting Code Integrity of P

To ensure the integrity of P’s code, SULFUR: (D) verifies the hash of P’s binary at startup, and
(2 protects the integrity of P’s code at runtime.

1. Binary verification and initialization. SULFUROS’ process creation code (exec())
invokes the SULFUR MONITOR to determine whether the binary is to be attested with
CFA. If so, the SULFUR MONITOR records the binary’s hash in the TEE. Since SULFUROS

62

is restricted from directly modifying security-critical system state such as the TTBRO_EL1
register (which is the process page table base register in AArch64), it delegates the update
to the SULFUR MONITOR. Before setting this register, the SULFUR MONITOR performs a
page table walk to enforce memory safety guarantees: @ code pages must be mapped as
read-execute (RX) only; (b) data pages must be read-write (RW) only; and © no physical
page may already be used elsewhere with conflicting permissions. Any violation results

in immediate termination of the process.

Once the verification succeeds, the SULFUR MONITOR updates its internal list of physical
frames and permissions, and safely sets the TTBRO_EL1 register. It also sets a reserved
bit in TTBRO_EL1 to denote that the process is being traced via CFA. This flag allows
the SULFUR MONITOR and SULFUROS to distinguish CFA-traced processes from others,
supporting concurrent execution of both types of processes. These steps are performed
for every new process. All future writes to TTBRO_EL1 by SULFUROS (e.g., during context
switches) results in a call to SULFUR MONITOR, ensuring only verified page tables are
activated. This prevents attacks that attempt to use duplicate page tables with altered

access permissions.

2. Protecting P’s code integrity. To preserve the integrity of P’s code throughout exe-
cution, SULFUR MONITOR enforces strict control over the modifications of the page table.
It write-protects the page tables of P. Any attempt to allocate memory or change per-
missions, which causes page faults triggers a request to SULFUR MONITOR, which checks
that new mappings do not violate the original protection rules or reuse physical pages in
unsafe ways. By delegating memory management to a trusted agent outside SULFUROS,

SULFUR prevents runtime code injection or permission tampering.

3.4.1.2 Protecting Integrity of P’s Execution Context

Ensuring integrity of P’s code alone is insufficient to guarantee the integrity of its execution. In
non-bare-metal settings, context switches between processes and interrupts that transfer control
to the OS are routine. The kernel saves P’s context on the kernel stack and continues servicing
the interrupt/system call request. The guarantees of CFA can be completely subverted if P’s
context is modified by SysAdv, i.e., without leaving a trace in P’s attestation log. SULFUR’s
design protects the integrity of the P’s context and ensures that P resumes correctly after

interruption.

63

Protected Memory

P
(ELO) Heap | Stack Data Code ; S-Vault
A
PR , v
LDR/STR T ‘~--<._ LDTR/STTR
SU%E&F;OS Heap |Stack|| Data || Code | SULFUROS Gates
Entry SULFUROS Gate Exit SULFUROS Gate

Uses STTR instructions to store all | |Uses LDTR instructions to
registers to S-Vault restore all register from S-Vault

The gates are straight-line code without any bti landing pads

Figure 3.3: Entry/exit gates in Sulfur save/restore process context in S-Vault using
unprivileged loads/stores.

Context Save/Restore Gates in SulfurOS. To protect P’s context (i.e., register state),
SULFUROS implements entry and exit gates at each entry point and exit point into the kernel
(Figure 3.3). Gates are implemented at system call entry/exit points, interrupt handlers, and
context-switch code. In addition to storing P’s context on the kernel stack (as normally happens
in an OS), the entry gate stores a copy of P’s context in S-Vault, and the exit gate restores P’s

context from S-Vault before returning control to the user-space.

Design of SulfurOS Gates. Since S-Vault is in P’s address space, the entry and exit gates
must use LDTR/STTR instructions to access S-Vault. SULFUROS gates are the only places in
SULFUROS (aside from user-access functions such as copy-to.user) that contain LDTR/STTR
instructions that allow the SULFUROS to write to user-space memory. PAN and SFI ensure
that S-Vault is inaccessible from SULFUROS besides the gates and user-access functions (Sec-
tion 3.3.2).

Normally, accesses to user-space memory via LDTR/STTR instructions must be SFI-protected
to ensure that they do not target arbitrary locations within P’s address space. However, the
process context is a data structure of definite size. By ensuring that S-Vault is always allocated
at a fixed virtual address in P, the gates hard-code the address of S-Vault and thereby avoid
the additional cost of an SFI-check. Control returns from the SULFUROS to P via exit gates,
which use LDTR instructions to read the saved process context from S-Vault and restore P’s

register state.

64

check_CFA_traced: // Check if app is being traced
mrs x19, ttbrO_ell // Load ttbrO_ell into x19
and x19, %19, #0x8000000000000000 // Mask all but bit 63
1sr x19, x19, #0x3f // Shift bit 63 to LSB postition
cmp x19, #0x01 // Compare with 1
bne skip // Branch to “skip” if not equal

Figure 3.4: SulfurOS code that checks whether the process P (in whose context
this code executes) is being attested by CFA.

Entry and Exit Gates in SulfurOS. We present relevant snippets of the low-level AArch64
code in SULFUROS. We start with Figure 3.4, which shows the code that determines whether
a particular process P is traced using CFA. In our prototype, we use the (otherwise unused)
bit-63 of the TTBRO_EL1 register to indicate that P is being attested via CFA. This bit is set
by the SULFUR MONITOR during process initialization to signal that the operation of P is
being attested by CFA. We fetch the value of TTBRO_EL1 using the MRS instruction, which reads
the value of a system register. If the bit is set, the program continues with the execution of
SULFUROS gates; otherwise, it skips the gates and proceeds to the kernel logic following the
gates.

Figure 3.5 shows relevant code snippets from an entry gate in SULFUROS. The function-
ality shown in this snippet saves AArch64 general-purpose registers of P into S-Vault before
continuing with kernel execution. This code loads the base address of S-Vault in a reserved
register, namely x19. The approach of using dedicated registers for user-space CFA has also
been explored in prior work on CFA e.g., [7], Chapter 2. In this case, SULFUR requires that
the register x19 be unused in the application P because its value is overwritten in the entry
gate before the values of other registers are saved. In our prototype, we used Blast (Chapter 2)
for CFA, which instruments the program P with CFA-related program instrumentation using
LLVM-compiler pass. We simply modify the register allocation policy in this compiler to avoid
using x19 when the binary code of P is generated. Blast already uses this approach of dedicated
registers to save the accumulated path measurements and a pointer to the head of CFA,,, and
it was therefore straightforward to extend it to reserve a register to store the head of S-Vault.

Once the base address of S-Vault is loaded in x19, all the general-purpose registers of P
are saved at an offset from x19. The listing shows all the general-purpose registers (x0-x30),
including x29 (frame pointer) and x30 (link register), are saved sequentially using the STTR
instruction to ensure that the values of the user-space register remain protected during SUL-
FUROS execution.

Finally, Figure 3.6 shows the exit gate, which restores the previously saved general-purpose

65

entry_gate: // Save registers to S-Vault
ldr x19, =S-Vault_addr // S-Vault base address in x19
sttr x0, [x19, #8 * 0] // Store register z0
sttr x1, [x19, #8 * 1] // Store register zl

sttr x29, [x19, #8 x 29] // store register z29 (FP)
sttr x30, [x19, #8 x 30] // Store register z30 (LR)

Figure 3.5: Entry gate in SulfurOS: Saving user-space register values to S-Vault
during kernel entry.

exit_gate: // Restore registers from S-Vault
ldr x19, =S-Vault_addr // S-Vault base address in x19
ldtr x0, [x19, #8 * 0] // Restore register z0
ldtr x1, [x19, #8 * 1] // Restore register =zl

ldtr x29, [x19, #8 * 29] // Restore register z29 (FP)
ldtr x30, [x19, #8 * 30] // Restore register z30 (LR)

Figure 3.6: Exit gate in SulfurOS: Restoring user-space registers from process
context saved in S-Vault.

register state from S-Vault upon exit from kernel. This step ensures that the user-space appli-
cation resumes with an untampered register state. Like in the entry gate, the exit gate loads
the base address of S-Vault into the reserved register x19, and the subsequent LDTR instructions
restore the values of all the registers. We observe that neither the entry nor the exit gates con-
tain any BTT landing pads, thereby preventing any potential control-flow hijacks in SULFUROS
from re-executing gate code or use them as part of gadgets.

Other user-space context registers—SP_ELO (user stack pointer), ELR EL1 (exception return
address), and SPSR_EL1 (saved processor state)—are system registers. They can only be mod-
ified using MSR (write) instructions from exception level EL1 or higher. As we discuss in Sec-
tion 3.4.2.1, all code locations in SULFUROS that should otherwise have MSR instructions are
replaced with SMC instructions that invoke SULFUR MONITOR. SULFUR MONITOR in turn re-
stores the values of these registers from S-Vault before returning control back to the process

P.

Reliable Execution of SulfurOS Gates. To ensure reliable, secure execution of SUL-
FUROS gates, two key properties must hold: @ gates must not be bypassed on entry/exit
to/from the kernel and save/restore the user context correctly, and (b) they must execute atom-
ically without being re-executed during normal execution of SULFUROS. Re-execution of the

gates can be misused to tamper with the S-Vault. Property @ is ensured by the architecture:

66

for any exception that arrives from user space (ELO), the AArch64 Linux kernel contains fixed
exception vector entries, which follow a standarized register saving prologue before serving the
exception. For example, the AArch64 SVC instruction transfers control to the el0_sync vec-
tor, and on user-mode interrupt entry, control goes to el0_irq; these vectors use a common
kernel entry code which saves the registers on the kernel stack. SULFUROS injects the entry
gate logic inside the kernel_entry macro, which executes for all ELO exceptions. Similarly, the
exit gate logic is inserted into the kernel exit macro which restores the register values, placed
just before the ERET instruction, which is invoked in the ret_to_user path to return control
to the user space. This placement of gates guarantees that the gates are executed on every
transition between user space and kernel, ensuring reliable execution.

SULFUROS enforces property (b) using PACBTI-enabled CFI in SULFUROS. PACBTI pre-
vents control-flow hijacks that could allow an attacker to re-enter a gate or jump midway
e.g., directly to ERET. Since our implementation of entry/exit gates contains no BTI landing
pads, PACBTT ensures they execute exactly once, from start to end, and only through valid
control paths. This guarantees that context is reliably saved /restored using gates and that the

S-Vault remains protected from tampering via misuse of gates.

3.4.1.3 Protecting Integrity of CFA Measurements in REE

Prior work has used various techniques to trace the execution of program P. Early work
on CFA (e.g., [5, 87]) sent all control-flow events to the TEE and maintained a cumulative
hash of the trace in the TEE. Subsequent refinements have explored ways to store traces in
a more efficient manner in the REE before they are committed to the TEE. Log-based CFA
approaches store CFA measurements in an isolated region in the REE (i.e., CFA[,,) enabled
via SFI ([74, 93], Chapter 2), kernel support [89] or hardware support (e.g., Intel MPK [101]).
Some approaches ([7], Chapter 2) record CFA measurements in dedicated registers. Although
secure under previous threat models, these approaches are not secure against attacks from
SysAdv.

e Protecting CFA measurements in log-based CFA approaches. CFAj,, is not
secure when the REE OS is excluded from the trust boundary. Hence, we must store
the CFA[,, in a protected region inaccessible to the REE OS wviz., S-Vault. As discussed
in Section 3.3.2, S-Vault is protected from unauthorized accesses by SULFUROS using
PAN load/store instructions within the kernel. In P, only CFA instrumentation can
append entries to the CFA 1, placed inside S-Vault, it ensured via SFI checks in P ([74],
Chapter 2).

67

e Protecting CFA measurements in reserved registers. CFA approaches that dedi-
cate reserved registers for recording CFA measurements (e.g., [7, 22], Chapter 2) are secure
against application-level attacks. However, these registers are accessible to SysAdv when
they are saved during interrupts and context switches. SULFUR protects the integrity of
CFA measurements recorded in dedicated registers by saving the registers in S-Vault dur-
ing interrupts and context switches. In fact, SULFUR protects all saved registers during

context switches/interrupts as discussed in Section 3.4.1.2.

3.4.1.4 Protecting Integrity of Attestation Calls

SULFUR facilitates secure communication between P in the REE and the TEE. CFA instrumen-
tation in P interacts with the TEE to record CFA measurements and sign the measurements for
transmission to the remote verifier. We term each call to the TEE from CFA instrumentation
in P as an attestation call. Each attestation call is an SMC with specific arguments indicating
the TEE functionality to be invoked and any associated parameters. For example, in CFLAT,
an SMC call will invoke an agent in the TEE to record identity of basic block, and provide this
identity as the parameter. P passes these arguments to SULFUROS via registers; they are stored
temporarily on the kernel stack, and subsequently transmitted to the TEE through registers.
To safeguard the integrity of these arguments, we enhance the attestation call mechanism
used by P. We establish a shared memory region within S-Vault at a fixed virtual address of P,
which is made accessible by both P and the TEE. We modify the attestation calls in P to store
arguments in this shared region inside S-Vault. Recall that with PAN enabled, SULFUROS
cannot modify the contents of S-Vault. However, recognizing that SULFUROS facilitates these
calls on behalf of P and could potentially elide them via runtime attacks, we incorporate an
additional verification step within P itself before making each attestation call. Immediately
before initiating an attestation call, P sets a sentinel bit, attest-bit, in the shared memory
region in S-Vault. When the agent in the TEE services the attestation call, it resets attest-bit.
Following an attestation call, instrumentation in P checks the value of attest-bit, which must
be 0 if the call was properly serviced. If not, it indicates that SULFUROS has bypassed the
attestation call. Note that SULFUROS cannot modify attest-bit because it resides in S-Vault.
Lastly, we consider the case wherein SULFUROS attempts to subvert CFA by making ad-
ditional spurious TEE calls with arbitrary arguments instead of the ones passed by P. CFA
measurements are stored in an append-only log in the TEE, and such an attempt by SUL-
FUROS would easily be caught during CFA verification because the log would deviate from the

expected execution of P.

68

3.4.2 System Integrity Guardrails

SULFUROS incorporate guardrails that help build a secure foundation for CFA-centric defenses.
These include lifetime integrity protection of the REE system configuration and code of the
SULFUROS.

3.4.2.1 System Configuration Protection

SULFUROS is designed so that it cannot directly modify system configuration. In AArch64, sys-
tem configuration is managed through system registers, accessed via MRS (read) and MSR (write)
instructions [16]. As previously discussed, SULFUROS is implemented by modifying Linux.
Each occurrence of MSR in Linux is replaced with an SMC in SULFUROS, which invokes SUL-
FUR MONITOR. Upon being invoked, SULFUR MONITOR updates the system registers, ensuring
that updates do not compromise hardware protection mechanisms. Specifically, SULFUR MON-
ITOR guarantees that WXN, PAN, and MMU protections are never disabled. WXN is enforced
by setting the write-execute never (WXN) bit in the system control register (SCTLR-EL1) [15].
When SCTLR-EL1.WXN is set, writable pages are treated as execute never (XN), enhancing secu-
rity against code execution from writable memory. MMU functionality is enabled by setting
the SCTLR_EL1.M bit, crucial for enforcing memory protection (e.g., page permissions). PAN
protection is activated by setting the SCTLR_EL1.PAN bit, preventing kernel access to user space
memory. PAC keys are stored in system registers. By replacing all MSR instructions with SMC in
SULFUROS, we ensure that PAC keys cannot be accessed and tampered with from the REE.
Linux contains several references to MSR instructions in exception handling code, which posed
a key challenge in making the necessary modifications for SULFUROS. Upon an exception, the
processor hands control to privileged software, which must execute a handler specific to that
exception. The location of this handler is known as the exception vector. In AArch64, these
exception vectors are organized in a sixteen entry table, each entry of which is restricted by
the AArch64 specification to be at most 0x80 bytes long [11]. These entries modify various
system registers using MSR. Attempts to replacing these instructions with SMC (with arguments
set appropriately) in-place to invoke SULFUR MONITOR leads to code sequences longer than
0x80 bytes. We created a trampoline for each such exception vector with suitable SMC calls to
SULFUR MONITOR, and replaced the MSR instructions instead with redirections to this tram-
poline. This preserved the fixed size requirement of the exception vector while still allowing

complete mediation of system register modifications by SULFUR MONITOR.

69

3.4.2.2 Protecting Integrity of SulfurOS

SULFUR MONITOR statically attests the SULFUROS binary to ensure that the correct binary
boots in the REE. Additionally, SULFUR MONITOR verifies and configures the system with hard-
ware protections enabled, guaranteeing correct system configuration upon boot. This ensures
the integrity of the booted binary and the system’s configuration at boot time. To protect the
integrity of SULFUROS’ code against runtime attacks from a SysAdv, SULFUROS incorporates:

e Read-only page tables. During boot, SULFUR MONITOR ensures that the code pages
are exclusively mapped with read-execute permissions, while data pages are mapped with
read-write permissions. It write-protects the page tables of SULFUROS. SULFUROS is
thus restricted from modifying its own page table entries. It prevents potential modifica-
tions by SysAdv, which could alter SULFUROS’ page table permissions to inject new code

or enable execution of data pages [24, 49].

e Double-mapping prevention. SULFUR MONITOR maintains a record of mapped physi-
cal memory and page permissions in a dedicated data structure to detect double-mapping
attacks [24]. In such attacks [24], the same physical page is mapped to multiple virtual
addresses with conflicting permissions, e.g., writable in user-space and readable in the
kernel. This can allow an attacker to bypass access controls, inject code, or tamper with
data that was meant to be protected. In SULFUROS, SULFUR MONITOR mediates page-
table updates, by ensuring compliance with the write-execute-never policy and verifying

that no physical page is mapped twice with conflicting permissions.

e Securely setting page table base register. SULFUROS does not contain any code
that allows direct writes to the translation table base register (TTBR1_EL1), which holds the
base address of the kernel page table. SULFUR MONITOR configures TTBR1_EL1 to reference
the correct kernel page table, preventing SULFUROS from using potentially corrupted or

duplicate page tables with compromised permissions.

e User-space code execution prevention. To prevent SULFUROS from executing user-
space code, SULFUR MONITOR leverages ARM’s PXN feature [14]. SULFUR MONITOR
ensures that virtual memory regions belonging to user-space are mapped with PXN per-
missions. PXN disallows execution of instructions from unprivileged memory when the
processor is in privileged mode. Only SULFUROS code pages are given privileged-execute

permissions and are mapped as read-only.

70

e Control-flow integrity protection of SulfurOS. Code-injection attacks in SULFUROS
are not possible as SULFUR MONITOR ensures that injected code does not have execute
permissions. However, code-reuse within SULFUROS may still be possible. We limit
the power of these attacks by enabling PACBTI-based CFI by default in SULFUROS.
SULFUROS can also be hardened with more sophisticated control-flow integrity instru-

mentation [50, 98], though we have not done so in our prototype.

3.5 Security Evaluation

The goal of an adversary is to subvert CFA’s path measurement so that the path measurement
recorded by the CFA machinery @ is acceptable to a verifier V; and (b) deviates from the actual
program path taken in P. While prior works have focused on securing CFA in bare-metal
settings or atop a trusted REE OS, we evaluate how SULFUR protects CFA when P executes
atop SULFUROS.

We empirically validate SULFUR’s effectiveness using a variety of attacks that we launched
against a CFA-traced application, Syringe Pump [92] (P, henceforth), a real embedded applica-
tion used in medical applications. It takes as input a quantity of fluid (bolus), and the direction
of syringe movement (dispense/withdraw). For concreteness, we use Blast [95] to CFA-trace
P, but our arguments apply to other CFA methods as well. In each case, we demonstrate
attacks when P runs atop Linux as the REE OS, and show that they fail when P runs atop
SULFUR/SULFUROS.

1. Application code modification/injection. We carried out a control-flow hijacking
attack by modifying code in the move-syringe function of P. It implements a loop to
administer medicine and the number of loop iterations depend on the input value. Our
attack carefully duplicates the code responsible for dispensing medicine inside the loop in
the move-syringe function while avoiding CFA-instrumentation instructions in P, which
in this case appeared at the beginning and end of the loop, recording entry and exit
into the loop. Thus, the quantity of dispensed medicine (bolus) is double the requested
quantity and this attack does not leave a footprint in CFA,,. To implement this attack,
we added malicious code in the REE OS to disable WXN and rewrite P’s binary after it
is statically attested at startup.

This attack does not work when P executes atop SULFUR. When P starts, SULFUROS
transfers control to SULFUR MONITOR to perform static attestation of P’s binary which
stores the resulting measurement in the TEE. As WXN can be disabled by the REE OS

71

by modifying system registers, SULFUR replaces such instructions in the SULFUROS with
calls to SULFUR MONITOR which validates the operation against SULFUR policies and
performs it on behalf of the SULFUROS. Hence, SULFUR MONITOR ensures that WXN is
always enabled, thus defeating the above attack. Additionally, SULFUR MONITOR write-
protects P’s page table and shepherds all changes to it via the TEE. It sets the TTBRO_EL1
register to reference P’s page table and handles page faults. Collectively, these measures

ensure the integrity of P’s code, including CFA instrumentation in P.

. CFA state corruption. We implemented a non-control-data attack to modify the input
value to get P to inject a different quantity of medicine. Further, we corrupted the CFA 1,4
in P at runtime to hide the attack. For this, we maliciously modified CFA 1., (to reflect
execution with the unmodified input value) from the REE OS by directly accessing the
memory of P (where CFA[,, is stored) when the REE OS receives a request to flush
CFA L,y to the TEE.

SULFUR prevents this attack because it protects CFA,, by placing it within the S-
Vault region, which is write-protected from SULFUROS via PAN, as indeed is all of P’s
memory. PAN cannot be disabled by the OS, as SULFUR prevents any writes to the
system registers in the REE. Note that Blast uses a reserved register to store a pointer
to the head of CFA,,. When P cedes control to the kernel, SULFUR stores that register
to S-Vault, thus protecting it.

. TEE invocation suppression/modification. To illustrate suppression or modification
of TEE invocations from the REE, we modified the REE OS code to suppress/modify
TEE calls made by P to record CFA measurements in the TEE. This attack is best
illustrated when CFLAT [5] or OAT [87] are used to instrument P because they trigger a
TEE transition for every control-flow event in P. CFA measurements collected in the REE
are committed to the TEE via arguments to a world-switch call. By suppressing TEE
calls (or modifying their arguments), we prevented recording in the TEE measurement

log malicious control-flow transfers effected in P.

The attack fails in SULFUR because it ensures that that arguments to the TEE call
are passed via S-Vault are protected from any unauthorized modifications from SUL-
FUROS. SULFUR detects attempts to suppress TEE calls to commit CFA state using
the attest-bit sentinel described in Section 3.4.1.4. In particular, P detects that the
attest-bit in S-Vault has not been toggled. Because it can only be toggled by the TEE,

it reveals a TEE call suppression attack.

72

4. Application execution state modification. We corrupted the return address (register
x30 in AArch64, saved on the stack) of P from within the REE OS during a context switch.
In particular, by modifying the return address, we skip over the instructions responsible
for injecting medicine in the move-syringe function. To trigger a context switch, we added
call to sched yield() at the loop entry. As a result, each loop iteration caused a context
switch. The REE OS at this point modified the return address to skip instructions in the
loop. In this case, the CFA instrumentation instructions were only located at the end of
the loop body and continue to record the loop execution. Thus, we successfully avoided

dispensing medicine without leaving a footprint in the CFA 1.

This attack fails on SULFUR because it saves and restores P’s context to/from the S-Vault
using entry and exit gates (Section 3.4.1.2). SULFUROS cannot corrupt the saved context
of P (x30 is saved to S-Vault). Although SULFUROS can access P’s memory within the
confines of PAN using user-access functions (e.g., copy_to_user()), SFI checks in their
code prevent access to S-Vault. Furthermore, the absence of BTI landing pads in the
entry/exit gates ensures that control-flow hijacking attacks within SULFUROS cannot

use gate code to access S-Vault.

Formal treatment and Robust CFA. We now provide a formal analysis of the security
of user-space CFA atop SULFUR. Let P be a program with a known control-flow graph (CFG)
G = (V, E), where V is the set of basic blocks and £ C V' x V is the set of valid control-flow

transitions. For this program P and a given input J, we define three functions:

o (P, J) = [vg, vy, ..., v,], which denotes the expected execution path taken by P on input
J, where each (v;,v;41) € E. The task of defining this function is that of the verifier V
because this function is used by V to validate the CFA attestation report collected from

the prover platform.

e V(P,J) = [ug,uq, ..., Up|, which is P’s trace extracted from the CFA attestation report.
That is, it is the control-flow trace recorded by CFA for P on input J as P (suitably
compiled with CFA instrumentation) executes atop a platform with SULFUR enabled.

o Tueual(P,J), which denotes the actual execution path taken by P on input J on prover
platform. Ideally, the verifier aims to establish that mgerua (P, J) = 7(P,J). However, the
verifier V has no way to observe 7 uq on the prover platform, and must instead use T

to make various deductions about P’s execution as it processes input J.

73

We define a predicate Valid(P,J, T, 7, G), used by the V, to check whether a given control-

flow trace T corresponds exactly to the expected execution path 7(P,J).

Va“d(?,j,T,ﬂ',G) — Vi < |T|, (TiaTi—I—l) ek
A T(P,9) = 7(P.9).

That is, the trace T(P,J) is valid if and only if it exactly matches the expected execution
m(P,J) and all transitions in P are valid CFG edges.

Observe that the Valid predicate accepts Y(P, J) to compare against m(P,J), and not
Tactual (P, J). This is because Y(P, J) is the only observable artifact of P’s execution that is
available to V. However, in order for V to make any determinations about P’s execution using

T(P, J), it must be an accurate record of P’s execution.

Definition (Robustness) : A CFA mechanism is robust if the collected execution trace Y (P,
J) is an accurate, untampered recording of the actual execution path 7,eua (P, J) followed by P

as it executes J.

Theorem (Robustness of CFA atop Sulfur) : If the foundational requirements R1-
R4 identified in Section 3.2 hold, then the control-flow trace Y(P,J) produced by a CFA-
instrumented program P running on SULFUR system is an accurate, untampered recording of

the actual execution path mgeyua (P, J) of program P on input J. That is,
R1AR2AR3AR4 = Y(P,7) = mactuar (P, J).

The theorem asserts that if the foundational requirements R1-R4 hold, SULFUR guarantees
that CFA of P running atop SULFUR records the actual execution of P, and that T is not forged
by SysAdv, i.e., it enables robust user-space CFA.

Proof Sketch: We show that if R1-R4 hold, then Y(P,J) corresponds to actual execution
path Tactuar (P, J) of P on input J in SULFUR system.

e R1 (WXN) ensures the integrity of the CFA instrumentation throughout the lifetime of
P. We used BLAST (Chapter 2) for CFA, which instruments the program P to record
path identifiers, addresses of indirect branches and returns. With WXN, no code in-
jection is possible within P. Furthermore, the careful co-design of SULFUROS (system
integrity guardrails) ensures that WXN is enabled for the REE OS kernel as well. All

74

kernel operations in SULFUROS that modify system configurations or memory mappings
are shepherded by the TEE (Section 3.4.2.1). Boot-time integrity verification by SUL-
FUR MONITOR ensures that the correct kernel binary is booted. SULFUR MONITOR. also
configures critical system registers—enabling MMU, DEP, and PAN before booting SUL-
FUROS. It write-protects SULFUROS’ code pages, execute-protects its data pages, and
write-protects the page-tables of SULFUROS. SULFUROS thus cannot modify its own page
access permissions without being intercepted by SULFUR MONITOR. We use PXN to make
user-space memory non-executable by the kernel. The power of control-flow hijacking at-
tacks within SULFUROS itself is limited by compiling SULFUROS with PACBTI-enabled
CFI. Note that enabling WXN is a pre-requisite for CFI to work correctly [3].

R2 ensures secure communication with the TEE. SMC' calls and their arguments must
not be tampered and the TEE must be able to fetch and record CFA information col-
lected in the REE. We ensure this using S-Vault, whose integrity is protected from SUL-
FUROS using PAN. Via the use of PAN, the SULFUROS kernel is prevented from access-
ing user-space memory. Where access to user-space memory is inevitable in SULFUROS
(e.g., user-access functions and gates), it uses LDTR and STTR instructions to access user-
space memory and limits their access to memory regions outside of S-Vault using SFI.
Recall also that securely enforcing SFI in the kernel requires that the SFI instrumentation
is non-bypassable, a property that we satisfy by ensuring the absence of BTI-landing pads

where these user-space memory access instructions are used.

R3 requires integrity of execution state during interrupts, and is ensured by saving user-
space process context to S-Vault. By the same arguments as above, SULFUROS cannot

modify S-Vault.

Finally, R4 requires protecting integrity of CFA,,. The CFA instrumentation in the
user-space program writes the CFA trace Y(P,J) to CFAL,,, which resides in S-Vault.
Again, SULFUROS cannot modify CFA,, as a result.

Hence, if R1-R4 holds, then every CFA trace T(P,J) of P collected atop SULFUR and sent to

V, corresponds to the actual execution e (P,J) of P. Thus V can use Y (P, J) as an accurate

representation of the actual program execution and check whether Valid(P,J, T, 7, G) holds,

which in turn would imply that the actual execution of the program matches the execution

expected by V.

In summary, SULFUROS code is co-developed with specific restrictions on its ability to mod-

ify user-space state due to the use of PAN load/store instructions. Any code-reuse attacks that

5

work within the constraints imposed by PACBTI-enabled CFI in the kernel must necessarily
work under the restrictions imposed by PAN. Therefore, the adversary has a vastly reduced
attack surface under which to operate. SULFUR represents—to our knowledge—the first at-
tempt to secure non-bare-metal CFA. Via careful co-design of SULFUROS and the features of
the underlying hardware, SULFUR ensures improved security for CFA tracing any user-space

application running atop a SULFUR-enabled platform.

3.6 Performance Evaluation

We developed our SULFUR prototype on the ARMvS8-A base platform Fixed Virtual Platform
(FVP), which supports all versions of the Cortex-A architecture [12]. At the time of writing,
OP-TEE (which we use for our TEE) does not support the ARMv8.1-A (or above) architecture.
Instead, FVP provides a software simulation of an ARMvS8.1-A processor in AArch64 mode,
enabling us to develop our prototype using ARM’s latest features. As a virtual platform,
performance measurements on the FVP may not reflect that on real hardware. Therefore, for
our performance experiments we use a Raspberry Pi 3 Model B+, which features an ARM
Cortex Ab3 Quad-core 64-bit processor clocked at 1.4GHz and 1GB LPDDR2 SRAM. We use
OPTEE in the TEE and run SULFUROS in the REE. As this processor lacks PAN support,
we replace the unprivileged load/store (LDTR/STTR) instructions in SULFUROS with normal
load/store (LDR/STR) instructions for our performance experiments.

Armv8.6-A (and beyond) are only available on high-end devices like smartphones, tablets,
and servers, which do not support open development and restrict access to kernel and TEE
components. However, our implementation remains architecture-compliant and can support
these protections when deployed on hardware with PAN and PACBTI support. The relevant
instructions are either replaced or safely ignored in a backward-compatible manner.

For CFA instrumentation of benchmark programs, we use BLAST (Chapter 2). Compared
to other methods, Blast reports lower runtime overheads for whole-program CFA because it
leverages an optimal algorithm for instrumentation placement and minimizes TEE invocations
by batching CFA path measurements. For our experiments, we run the benchmarks atop SUL-
FUROS in the REE. We consider the following application benchmarks, also used in prior work
on CFA ([38, 87], Chapter 2), to assess SULFUR’s performance impact: (1) Embench-IoT [1]
is a suite of embedded programs that reflect real embedded systems; (2) Syringe Pump [92]
is a medical application to administer given doses of medicine; (3) Light Controller [61] is
an application for remote control of light switches with ‘turn-on/off’ commands; (4) Rover

Controller [52] controls the movement of a rover based on commands from a remote operator;

76

Embench-10T Execution Time (s)
Programs | |Baseline- Sulfur CFA-Linux CFA-Sulfur CFA-Sulfur
Linux |&(Overhead)| &(Overhead) | &(Overhead) |vs. CFA-Linux

aha-mont64 11.35 [11.53 (1.62%)(27.19 (139.66%)|27.76 (144.68%) 2.10%
cre32 11.30 |11.49 (1.68%)|17.75 (57.05%) {18.08 (59.97%) 1.86%
cubic 1.72 1.77 (3.11%)| 1.86 (8.35%) | 1.91 (11.26%) 2.69%
edn 25.41 |25.84 (1.69%)|44.40 (74.72%) |45.27 (78.16%) 1.97%
huffbench 13.38 [13.62 (1.79%)(24.81 (85.43%) |25.30 (89.11%) 1.99%
matmul-int 32.66 |33.21 (1.67%)|42.95 (31.50%) |43.79 (34.07%) 1.96%
minver 429 | 4.37 (1.86%)|7.66 (78.63%) | 7.82 (82.28%) 2.04%
nbody 0.51]0.51 (0.66%)|0.72 (42.11%) | 0.73 (44.08%) 1.39%
nettle-aes 16.08 |16.36 (1.74%)[20.82 (29.46%) |21.23 (32.01%) 1.97%
nettle-sha256 11.77 |11.99 (1.87%)[12.71 (7.99%) [12.95 (10.05%) 1.91%
primecount 15.00 |15.24 (1.60%)|27.40 (82.69%) |27.69 (84.62 %) 1.06%
sglib-combined 16.41 [16.71 (1.81%)(31.93 (94.56%) [32.60 (98.62%) 2.09%

st 0.78 10.79 (1.28%)| 1.34 (71.79%) | 1.37 (75.64%) 2.24%
tarfind 3.67 |3.74 (1.91%)| 6.63 (80.56%) | 6.76 (84.20%) 2.01%
ud 17.71 18 (1.64%)(29.95 (69.11%) {30.53 (72.41%) 1.95%
Average overhead: 1.73% 63.57% 66.74% 1.95%

Table 3.2: Performance of Sulfur on Embench-IoT benchmarks. Number reported
are average of 10 runs.

Embedded Execution Time (s)
Applications | Baseline- Sulfur CFA-Linux | CFA-Sulfur | CFA-Sulfur
Linux |&(Overhead)| &(Overhead) | &(Overhead) |vs. CFA-Linux
Syringe Pump (500p1) 117 1.29 (9.97%) [1.23 (5.13%) [1.35 (15.38%) 9.76%
Syringe Pump (1000p1)| 235 |2.56 (9.09%) [2.41 (2.70%) [2.62 (11.65%) 8.71%
Syringe Pump (2000u1)| 4.68 |5.12 (9.32%) [4.77 (1.85%) [5.20 (10.96%) 8.94%
Light Controller 2 2.01 (0.50%) [2.06 (3.00%) |2.07 (3.50%) 0.49%
Rover Controller 3.01 3.02 (0.33%) 3.07 (1.99%) [3.07 (1.99%) 0%
MbedTLS-MD5 0.28 10.30 (7.14%) |0.63 (123.81%)|0.65 (132.14%) 3.72%
MbedTLS-SHA256 1.71 (174 (1.95%) |1.88 (10.14%) |1.92 (12.28%) 1.95%
Mbed TLS-RIPEMD160| 0.71]0.73 (2.80%) |2.89 (305.14%)|2.94 (312.62%) 1.85%

Table 3.3: Performance of Sulfur on embedded applications. Number reported are
average of 10 runs.

(5) MbedTLS [2] is an implementation of various cryptographic primitives.

Table 3.2 shows the runtime overhead that SULFUR adds to the Embench-IoT benchmarks.
The first column shows the baseline runtime of each application on native Linux-6.7.0. The
second column shows the runtime when the uninstrumented benchmark is run atop SULFUROS.

We observed an average overhead of 1.73% imposed by SULFUROS.

7

We then compiled each application with CFA instrumentation, observed the runtime of the
CFA-instrumented benchmark atop native Linux, as shown in the third column. This column
also shows the overhead compared to the baseline on Linux, with an average overhead of 63.57%
observed across all benchmarks. This is the cost of CFA itself and aligns with previous findings
([74], Chapter 2), but is unrelated to this work’s contributions. Note that CFA is insecure
atop native Linux without the mechanisms implemented in SULFUR. The fourth column shows
the raw runtime of CFA-instrumented benchmark atop a SULFUR platform. With SULFUR,
these binaries incur a 66.7% overhead over the baseline. Compared to the runtime of CFA-
instrumented programs atop Linux, this is an average overhead of just 1.95%.

Table 3.3 shows the performance results for other embedded applications under various
configurations. Syringe Pump takes as input the amount of liquid (bolus) to inject. We vary
the bolus values and run the program for 5001, 100041 and 2000ul bolus amounts. The Syringe
Pump application incurs an overhead of roughly 9% overhead on SULFUR compared to native
Linux OS. This is because of the large number of system calls that this application makes in
its dispense-medicine operation, which is implemented as a loop. The program executes over
6800 system calls to inject 5001 liquid, which is doubled for 1000l and quadrupled for 20001,
thus causing an overhead of 9%. Other embedded applications such as Light Controller and
Rover Controller fare better, incurring only 0.5% and 0.3% overhead, respectively, on SULFUR
compared to native Linux OS. These applications make a few hundred system calls.

We then instrumented these applications to perform CFA, and ran the binaries atop a
Linux-based REE and a SULFUROS-based REE. CFA-instrumented Syringe Pump incurs 8-
9% overhead on SULFUR versus on a Linux-REE. In contrast, Light Controller incurs only
0.49% overhead, and the Rover Controller does not exhibit any noticeable overhead on SULFUR
for CFA-instrumented binaries.

Further, our experiments on MbedTLS [2], as shown in Table 3.3, support our findings of
low overhead for SULFUR in CFA-instrumented applications compared to the Linux OS. We
conducted experiments on hashing algorithms, including MD5, SHA256, and RIPEMD160 with
a data size of 5 MB. The overhead incurred by the CFA-instrumented hashing algorithms with
SULFUR ranges from 1.8% to 3.7% compared to performance on a Linux REE. Our results
indicate that SULFUR does not impose significant overhead on CFA-instrumented applications

compared to the Linux OS.

78

LMBenchmark Execution Time (us)
Linux | SulfurOS(Overhead)
Null 0.80 | 4.92 (451.75%)
Stat 6.36 | 10.10 (58.86%)
Fstat 2.26 | 6.61 (192.14%)
Open/Close 11.41 | 20.17 (76.68%)
Read 1.44 | 5.50 (282.17%)
Write 1.31 | 5.35 (309.15%)
Page fault 2.31 | 3.13 (35.45%)
Context switch 15.97 | 33.31 (108.51%)
Signal handler installation 1.52 | 5.46 (258.87%)
Signal dispatch 12.35 | 19.33 (56.52%)

Table 3.4: Overhead incurred by Sulfur on system operations measured using LM-
Bench micro-benchmarks.

3.6.1 Microbenchmark Evaluation

For an in-depth analysis of the source of overheads in SULFUR, we used the LMBench suite [68],
which exercise a variety of system calls in the OS. As Section 3.4 discusses, several operations
in SULFUROS operations are shepherded by SULFUR MONITOR including system configura-
tion, process creation/context switch, memory management and page fault handling. SULFUR
MONITOR saves the context of the SULFUROS and performs the operation after verification.
The average round-trip time from SULFUROS to SULFUR MONITOR is less than 10usec on our
evaluation board.

Table 3.4 presents the runtime overhead imposed by SULFUROS compared to native Linux
OS for various LMBench benchmarks. The Null benchmark executes the getppid() system
call and measures the round-trip time to/from the kernel, while executing minimal code in the
kernel. In SULFUROS, however, the code in the entry/exit gates must saves and restores process
context. As a result, the raw overhead of the Null benchmark is rather large at about 450%.
File operations (Stat...Write) fare better, with overheads ranging from 58% to 309% depending
on the amount of functionality that the kernel must implement. As majority of the SULFUR
checks impact memory mapping verification and correctness of process resumption, we measure
overhead on page faults and context switches. For context switching, we measure the latency of
switching between six processes. During the context switch, the SULFUR gates save and restore
the process’s context to/from the S-Vault and the SULFUR MONITOR sets the value of the
TTBRO-EL1 register to reference the process’s page tables. During page faults, in addition to
process’s context switch overhead, it incurs cost of an SMC switch to SULFUR MONITOR which

updates the page table after verification. The overhead incurred by the Page fault benchmark is

79

Embedded CFA-Linux CFA-SULFUR

Program | Time (s) | % CPU | Time (s) | % CPU | Overhead
Syringe Pump 2.43 31% 2.64 33% 8.49%
Light Controller 2.10 2.12 1.11%
Syringe Pump 2.45 32% 2.64 34% 7.90%
Rover Controller 3.09 3.12 1.08%
Light Controller 2.08 32% 2.12 33% 1.76%
Rover Controller 3.10 3.11 0.21%
Syringe Pump 2.47 40% 2.68 42% 8.65%
Light Controller 2.12 2.13 0.63%
Rover Controller 3.11 3.14 1.07%

Table 3.5: Performance of Sulfur on concurrent execution of embedded applica-
tions. Multiple CFA-traced applications are run simultaneously.

35% while for Context Switch benchmark, it is 108%. Signal handler installation and dispatch
incur overheads of 56%-258%.

3.6.2 Scalability Evaluation

We evaluate SULFUR when multiple CFA-traced applications run concurrently. SULFUR ensures
that CFA measurements remain interference-free even under simultaneous execution of multiple
applications. Each CFA-traced application records its traces within CFA,,, which are then
securely flushed to TEE storage using a trusted application (TA) in the TEE. Importantly, each
CFA-traced application is assigned a unique TA instance in the TEE. This separation ensures
that CFA measurements are recorded independently, preventing any potential interference.
Table 3.5 presents the performance results from our scalability evaluation when multiple
CFA-traced embedded applications are executed concurrently. We tested three embedded ap-
plications, running them in groups of two and three. The results detail the time taken by
individual applications as well as the overall peak CPU usage. Our findings show that CPU
usage increased by 1-2% when applications ran on SULFUR compared to the Linux REE. The
Syringe Pump application, delivering a bolus of 10001, experienced an overhead of 8.49% when
run alongside the Light Controller, 7.90% when paired with the Rover Controller, and 8.65%
when run concurrently with both the Light Controller and Rover Controller. The Light Con-
troller incurred less than 1.76% overhead in all cases, while the Rover Controller maintained
an overhead below 1.08% across all configurations. In summary, our evaluation indicate that
SULFUR can run multiple CFA-traced applications without imposing significant overhead or

compromising the efficiency of CFA.

80

3.7 Summary of SULFUR

CFA is a useful security technology that allows fine-grained verification of a program’s execution
on a remote platform. The CFA literature has primarily focused on low-resource embedded
platforms where bare-metal execution of programs is the norm. We showed that prior methods
cannot directly be applied for CFA when programs execute in a non-bare-metal setting, atop an
OS. We then described SULFUR, a system in which a TEE-based monitor (SULFUR MONITOR)
and a co-designed OS (SULFUROS) leverage commodity hardware support on AArch64 to

enable robust CFA in non-bare-metal settings.

81

Chapter 4

Related Work

The most closely related work has already been discussed in the Chapter 1. This chapter focuses

on additional related work to position this thesis in the broader context of prior research works.

4.1 Remote Attestation

Remote attestation has been explored in various domains [6, 23, 47, 67, 87] to establish the
absence of malicious changes to the memory content. Software-based attestation techniques
such as SWATT [80] and PIONEER [81] were originally proposed for low-end embedded de-
vices because TEEs were generally unavailable (historically) on low-end embedded devices.
These methods implemented attestation via a self-checksumming function, implemented en-
tirely in software. The security of these techniques relies on precise timing measurements, and
is applicable only in settings where the communication delay between V and P is determinis-
tic, e.g., communication between peripheral and host CPU [67]. Moreover, attacks have been
proposed on software based attestation [31, 94].

Hybrid attestation techniques provide the same security guarantees as hardware-based ap-
proaches while minimizing modifications to the underlying hardware platform and reducing
the assumptions of software-based approaches. VRASED [71] implements integrity-ensuring
functions (e.g., MAC) in software and uses trusted hardware to control the execution of this
function. These attestation techniques share a standard limitation—they measure the state of
the prover only when it executes remote attestation. They do not provide information about
the program before measurement or its state between two consecutive measurements, and thus
suffer from time-of-check to time-of-use (TOCTTOU) attacks. RATA [73] proposes a hybrid
design to avoid TOCTTOU in microcontroller units. BLAST is complementary to these ap-

82

proaches and focuses on attesting the program’s control flow.

4.2 Control-Flow Attestation

Hardware-based implementations of CFA [43, 44, 100] trace the program’s execution path using
hardware modules, eliminating the dependence on a TEE. They introduce hardware support to
reduce the overheads of CFA on the prover and securely store measurements. LO-FAT [43] and
Litehax [44] do not instrument applications, instead implement CFA with stand-alone hardware
modules: a branch monitor and a hash engine. Litehax further extends the processor core
with custom hardware to compute hash measurements over all executed memory operations,
detecting DOP attacks. Atrium [100] enhances LO-FAT and Litehax by securing them against
physical attacks on memory. It includes every instruction executed by the prover in the hash
generation, storing the hash in an on-chip memory to prevent tampering.

Software-based CFA methods place additional instructions in the program to record its
execution. CFLAT [5] is the first work to propose CFA and encodes the paths as a cumulative
hash of the basic blocks executed by the program. Several works have optimized the path
measurement strategies on the prover platform. OAT [87] attests only certain operations of the
application by tracing selective control-flow events rather than all basic block executions. Tiny-
CFA [74] proposes CFA for low-end MCU devices, building on top of the formally verified PoX
architecture [72]. It stores CFA measurements in a data-memory region protected with SFI.
DIAT [6] is an integrity measurement approach that, like BLAST, attempts to address the issue
of performance overheads of CFA. DIAT decomposes the program P into modules and attests
selective modules that process specific data of interest. DIAT ensures that the communication
between the modules takes place over a well-defined interface that allows data-flow tracking
between the modules. In DIAT the modules that are attested are identified beforehand, and V
does not have flexibility in choosing which modules to attest. LAPE [55] also uses an approach
similar to DIAT for firmware attestation by splitting firmware into modules. BLAST provides
whole-program attestation in contrast to DIAT. Methods from BLAST can also be used to
improve the attestation of the modules that DIAT identifies, thus resulting in a better system
overall.

ReCFA [101] proposes an alternative approach to optimizing CFA. It proposes a multi-phase
program analysis to reduce the number of control events to be recorded at runtime. ReCFA’s
call-site filtering analyzes the control-flow graph and elides recording a call to a function if it
is guaranteed to follow a call to its predecessor. ReCFA’s control-flow event folding compresses

the amount of data recorded in the integrity measurement sent to the verifier. The verifier

83

itself uses a form of abstract execution to check the integrity of P’s execution. ReCFA uses
Intel MPK [57] for lightweight protection of the integrity of critical data structures used for
call-site filtering and control-flow event folding within P’s address space. ReCFA’s methods are
complementary to BLAST’s—in particular, ReCFA can benefit from BLAST’s Ball-Larus-based
instrumentation placement, and vice-versa. However, ReCFA did not evaluate the performance
impact of domain switches into the TEE, which are a key part of the design of CFA methods
for embedded devices and also severely impact their performance. Also, ReCFA cannot be
implemented securely on embedded systems, which lack Intel MPK support that is presently
available only on Intel server-class chipsets. Although similar in design to Intel MPK, ARM
Memory Domains [19, 37] require a trap to the kernel to switch memory domains unlike MPK,
in which the corresponding operation is done entirely in user-space. ARI [93] generalizes CFA
to mission execution integrity and also protects path measurements in REE via SFI.

MG-CFA [54] proposes dual attestation at function-level: (1) fine-grained that records every
branch, function call and return events, or (2) coarse-grained that records only function entrance
and exit events. It associates a vulnerable probability p with every function (which is predicted
using ML models). Functions with p above a threshold are called vulnerable functions and
others are normal functions. Vulnerable functions are checked at fine-granularity, others are
checked at coarse-granularity. They evaluate their work on Raspberry Pi with ARM Trustzone
and reports upto 600x overhead on real-benchmarks when all functions are checked at fine-
granularity. These numbers are consistent with the results that we observed when we attempted
to scale CFLAT and OAT to whole-program CFA. BLAST’s overhead, in contrast, is an average
of 1.67x on the Embench-IOT benchmark suite.

ISC-FLAT [69] implements an interrupt-security module in the TEE to protect the pro-
gram’s execution from compromise within ISRs. PEARTS [70] extends Proof of Execution
(PoX) to real-time embedded systems. Similar to ISC-FLAT, it protects the execution flow in-
tegrity and ensures that interrupts, system calls, and other events must not alter the intended
control flow of the code. Additionally, it also provide information about any delays or timing
deviations caused by external factors. SpecCFA [32] introduces an application-aware specula-
tive verification approach to reduce the overhead of CFA. By predicting sub-paths of execution
based on high-level control-flow knowledge, SpecCFA allows the verifier to speculatively validate
traces without matching every edge explicitly, improving audit efficiency without significantly
weakening security. SABRE [33] focuses on the verifier’s role in runtime attestation. It uses
CFA evidence to analyze, debug, and patch binaries, even in the absence of source code and
expands the utility of CFA beyond mere validation.

Similar to SULFUR, a few CFA works have targeted non-bare-metal settings. They focus

84

on scaling the CFA methods to more complex applications while trusting the OS. Scarr [89]
optimizes the performance of verifier by recording sub-paths instead of a single hash value for
entire execution. CFA+ [7, 8] combines CFI with CFA approaches to develop attestation and
prevention mechanisms for complex user-space applications. ReCFA [101] uses program analysis
to reduce the number of control-flow events recorded at runtime and stores them in an isolated
memory region inside the process’s address space enabled by Intel MPK [57]. Several works
on CFA focus on optimizing the verification of the attestation report. RAGE [38] builds a ML
model using program’s traces to verify the attestation report provided by the prover. Zekra [42]
uses zkSNARKSs to enable privacy-preserving execution proofs, outsourcing proof verification
to a worker that convinces an untrusted verifier about the verification results without revealing
the code of P. These works are complementary to SULFUR, focusing on optimizing CFA in
bare-metal settings or using the REE OS as the trust anchor.

4.3 0OS-level Protection

Sprobes [49] and Samsung Knox [24] use ARM TrustZone to enforce kernel code integrity by
modifying the kernel code to transfer control to TrustZone for introspection of its operations.
The design of SULFUR is inspired by Sprobes and Knox. SKEE [25] implements the protections
offered by Knox within the kernel itself, eliminating the need for ARM TrustZone. It creates
an isolated execution environment within the OS kernel, modifying the kernel to switch to
this environment to perform privileged operations (e.g., memory management). Access to
the isolated environment is controlled via designated switch gates, ensuring that the CPU
can only run either the OS kernel or the isolated execution environment at any given time.
Bastion [58] proposes a system call integrity monitor that enforces correct usage of system calls
within a program, defending against kernel attacks from userspace (e.g., privilege escalation).
TrustShadow [51] protects legacy apps from untrusted OSes by running them in the TEE with a
mediating runtime. Virtual Ghost [41] instruments the OS to isolate app memory via a hardware
abstraction layer. It enables a secure memory region for applications to store sensitive data
which is made inaccessible to the kernel. Ginseng [99] uses a compiler-based approach which
modifies the application code to protect the sensitive data. The compiler ensures that sensitive
data is always kept in registers and never spilled. At function call sites in the program and
kernel entry code, the control is transferred to the TEE which encrypts the sensitive data and
stores it in a secure stack to protect its integrity. Other works [28, 84, 86] defend execution of
applications using Intel SGX. These works are complementary to our contributions and can be

used in conjunction to our defense mechanisms.

85

Chapter 5
Conclusion and Open Problems

CFA is a powerful security primitive that enables fine-grained verification of program execution
on remote platforms. However, achieving practical CFA has been challenging. This thesis
presented two key contributions addressing distinct yet fundamental limitations in the CFA

landscape.

5.1 Summary of Contributions

First, we demonstrated that whole-program CFA, while desirable for comprehensive attestation,
has remained elusive due to the prohibitive runtime overheads of prior approaches. Specifically,
existing methods impose an excessive number of TEE domain transitions to record control-
flow measurements, rendering them impractical for whole-program paths. To address this, we
proposed BLAST, a novel CFA approach that combines local logging, optimal instrumentation
placement based on Ball-Larus numbering, and software fault isolation. Our evaluation showed
that BLAST enables scalable whole-program CFA with an average runtime overhead of 67% on
embedded benchmarks, significantly outperforming existing techniques.

Second, we explored the applicability of CFA in non-bare-metal settings, such as general-
purpose platforms where programs execute atop an operating system. Prior CFA methods
assume bare-metal execution and cannot directly handle the complexities introduced by OS
abstractions. We presented SULFUR, a system that integrates a TEE-based monitor with a
co-designed OS to enable robust CFA for unmodified user-space programs. SULFUR leverages
commodity hardware features in AArch64 architectures to protect control-flow integrity and
enforce trustworthy measurement collection, thus extending CFA beyond embedded systems to

modern computing platforms.

86

Together, these contributions advance the state-of-the-art in CFA by making whole-program
attestation feasible and extending CFA’s applicability beyond embedded bare-metal devices.
They pave the way for deploying CFA in practical systems, strengthening the foundations for
building trustworthy software execution in diverse computing contexts. We now describe future

directions for further enhancements in CFA and its applications.

5.2 Potential Avenues for Future Research

Attestation of OS services: User applications depend on the correct execution of OS ser-
vices (including 1/0). For example, the OS provides commands to the medicine dispenser to
inject medicine upon request from the corresponding user application. Unreliable execution
of OS services can compromise the integrity of operation, with devastating consequences in
such applications. CFA approaches proposed thus far, including work on the SULFUR project,
have primarily focused on ensuring the integrity of the prover program’s execution, and not
on ensuring that the operation has been pursued to completion within the OS and hardware.
Attestation of the OS’s and hardware’s actions is a critical yet unexplored area that holds sig-
nificant promise for improving system security. Building mechanisms for attesting OS services
and the actions of hardware peripherals will likely require a novel combination of techniques
from the research literature, including control-flow integrity, OS kernel instrumentation, and
modern hardware features such as memory domains, support for message-authentication codes,

and performance counters.

Attestation for heterogeneous Cyber-Physical Systems (CPS): Attesting heteroge-
neous CPS presents unique challenges. An example of such a system is a drone, where the
companion board processes camera images to generate navigation data — such as “turn left”
or “turn right” — which is then sent to another board, the flight controller, for execution. In
this scenario, attesting only one component of the system is insufficient; it is crucial to ensure
the integrity of the entire pipeline. However, this poses a different set of challenges compared to
homogeneous systems, as the software runs across different platforms. The primary challenge
lies in stitching together the executions of these distributed software components to assess the
overall integrity of the system. This requires developing new verification techniques tailored for
heterogeneous environments. Additionally, some components in such environments may lack
a TEE. In these cases, revisiting ideas from software attestation could be promising, as the

boards are physically connected, making certain techniques more viable.

87

Trustworthy ML systems: Advancements in ML are rapidly beginning to allow deployment
of ML models on edge devices. When such an ML model is deployed on edge devices, similar
questions arise as in CFA, albeit in the context of ML models. For example: Was the ML model
trained on datasets with specific distributions? Did the embedded system actually execute the
ML model in response to the query that was provided in producing the result? Can a proof
of execution be provided that does not compromise the secrecy of the ML model itself (since
in many cases the ML model is proprietary and cannot be revealed)? With ML models, the
traditional notion of “program execution” has changed — from reasoning about paths in an
imperative program, to reasoning about how tensors are transformed by layers of a neural
network. Evolving program attestation techniques to answer such questions in the context of

ML model training and inference forms an important future direction.

88

Bibliography

1]

2]

Embench?™: A Modern Embedded Benchmark. https://www.embench.org/. 13, 18,
19, 52, 76

Mbed TLS: A C library implementing cryptographic primitives, X.509 certificate manip-
ulation and the SSL/TLS and DTLS protocols. https://github.com/Mbed-TLS. 77,
78

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In Proceedings
of the 12th ACM Conference on Computer and Communications Security, 2005. 52, 75

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity principles,
implementations, and applications. ACM Transactions on Information and Systems Se-
curity, 13(1), 2009. 29

T. Abera, N. Asokan, L. Davi, J. Ekberg, T. Nyman, A. Paverd, A-R. Sadeghi, and
G. Tsudik. C-FLAT: Control-Flow attestation for embedded systems software. In Pro-
ceedings of the ACM Conference on Computer and Communications Security, 2016. x, 3,
4,5, 8, 15, 18, 30, 42, 46, 51, 55, 67, 72, 83

T. Abera, R. Bahmani, F. Brasser, A. Ibrahim, A-R. Sadeghi, and M. Schunter. DIAT:
Data Integrity Attestation for Resilient Collaboration of Autonomous Systems. In Pro-
ceedings of the Networked and Distributed Systems Security Symposium, 2019. 4, 55, 82,
83

M. Ammar, A. Abdelraoof, and S. Vlasceanu. On bridging the gap between control flow
integrity and attestation schemes. In Proceedings of the 33rd USENIX Security Sym-
posium, pages 6633-6650, Philadelphia, PA, August 2024. USENIX Association. ISBN
978-1-939133-44-1. 9, 51, 53, 54, 61, 65, 67, 68, 85

89

https://www.embench.org/
https://github.com/Mbed-TLS

8]

[10]

[11]

[12]

[13]

[14]

[15]

M. Ammar, A. Caulfield, and I. De Oliveira Nunes. Sok: Integrity, attestation, and
auditing of program execution. In Proceedings of the IEEE Symposium on Security and
Privacy (SP), pages 77-77. IEEE Computer Society, 2024. 85

W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap ar-
chitecture. In Proceedings of the IEEE Symposium on Security and Privacy (Cat. No.
97CB36097), pages 65-71. IEEE, 1997. 1

ARM. Security technology building a secure system using TrustZone technology
(white paper). ARM Limited, 2009. https://community.arm.com/cfs-file/__key/
telligent-evolution-components-attachments/01-2057-00-00-00-00-53-99/
PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5bF00_
whitepaper.pdf. 2

ARM. AArch64 Exception and Interrupt Handling: Exception vector ta-
ble, 2025. https://developer.arm.com/documentation/100933/0100/
AArch64-exception-vector-table. 69

ARM. Fast Models Fixed Virtual Platforms (FVP) Reference Guide, 2025. https:
//developer.arm.com/documentation/100966/1126. 76

ARM. Privileged access never, 2025. https://developer.arm.com/documentation/
ddi0595/2021-06/AArch64-Registers/PAN--Privileged-Access-Never. 52, 57, 59

ARM. ARMv8-M Memory Model and Memory Protection User Guide: Significance of
XN and PXN bits, 2025. https://developer.arm.com/documentation/107565/0101/
Memory-protection/Significance-of-XN-and-PXN-bits. 52, 57, 70

ARM. Cortex-A Series Programmer’s Guide for ARMv8-A: The system control register,
2025. https://developer.arm.com/documentation/den0024/a/ARMv8-Registers/

System-registers/The-system-control-register. 69

ARM. Cortex-A Series Programmer’s Guide for ARMv8-A: ARM System Registers,
2025. https://developer.arm.com/documentation/den0024/a/ARMv8-Registers/
System-registers. 69

ARM. Trusted Firmware-A Documentation, 2025. https://trustedfirmware-a.
readthedocs.io/en/latest/. 62

90

https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2057-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2057-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2057-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2057-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://developer.arm.com/documentation/100933/0100/AArch64-exception-vector-table
https://developer.arm.com/documentation/100933/0100/AArch64-exception-vector-table
https://developer.arm.com/documentation/100966/1126
https://developer.arm.com/documentation/100966/1126
https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/PAN--Privileged-Access-Never
https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/PAN--Privileged-Access-Never
https://developer.arm.com/documentation/107565/0101/Memory-protection/Significance-of-XN-and-PXN-bits
https://developer.arm.com/documentation/107565/0101/Memory-protection/Significance-of-XN-and-PXN-bits
https://developer.arm.com/documentation/den0024/a/ARMv8-Registers/System-registers/The-system-control-register
https://developer.arm.com/documentation/den0024/a/ARMv8-Registers/System-registers/The-system-control-register
https://developer.arm.com/documentation/den0024/a/ARMv8-Registers/System-registers
https://developer.arm.com/documentation/den0024/a/ARMv8-Registers/System-registers
https://trustedfirmware-a.readthedocs.io/en/latest/
https://trustedfirmware-a.readthedocs.io/en/latest/

[18]

[19]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

ARM. Security technology, 2025. https://developer.arm.com/documentation/
PRD29-GENC-009492/c. 1, 2

ARM. Memory domains (page b3-31), 2025. ARM v7A/v7R Architecture Reference
Manual. 84

ARM. Using pac and bti features in applications, 2025. https://developer.arm.com/
documentation/109576/0100/Using-PAC-and-BTI-features-in-applications. 55,
57, 58

ARM. Smc calling convention (smccc), 2025. https://developer.arm.com/
documentation/den0028/a/. 62

Md Armanuzzaman, E. Kirda, and Z. Zhao. Enola: Efficient control-flow attestation for
embedded systems. arXiv preprint arXiw:2501.11207, 2025. 68

N. Asokan, F. Brasser, A. Ibrahim, A-R. Sadeghi, M. Schunter, G. Tsudik, and C. Wachs-
mann. Seda: Scalable embedded device attestation. In Proceedings of the ACM Confer-

ence on Computer and Communications Security, 2015. 82

A. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen. Hyper-
vision across worlds: Real-time kernel protection from the ARM TrustZone secure world.
In Proceedings of the ACM Conference on Computer and Communications Security, 2014.
9, 33, 34, 51, 52, 55, 58, 70, 85

A. M. Azab, K. Swidowski, R. Bhutkar, J. Ma, W. Shen, R. Wang, and P. Ning. SKEE:
A lightweight Secure Kernel-level Execution Environment for ARM. In Proceedings of the
Network and Distributed System Security Symposium, 2016. 85

T. Ball and J. Larus. Efficient path profiling. In Proceedings of the ACM/IEEE Sympo-
stum on Microarchitecture, Dec 1996. 13, 19, 21, 23, 24

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the art of virtualization. In Proceedings of the ACM Symposium
on Operating Systems Principles, 2003. 52, 58

A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an untrusted cloud
with Haven. ACM Transactions on Computer Systems, 33(3), September 2015. 85

91

https://developer.arm.com/documentation/PRD29-GENC-009492/c
https://developer.arm.com/documentation/PRD29-GENC-009492/c
https://developer.arm.com/documentation/109576/0100/Using-PAC-and-BTI-features-in-applications
https://developer.arm.com/documentation/109576/0100/Using-PAC-and-BTI-features-in-applications
https://developer.arm.com/documentation/den0028/a/
https://developer.arm.com/documentation/den0028/a/

[29]

[30]

[31]

[32]

[33]

[34]

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming: A new
class of code-reuse attack. In Proceedings of the ACM Symposium on Information, Com-

puter and Communications Security, 2011. 4, 16

E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When Good Instructions Go
Bad: Generalizing Return-Oriented Programming to RISC. In Proceedings of the ACM

Conference on Computer and Communications Security, 2008. 33

C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the difficulty of software-
based attestation of embedded devices. In Proceedings of the ACM conference on Com-

puter and communications security, 2009. 82

A. Caulfield, L. Tyler, and I. D. O. Nunes. SpecCFA: Enhancing Control Flow At-
testation/Auditing via Application-Aware Sub-Path Speculation . In Proceedings of the
Annual Computer Security Applications Conference, pages 563-578, Los Alamitos, CA,
USA, December 2024. IEEE Computer Society. doi: 10.1109/ACSAC63791.2024.00055.
84

A. 1. Caulfield, N. Rattanavipanon, and I. D. O. Nunes. Run-time attestation and au-
diting: The verifier’s perspective. In Proceedings of the ACM Conference on Security
and Privacy in Wireless and Mobile Networks, WiSec 2025, page 1627, New York,
NY, USA, 2025. Association for Computing Machinery. ISBN 9798400715303. doi:
10.1145/3734477.3734710. 84

S. Checkoway, L. Davi, A. Dmitrienko, A-R. Sadeghi, H. Shacham, and M. Winandy.
Return-Oriented Programming Without Returns. In Proceedings of the ACM Conference

on Computer and Communications Security, 2010. 4, 16

L. Chen, R. Landfermann, H. Lohr, M. Rohe, A-R. Sadeghi, and C. Stiible. A protocol
for property-based attestation. In Proceedings of the ACM workshop on Scalable trusted
computing, pages 7-16, 2006. 1

L. Chen, H. Lohr, M. Manulis, and A-R. Sadeghi. Property-based attestation without
a trusted third party. In Proceedings of the International Conference on Information

Security, pages 31-46. Springer, 2008. 1

Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu. Shreds: Fine-grained execution units
with private memory. In Proceedings of the IEEE Symposium on Security and Privacy,
2016. 84

92

[38]

[40]

[42]

[43]

[44]

M. Chilese, R. Mitev, M. Orenbach, R. Thorburn, A. Atamli, and A-R. Sadeghi. One
for all and all for one: GNN-based control-flow attestation for embedded devices. In
Proceedings of the IEEE Symposium on Security and Privacy, 2024. 3, 76, 85

A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo, S. Bagchi, and
M. Payer. Protecting bare-metal embedded systems with privilege overlays. In Proceedings
of the IEEE Symposium on Security and Privacy, 2017. 15

T. Cloosters, D. Paaflen, J. Wang, O. Draissi, P. Jauernig, E. Stapf, L. Davi, and A-
R. Sadeghi. RiscyROP: Automated Return-Oriented Programming Attacks on RISC-V
and ARM64. In Proceedings of the International Symposium on Research in Attacks,
Intrusions and Defenses, 2022. 33

J. Criswell, N. Dautenhahn, and V. Adve. Virtual Ghost: Protecting applications from
hostile operating systems. In Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems, page 81-96, 2014. 85

H. B. Debes, E. Dushku, T. Giannetsos, and A. Marandi. Zekra: Zero-knowledge control-
flow attestation. In Proceedings of the ACM Asia Conference on Computer and Commu-
nications Security, page 357-371, 2023. 85

G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan, and
A-R. Sadeghi. Lo-fat: Low-overhead control flow attestation in hardware. In Proceedings
of the ACM/EDAC/IEEE Design Automation Conference, 2017. 83

G. Dessouky, T. Abera, A. Ibrahim, and A-R. Sadeghi. LiteHAX: lightweight hardware-
assisted attestation of program execution. In Proceedings of the International Conference
on Computer Aided Design, 2018. 4, 8, 83

R. Doyle, R. Some, W. Powell, G. Mounce, M. Goforth, S. Horan, and M. Lowry. High
performance spaceflight computing (hpsc) next-generation space processor (ngsp): a joint
investment of nasa and afrl. In Proceedings of the Workshop on Spacecraft Flight Software,
pages 1-19, 2013. 9, 51

R. Felker et al. Musl libc: An implementation of the standard library for linux-based
systems, 2025. https://musl.libc.org/. 39

T. Fraser, J. Molina, and W. Arbaugh. Copilot—a coprocessor-based kernel runtime in-
tegrity monitor. In Proceedings of the USENIX Security Symposium, 2004. 82

93

https://musl.libc.org/

[48]

[49]

[50]

[51]

[54]

[56]

[57]

M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The digital distributed system
security architecture. In Proceedings of the National Computer Security Conference, pages
305-319, 1989. 1

X. Ge, H. Vijayakumar, and T. Jaeger. SPROBES: Enforcing Kernel Code Integrity on
the TrustZone. In Proceedings of the IEEE Workshop on Mobile Security Technologies,
2014. 33, 34, 55, 58, 70, 85

X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-grained control-flow integrity for kernel
software. In Proceedings of the IEEE European Symposium on Security and Privacy, 2016.
71

Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and Trent
Jaeger. TrustShadow: Secure Execution of Unmodified Applications with ARM Trust-
Zone. In Proceedings of the Annual International Conference on Mobile Systems, Appli-

cations, and Services, page 488-501, 2017. ISBN 9781450349284. 85

Gwaltrip. Github. rover controller, 2025. https://github.com/Gwaltrip/RoverPi/
tree/master/tcpRover. 76

H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. Data-Oriented Pro-
gramming: On the Expressiveness of Non-Control Data Attacks. In Proceedings of the
IEEE Symposium on Security and Privacy, 2016. 4, 16

J. Hu, D. Huo, M. Wang, Y. Wang, Y. Zhang, and Y. Li. A probability prediction
based mutable control-flow attestation scheme on embedded platforms. In Proceedings of
the IEEE International Conference On Trust, Security And Privacy In Computing And
Communications (TrustCom/BigDataSE). IEEE, 2019. 8, 84

D. Huo, Y. Wang, C. Liu, M. Li, Y. Wang, and Z. Xu. LAPE: A Lightweight Attesta-
tion of Program Execution Scheme for BareMetal Systems. In Proceedings of the IEEE
International Conference on High Performance Computing and Communications, 2020.

4, 83
Intel. Intel SGX for linux. https://github.com/intel/linux-sgx. 1

Intel. Intel-64 and [A-32 architectures software developer’s manual, 2018. https://
software.intel.com/en-us/articles/intel-sdm. 51, 52, 84, 85

94

https://github.com/Gwaltrip/RoverPi/tree/master/tcpRover
https://github.com/Gwaltrip/RoverPi/tree/master/tcpRover
https://github.com/intel/linux-sgx
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

[58]

[60]

[63]

[64]

[65]

[66]

C. Jelesnianski, M. Ismail, Y. Jang, D. Williams, and C. Min. Protect the system call,
protect (most of) the world with bastion. In Proceedings of the ACM International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
Volume 3, ASPLOS 2023, page 528-541, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9781450399180. doi: 10.1145/3582016.3582066. 85

A. Joseph, N. Yadav, V. Ganapathy, and D. Behl. A contributory public-event recording
and querying system. In Proceedings of the IEEE/ACM Symposium on Edge Computing,
pages 1-14, Los Alamitos, CA, USA, dec 2023. IEEE Computer Society. doi: 10.1145/
3583740.3628445. vi

A. Joseph, N. Yadav, V. Ganapathy, D. Behl, and P. Jayachandran. Data protection in
permissioned blockchains using privilege separation. In Proceedings of the International
Conference on Communication Systems & Networks, pages 748-756. IEEE, 2023. vi

J. Judin. Github. light controller, 2025. https://github.com/Barro/
light-controller. 76

V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kGuard: Lightweight kernel protec-
tion against Return-to-User attacks. In Proceedings of the USENIX Security Symposium,
pages 459-474, Bellevue, WA, August 2012. ISBN 978-931971-95-9. 9, 51

C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang. Remote attestation to dynamic
system properties: Towards providing complete system integrity evidence. In Proceedings
of the IEEE/IFIP International Conference on Dependable Systems € Networks, pages
115-124. IEEE, 2009. 1

C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu. Securing real-time
microcontroller systems through customized memory view switching. In Proceedings of
the Networked and Distributed Systems Security Symposium, 2018. 15

D. Koisser, R. Mitev, N. Yadav, F. Vollmer, and A-R. Sadeghi. Orbital trust and privacy:
SoK on PKI and location privacy challenges in space networks. In Proceedings of the
USENIX Security Symposium, pages 6093-6111, Philadelphia, PA, August 2024. USENIX
Association. ISBN 978-1-939133-44-1. vi

J. Larus. Whole program paths. In Proceedings of the ACM SIGPLAN Symposium on
Programming Language Design and Implementation, May 1999. 13, 19, 24, 26, 30, 31

95

https://github.com/Barro/light-controller
https://github.com/Barro/light-controller

[67]

[71]

73]

[75]

[76]

Y. Li, J. M. McCune, and A. Perrig. Viper: Verifying the integrity of peripherals’
firmware. In Proceedings of the ACM conference on Computer and communications se-
curity, pages 3—16, 2011. 82

L. McVoy and C. Staelin. Lmbench: Portable tools for performance analysis. In Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference, 1996. 79

A. J. Neto and I. D. O. Nunes. ISC-FLAT: On the Conflict Between Control Flow Attes-
tation and Real-Time Operations. In Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium, 2023. 33, 53, 54, 84

A. J. Neto, N. Rattanavipanon, and I. D. O. Nunes. PEARTS: Provable Execution in
Real-Time Embedded Systems . In Proceedings of the IEEE Symposium on Security and
Privacy, pages 3765-3782, Los Alamitos, CA, USA, May 2025. IEEE Computer Society.
doi: 10.1109/SP61157.2025.00047. 84

[. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and G. Tsudik. Vrased:
A verified hardware/software co-design for remote attestation. In Proceedings of the
USENIX Security Symposium, pages 1429-1446, 2019. 82

I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. Apex: a verified
architecture for proofs of execution on remote devices under full software compromise.
In Proceedings of the USENIX Security Symposium, USA, 2020. USENIX Association.
ISBN 978-1-939133-17-5. 83

I. D. O. Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik. On the TOCTOU
problem in remote attestation. In Proceedings of the ACM Conference on Computer and

Communications Security, 2021. 82

[. D. O. Nunes, S. Jakkamsetti, and G. Tsudik. Tiny-CFA: Minimalistic control-flow
attestation using verified proofs of execution. In Proceedings of the Design, Automation
and Test Conference, 2021. 4, 8, 54, 55, 61, 67, 78, 83

A. Papoulis. Bernoulli Trials. Probability, Random Variables, and Stochastic Processes
(2nd ed.). McGraw-Hill, 1984. 47

OP-TEE Project. OP-TEE: Open portable trusted execution environment. https://
www.op-tee.org/. 15, 29, 32, 62

96

https://www.op-tee.org/
https://www.op-tee.org/

[77]

78]

[79]

[31]

[82]

[83]

[85]

B. Roberts. Enabling PAC and BTI on AArch64 for Linux, Novem-
ber 2024. https://community.arm.com/arm-community-blogs/b/
architectures-and-processors-blog/posts/enabling-pac-and-bti-on-aarché4.
92

A-R. Sadeghi and C. Stiible. Property-based attestation for computing platforms: car-
ing about properties, not mechanisms. In Proceedings of the workshop on New security

paradigms, pages 67-77, 2004. 1

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a
TCG-based integrity measurement architecture. In Proceedings of the USENIX Security
Symposium, 2004. 1

A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla. Swatt: Software-based attestation
for embedded devices. In Proceedings of the IEEE Symposium on Security and Privacy,
2004. 82

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and P. Khosla. Pioneer: verifying
code integrity and enforcing untampered code execution on legacy systems. In Proceedings

of the ACM Symposium on Operating Systems Principles, 2005. 82
J. Seward. bzip2, 2025. Linux man page. https://linux.die.net/man/1/bzip2. 41

H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the ACM conference on Computer and

communications security, pages 552-561, 2007. 4, 16, 38

K. Shanker, A. Joseph, and V. Ganapathy. An evaluation of methods to port legacy
code to sgx enclaves. In Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2020, page 1077-1088, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450370431. doi: 10.1145/3368089.3409726. URL https://doi.
org/10.1145/3368089.3409726. 85

P. Sheng, N. Yadav, V. Sevani, A. Babu, SVR Anand, H. Tyagi, and P. Viswanath.
Proof of backhaul: Trustfree measurement of broadband bandwidth. In Proceedings of

the Network and Distributed System Security Symposium, 2024. vi

97

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enabling-pac-and-bti-on-aarch64
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enabling-pac-and-bti-on-aarch64
https://linux.die.net/man/1/bzip2
https://doi.org/10.1145/3368089.3409726
https://doi.org/10.1145/3368089.3409726

[36]

3]

[39]

[90]

[91]

[92]

[93]

[94]

[95]

S. Shinde, D. Le Tien, S. Tople, and P. Saxena. Panoply: Low-TCB Linux applications
with SGX enclaves. In Proceedings of the Networked and Distributed Systems Security
Symposium, 2017. 85

Z. Sun, B. Feng, L. Lu, and S. Jha. OAT: Attesting operation integrity of embedded
devices. In Proceedings of the IEEE Symposium on Security and Privacy, 2020. x, 1, 3,
4,5, 15, 18, 34, 46, 51, 53, 55, 56, 67, 72, 76, 82, 83

G. Tan. Principles and implementation techniques of software-based fault isolation. Foun-

dations and Trends®) in Privacy and Security, 1(3):137-198, 2017. 60

F. Toffalini, E. Losiouk, A. Biondo, J. Zhou, and M. Conti. Scarr: Scalable runtime
remote attestation for complex systems. In Proceedings of the International Symposium
on Research in Attacks, Intrusions and Defenses, 2019. 4, 8, 9, 51, 53, 54, 59, 67, 85

R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient software-based fault isolation.
In Proceedings of the ACM Symposium on Operating Systems Principles, 1993. 13, 29,
51, 60

M. Walfish and A. Blumberg. Verifying computations without reexecuting them. Com-
munications of the ACM, 58(2), February 2015. 3

T. Walker. Github. open syringe pump, 2025. https://github.com/manimino/
OpenSyringePump. 41, 71, 76

J. Wang, Y. Wang, A. Li, Y. Xiao, R. Zhang, W. Lou, Y. T. Hou, and N. Zhang.
ARI: Attestation of real-time mission execution integrity. In Proceedings of the USENIX
Security Symposium, pages 2761-2778, Anaheim, CA, August 2023. USENIX Association.
ISBN 978-1-939133-37-3. 53, 54, 56, 59, 67, 84

G. Wurster, P. C. Van Oorschot, and A. Somayaji. A generic attack on checksumming-
based software tamper resistance. In Proceedings of the IEEE Symposium on Security
and Privacy (SEP’05), pages 127-138. IEEE, 2005. 82

N. Yadav and V. Ganapathy. Whole-program control-flow path attestation. In Proceed-
ings of the ACM SIGSAC Conference on Computer and Communications Security, pages
26802694, 2023. v, 71

98

https://github.com/manimino/OpenSyringePump
https://github.com/manimino/OpenSyringePump

[96]

[98]

100]

[101]

N. Yadav, F. Vollmer, A-R. Sadeghi, G. Smaragdakis, and A. Voulimeneas. Orbital
shield: Rethinking satellite security in the commercial off-the-shelf era. In Proceedings of
the Security for Space Systems Conference, pages 1-11. IEEE, 2024. vi

N. Yadav, H. Salunke, D. Tejas, and V. Ganapathy. Non-bare-metal userspace control-flow
attestation. In Proceedings of the Annual Computer Security Applications Conference,

2025. v

S. Yoo, J. Park, S. Kim, Y. Kim, and T. Kim. In-Kernel Control-Flow integrity on
commodity OSes using ARM pointer authentication. In Proceedings of the USENIX
Security Symposium, pages 89-106, Boston, MA, August 2022. ISBN 978-1-939133-31-1.
71

M. H. Yun and L. Zhong. Ginseng: Keeping Secrets in Registers When You Distrust
the Operating System. In Proceedings of the Network and Distributed System Security
Symposium, 2019. 85

S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and A-R. Sadeghi.
ATRIUM: Runtime attestation resilient under memory attacks. In Proceedings of the

International Conference on Computer Aided Design, 2017. 83

Y. Zhang, X. Liu, C. Sun, D. Zeng, G. Tan, X. Kan, and S. Ma. ReCFA: Resilient
Control-Flow Attestation. In Proceedings of the Annual Computer Security Applications
Conference, 2021. 4,9, 51, 53, 54, 55, 67, 83, 85

99

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Publications outside of this Thesis
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and CFA
	1.2 Threat Model and Assumptions of CFA
	1.3 Prior Art in CFA
	1.4 Gaps in Prior Art and Our Advances
	1.4.1 Scaling CFA to Whole Program Attestation
	1.4.2 Enhancing Applicability of CFA

	1.5 Problem Statement, Thesis Statement, and Details of Technical Contributions

	2 Whole-Program Control-Flow Attestation
	2.1 Motivation
	2.2 Background
	2.2.1 ARM Trustzone
	2.2.2 Threat Model of BLAST
	2.2.3 TEE Domain Switches in CFA

	2.3 Design and Implementation of BLAST
	2.3.1 Avoiding TEE Domain Switches
	2.3.2 Ball-Larus Numbering for Optimal Logging
	2.3.3 Log Integrity using Software Fault Isolation
	2.3.4 Path Measurement and Verification
	2.3.5 Implementation
	2.3.6 Qualitative Security Analysis

	2.4 Evaluation
	2.4.1 Performance Analysis
	2.4.2 Library Attestation with BLAST
	2.4.3 Evaluating Energy Consumption in BLAST
	2.4.4 Effectiveness of the WPP Representation
	2.4.5 Case Study: Open Syringe Pump Benchmark

	2.5 Sampling: A Strawman Approach to Reduce Overheads of CFA
	2.5.1 Instrumentation and Verification with Sampling
	2.5.2 Security Ramifications of Sampling
	2.5.3 Performance with Sampling
	2.5.4 Shortcomings of Sampling

	2.6 Summary of BLAST

	3 Non-Bare-Metal User-Space Control-Flow Attestation
	3.1 Motivation
	3.2 System-Level Adversaries and CFA
	3.3 SULFUR: Assumptions and Design
	3.3.1 Overview of SULFUR
	3.3.2 S-Vault: A Protected, User-Space Region for CFA

	3.4 Implementation of SULFUR
	3.4.1 CFA-Centric Protections
	3.4.1.1 Protecting Code Integrity of P
	3.4.1.2 Protecting Integrity of P's Execution Context
	3.4.1.3 Protecting Integrity of CFA Measurements in REE
	3.4.1.4 Protecting Integrity of Attestation Calls

	3.4.2 System Integrity Guardrails
	3.4.2.1 System Configuration Protection
	3.4.2.2 Protecting Integrity of SulfurOS

	3.5 Security Evaluation
	3.6 Performance Evaluation
	3.6.1 Microbenchmark Evaluation
	3.6.2 Scalability Evaluation

	3.7 Summary of SULFUR

	4 Related Work
	4.1 Remote Attestation
	4.2 Control-Flow Attestation
	4.3 OS-level Protection

	5 Conclusion and Open Problems
	5.1 Summary of Contributions
	5.2 Potential Avenues for Future Research

	Bibliography

