
A Framework For Privacy-Compliant Delivery Drones

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Technology (Research)

IN THE

Faculty of Engineering

BY

Rakesh Rajan Beck

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

October, 2021

Declaration of Originality

I, Rakesh Rajan Beck, with SR No. 04-04-00-10-18-1-15556 hereby declare that the

material presented in the thesis titled

A Framework For Privacy-Compliant Delivery Drones

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2018-21.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Tuesday 5th October, 2021 Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof Vinod Ganapathy Advisor Signature

1

© Rakesh Rajan Beck

October, 2021

All rights reserved

DEDICATED TO

My father Rakhbil Beck

Who could not see this thesis

Acknowledgements

First and foremost, I would like to thank my advisor Dr. Vinod Ganapathy for giving me the

opportunity to work with him. I am truly grateful for your support, feedback and advice in

academic as well as in personal life during my stay in Indian Institute of Science(IISc). It was

a great pleasure to work with you.

I want to thank my collaborator Abhishek Vijeev. I learnt a lot from him during our long

technical discussions. I want to thank my fellow lab mates at the Computer System Security

Lab – Subhendu, Rounak, Kripa, Nikita, Arun, Aditya, Ajay, Abhinivesh, Chinmay, Gokulnath,

Nikhil and Akash for making the lab a fun place. I would like to thank Prakhar for always

motivating and encouraging me.

Next, I would like to extend special thanks to Nabanita, Aindrila, Protik for making my

stay in IISc unforgettable!

Next, I would like to thank Dr. Arkaprava Basu for always reaching out and extending the

hand during difficult times.

Last but not the least, my family for being my pillar of support.

i

Abstract

We present Privaros, a framework to enforce privacy policies on drones. Privaros is designed for

commercial delivery drones, such as the ones that will likely be used by Amazon Prime Air. Such

drones visit a number of host airspaces, each of which may have different privacy requirements.

Privaros provides a mandatory access control framework to enforce the policies of these hosts

on the guest delivery drones. Privaros is tailored for ROS, a middleware popular in many drone

platforms. This thesis presents the design and implementation of these mechanisms, describes

how policies are specified, and shows that Privaros’s policy specification can be integrated with

India’s Digital Sky portal. Our evaluation shows that a drone running Privaros can robustly

enforce various privacy policies specified by hosts, and that its core mechanisms only marginally

increase communication latency and power consumption.

ii

Keywords

ROS, drones, privacy, mandatory access control, trusted computing

iii

Publications based on this Thesis

PrivaROS: A Framework for Privacy-Compliant Delivery Drones. Rakesh Rajan

Beck, Abhishek Vijeev and Vinod Ganapathy. CCS ’20: Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security October 2020.

https://www.csa.iisc.ac.in/~vg/papers/ccs2020/ccs2020.pdf

https://doi.org/10.1145/3372297.3417858

iv

https://www.csa.iisc.ac.in/~vg/papers/ccs2020/ccs2020.pdf
https://doi.org/10.1145/3372297.3417858

Contents

Acknowledgements i

Abstract ii

Keywords iii

Publications based on this Thesis iv

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Contributions . 4

1.2 Outline . 4

2 Background 6

2.1 Example Policies . 6

2.2 Digital Sky . 7

3 Enforcement Mechanism 9

3.1 Threat Model . 9

3.2 ROS . 11

3.3 SROS and its Shortcomings . 13

3.4 New Mechanisms in Privaros . 16

3.4.1 End-to-end Policy Specifications. 16

3.4.2 OS-level Enforcement. 18

v

CONTENTS

3.5 Modifications to ROS . 21

3.6 Role of the Hardware TEE . 22

4 Policy Interface 23

4.1 Specifying and loading policies. 23

4.2 On integration with India’s Digital Sky portal. 24

5 Evaluation 27

5.1 Robustness of Policy Enforcement . 28

5.2 Performance . 30

6 Related Work 33

7 Conclusion 36

Bibliography 37

vi

List of Figures

2.1 Deployment scenario for Privaros-enabled drones. 8

3.1 Example declaration of message format in ROS. To send messages, an

application uses a topic name (say CamOutput) to refer to the message

stream, and publishes messages in this format under that topic name. 11

3.2 Publisher/subscriber communication in ROS. 12

3.3 Snippet of an application manifest in SROS. 14

3.4 Illustrative communication graphs. 17

3.5 Alternative communication graph to enforce BlurExportedImages when

Navigator needs a raw image feed and also has to be network-facing. . 19

4.1 Integrating policy specification in Privaros with the Digital Sky inter-

face. 25

5.1 Setup to evaluate robustness of the policy enforcement mechanism in

Privaros. 28

vii

List of Tables

5.1 Workloads from PerformanceTest. 31

5.2 Microbenchmark performance. 31

5.3 Experiments using lmbench. 32

5.4 Performance impact of flow redirection. 32

viii

Chapter 1

Introduction

Over the past few years, there has been a rapid increase in the availability and ownership

of end-user drones. Drones are now available for a few hundred dollars and widely used by

hobbyists. Commercial operators such as Amazon are also planning to use fleets of drones for

delivery. The US Federal Aviation Administration forecast report (2019-2039) [1] predicts over

1.39 million hobbyist and 853,000 commercial drones by 2023. Drones are also being put to

effective use in the Covid19 pandemic. Law-enforcement agencies in various countries are using

drones to make public-service announcements, and patrol locked-down areas for unauthorized

social gatherings.

Despite the novel applications enabled by drones, the lack of tight regulations surrounding

their use has led to a plethora of security and privacy problems. Incidents involving drones range

from potential drone/aircraft collisions and near-misses [90], drone-sightings causing airport

closures [20], to smuggling [19] and assassination attempts [42]. While rogue drones cause such

security and safety-related problems, benign drones, e.g., those that may be used for package

delivery, also raise serious privacy concerns. Drones are equipped with a variety of sensors

(cameras, GPS, Lidar, etc.) for navigation. The sensors on board the drone can be used to

capture pictures or video, map a sensitive location or a building. Prior studies have shown that

people are indeed wary of their privacy being compromised by drones [84, 14, 89]. Addressing

the entire gamut of security and privacy problems posed by drones requires a mix of new

regulations (e.g., to ensure that drones have an identity registered with the aviation authority),

technology, and law enforcement (e.g., to detect [31, 9, 57, 68, 12, 13, 76] and capture rogue

drones).

We present Privaros, a framework that allows host airspaces (e.g., a corporate or university

campus, a city neighbourhood, or an apartment complex) to ensure that guest drones entering

them are compliant with privacy-policies determined by the hosts. For example, a host can

1

specify a policy that requires any guest drone that enters its airspace to refrain from wirelessly

transmitting or locally storing (e.g., in an on-board SD card) any images or video that it

captures when within the host’s airspace. Privaros enhances the drone software stack with

mechanisms that allow guest drones to enforce host-specified privacy policies and prove to the

host that they are in compliance (via hardware-based attestations).

We have designed Privaros specifically with a focus on delivery drones. These drones are

operated by fleet operators that have reputations and delivery contracts to protect and, by

corollary, have no incentives to operate rogue drones. Thus, we can assume that such drones

have an identity (e.g., a public key) that is registered with the aviation authority, are equipped

with the Privaros-enhanced software stack, and have associated trusted hardware that makes

remote attestation possible. Making these assumptions allows us to focus on the key challenges

in building the policy-compliance mechanisms for drones without rightaway having to consider

other critical issues, e.g., on how to issue identity to drones and on how to deal with rogue

drones. While central to an end-to-end treatment of privacy with drones, these issues involve

developing regulations and evolving new law-enforcement methods that are outside the scope

of this thesis. Our work focuses on delivery drones because their usage model implies that the

above assumptions hold. Our work also gels well with the policies being developed by various

countries, notably India’s Digital Sky [35, 36, 37], which provides guidelines for drone operators

in India.

Privaros models the problem of enforcing host-specified privacy policies as one of regulating

how applications on the drone consume or communicate data received from sensors on the

drone. Privaros enforces these restrictions using mandatory access control. For the example

policy discussed earlier, Privaros can ensure that the video feed from the camera is available

to image-processing/vision applications and to the navigation software, but cannot be sent to

local storage or to the wireless network interface.

Privaros is built on top of the Robot Operating System [62, 66, 67] (ROS version 21), a

popular middleware used by a number of drones (e.g., various models sold by DJI, 3DR, Parrot,

Gaitech, Erle, BitCraze, Skybotix) and other robotics systems. A key reason for our choice to

base Privaros atop ROS was its rich support for applications written in a variety of languages,

including Python and C++. ROS provides the abstractions to transparently execute a variety

of applications on any drone hardware platform that runs ROS, and also interacts with the

navigation control software. A vibrant application ecosystem has evolved around ROS and the

market for platforms that use ROS is expected to grow to $402.7 million by 2026 [63]. Privaros

1Unless otherwise noted, uses of the term “ROS” in this thesis reference ROS version 2 [67], which deviates
significantly in design from ROS version 1 [66].

2

can therefore directly benefit drone operators that tap into the ROS application ecosystem.

ROS is built as a publish/subscribe system, in which ROS applications publish or subscribe

to certain topics. ROS simply acts as a matchmaker that pairs publishers and subscribers,

following which the pair of applications communicate directly with each other over network

sockets. As such, ROS does not incorporate any security mechanisms to regulate applica-

tion communication. Thus, a malicious ROS application can easily snoop on or corrupt the

communication between a pair of benign applications. Recognizing the need to prevent such

attacks, the ROS community has developed Secure ROS (SROS) [87, 85], a set of extensions

that attempt to prevent such attacks.

In this thesis, we show that the mechanisms of SROS alone do not suffice to robustly

enforce security policies. In particular, while ROS applications typically communicate via the

publish/subscribe mechanism, they can also communicate directly via other operating system

(OS) abstractions, such as raw sockets, shared memory, pipes, and the file system. For example,

a pair of applications can bypass the ROS-based publish/subscribe matchmaking mechanism,

and directly establish socket connections for communication. While ROS has visibility into the

publish/subscribe system and can reason about applications that initiate communication using

this system, it cannot reason about low-level communication via OS abstractions.

Privaros enhances the ROS software stack by adding the ability to enforce mandatory access

control policies between ROS applications. It tightly integrates policy enforcement at the ROS

layer with OS kernel-level modifications to enforce mandatory access-control policies. At the

OS level, the mechanisms of Privaros allow it to robustly enforce restrictions on applications

that communicate directly via OS abstractions or bypass ROS. At the ROS level, Privaros

incorporates modifications that allow the OS mechanisms to be cognizant of ROS abstrac-

tions (e.g., topic names) used by applications, and suitably redirect communication via trusted

applications, where required. Chapter 3 elaborates on the mechanisms in Privaros.

We have tailored Privaros’s policy interface for delivery drone operations in India. To

show that drones using Privaros can readily be adopted once regulations are in place, we

integrate Privaros’s policy specification interface with the front-end offered by India’s Digital

Sky portal [35]. This interface allows drone operators to specify the regions to which they

intend to fly and obtain the permission to fly from India’s Directorate General of Civil Aviation

(DGCA). While the current intent of Digital Sky’s interface is to prohibit drones from flying

over so-called “red-zones” (e.g., military establishments or other sensitive areas), we show that

the same interface can be used to upload the privacy policies of all the host airspaces that the

drone will visit during its delivery run Chapter 4. As a result, we hope that Privaros can be

readily adopted without invasive changes to a regulatory platform that is already in place.

3

For our experiments, we ran the Privaros-enhanced software stack on an NVidia Jetson

TX2 board [75]. We chose this platform because its firmware can easily be reflashed with

Privaros (unlike off-the-shelf drones, which are often closed platforms), and also because it

offers a programmable trusted-execution environment (TEE) based on the ARM TrustZone [5].

Commercially-available drones do not yet have the kind of hardware support to enable remote

attestations by hosts. However, we note that such trusted hardware support has already been

proposed as part of the regulations in Digital Sky [37]. Indian drone vendors will thus have to

provide trusted hardware in the near future to sell and operate drones in India. Our evaluation

(Chapter 5) shows that Privaros robustly enforces privacy policies. Furthermore, Privaros’s

core mechanisms only introduce low runtime performance overheads in terms of communication

latency and power consumption on the drone.

1.1 Contributions

Contributions made in this thesis is summarized below:

• We motivate the problem of enforcing host-specified privacy policies on guest delivery

drones and discuss the shortcomings of existing methods to enforce such policies;

• We present Privaros, a set of new mechanisms added to ROS and the underlying OS to

enforce such policies;

• We show how the policy specification for Privaros can be integrated with the Digital Sky

interface; and

• We present a robustness and security evaluation of Privaros on an NVidia Jetson TX2

board, showing that its overheads are low enough for practical use.

1.2 Outline

The rest of the thesis is organized as follows:

• Chapter 2: We provide background material needed to go through this thesis. We de-

scribe three sample policies. We also discuss what Digital Sky provides and how Privaros

can fits.

• Chapter 3: Details of policy enforcement mechanism used and discuss threat model used

in Privaros is presented in this chapter.

4

• Chapter 4: Describes how policies are specified and communicated to the drone. We

also describe in details how Privaros can be integrated with India’s Digital Sky portal.

• Chapter 5: We evaluated Privaros in many different scenarios such as robustness of

policy enforcement, performance.

• Chapter 6, 7: We provide related work and finally conclude the thesis.

5

Chapter 2

Background

In this chapter, we present examples of the kinds of policies that we consider in this thesis, and

background on the regulations that have already been proposed by Indian aviation authorities.

2.1 Example Policies

A host airspace may wish to impose a variety of policies on guest drones:

• ProcessLocally. Autonomously-navigated drones capture images or video of their

surroundings. These images/video are processed on-board by a computer vision applica-

tion to detect obstacles that they must fly around. A host may wish to ensure that the

images/video captured by such a drone are only used by the computer vision application,

which in turn communicates this information only to the navigation board. In particular,

the images/video must not be transmitted outside the drone via its network interfaces.

They should also not be stored in the drone’s filesystem for retrieval by the drone operator

at a later point in time.

• BlurExportedImages. A large majority of drones available today are controlled by a

ground-based operator. These drones transmit a video feed from the drone to the operator

(called the first person view) who navigates the drone manually, often with visual line of

sight. Alternatively, one could imagine an autonomously-navigated drone that transmits

its video feed to a cloud-based server for obstacle detection, and obtains its navigation

decisions from this server. For such drones, it is impractical for hosts to impose the

ProcessLocally policy. Hosts may instead wish to ensure that the video feed exported

from the drone is scrubbed to remove sensitive information. For example, the host may

require the video feed to be processed by an on-board application (vetted by the host)

6

that blurs peoples’ faces and car registration plates that appear in the video feed (e.g., as

is done in images published in Google Street View).

• UseDroneLanes. The host may require guest drones to fly only within designated

drone lanes to ensure safety and privacy. In a campus or university setting, campus

security may identify drone lanes that are away from sensitive installations within the

campus. Localities in a city may likewise identify drone lanes that border public spaces

at a comfortable distance away from private homes.

These policies have been discussed in prior work [78, 45], but are by no means a compre-

hensive listing of policies that Privaros can enforce. Hosts may choose a different combination

of these or other policies to enforce in their airspaces. The policies may also have to be tailored

to the abilities of the guest drone, e.g., an autonomous drone can operate under ProcessLo-

cally, but a semi-automated or manual drone may require BlurExportedImages.

2.2 Digital Sky

The Digital Sky platform is a set of regulations [36, 37] and supporting computing infrastruc-

ture [35] that India’s aviation authority (DGCA) is using to formulate its drone policy. A first

set of regulations [36] was adopted on December 1, 2018 as part of the Civil Aviation Regula-

tions, and the policy continues to evolve. Aimed primarily at drone operators, the Digital Sky

portal [35] provides interfaces for authorized users (e.g., licensed commercial drone operators)

to register the identity of their drones with DGCA, and obtain permission to fly before each

delivery run.

Digital Sky’s policy is focused on ensuring safety and security. For example, Digital Sky

allows operators to specify the geographic region over which they intend to fly using a visual

map-based interface. This information is sent to a back-end server, which checks whether the

region intersects any red-zones (e.g., sensitive military installations), which are no-fly zones.

The proposed flight path may also intersect airspaces that impose altitude restrictions. Drones

are not allowed to fly above a certain altitude as they approach an airport, for instance, and

the permitted altitude reduces as the drone approaches the airport (thereby imposing a conical

exclusion zone centred at the airport).

One of the centrepieces of Digital Sky’s proposal to enforce these restrictions is No-permission

No-takeoff (NPNT). With NPNT, the DGCA server would review the drone’s flight path and

issue a permission artifact, digitally-signed by the aviation authority. This permission artifact

is sent to the drone, and the drone is permitted to fly only after validating the digitally-signed

permission artifact.

7

1 Host airspaces, such as college/school campuses, office complexes/IT parks, and city neighbourhoods,
identify their privacy policies and upload it to the aviation authority (Digital Sky in India); 2 A delivery
drone operator starting up a drone sends information identifying the drone (e.g., its registered public key),
and declares the flight path of the drone’s delivery run; 3 The aviation authority server vets the flight
plan (e.g., for NPNT compliance) and then sends the drone the privacy policies of the host airspaces along
its flight path; 4 The drone then begins its delivery run. Any host airspace along the drone’s flight path
can challenge it to provide TEE-backed attestations, to verify the integrity of the drone’s Privaros-enabled
software stack.

Figure 2.1: Deployment scenario for Privaros-enabled drones.

Finally, Digital Sky certifies drones at various levels [37, Page 39], based on the hardware

capabilities of the drone. A level 0-certified drone stores cryptographic artifacts pertaining to

its identity (i.e., its public/private key pair) completely within software. A level 1-certified

drone must have a hardware-based TEE to store the drone’s private keys, perform attestations,

and perform NPNT validation and enforcement. Level 1-certified drones are robust to attacks

on the drone’s software stack because they offer a hardware-only TCB.

Privaros aims to build upon the basic protections offered by Digital Sky by providing fine-

grained policy enforcement within the drone. Privaros allows enforcement of policies such

as ProcessLocally, BlurExportedImages and UseDroneLanes that are beyond the

current scope of Digital Sky. Figure 2.1 depicts how we envision Privaros-enabled drones to

be deployed, and how policies will be communicated to the drones. Chapter 4 presents our

deployment vision in more detail.

8

Chapter 3

Enforcement Mechanism

This chapter presents the details of the policy enforcement mechanism and discuss threat model

in Privaros. Chapter 4 will describe how policies are specified and communicated to the drone.

3.1 Threat Model

Privaros is tailored for delivery drones. E-commerce companies considering drone-based delivery

(e.g., Amazon, Flipkart) will likely use decentralized models akin to those used in ground-based

delivery, wherein procurement and operation of delivery vehicles is outsourced to delivery-

service providers (DSPs) [46, 18, 27]. While it is reasonable to assume that e-commerce com-

panies are trusted and have no overtly-malicious intentions (because they have reputations to

protect), host airspaces may not trust DSPs. In particular, the e-commerce company may

prescribe a Privaros-enhanced software stack for use on a DSP’s delivery drones. However, the

host airspace cannot trust that the DSP’s guest drone is indeed executing that software stack.

For example, the drone may have been compromised by a rogue DSP employee who covertly

reflashes the drone’s software or installs malware on it.

We therefore require guest drones to attest their software stack to host airspaces. Our

trusted-computing base (TCB) consists of the guest drone’s hardware TEE and its OS, enhanced

with the mechanisms of Privaros. The goal of attesting the drone is to ensure that the TCB

in the guest drone is untampered. Applications running on top of Privaros are not trusted

and could be malicious in intent. Privaros also introduces modifications to ROS (Chapter 3.5.

However, ROS consists of library modules that are linked against applications. Since we do not

trust applications, the modifications that Privaros introduces in ROS are not part of the TCB.

To enable attestations, we assume that each drone is equipped with a hardware TEE (i.e., a

level 1-certified drone in Digital Sky terminology) that stores the drone’s private key. The

9

drone’s public key serves as its identity to hosts and the aviation authority. The hardware TEE

enables features like secure boot and attestations in response to challenges from hosts or the

aviation authority. We have implemented Privaros on a hardware platform that has a TEE

based on ARM TrustZone [5] based TEE. However, Privaros only requires a TEE to attest

the software stack (in the standard way [70]) and its design does not currently leverage many

other features of the TrustZone (e.g., peripheral partitioning across worlds). It can therefore

be adapted to any hardware TEE design that drone vendors evolve in response to Digital Sky

regulations.

A single drone typically has multiple compute platforms. For example, a flight control

board (such as Pixhawk [59]) runs the autopilot software (such as Ardupilot [4] or PX4 [61],

running on top of a real-time operating system such as ChibiOS [16]) and interacts with a

companion board (that typically uses an ARM-based processor) that runs applications. We

assume that attestations provided by the drone cover the software running on all these compute

platforms. This could be implemented with a single master board (i.e., the registered flight

module whose identity is provided to the aviation authority) obtaining local attestations from

all slave boards, and providing a consolidated attestation to an external entity such as a host.

Digital Sky requires all master-slave communications to be encrypted with 128-bit symmetric

keys, at minimum [37, Page 39]. For now, we only obtain attestations from the companion

board that executes Privaros. This is primarily because flight control boards are not currently

equipped with hardware TEEs, although they are likely to evolve to be equipped as such.

By corollary, our threat model excludes physical attacks that attempt to bypass the mecha-

nisms of Privaros. For example, a rogue employee could attempt to bypass Privaros by clipping

on a remote-controlled camera with in-built networking that is not connected as a sensor to

the compute platform running Privaros. To an extent, some of these attacks can be mitigated

with regulatory compliance checks. For example, regulations may require the fleet operator to

have procedures that perform an automated physical check of the drone before it flies out of

the warehouse on its delivery run to ensure that no unauthorized peripherals are clipped or

taped onto the drone.

Privaros provides the ability to control how applications consume sensor data. However, it

is well-known that mandatory access control (e.g., based on subject and object labels) is a not

perfect mechanism. It cannot protect against applications attempting to communicate with

each other via covert timing or storage channels. We also exclude such covert channel-based

attacks from our threat model.

10

Message format for topic CamOutput
uint32 height # image height

uint32 width # image width

string encoding # encoding of pixels

uint32 step # row length

uint8[] data # actual image matrix (step*height)

Figure 3.1: Example declaration of message format in ROS. To send messages, an
application uses a topic name (say CamOutput) to refer to the message stream, and
publishes messages in this format under that topic name.

3.2 ROS

Privaros enhances ROS and the underlying OS, and mediates the actions of all the applications

running on the drone. As discussed in our threat model, drone applications are typically

executed on a companion board. This is standard in all ROS-based platforms. The flight-control

board and the sensors connected to it communicate with applications on the companion board

using the MAVLink protocol [48]. Applications receive and process data from drone sensors

and can also communicate with each other. For example, the output of the camera can be

processed by an image-processing pipeline to detect obstacles. The output from this pipeline

may be processed by a navigation application that sends MAVLink control commands to the

flight-control board. Privaros aims to control inter-application communication based on the

host’s privacy policies.

ROS primarily uses a publish/subscribe model to facilitate application communication. The

publish/subscribe mechanism in ROS is built using the Data Distribution Service (DDS) [69,

22], an open middleware standard created for real-time and embedded systems. ROS enables

asynchronous communication between applications while decoupling spatial and temporal con-

cerns, i.e., applications don’t need to know where other applications that they communicate

with reside (they can even run on a different drone), and applications can exchange informa-

tion even if they are not simultaneously running. Applications publish or subscribe to one or

more topics, identified by a topic name. Topics also have associated types that specify how the

messages published under that topic must be parsed. Figure 3.1 presents an example of how an

application would specify a ROS topic (in this case, an image). The fields shown in the topic

declaration are the various data members published under that topic.

ROS uses the DDS protocol to match publishers with subscribers based on topic. At the

application level, the abstraction presented is one of publishing messages to a bus, which are

delivered to all subscribers of the bus. Figure 3.2 illustrates how this abstraction is implemented.

When ROS starts an application that subscribes to a topic, it checks which applications publish

11

1 Every application on ROS links against the library. The dotted lines show the process boundary. An
application registers its topics via the ROS library; 2 A decentralized protocol discovers and identifies
applications with matching topics; 3 ROS sets up socket communication via the underlying OS for the
applications to communicate.

Figure 3.2: Publisher/subscriber communication in ROS.

to that topic; DDS implements a decentralized protocol for application discovery. If it identifies

a publisher, it sets up a network socket for the publisher and subscriber to directly communicate

with each other. ROS is built to support distributed robotics platforms, so a publisher and

subscriber application need not necessarily run on the same physical machine. However, if they

do, ROS may choose to optimize their communication using shared memory instead of sockets.

Applications that exclusively use the ROS API for communication remain oblivious to the

means of communication (sockets, shared memory) that ROS uses to establish communication.

The ROS library, which applications are linked with, transparently marshals and unmarshals

data beneath the application layer, thereby exposing a simple publish/subscribe API at the

application layer.

We use a communication graph to represent the flow of messages between applications on

a ROS system. The nodes of this graph represent ROS applications while edges denote topic

names. Note that each application can publish or subscribe to multiple topics. We present

examples of communication graphs in Chapter 3.4.

12

3.3 SROS and its Shortcomings

In its most basic form, ROS does not offer security. Applications do not authenticate each

other and messages between applications are exchanged in the clear. This leads to a number

of attacks [23, 24, 64, 49, 39, 79] that compromise message confidentiality (e.g., snooping on

messages), data integrity (e.g., false data injection) and sender integrity (e.g., by impersonating

an application).

ROS does not impose restrictions on the topics to which an application can publish or

subscribe. This leads to situations where an application can publish a synthetic image feed with

the same topic name as the real camera (say, CamOutput is the topic name). Applications that

subscribe to the CamOutput topic will consume this image feed, possibly with dire consequences.

For example, a malicious application can fool an obstacle-detection application that subscribes

to CamOutput by publishing an obstacle-free image feed, thereby causing the drone to crash

into a building. Similarly, a malicious network-facing application can subscribe to CamOutput

and transmit the image feed to the attacker’s server.

A number of prior papers have investigated these security shortcomings and have also pro-

posed solutions [23, 24, 64, 49]. The first version of ROS also had a centralized ROS master

node, which was responsible for matchmaking. As a centralized entity, its failure could lead to

denial-of-service attacks [39]; however, ROS version 2, which we use for Privaros, eliminates the

ROS master node, and instead uses the decentralized DDS protocol to set up communication.

To address these concerns, the community has developed the Secure ROS extension (SROS) [87,

86]. SROS requires each node in the communication graph to be associated with an identity

backed by a X.509 certificate, signed by a trusted third-party. SROS secures communication

between nodes using TLS. It also allows application-writers to specify a manifest that lists the

topics to which that application can publish or subscribe (e.g., see Figure 3.3). The manifest

is cryptographically bound to the application’s identity and cannot be modified without regen-

erating associated the X.509 certificate. SROS thus ensures that an application cannot listen

to or produce messages on topics that are not already part of its manifest, as specified by the

application author.

These mechanisms prevent a number of basic attacks that are otherwise possible on a ROS

system. But they are not perfect, and do not suffice to enforce policies end-to-end. We identify

two fundamental, design-level shortcomings:

• Lack of end-to-end reasoning. SROS restricts the list of topics to which an application

can publish or subscribe via its manifest. However, when an application author specifies

this list in the manifest, he does not know a priori what other applications will execute

13

<permissions>

<grant name="/camera">

<subject name>CN=/camera</subject name> ...

<allow rule>

<publish>

<topics>

<topic>CamOutput</topic>

<topic>CameraStatus</topic>

</topics>

</publish>

<subscribe>

<topics>

<topic>Clock</topic>

</topics>

</subscribe>

</allow rule>

<default>DENY</default>

</grant>

</permissions>

Figure 3.3: Snippet of an application manifest in SROS.

on the drone platform. This lack of context-specific, end-to-end reasoning about the

data produced or consumed by an application restricts our ability to enforce policies

in arbitrary settings. For example, the ProcessLocally policy prevents any images

published by the camera (under the topic CamOutput) from being transmitted outside

the drone. However, BlurExportedImages does allow images to leave the drone as

long as they are scrubbed by another application to blur any privacy-sensitive data in

the images. The application author, who specifies the manifest, has no way to reason

about all the contexts in which the application will execute. Without such reasoning

about the application’s end-to-end usage, the application author can at best produce a

one-size-fits-all manifest that may poorly fit the situation in which the application is used.

• Lack of control over lower-level abstractions. SROS only imposes constraints on com-

munication that goes via the ROS platform. Applications (both malicious and benign

ones) can choose to bypass ROS entirely, and communicate directly with each other via

network sockets, shared memory, the file system, or inter-process communication. Such

communication happens directly via OS abstractions and therefore completely bypasses

SROS enforcement.

In addition to these design-level shortcomings in SROS, we also identified some quirks in

its implementation that could lead to unexpected attacks. First, SROS only allows application

authors to specify restrictions in the manifest using topic names. ROS version 2 allows an

14

application to publish messages belonging to different types under the same topic name. For

example, a camera application publishing under the topic CamOutput could publish images

under one type (say, CamOutput::ImageType) and its status under another type (say, CamOut-

put::StatusType). An application can choose to subscribe to messages of one or more of these

types under the same topic. However, the type of data consumed by the application will not

be evident in the manifest file, which only specifies the topic. For example, an application

called CameraStatus1 could periodically poll the camera’s status by subscribing to CamOutput

and only read the data value published with type CamOutput::StatusType. The fact that this

application does not read the image feed from the camera is not evident from the manifest file.

The second quirk is that SROS internally uses the full path of the application binary to iden-

tify the application at runtime. Using the path rather than the actual executable to determine

identity makes the system vulnerable to attacks where the application binary is replaced with

a malicious version. SROS will use the same manifest as the original application to determine

the list of topics accessible to the malicious application.

Taken together, these quirks enable a malicious drone administrator to engineer data leaks

in certain situations. For instance, suppose the CameraStatus application is allowed to upload

the camera’s operational status to the network. A well-behaved CameraStatus application

only reads data of type CamOutput::StatusType, but not its image feed (of type CamOut-

put::ImageType). A drone running such an application should therefore be acceptable to a

host that wishes to enforce the ProcessLocally policy. However, if SROS were used for

policy enforcement, a malicious drone administrator could violate the ProcessLocally pol-

icy by replacing the CameraStatus application binary with a malicious version. The malicious

application reads data of type CamOutput::ImageType and leaks it over the network. SROS

would allow this attack because a it only uses the topic name in the manifest file to restrict

the data channels accessible to the application; and b it only uses the path name of the binary

and does not bind the executable file to its identity.

We do not view these implementation-level quirks in SROS to be foundational. Indeed,

there are easy workarounds: e.g., a modify ROS to include the type name with the topic in

the manifest file (or match types at runtime); b rewrite applications to decouple different types

of data into different topics; and c bind the application binary to its identity, possibly coupled

with hardware TEE-based attestation of the binary to the host. However, the design-level

shortcomings are the primary motivation for Privaros.

1Throughout the thesis, please note the font conventions used for Applications, Topics, versus Policies.

15

3.4 New Mechanisms in Privaros

Privaros enforces mandatory access control policies that regulate inter-application communi-

cation. Privaros builds upon the basic facilities of SROS that assign identity to applications.

It also leverages SROS to ensure that TLS is used for all inter-application network commu-

nication. However, it supplements the manifest-based access-control mechanism of SROS by:

a allowing end-to-end policy specifications (Chapter 3.4.1); and b enforcing policies within

the OS (Chapter 3.4.2).

3.4.1 End-to-end Policy Specifications.

In Privaros, policies are specified in terms of permitted data flows between applications. Given

a high-level policy such as ProcessLocally, BlurExportedImages or UseDroneLanes,

the policy is compiled down to restrictions on inter-application communication (Chapter 4 will

discuss policy specification in more detail). Thus, rather than require an application writer

to a priori commit to specific topic restrictions, with Privaros, restrictions to be imposed are

identified based upon the environment in which the application will execute. Consider our three

example policies, for instance:

• ProcessLocally. This policy is expressed using restrictions that prevent a any network-

facing application from subscribing to the application that publishes the camera feed; and

b preventing the camera application from writing to the file system mounted on the SD

card. A navigation application may consume the output of the camera feed, but the

policy would place the same restrictions on the navigation application (i.e., no network

or file system communication) to prevent a leak of data from the navigation application.

• BlurExportedImages. This policy is compiled down to a restriction that all images

from the camera must pass through a blurring application before they are consumed

by a network-facing application. The blurring application is entrusted with the task of

identifying and blurring out faces, car number plates, and other sensitive data.

• UseDroneLanes. This policy is compiled down to a restriction that the output of the

GPS feed must pass through a trusted logger that stores the GPS feed in tamper-proof

storage, e.g., either in an audit log within the drone’s hardware TEE, or in a trusted cloud

server. Logs can later be analyzed to determine if the drone violated the drone lanes.

The above implementation only allows passive enforcement of UseDroneLanes, in

which violations are detected post factum. To actively enforce the policy, a trusted ap-

plication would need to analyze the GPS feed and issue navigation commands to the

16

a Communication graph for ProcessLocally.

b Communication graph for BlurExportedImages.

c Communication graph for UseDroneLanes.

Figure 3.4: Illustrative communication graphs.

flight-control board to keep the drone in the lane. We restricted ourselves to the passive

enforcement variant because our experimental hardware platform [75] is not integrated

with a flight-control board.

Figure 3.4 depicts the communication graph structure imposed by these restrictions. Pri-

varos relies on trusted applications (e.g., the blurring application and trusted logger), shown

as shaded ovals in Figure 3.4, to permit data flows that would otherwise be forbidden. These

trusted applications serve a role similar to declassifiers/endorsers from the information-flow

control literature [54] or transformation procedures from the Clark-Wilson security model [17].

The host that specifies the policy must also specify any trusted applications that may be

needed to enforce the policy. These trusted applications may be drawn by the host from an

app store-like portal. It is the host’s responsibility to ensure that the trusted applications

indeed meet their privacy requirements, e.g., that an app indeed identifies and blurs faces

suitably. Privaros confirms to the host that the trusted applications are executing on the drone

(via hardware-based attestation, Chapter 3.6), and ensures that data passes through these

trusted applications before it reaches other downstream applications. Privaros only works at

the granularity of processes, and does not track how data is processed within the applications

to ensure that they perform their functionality (e.g., blurring faces) as advertised.

Note that privacy laws of the future may require drones to enforce some of these policies by

default. Even with such laws in place, we foresee Privaros as being useful to hosts that wish

to enforce customized policies. For example, a host may wish to specify and protect additional

sensitive objects beyond those that are required to be blurred-out by law. Such hosts can use

17

provide customized blurring applications so that BlurExportedImages can identify and blur

out sensitive objects of their choosing.

3.4.2 OS-level Enforcement.

Privaros restricts application-level communication within the OS (Linux, in our case) at the

process level of granularity. Unlike SROS, Privaros can therefore restrict application communi-

cation via pipes, the file system, shared memory, message queues, network- and UNIX-domain

sockets. Privaros validates the application binary at startup (using a digitally-signed hash of

the binary) and enforces security policies on the corresponding process. As a result, Privaros’s

enforcement binds the application’s runtime identity to its process rather than the path name

of its binary (cf. Chapter 3.3, the approach used by SROS).

As is standard in many mandatory access control systems, Privaros also uses labels to enforce

policies [7, 8]. Each kernel object is tagged with a label; subjects (i.e., processes) also have

labels. The labels of a subject and object determine whether the subject is allowed to access an

object. An object’s label can be changed by trusted endorsers or declassifers. This approach has

been used in classical systems, e.g., Bell-LaPadula [7] and Biba [8], which use centralized labels

determined by a system administrator. More recent approaches that implemented information-

flow tracking in modern OS kernels have used expressive decentralized label systems, where

applications decide the labels they assign to their data objects [91, 43, 55].

Privaros adopts a simple label system that restricts data flow between subjects using manda-

tory access control. Policy rules are expressed at the process-level, and determine whether a

process is allowed to create/read/write to sockets, shared memory, IPC, pipes or the file system.

The approach of statically specifying which subjects can communicate with each other

is somewhat more restrictive than the dynamic approach adopted by more expressive label

systems (e.g., [91, 43, 55, 28]). In these systems, the label associated with a data object

encodes its dynamic security state, which stores the history of how it was processed (e.g., its

taint status). In contrast, our policies are specified as static restrictions on subject (i.e., process)

communication alone, and data labels do not feature in the policy specification. Thus, policy

rules in Privaros must be crafted carefully to keep track of the security state of an object. This

difference has practical consequences in how a policy must be expressed.

To illustrate the difference, consider enforcing the BlurExportedImages policy on a

drone that has a Navigator application which uses images of the camera to make local naviga-

tion decisions. However, suppose that Navigator also needs to occasionally transmit some of

these images over the network to a cloud server for further analysis (e.g., if Navigator’s algo-

rithms produce low confidence scores when identifying obstacles in those images). To enforce

18

Figure 3.5: Alternative communication graph to enforce BlurExportedImages when
Navigator needs a raw image feed and also has to be network-facing.

BlurExportedImages, all images sent out over the network would have to be processed by

a trusted BlurFilter application.

With a label system that tracks the dynamic state of data objects (e.g., [55, 91, 43]), the

label associated with the image will determine whether it has been processed by BlurFilter.

There are no a priori restrictions placed on when BlurFilter should process the image. The

only restriction is that the image should be processed by BlurFilter at some point during its

lifetime before it is sent over the network.

In contrast, in Privaros we encode BlurExportedImages by placing restrictions on ap-

plication communication. One way to express this would be using the communication graph

in Figure 3.4b , where we place the restriction that the camera application’s output can only

be consumed by BlurFilter, whose output in turn can be consumed by Navigator and other

applications.

However, this is clearly not the only way to express this policy and may in fact be restrictive.

For example, the Navigator application may require a high-fidelity image stream to make

decisions, and the images processed by BlurFilter may not be of the desired quality. In this

case, the desirable option would be to use the communication graph shown in Figure 3.5. To

realize this communication graph, Privaros could either: a run two instances of the BlurFilter

application (as different processes), one for each node shown in the communication graph; or

b only run one BlurFilter process, but modify the application to decouple the two logical

flows. To process the first flow, BlurFilter would subscribe to CameraOutput and publish

that stream after processing to SanitizedStatus. To process the second flow, it would subscribe

to NavOutput and publish scrubbed images to the network. BlurFilter must be configured

carefully to segregate these flows. Privaros must ensure that the flows be directed to downstream

applications correctly based on topic.

In Privaros, we chose to express policies by statically restricting subject communication to

keep the design of our enforcement mechanism simple. Although we found empirically that

this approach works in the settings we considered, it also means that policies must be crafted

carefully to balance both the host’s privacy requirements and the functionality of applications

19

executing on the drone.

We have implemented Privaros’s enforcement mechanism using a kernel module. The kernel

module hooks into the Linux Security Modules (LSM) framework [53] to mediate kernel op-

erations corresponding to various communication abstractions, and enforces the access control

rules specified by the host. We base our implementation on AppArmor [3], so as to leverage

their policy specification language and enforcement framework, which is quite mature and sta-

ble. Applications may communicate through kernel abstractions such as pipes, files, network-

and UNIX-domain sockets, shared memory, and message queues. Privaros tracks such commu-

nication by attaching the label of the sending subject with the corresponding kernel abstraction.

For example, we tag files with the identity of the process that created it (using xattrs, extended

attributes provided on modern Linux file systems), and ensure that they can be read only by

the same process or other processes as allowed by the policy. In the Linux kernel, most kernel

abstractions provide extra fields to store such security state.

While Privaros’s in-kernel mechanisms are largely confined to the loadable kernel module,

we did require some changes to the kernel itself in its networking subsystem. In particular,

we found that when the LSM hook for the sendmsg system call is invoked, the recipient’s

information is not available from the socket data structure when the recipient is on the local

host (i.e., the recipient’s port is not yet bound). The kernel binds this information to the

socket deeper down in the network stack. Therefore, we attach the sending process identifier

with the socket data structure, and propagate this information as the socket descends down

the network stack into the transport layer. When the packet is processed by the kernel for

delivery to the recipient process, the identities of both the sender and receiver process are

available, and Privaros can decide whether the communication must be permitted.

As discussed earlier, ROS supports distributed robotics platforms, where the publisher and

subscriber need not be on the same host. Thus, for instance, ROS can support fleets of drones

where an application on one drone publishes data that can be consumed by applications running

on other drones. Thus, network packets may leave the drone as well. One could consider a

situation where a fleet of drones enforces BlurExportedImages by running the BlurFilter

application on just one drone (say, the fleet coordinator drone), and only allowing outbound

network communications (i.e., out of the fleet) from that drone. In such cases, simply forbidding

network packets containing the raw image feed from leaving a drone would be too restrictive.

Instead, network packets must be allowed to the fleet coordinator, but not to other servers.

Privaros uses a whitelist of allowed domains (e.g., as done in Weir [55] and Hails [34]) to allow

such communication. The LSM hook for sendmsg determines whether the packet will leave the

localhost, and if so, allows the communication only if the IP address of the destination (e.g., the

20

IP address of the fleet coordinator) appears in a whitelist.

3.5 Modifications to ROS

A key problem arises when Privaros attempts to enforce policies such as BlurExportedIm-

ages or UseDroneLanes with off-the-shelf ROS applications. These policies require redi-

rection of flows through trusted declassifiers before they can be consumed by downstream

applications. However, the manifests of ROS applications will likely not allow redirection to

happen easily. For example, consider a camera application’s manifest that allows it to publish

to the topic CamOutput and a Navigator application whose manifest declares that it sub-

scribes to CamOutput. We cannot simply introduce a trusted BlurFilter application between

the Navigator and the camera applications. Privaros’s OS-level mechanisms will permit the

information flow from the camera process to the BlurFilter process and the output of the

BlurFilter process to be consumed by Navigator, based on the policy. However, the ROS

publish/subscribe system will not set up the flow because the topics do not match (BlurFilter

publishes to ScrubbedImage, to which Navigator has not subscribed).

One way to address this problem is to generate manifest files for ROS applications based on

the whitelisted flows in the communication graph. For example, BlurFilter’s manifest would

declare that it subscribes to the topic CamOutput and publishes to the topic ScrubbedImage. In

turn, Navigator’s manifest would allow it to subscribe to ScrubbedImage (but not to CamOut-

put). However, this approach may not be practical for off-the-shelf ROS applications whose

manifests are part of their identity (i.e., their X.509 certificates). The key difficulty is that

fresh X.509 certificates have to be issued for each manifest configuration, and that may not be

feasible.

Privaros modifies ROS to allow flows to be transparently redirected between applications,

as requested in the policy. In particular, it modifies the publish/subscribe system in ROS to:

a tear down an existing communication channel between a pair of applications; b setup a new

connection between applications, thereby allowing us to introduce a trusted declassifier; and

c assign a ROS topic and type to each newly-established connection. Recall from Chapter 3.3

that application manifests only specifies the topic; the type is only available from the ROS

runtime. Privaros probes the publish/subscribe system to identify the type, and uses this

information to annotate newly-added edges in the communication graph.

Note that these modifications are required only to enable communication between processes

that is already permitted by the MAC-based enforcement of the OS. Privaros relies solely on OS-

level mechanisms to prevent applications from communicating. Thus, the modifications to ROS

are not part of our TCB. In particular, Privaros allows a pair of applications to communicate

21

only if allowed by both ROS and the MAC-based policy enforced by the OS.

Recall from Figure 3.2 that applications use the ROS API via the ROS library that is linked

into the process address space. The modifications discussed above are implemented within the

ROS library and are transparent to ROS applications, which dynamically link against the ROS

library on the drone platform. Privaros’s kernel-level mechanisms from Chapter 3.4.2 are also

transparent to ROS applications.

3.6 Role of the Hardware TEE

As previously discussed, we use a TEE based on ARM TrustZone in our prototype imple-

mentation. Our prototype makes use of the TEE in the standard way for attestation [70].

A TrustZone processor offers two worlds of execution. The normal world executes untrusted

applications and is typically the environment with which the end-user interacts. In our case,

all drone applications, and Privaros (i.e., ROS and the OS with new mechanisms) execute in

the normal world.

The secure world manages the drone’s private key, implements remote attestation, and is

therefore trusted and protected by secure boot. Its memory is isolated from the normal world.

After booting securely, the secure world boots the normal world. It obtains and stores integrity

measurements of the normal world boot process (i.e., a hash chain of software initialized during

the boot sequence). These measurements can be used in remote attestations to convince a

challenger (e.g., the aviation authority or any host airspace) that the normal world booted

with an untampered TCB. The attestation report also includes a log of the applications started

by Privaros (as in TPM-based integrity measurement of applications executed over the system

lifetime [70]). Hosts can use this log to verify that any trusted declassifier applications that

they entrust for policy enforcement in Privaros are running on the drone.

Standard TEE-based attestation can detect attempts by a malicious DSP to install certain

kinds of rootkits in the normal world. Rootkits that modify the normal world’s kernel code or

static data can be detected using integrity measurements at boot time. Although not currently

implemented in our prototype, prior work has developed TEE-based methods to protect the

normal world from advanced rootkits, e.g., those that use direct kernel object manipulation.

These methods have primarily been developed to offer real-time protection for kernel code [6,

32] or obtain runtime snapshots of the normal world memory for analysis [74]. In addition,

a normal world kernel protected using control-flow integrity [33], and attested at boot-time

using standard TEE-based integrity measurement, can provide real-time protection from various

attacks directed against the kernel. We plan to integrate these methods in our prototype in

future work.

22

Chapter 4

Policy Interface

4.1 Specifying and loading policies.

Policies in Privaros are specified using communication graphs. The graph identifies a whitelist

of permitted flows between applications. Edges in the graph may be annotated with a topic

name to denote the ROS topic that restricts the communication between that pair of applica-

tions to that topic alone. The edge may lack an annotation if the applications are allowed to

communicate outside the purview of ROS, e.g., using OS primitives.

Security administrators specify these policies by hand. However, a real-world drone may run

dozens of ROS applications in addition to tens of daemons or other processes running natively

on top of the underlying OS. For example, the communication graph on our experimental

platform (Chapter 5) has 29 nodes and 69 edges, even without any ROS applications running

on it. Writing a comprehensive whitelist of allowed flows would therefore be time-consuming

and might erroneously omit certain flows that prevent applications from working. We thus

built a tool to extract communication graphs from a running drone (encapsulating all the

flows between applications on that drone), which the security administrator can then use as

a starting point and refine. We view this approach as being similar to the popular practice

of using the audit2allow tool to write SELinux and SEAndroid policies. While we also fully

acknowledge the usability concerns in using audit2allow, we view policy specification as an

orthogonal problem that must be studied separately. Advanced policy analysis tools, such as

those developed to configure SEAndroid policies [80, 81, 15], could be brought to bear as better

alternatives to formulating policies.

Once a policy is written, it can be loaded into the drone for enforcement by Privaros. We

have built a user-level agent that identifies the process IDs of applications running on the drone,

and translates the application names in the policy to the corresponding process IDs. Privaros

23

then applies the constraints imposed by this whitelist policy directly on the processes. The

policy itself is expressed as a user-space file, but is serialized and loaded into the kernel via a

user-agent (similar to the infrastructure provided by AppArmor, which Privaros builds upon).

The policy can be updated at any time by simply unloading the old policy and loading a new

one, without restarting any applications. Privaros thus transparently supports dynamic policy

updates. This feature is important because dynamic policy updates may be required as the

drone moves from one host airspace to another.

4.2 On integration with India’s Digital Sky portal.

India’s Digital Sky portal offers a Web-based service [35] via which drone operators indicate

the proposed delivery route using a visual map-based interface. The Digital Sky server permits

the delivery run if the route does not intersect any no-fly or other restricted zones.

We can extend the same interface for the setting that Privaros considers. Each host specifies

their privacy policies and geo-tags the policy with the coordinates of their airspace. The Digital

Sky server stores a database of all registered hosts and their policies.

When a drone operator uses the Digital Sky server to mark the delivery route, the server

identifies all host airspaces that the route intersects with (recall Figure 2.1). It then sends all

the associated policies to the drone, where they are stored in the drone’s local storage. The

policies can be communicated to the drone using the same infrastructure (be it WiFi, 5G, or

LTE) that the Digital Sky server uses to send NPNT approval certificates to the drone, prior

to take-off. For the case of delivery drones, this step can happen at the warehouse from which

the delivery run starts, where the availability of WiFi or wired network infrastructure can be

assumed. Once the drone is airborne, Privaros continuously monitors the GPS coordinates of

the drone, determines if it is entering a host airspace, and loads the corresponding policy from

local storage for enforcement. It unloads the policy as it departs that host’s airspace.

We obtained the code of the Digital Sky Web server [25, 26] and created a mock setup in our

lab. Figure 4.1 shows a screenshot of the Web server interface in which a drone operator has

declared a drone’s proposed delivery zone. It intersects two host airspaces, who have declared

their privacy requirements. Figure 4.1 also shows a red-zone (in this case, the Indian Parliament

house in New Delhi; such sites would be identified by the aviation authority) that this drone’s

proposed delivery zone avoids.

Using the Digital Sky portal also has the benefit of simplifying the UI that a host would use

for policy specification. Recall that Privaros policies are specified as a communication graph

of whitelisted flows. The key challenge in deploying this approach is that the communication

graph must be customized for each policy and each drone. For example, to write the policy

24

Figure 4.1: Integrating policy specification in Privaros with the Digital Sky interface.

specification for ProcessLocally for a particular drone, the host would have to a identify

all network-facing applications on that drone; and b carefully create a communication graph

in which the camera application never talks to a network-facing application. This exercise

would have to be repeated for BlurExportedImages, UseDroneLanes and other policies

of interest. And the whole exercise has to be repeated for every drone that potentially enters

that host’s airspace.

Digital Sky simplifies this exercise because it contains a database of all registered drones.

This database could simply be extended to maintain a list of all applications installed on the

drone, which Digital Sky can reliably obtain from the drone using the hardware TEE. We could

25

pre-compute the communication graphs for various popular policy choices (e.g., ProcessLo-

cally, BlurExportedImages, UseDroneLanes) in an offline fashion and store them in

the database. From the host’s perspective, the UI to specify policies can be simplified to a pull-

down menu of common policy choices that they may wish to apply to their airspace. When

a drone expresses its intent to fly to the host’s airspace, the Digital Sky server looks up the

database to obtain the pre-computed communication graph corresponding to the combination

of that drone and policy, and sends it to the drone.

26

Chapter 5

Evaluation

We implemented Privaros on a system running Ubuntu 18.04 with Linux kernel version 4.9. We

used ROS version 2 (Dashing Diademata) with eProsima FastRTPS version 1.8.2 [30, 29] as the

underlying implementation of the DDS protocol. We enhanced it with the Secure ROS module

available for ROS version 2 to enable TLS communication and to leverage the SROS applica-

tion manifest infrastructure. We used AppArmor’s user-space policy specification framework

(version 2.13) to specify and download policies into the kernel for enforcement. Overall, we

added or modified 148 lines of code in the ROS client library for C++ and 2026 in Linux to

implement Privaros. In addition, we modified 363 lines in the AppArmor user-space tool to

parse policies, and added 435 lines of supporting Python/bash code to support redirection of

flows between ROS applications.

We evaluated Privaros on an Nvidia Jetson TX2 [75] development kit, with a dual-core

Denver 2 64-bit CPU and quad-core ARM A57 complex, 8 GB LPDDR4 memory and 32 GB

eMMC flash storage. Our choice of Jetson was motivated by the fact that unlike most off-

the-shelf drones, it is equipped with a hardware TEE (based on ARM TrustZone) and allows

programmable access to both the secure world and the normal world.

The specification of the Jetson board is similar in architecture to the companion boards of

commercially-available drones. It also consists of 256 Nvidia CUDA cores, making it the com-

panion board of choice for navigation software that makes extensive use of graphics processing

units, e.g., those that use deep-learning based navigation. We reflashed the normal world of

this board with a Privaros-enhanced software stack.

Our evaluation considers two questions: a How effective is Privaros at enforcing policies,

and how secure is it in comparison to SROS? (Chapter 5.1); b What is the impact of Pri-

varos’s mechanisms on latency, CPU utilization and power consumption, as evaluated with

microbenchmarks? What is the impact of redirecting communication through trusted applica-

27

a Basic setup to be protected.

b Redirecting communication with Privaros.

Figure 5.1: Setup to evaluate robustness of the policy enforcement mechanism in
Privaros.

tions? (Chapter 5.2).

5.1 Robustness of Policy Enforcement

To showcase that Privaros offers defense-in-depth, we built a malicious application that SROS

cannot confine, and demonstrate the multiple layers Privaros provides to confine this appli-

cation. Consider a Camera application that publishes to a topic called CameraOutput. The

application publishes two types of data under this topic: a the image feed from the camera

under type CameraOutput::ImageType, and b its status, under type CameraOutput::StatusType

(see Figure 5.1a).

The primary goal of publishing CameraOutput::StatusType is so that it can be consumed

by CameraStatus, which is a benign application that subscribes to the topic CameraOutput

only to read the data published under the type CameraOutput::StatusType. This application

periodically uploads the camera’s operating status to the drone operator’s server that monitors

the health of its drone fleet.

We examine various ways in which it is possible for an attacker to write a malicious appli-

cation called BadCameraStatus that subscribes to the topic CameraOutput but instead reads

CameraOutput::ImageType and transmits it over the network. The primary concern of a host

would be to ensure the privacy of their image feed. We now examine how SROS and Privaros

compare in their ability to prevent the camera’s output from being leaked either accidentally,

or through malicious applications such as BadCameraStatus. We empirically validated each of

the following attacks by implementing them and showing that Privaros prevents them:

28

• Certificate checks. The certificate checks in SROS can prevent an overt attempt at an

attack, such as an attacker attempting to install BadCameraStatus. Under the assump-

tion that such an application will not receive a valid certificate from a trusted author-

ity, SROS certificate validation would fail, and SROS would not install the application.

SROS would also prevent such an application (assuming it got installed) from subscrib-

ing to CameraOutput if this is not declared in its manifest. For context, ROS (without

SROS) would simply allow BadCameraStatus to be installed and allow it to subscribe to

CameraOutput and even publish messages to the same topic (e.g., a fake image feed).

However, the checks performed by SROS can easily be bypassed. An attacker (e.g., a

malicious drone administrator) could replace the binary of the benign CameraStatus ap-

plication with that of BadCameraStatus at the same file path (cf. Chapter 3.3). The

attacker would launch this program using the same file path as the benign CameraStatus

application, but it would perform the functionality intended by BadCameraStatus. SROS

checks X.509 certificates of apps, but does not associate the application’s identity with

their binary and instead only their full path name, and would therefore miss this at-

tack. Privaros prevents this attack because it checks the application binary’s hash during

certificate validation.

• Redirection of app communication. To prevent accidental disclosure of the Camera

application’s image feed, a host could require that no network-facing application directly

subscribe to CameraOutput. It could instead require the camera’s status to pass through a

trusted application called ScrubStatus, which performs sanity-checks on the status feed.

For example, ScrubStatus could ensure that the status feed only transmits a single byte.

It could also rate-limit the flow (e.g., status updates allowed only once every 10 seconds),

thereby mitigating the effects of any side-channels, whereby an attacker attempts to leak

images via the status feed, byte-by-byte.

One way to implement such enforcement in SROS would be to cleanly decouple the topics

representing the image feed and the status feed by having the Camera application publish

to two topics, ImageFeed and StatusFeed (because SROS only matches topics, and not

types, as discussed in Chapter 3.3). The ScrubStatus application could subscribe to

StatusFeed, but not ImageFeed, and then publish the output to a SanitizedStatus to which

CameraStatus could subscribe and transmit over the network.

Privaros can enforce this policy even if it is not easily possible to decouple the top-

ics, e.g., because the Camera application code is not available or its manifest cannot be

rewritten. With Privaros, the trusted SanitizedStatus application could still subscribe to

29

CameraOutput, but only read the CameraOutput::StatusFeed type, and publish to Sani-

tizedStatus (see Figure 5.1b). Note that Privaros’s modifications to ROS (Chapter 3.5)

are essential to allow CameraStatus to read the output of the ScrubStatus application.

This is because the manifest of CameraStatus only allows it to subscribe to the topic

CameraOutput and not to SanitizedStatus. However, Privaros’s modifications to ROS al-

low CameraStatus and ScrubStatus to communicate with each other.

• Direct communication via OS. The BadCameraStatus application could directly es-

tablish an inter-process channel (say, via UNIX domain sockets) to communicate with

the Camera application, obtain images and send it over the network. SROS cannot

mediate non-publish/subscribe communication and would allow this attack. The OS-

level mechanisms of Privaros prevent any communication between the processes unless

allowed by the policy. Assuming the application redirection discussed above (through

ScrubStatus), Privaros can prevent any form of direct communication between Camera

and BadCameraStatus (or even CameraStatus). All communication to network facing

applications would have to go through the process that implements ScrubStatus.

• Whitelisting network domains. Finally, CameraStatus is a network-facing applica-

tion. Privaros uses whitelisting can ensure that the output of CameraStatus only goes to

a particular IP address. SROS does not confine network communication this way.

5.2 Performance

We used microbenchmarks to measure the impact of Privaros’s core mechanisms on latency,

CPU utilization, and power consumption. We used PerformanceTest [2], a DDS microbench-

mark from Apex AI that is designed to evaluate the performance of publish/subscribe systems.

PerformanceTest consists of a suite of workloads, each of which runs publishers and subscribers

in different threads, and measures the latency involved in publishing/subscribing. Table 5.1

presents the details of the PerformanceTest workloads we used. We ran each workload config-

ured to use one publisher and one subscriber, publishing at a rate of 10Hz for a duration of 10

seconds.

PerformanceTest reports the latency numbers for each workload. We measured the CPU

utilization as the workload ran. To measure power consumption, we used the 3-channel INA3221

hardware power monitors on the Jetson TX2, which reports power draw of the board in milli-

watts.

Table 5.2 reports the results of our experiments. The baseline column reports the results of

performing these experiments on a vanilla ROS/Linux setup with SROS enabled, and serves as

30

Description of workloads
Workload Type of data published/subscribed
Array A simple byte array
PointCloud A collection of N-dimensional points (e.g., 2D images produced by camera depth

sensors)
Struct A structure holding a set of bytes (e.g., struct16 holds 16 bytes)
NavSat Status of navigation satellite
Range Single range reading obtained from a range sensor

Table 5.1: Workloads from PerformanceTest.

Workload Baseline
Latency (ms) CPU (%) Power (mW)

Array1m 16.255 6.728 2435.133
PointCloud1m 16.160 6.612 2441.062
Struct32k 6.494 2.526 2225.375
NavSat 1.543 1.381 2349.353
Range 1.433 1.378 2268.059

Workload Privaros
Latency(ms) CPU(%) Power(mW)

Array1m 17.225 (+5.9%) 7.050 (+4.8%) 2508.222 (+3.0%)
PointCloud1m 17.386 (+7.6%) 7.141 (+8.0%) 2437.294 (-0.2%)
Struct32k 7.109 (+9.5%) 2.665 (+5.5%) 2500.412 (+12.4%)
NavSat 1.922 (+24.6%) 1.506 (+9.1%) 2389.167 (+1.7%)
Range 1.928 (+34.5%) 1.501 (+8.9%) 2367.412 (+4.4%)

Table 5.2: Microbenchmark performance.

the baseline. The Privaros column reports the same numbers with the workloads running on

Privaros. As these numbers show, Privaros imposes only a marginal increase in latency (under

10% except when the latency numbers themselves are under 2ms) and power draw (under 5%

except in the case of Struct32k). Because drones are battery-powered, with current drones

only providing an average flight time of about 20 minutes on a single charge, it is critical for

Privaros to be efficient with respect to power draw.

Since ROS applications mostly use network socket for communication, we measured the

performance impact imposed by Privaros’s hooks on individual kernel network subsystems using

the lmbench [51] benchmark. Table 5.3 reports these results. All the latency numbers are below

2% except in the case of Unix domain sockets (TCP). We perform checks for all incoming

packets, we believe that if the packet size is too small then performing checks for every will

increase the latency. One small optimisation can be done to reduce the latency. We can use

a cache for performing checks between two application. The cache entry will be invalidated if

either of the two application policy is changed.

Finally, we studied the performance impact of redirecting data flow through a trusted

application, as would be required for example to enforce BlurExportedImages or Use-

31

Workload Baseline Latency (µs) Privaros Latency (µs)
Pipe 15.471 15.640 (+1.093%)
UNIX domain sockets
(TCP)

20.015 23.188 (+15.9%)

UDP (localhost) 35.039 35.374 (+1.0%)
TCP (localhost) 38.473 38.764 (+0.8%)
UDP (RPC) 51.549 52.335 (+1.5%)
TCP (RPC) 49.457 49.977 (+1.1%)

Table 5.3: Experiments using lmbench.

Scenario Latency (ms) Power (mW)
No redirection 8.124 4749.400

BlurFilter/Null 17.509 (+115.5%) 4836.200 (+1.8%)
BlurFilter/OpenCV 21.511 (+164.8%) 5132.400 (+8.1%)

Table 5.4: Performance impact of flow redirection.

DroneLanes. Since these trusted applications are now part of the data-flow path their pres-

ence will likely increase the latency of data delivery and overall power consumption. To illustrate

the impact of a trusted applications, we use the example of a Camera application whose images

must pass through a trusted BlurFilter application before they are consumed by downstream

applications. We measure the baseline performance, without application redirection, and two

variants of the BlurFilter application: a a null-filter that simply redirects network flows but

does not otherwise process the image (to measure the raw cost of redirection), and b a second

one that is based on OpenCV, and blurs all image frames by 10%. In this case, the application’s

processing logic itself performs non-trivial image-processing and consumes CPU and power.

Table 5.4 reports the results of this experiment. The end-to-end latency of transmitting

images from the camera to the network increases significantly when the BlurFilter application

is introduced. The increase in latency is as expected, because of the additional user-space

element involved in the outbound network path, and the associated transitions of the data

packets between kernel-space and user-space. The end-to-end increase in power consumption

still remains under 10%, even with OpenCV-based blurring.

Power consumption overheads will depend on the nature of processing involved in the trusted

application. A real-world drone running dozens of applications will require many such trusted

declassifiers, depending on the host policy to be enforced. Communication graphs must be

carefully configured to minimize the number of distinct trusted elements required and their

power consumption.

32

Chapter 6

Related Work

Drones and privacy. To our knowledge, there has not been much prior work focusing on

enforcing privacy policies in drones. Vijeev et al. [78] proposed the vision of restricted airpsaces

for drones, in which host-specified policies would be enforced on guest drones. Although this

thesis is motivated by Vijeev et al.’s work, this thesis makes significant contributions over

it. In particular, while Vijeev et al. only sketched the possibility of using information-flow

control for policy enforcement, this thesis fully explores the challenges in building a policy-

enforcement mechanism for ROS-based drones, in specifying policies, and in integrating the

policy-specification framework with Digital Sky. Moreover, Vijeev et al. also indicated that it

may be possible to build an enforcement system on top of ROS alone. In this thesis, we show

that the basic primitives provided by SROS are insufficient to prevent a number of attacks

(Chapter 3.3 and Chapter 5.1) and that OS-level enforcement is central to ensuring robust

policy enforcement.

Nassi et al. [56] consider the problem of determining whether a drone’s first-person view

violates an individual’s privacy. A first-person view projects the drone’s camera feed as to

a ground-based remote controller, operated by a human (for purposes of navigation). The

communication between the remote controller and the drone is encrypted. Nassi et al. develop

a cryptanalysis technique by which an analyst with access to the encrypted first-person view

feed can determine if the feed is focused on an object (or person) of interest. They apply

physical perturbations to the object, e.g., by shining a light on it, at chosen points in time.

The cryptanalysis determines if the encrypted feed is affected by these perturbations; if yes,

they determine that the camera is focused on the object. They also develop techniques that

spatially localize the offending drone by analyzing the first-person view feed.

Drones and security. In contrast to privacy, there is much prior work on security of drones.

These range from using hardware TEEs to ensure that applications running on drones are able

33

to securely access sensor data from its peripherals [44] and to ensure that drones only fly along

drone lanes [45] (i.e., UseDroneLanes), to investigating attacks against and protecting drones

from common vulnerabilities, such as cleartext communication between drones, signal jamming

and GPS spoofing [38, 40, 82, 77, 60, 73, 41, 72]. Privaros can benefit from techniques developed

to defend against these attacks but has an orthogonal focus on enforcing host-specified privacy

policies on drones.

The ROS community has also actively identified security vulnerabilities and attacks that

stem from the unauthenticated, plaintext, publish/subscribe-based communication in ROS [24,

49]. There have been proposals to use encrypted communication between applications [64], and

to integrate TLS with the core libraries of ROS [24, 23]. SROS [85, 86, 87], which is under

active development, incorporates many of these ideas. As already discussed, Privaros enhances

the basic security features of SROS, eliminates some of its key shortcomings, and adds the

ability to enforce privacy policies.

While the above projects focus on securing drones from attacks, there is also work on

detecting drones i.e., securing physical premises against unauthorized rogue drones. These

include methods to detect drones using their radar [31] or radio-frequency signature [9, 57],

computer vision techniques to identify drones [68], acoustic arrays that detect the sound of the

drone’s motors [12, 13], and hybrid combinations of these techniques [76]. These techniques are

undoubtedly important in formulating regulations to operate drones. However, they are largely

orthogonal to Privaros whose focus is on ensuring that authorized and legally-permitted drones

conform to the privacy requirements of a host airspace.

Mandatory and context-based access control. The idea of controlling the flow of information

in computer systems can be traced back to some of the classic papers in computer security [7,

8, 17, 50]. SELinux [47], SEAndroid [71], and related systems (e.g., [11, 58]) have brought to

bear some of these methods to modern OS settings. In these systems, subject and object labels

are set by the system administrator, and the enforcement system applies label flow rules.

In modern device-centric settings, some of these concepts have been adapted as context-

based access control systems [11, 52, 21, 65, 83, 10], where the context in which the device

(e.g., at home or in the workplace) is used determines the policies that must be enforced on

the device. Some of these systems (e.g., [11, 52, 65]) also employ methods to actively infer the

context in which the device is being used, and trigger the enforcement of the appropriate policy.

Privaros can also be viewed as a context-based access control system for delivery drones, and

our focus in this thesis has primarily been on building an enforcement mechanism integrated

with ROS. Key contributions of this thesis include: a exploring the shortcomings of SROS;

b designing and implementing the cross-stack changes required for policy enforcement; and

34

c redirecting flows through trusted applications for policy compliance. Privaros’s policies are

location-tagged, and the drone’s GPS coordinates serve as the policy trigger to load access

control policies. As discussed in Chapter 4, Privaros allows dynamic loading/unloading of

policies as a guest drone navigates between host airspaces.

Information-flow control. Recent attempts to enforce information flow control on operating

systems [91, 43] and Android [28, 88, 55] have focused on decentralized information-flow control

(DIFC) [54]. DIFC systems differ from classic systems in that each application can specify its

own labels, and the role of the system is to only use these labels to enforce certain rules on

information flow. DIFC is particularly well-suited for settings where each application wants to

control how its own data is used by the rest of the system. In contrast, our setting requires

us to apply host-specified privacy policies uniformly to all applications on the drone. Privaros

is therefore closer in spirit to the earlier work on using mandatory access control to regulate

information flow [7, 8, 17], SELinux [47] and SEAndroid [71]. Privaros adapts these concepts

to a ROS-based platform and tightly integrate ROS-level and OS-level mechanisms.

35

Chapter 7

Conclusion

In this thesis, we presented Privaros, a framework that enforces privacy policies specified on

guest drones visiting host airspaces for delivery runs. Our main conclusions are that:

• The problem of enforcing host-specified privacy policies on guest drones can be modeled

as one of controlling the flow of data between applications executing on the drone;

• Existing mechanisms in ROS do not suffice to enforce these kinds of policies, and that

tight integration of ROS-level and OS-level mechanisms, as provided in Privaros, are

necessary for robust enforcement;

• Policy specification for Privaros can be integrated with upcoming drone regulatory plat-

forms such as Digital Sky;

• The core mechanisms of Privaros impose low overheads on latency and power consump-

tion. However, the host’s policies may require the drone to execute trusted applications,

which may themselves impose additional latency or consume additional power.

36

Bibliography

[1] United States Federal Aviation Administration. FAA Aerospace Forecast: Fiscal

Years 2019-2039, 2019. https://www.faa.gov/data_research/aviation/aerospace_

forecasts/media/FY2019-39_FAA_Aerospace_Forecast.pdf. 1

[2] Apex AI. Performance Test. https://gitlab.com/ApexAI/performance_test/. 30

[3] apparmor. AppArmor–an effective and easy-to-use Linux application security system.

https://gitlab.com/apparmor/apparmor/wikis/home/. 20

[4] ardupilot. Ardupilot Autopilot Software. https://ardupilot.org/. 10

[5] ARM. Security technology building a secure system using TrustZone technology (white

paper). ARM Limited, 2009. http://infocenter.arm.com/help/topic/com.arm.doc.

prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf. 4,

10

[6] A. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen. Hyper-

vision across worlds: Real-time kernel protection from the ARM TrustZone secure world.

In ACM Conf. on Computer and Communications Security, 2014. 22

[7] D. E. Bell and L. LaPadula. Secure computer system: Unified exposition and Multics

interpretation, March 1976. Tech. Report MTR-2997, MITRE Corporation. 18, 34, 35

[8] K. J. Biba. Integrity considerations for secure computer systems, June 1975. Technical

Report MTR-3153, MITRE Corporation. 18, 34, 35

[9] S. Birnbach, R. Baker, and I. Martinovic. Wi-fly?: Detecting privacy invasion attacks by

consumer drones. In Network and Distributed Systems Security Symposium, 2017. 1, 34

[10] F. Brasser, D. Kim, C. Liebchen, V. Ganapathy, L. Iftode, and A.-R. Sadeghi. Regulating

ARM TrustZone devices in restricted spaces. In ACM International Conference on Mobile

Systems, Applications, and Services (MobiSys), 2016. 34

37

https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2019-39_FAA_Aerospace_Forecast.pdf
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2019-39_FAA_Aerospace_Forecast.pdf
https://gitlab.com/ApexAI/performance_test/
https://gitlab.com/apparmor/apparmor/wikis/home/
https://ardupilot.org/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

BIBLIOGRAPHY

[11] S. Bugiel, S. Heuser, and A-R. Sadeghi. Flexible and fine-grained mandatory access control

on Android for diverse security and privacy policies. In USENIX Security, 2013. 34

[12] J. Busset, F. Perrodin, P. Wellig, B. Ott, K. Heutschi, T. Rühl, and T. Nussbaumer. De-

tection and tracking of drones using advanced acoustic cameras. Unmanned/Unattended

Sensors and Sensor Networks XI and Advanced Free-Space Optical Communication Tech-

niques and Applications, 2015. 1, 34

[13] E. E. Case, A. M. Zelnio, and B. D. Rigling. Low-cost acoustic array for small UAV

detection and tracking. In IEEE Natl. Aerospace & Electronics Conf., 2008. 1, 34

[14] V. Chang, P. Chundury, and M. Chetty. “Spiders in the sky”: User perceptions of drones,

privacy, and security. In ACM SIGCHI Conference on Human Factors in Computing

Systems, 2017. 1

[15] H. Chen, N. Li, W. Enck, Y. Aafer, and X. Zhang. Analysis of SEAndroid policies: Com-

bining MAC and DAC in Android. In Annual Computer Security Applications Conference,

2017. 23

[16] chibios. ChibiOS free embedded RTOS. http://chibios.org. 10

[17] D. D. Clark and D. R. Wilson. A comparison of commercial and military computer security

policies. In IEEE Symposium on Research in Security and Privacy, 1987. 17, 34, 35

[18] CNBC. Amazon says this business opportunity could make you up to $300k a year—here’s

how to get into the program, September 2018. https://www.cnbc.com/2018/09/06/

amazon-delivery-service-partner-program-gets-thousands-of-applications.

html. 9

[19] British Broadcasting Corporation. Big rise in drone jail smuggling incidents, February

2016. http://www.bbc.com/news/uk-35641453. 1

[20] British Broadcasting Corporation. Gatwick airport: Drones ground flights, 2018. https:

//www.bbc.com/news/uk-england-sussex-46623754. 1

[21] M. J. Covington, P. Fogla, Z. Zhan, and M. Ahamad. A context-aware security architecture

for emerging applications. In Annual Computer Security Applications Conference, 2002.

34

[22] dds. Data Distribution Service (DDS). https://www.omg.org/spec/DDS/1.4/PDF. 11

38

http://chibios.org
https://www.cnbc.com/2018/09/06/amazon-delivery-service-partner-program-gets-thousands-of-applications.html
https://www.cnbc.com/2018/09/06/amazon-delivery-service-partner-program-gets-thousands-of-applications.html
https://www.cnbc.com/2018/09/06/amazon-delivery-service-partner-program-gets-thousands-of-applications.html
http://www.bbc.com/news/uk-35641453
https://www.bbc.com/news/uk-england-sussex-46623754
https://www.bbc.com/news/uk-england-sussex-46623754
https://www.omg.org/spec/DDS/1.4/PDF

BIBLIOGRAPHY

[23] B. Dieber, S. Kacianka, S. Rass, and P. Schartner. Application-level security for ros-based

applications. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International

Conference on, pages 4477–4482. IEEE, 2016. 13, 34

[24] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and P. Schartner. Security for the

Robot Operating System. Robotics and Autonomous Systems, 98, 2017. 13, 34

[25] digskygithub1. Digital Sky Web Server back-end. http://github.com/iSPIRT/

digital-sky-api. 24

[26] digskygithub2. Digital Sky Web Server front-end. http://github.com/iSPIRT/

digital-sky-app. 24

[27] DSP:FlipKart. How To Get Flipkart Franchise. https://www.steptowardbusiness.com/

flipkart-franchise. 9

[28] W. Enck, P. Gilbert, B-C. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth. Taintdroid:

An information-flow tracking system for realtime privacy monitoring on smartphones. In

ACM/USENIX Symposium on Operating System Design and Implementation, 2010. 18,

35

[29] eprosima1. The most complete DDS by eprosima, the middleware experts (https://www.

eprosima.com). https://github.com/eProsima/Fast-RTPS. 27

[30] eprosima2. eProsima fast DDS docs. https://fast-rtps.docs.eprosima.com/en/

latest/. 27

[31] T. Eshel. Mobile radar optimized to detect UAVs, precision guided weapons. Defense

Update, 2013. 1, 34

[32] X. Ge, H. Vijayakumar, and T. Jaeger. Sprobes: Enforcing Kernel Code Integrity on the

TrustZone. In IEEE Workshop on Mobile Security Technologies, 2014. 22

[33] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-grained control-flow integrity for kernel

software. In IEEE European Symposium on Security and Privacy, 2016. 22

[34] D. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazieres, J. Mitchell, and A. Russo. Hails: Pro-

tecting Data Privacy in Untrusted Web Applications. In USENIX Symposium on Operating

System Design and Implementation, 2012. 20

39

http://github.com/iSPIRT/digital-sky-api
http://github.com/iSPIRT/digital-sky-api
http://github.com/iSPIRT/digital-sky-app
http://github.com/iSPIRT/digital-sky-app
https://www.steptowardbusiness.com/flipkart-franchise
https://www.steptowardbusiness.com/flipkart-franchise
https://www.eprosima.com
https://www.eprosima.com
https://github.com/eProsima/Fast-RTPS
https://fast-rtps.docs.eprosima.com/en/latest/
https://fast-rtps.docs.eprosima.com/en/latest/

BIBLIOGRAPHY

[35] Government of India. Digital Sky Portal — Office of the Director General of Civil Aviation.

https://digitalsky.dgca.gov.in/. 2, 3, 7, 24

[36] Government of India. Office of the Director General of Civil Aviation: DGCA RPAS Guid-

ance Manual, First Edition, November 2018. https://diceindia.org.in/wp-content/

uploads/DGCA-RPAS-Guidance-Manual.pdf. 2, 7

[37] Government of India. Office of the Director General of Civil Aviation: DGCA RPAS

Guidance Manual, Revision One of First Edition, June 2019. https://diceindia.org.

in/wp-content/uploads/Updated-DGCA-RPAS-Guidance-Manual.pdf. 2, 4, 7, 8, 10

[38] K. Hartmann and C. Steup. The vulnerability of UAVs to cyber attacks-an approach to

the risk assessment. In IEEE International Conference on Cyber Conflict, 2013. 34

[39] T. Jain and G. Cooperman. DMTCP: Fixing the single point of failure of the ros master.

In ROSCON 2017: the ROS Developers Conference, 2017. 13

[40] A. Y. Javaid, W. Sun, V. K. Devabhaktuni, and M. Alam. Cyber security threat analysis

and modeling of an unmanned aerial vehicle system. In IEEE Conference on Technology

for Homeland Security, 2012. 34

[41] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys. Unmanned aircraft capture

and control via GPS spoofing. Journal of Field Robotics, 31(4), 2014. 34

[42] C. Koettl and B. Marcolini. A closer look at the drone attack on Maduro in

Venezuela, August 2018. https://www.nytimes.com/2018/08/10/world/americas/

venezuela-video-analysis.html. 1

[43] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Morris.

Information Flow Control for Standard OS Abstractions. In ACM Symposium on Operating

Systems Principles, 2007. 18, 19, 35

[44] R. Liu and M. Srivastava. PROTC: Protecting drone’s peripherals through ARM Trust-

Zone. In 3rd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications,

2017. 34

[45] T. Liu, A. Hojjati, A. Bates, and K. Nahrstedt. Alidrone: Enabling trustworthy proof-

of-alibi for commercial drone compliance. In IEEE 38th International Conference on Dis-

tributed Computing Systems, 2018. 7, 34

40

https://digitalsky.dgca.gov.in/
https://diceindia.org.in/wp-content/uploads/DGCA-RPAS-Guidance-Manual.pdf
https://diceindia.org.in/wp-content/uploads/DGCA-RPAS-Guidance-Manual.pdf
https://diceindia.org.in/wp-content/uploads/Updated-DGCA-RPAS-Guidance-Manual.pdf
https://diceindia.org.in/wp-content/uploads/Updated-DGCA-RPAS-Guidance-Manual.pdf
https://www.nytimes.com/2018/08/10/world/americas/venezuela-video-analysis.html
https://www.nytimes.com/2018/08/10/world/americas/venezuela-video-analysis.html

BIBLIOGRAPHY

[46] Amazon Logistics. Amazon Logistics—Delivery Services Partners Program. https://

logistics.amazon.com/marketing/opportunity. 9

[47] P. Loscocco and S. Smalley. Integrating flexible support for security policies into the linux

operating system. In USENIX Annual Technical Conference, 2001. 34, 35

[48] mavlink. MAVLink Developer Guide. https://mavlink.io/en/. 11

[49] J. McClean, C. Stull, C. Farrar, and D. Mascareñas. A Preliminary Cyber-Physical Security

Assessment of the Robot Operating System (ROS). In Unmanned Systems Technology XV,

volume 8741, page 874110. International Society for Optics and Photonics, 2013. 13, 34

[50] M. D. McIlroy and J. A. Reeds. Multilevel security in the UNIX tradition. Software–

Practice and Experience, 22(8), 1992. 34

[51] L. McVoy and C. Staelin. Lmbench: Portable tools for performance analysis. In 1996

Annual Conference on USENIX Annual Technical Conference, 1996. 31

[52] M. Miettinen, S. Heuser, W. Kronz, A.-R. Sadeghi, and N. Asokan. Conxsense—context

profiling and classification for context-aware access control. In ACM Symposium on Infor-

mation, Computer and Communications Security, 2014. 34

[53] J. Morris, S. Smalley, and G. Kroah-Hartman. Linux security modules: General security

support for the linux kernel. In USENIX Security, 2002. 20

[54] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model. ACM

Transactions on Software Engineering and Methodology (TOSEM), 2000. 17, 35

[55] A. Nadkarni, B. Andow, W. Enck, and S. Jha. Practical DIFC enforcement on android.

In 25th USENIX Security Symposium (USENIX Security 16), 2016. 18, 19, 20, 35

[56] B. Nassi, R. Ben-Netanel, A. Shamir, and Y. Elovici. Drones’ Cryptanalysis – Smashing

Cryptography with a Flicker. In IEEE Symposium on Security and Privacy, 2019. 33

[57] P. Nguyen, H. Truong, M. Ravindranathan, A. Nguyen, R. Han, and T. Vu. Matthan:

Drone presence detection by identifying physical signatures in the drone’s RF communi-

cation. In 15th Annual International Conference on Mobile Systems, Applications, and

Services, 2017. 1, 34

41

https://logistics.amazon.com/marketing/opportunity
https://logistics.amazon.com/marketing/opportunity
https://mavlink.io/en/

BIBLIOGRAPHY

[58] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich application-

centric security in Android. In Annual Computer Security Applications Conference, 2009.

34

[59] pixhawk. Pixhawk 4 Flight Controller. https://docs.px4.io/v1.9.0/en/flight_

controller/pixhawk4.html. 10

[60] J-S. Pleban, R. Band, and R. Creutzburg. Hacking and securing the AR Drone 2.0 quad-

copter: Investigations for improving the security of a toy. In Mobile Devices and Mul-

timedia: Enabling Technologies, Algorithms, and Applications 2014, volume 9030, 2014.

34

[61] px4. PX4 Autopilot Software. https://px4.io/. 10

[62] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.

Ng. ROS: An Open-source Robot Operating System. In ICRA workshop on open source

software, volume 3.2, 2009. 2

[63] Transparency Market Research. Robot Operating System Market - Snaphshot, 2018.

https://www.transparencymarketresearch.com/robot-operating-system-market.

html. 2

[64] F. J. Rodŕıguez-Lera, V. Matellán-Olivera, J. Balsa-Comerón, Á. M. Guerrero-Higueras,

and C. Fernández-Llamas. Message Encryption in Robot Operating System: Collateral

Effects of Hardening Mobile Robots. Frontiers in ICT, 5, 2018. 13, 34

[65] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, , and H. J. Wang. World-driven access

control for continuous sensing. In ACM Conference on Computer and Communications

Security, 2014. 34

[66] ros. ROS.org—Powering the World’s Robots. https://www.ros.org. 2

[67] ros2. ROS 2–ROS 2 documentation, the latest version of the robot operating system.

https://index.ros.org/doc/ros2/. 2

[68] A. Rozantsev, V. Lepetit, and P. Fua. Flying objects detection from a single moving

camera. In IEEE Conference on Computer Vision and Pattern Recognition, 2015. 1, 34

[69] rtps. The Real-time Publish-Subscribe Protocol DDS Interoperability Wire Protocol.

https://www.omg.org/spec/DDSI-RTPS/2.3/PDF. 11

42

https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
https://px4.io/
https://www.transparencymarketresearch.com/robot-operating-system-market.html
https://www.transparencymarketresearch.com/robot-operating-system-market.html
https://www.ros.org
https://index.ros.org/doc/ros2/
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF

BIBLIOGRAPHY

[70] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a TCG-

based integrity measurement architecture. In USENIX Security, 2004. 10, 22

[71] seandroid. Security-enhanced Linux in Android. https://source.android.com/

security/selinux. 34, 35

[72] S-H. Seo, J. Won, E. Bertino, Y. Kang, and D. Choi. A security framework for a drone

delivery service. In 2nd Workshop on Micro Aerial Vehicle Networks, Systems, and Appli-

cations for Civilian Use, 2016. 34

[73] D. P. Shepard, J. A. Bhatti, T. E. Humphreys, and A. A. Fansler. Evaluation of smart grid

and civilian UAV vulnerability to GPS spoofing attacks. In Radionavigation Laboratory

Conference Proceedings, 2012. 34

[74] H. Sun, K. Sun, Y. Wang, and J. Jing. Reliable and trustworthy memory acquisition on

smartphones. IEEE Transactions on Information Forensics and Security, 10(12), Decem-

ber 2015. 22

[75] tx2. Nvidia Jetson TX2. https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems/jetson-tx2/. 4, 17, 27

[76] J. R. Vasquez, K. M. Tarplee, E. E. Case, A. M. Zelnio, and B. D. Rigling. Multisensor

3D tracking for counter small unmanned air vehicles. In Proceedings of SPIE, 2008. 1, 34

[77] E. Vattapparamban, İ. Güvenç, A. İ Yurekli, K. Akkaya, and S. Uluağaç. Drones for

smart cities: Issues in cybersecurity, privacy, and public safety. In International Wireless

Communications and Mobile computing Conference, 2016. 34

[78] A. Vijeev, V. Ganapathy, and C. Bhattacharyya. Regulating drones in restricted spaces.

In 20th International Workshop on Mobile Computing Systems and Applications, 2019. 7,

33

[79] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. Security issues and requirements for

internet-scale publish-subscribe systems. In 35th Annual Hawaii International Conference

on System Sciences. IEEE, 2002. 13

[80] R. Wang, W. Enck, D. Reeves, X. Zhang, P. Ning, D. Xu, W. Zhou, and A. Azab. EASE-

Android: Automatic policy analysis and refinement for security enhanced Android via

large-scale semi-supervised learning. In USENIX Security, 2015. 23

43

https://source.android.com/security/selinux
https://source.android.com/security/selinux
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/

BIBLIOGRAPHY

[81] R. Wang, A. M. Azab, W. Enck, N. Li, P. Ning, X. Chen, W. Shen, and Y. Cheng. SPOKE:

Scalable knowledge collection and attack surface analysis of access control policy for se-

curity enhanced Android. In ACM Asia Conference on Computer and Communications

Security, 2017. 23

[82] W. Wang, Y. Sun, H. Li, and Z. Han. Cross-layer attack and defense in cognitive radio

networks. In IEEE Global Communications Conference, 2010. 34

[83] X. Wang, K. Sun, Y. Wang, and J. Jing. DeepDroid: Dynamically Enforcing Enterprise

Policy on Android Devices. In Network and Distributed Systems Security Symposium, 2015.

34

[84] Y. Wang, H. Xia, Y. Yao, and Y. Huang. Flying eyes and hidden controllers: A qualitative

study of people’s privacy perceptions of civilian drones in the US. Proceedings on Privacy

Enhancing Technologies (PoPETS), 3, 2016. 1

[85] R. White, D. Christensen, I. Henrik, and D. Quigley. SROS: Securing ROS over the Wire,

in the Graph, and through the Kernel. arXiv:1611.07060, 2016. 3, 34

[86] R. White, H. Christensen, G. Caiazza, and A. Cortesi. Procedurally provisioned access

control for robotic systems. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2018. 13, 34

[87] R. White, G. Caiazza, H. Christensen, and A. Cortesi. SROS1: Using and developing

secure ROS1 systems. In Robot Operating System (ROS). Springer, 2019. 3, 13, 34

[88] Y. Xu and E. Witchel. Maxoid: Transparently confining mobile applications with custom

views of state. In European Conference on Computer Systems, 2015. 35

[89] Y. Yao, H. Xia, Y. Huang, and Y. Wang. Privacy mechanisms for drones: Perceptions

of drone controllers and bystanders. In ACM SIGCHI Conference on Human Factors in

Computing Systems, 2017. 1

[90] A. Young. Passenger jet carrying 240 people nearly hits a drone at 15,000ft, 2018. The

Daily Mail, UK, 15 September 2018. 1

[91] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Maziéres. Making information flow

explicit in HiStar. In ACM/USENIX Symposium on Operating Systems Design and Im-

plementation, 2006. 18, 19, 35

44

	Acknowledgements
	Abstract
	Keywords
	Publications based on this Thesis
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Background
	2.1 Example Policies
	2.2 Digital Sky

	3 Enforcement Mechanism
	3.1 Threat Model
	3.2 ROS
	3.3 SROS and its Shortcomings
	3.4 New Mechanisms in Privaros
	3.4.1 End-to-end Policy Specifications.
	3.4.2 OS-level Enforcement.

	3.5 Modifications to ROS
	3.6 Role of the Hardware TEE

	4 Policy Interface
	4.1 Specifying and loading policies.
	4.2 On integration with India's Digital Sky portal.

	5 Evaluation
	5.1 Robustness of Policy Enforcement
	5.2 Performance

	6 Related Work
	7 Conclusion
	Bibliography

