
A Trusted-Hardware Backed Secure Payments

Platform for Android

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Technology (Research)

IN THE

Faculty of Engineering

BY

Rounak Agarwal

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

October, 2021

Declaration of Originality
I, Rounak Agarwal, with SR No. 04-04-00-10-22-17-1-14932 hereby declare

that the material presented in the thesis titled

A Trusted-Hardware Backed Secure Payments Platform for Android

represents original work carried out by me in the Department of Computer

Science and Automation at Indian Institute of Science during the years

2018-21.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly

indicated and referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic

misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above

statements are true to the best of my knowledge, and I have carried out due

diligence to ensure the originality of the report.

Advisor Name: Advisor Signature

1

© Rounak Agarwal

October, 2021

All rights reserved

DEDICATED TO

my parents and my advisor

Acknowledgements

Firstly, I wish to express my gratitude for my advisor Prof. Vinod Ganapathy and

my co-advisor Prof. K. Gopinath. They have been very supportive and patient

with me throughout my time at Indian Institute of Science. I am also very grateful

towards my employer NVIDIA Graphics Pvt. Ltd. and my manager Mr. Vipin

Kumar for allowing me to continue working on my thesis concurrently with my

work for NVIDIA. I wish to thank my labmates in Computer Systems Security Lab

– Subhendu, Kripa, Aditya, Rakesh, Ajay, Arun, Nikita and Chinmay for making

the lab feel like a second home. Lastly, I wish to thank the administrative staff at

the Department of Computer Science and Automation for all that they do for the

students.

i

Abstract

Digital payments using personal electronic devices have been steadily gaining in

popularity for the last few years. While digital payments using smartphones are

very convenient, they are also more susceptible to security vulnerabilities. Un-

like devices dedicated to the purpose of payments (e.g. POS terminals), modern

smartphones provide a large attack surface due to the presence of so many apps

for various use cases and a complex feature-rich smartphone OS. Because it is the

most popular smartphone OS by a huge margin, Android is the primary target

of attackers. Although the security guarantees provided by the Android platform

have improved significantly with each new release, we still see new vulnerabilities

being reported every month. Vulnerabilities in the underlying Linux kernel are

particularly dangerous because of their severe impact on app security. To protect

against a compromised kernel, some critical functions of the Android platform

such as cryptography and local user authentication have been moved to a Trusted

Execution Environment (TEE) in the last few releases. But the Android plat-

form does not yet provide a way to protect a user’s confidential input meant for

a remote server, or, the server’s confidential output meant for the user, from a

compromised kernel. Our work aims to address this gap in Android’s use of TEEs

for app security. We have proposed an API that a Trusted App running in a TEE

can provide to the untrusted apps running in the REE (Rich Execution Environ-

ment). This API will allow app developers to leverage the TEE’s protection for

fetching confidential input from and showing confidential output to the user. We

have described how this API can be used to implement a secure payment system

that can prevent fraudulent transactions even in the presence of a compromised

kernel. We have implemented the proposed API on a device with a TEE built on

ARM’s TrustZone technology.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures vi

1 Introduction 1

2 Background 5

2.1 Trusted Execution Environments 5

2.2 ARM TrustZone . 9

2.3 GlobalPlatform API Standards . 11

2.4 ARM Trusted Firmware . 11

2.5 OP-TEE . 12

2.6 Security Enhancements in Android 13

2.6.1 Verified boot . 13

2.6.2 Hardware-backed Keystore 15

2.6.3 Biometric Authentication 16

2.6.4 Protected Confirmation . 16

2.7 Payment Security Standards . 17

2.7.1 EMV 3-D Secure 2.0 . 17

2.7.2 PCI Data Security Standard 19

iii

CONTENTS

3 Design 21

3.1 Threat Model . 21

3.2 Protected I/O . 22

3.2.1 Protected I/O Framework 22

3.2.2 Protected I/O API . 24

3.2.3 Encryption and Signing . 29

3.2.4 Protected I/O Protocol . 30

3.3 Secure Payments . 31

3.3.1 KYC Process . 32

3.3.2 Account Creation and Sign In 35

3.3.3 Adding Money to Wallet . 37

3.3.4 Payment Transaction . 39

3.3.5 Password Reset and Device Theft 42

3.4 Security provided by Protected I/O 42

3.5 Portability . 44

4 Implementation and Evaluation 45

4.1 Trusted Application . 47

4.2 TEE Kernel Driver . 48

4.3 HIDL Interface . 49

4.4 Android System Service . 51

4.5 Android Apps . 52

4.6 Application Servers . 53

4.7 Performance . 53

5 Related Work 55

5.1 Payment Security . 55

5.2 TEE-based Security . 57

5.3 Attacks on TEEs . 62

6 Conclusion 65

Appendix 67

A Data Types used in Protected I/O API 67

iv

CONTENTS

References 72

v

List of Figures

2.1 Hardware Architectural View of REE and TEE [32] 6

2.2 Exception Levels in ARMv8-A architecture [14] 9

2.3 OP-TEE Architecture [41] . 13

2.4 3-D Secure Domains and Components [3] 17

3.1 Protected I/O Framework . 22

3.2 Protected I/O Protocol . 30

3.3 Registration of PubKeyID . 36

3.4 User Account Creation . 38

3.5 Adding Money to Wallet . 40

3.6 Transfering funds to another wallet user 41

4.1 Protected I/O implementation . 46

4.2 Text based Trusted UI . 47

vi

Chapter 1

Introduction

Like a physical wallet allows the owner to store cash and plastic payment cards,

a digital wallet allows storage of payment card details and digital cash which

can then be used for digital payments. Some digital wallet services like Paytm

[80], FreeCharge [75], PhonePe [82], Venmo [84] allow a user to transfer money

from their bank accounts to wallets managed by these services using their phone

numbers as an account identifier. This digital money can then be used to pay

merchants or other users of that digital wallet. Some other digital wallet services

manage payment card information instead of managing digital money. Google Pay

[76] and Samsung Pay [83] fall in this category. These apps make it unnecessary

to carry plastic cards thereby reducing the risk of card theft and card skimming.

The ubiquity of smartphones and the availability of affordable Internet have

given a massive boost to cashless payments in recent years. Before smartphones

became so commonplace, plastic payment cards were the dominant instrument for

cashless payments. Nowadays digital wallet apps account for a significant chunk of

cashless payments and this chunk is growing year on year. The Indian Government

has been promoting cashless payments under its Digital India campaign [74]. The

2016 Indian banknote demonetisation [127] also increased the popularity of digital

wallets. Unified Payments Interface (UPI) [73], launched by National Payments

Corporation of India (NPCI) in 2016 and updated in 2018 has been an important

contributor in the growth of cashless payments in India. It is a payment system

that allows instantaneous fund transfer between bank accounts (possibly belonging

1

to two different banks) using a virtual payment address (VPA) that is linked to

the recipient account. Use of VPA instead of phone numbers is better for privacy

of users. The growing popularity of digital wallets has attracted the attention of

cybercriminals.

Digital wallets handle private data such as passwords, payment card numbers,

card security codes, transaction PINs, etc. Secure storage and transmission of this

data is of utmost importance. If cybercriminals somehow get access to this confi-

dential data, they can steal funds from a victim’s wallet or bank account causing

financial loss to the victim and loss of reputation to the service provider. To ensure

the confidentiality of payment card information, all entities that participate in the

payment system such as merchants, payment gateways, payment networks, banks,

etc. who store and transmit card details, are required to comply with the PCI

DSS (Payment Card Industry Data Security Standard) [52]. PCI DSS compliance

is enforced by PCI SSC (PCI Security Standards Council)[81]. Some digital wal-

let services have opted to use tokenisation to avoid having to store card details.

They use a token as a surrogate for the actual card number. The user enters card

details in the app which is used to generate a token in a secure backend server.

The app does not store the card number once the token is obtained. The token is

used for payments and for actual fund transfer the token is detokenised to get the

associated card number. Since payment is done using the token, the card number

is never exposed. Google Pay and Samsung Pay make use of tokenisation. In

2014, EMVCo released a specification called EMV Payment Tokenisation Specifi-

cation [28] that defines a technical framework for generation and use of payment

tokens. In this framework entities called Token Service Providers (TSPs) handle

the tokenisation/detokenisation and entities called Token Requestor request tokens

which are used for payments. Google Pay is an example of a Token Requestor and

Visa is an example of a TSP. While standards like PCI DSS and EMV Payment

Tokenisation have resulted in significant improvement in the security of cashless

payments, these standards were not meant to protect against attackers that have

managed to gain control of user devices.

To secure a payment transaction, a digital wallet service needs to meet the

following requirements:

2

1. Every transaction should be initiated by the user

2. The user’s consent for the transaction must be obtained after displaying

important details like transaction amount, purpose of transaction and the

recipient

3. Any authentication credentials such as login passwords, PINs, CVVs, etc.

must be kept confidential

If the Android OS is compromised by malware, then even a perfectly written

app cannot meet these requirements and comply with the standards mentioned

above. Using the compromised OS, an attacker can initiate transactions on behalf

of the user, show the user false information on the UI to trick him into approving an

undesirable transaction or steal confidential information like passwords. Monthly

Android Security bulletins [19] almost always report vulnerabilities in the kernel

or some other privileged component of the Android platform that can allow an

attacker to compromise the security of any app. Trusted Execution Environments

(TEEs) can help mitigate the risks posed by a compromised OS.

Trusted Execution Environments provide isolated execution of trusted soft-

ware, secure storage of confidential data and remote attestation [126]. Since most

Android smartphones have an ARM processor, ARM’s implementation of TEE,

called ARM TrustZone [88] is the most commonly deployed TEE in smartphones.

If all the critical functionality of a payment app is moved to a TEE, then the

app’s security won’t be compromised even in the event of OS compromise. En-

cryption and storage of confidential data such as card number can be done by the

TEE. The TEE can present the user with a secure UI to input confidential data

such as a transaction PIN. In the last few releases, Android OS has introduced

security enhancements that make use of TEEs. Android Oreo (8.0) introduced

hardware attestation of keys. This can allow a payment server to remotely verify

whether the cryptography keys being used on the user’s device are being stored

securely in a TEE. Android Pie (9.0) introduced Protected Confirmations. Pro-

tected Confirmation enables a server to get the user’s confirmation for any action

(e.g. payment transaction) securely after informing the user about the important

details of the action (e.g. transaction amount). Since the server can verify whether

3

the confirmation was sent by the TEE, a compromised OS cannot fool the server

by sending a fake confirmation without the user’s knowledge or consent. Protected

Confirmation does not provide confidentiality. So, it cannot be used by an app to

securely obtain secrets such as passwords and transaction PINs from the user. Till

date, Android has not introduced any API that enables use of TEEs for obtain-

ing confidential input from the user. In addition to confidential input, sometimes

apps might need a way to show confidential output to the user. Android does not

yet have a TEE-leveraging API for confidential output either. Some OEMs like

Samsung have implemented confidential input functionality in their smartphones.

But this functionality is either available only to apps developed by the OEMs

themselves (e.g. Samsung Pay) or available to third party apps via SDKs that

work only on the specific OEM’s smartphones (e.g. Samsung KNOX SDK). To

make TEE-protected confidential input/output available to third party apps in an

OEM-independent way, an API needs to be added to the Android Platform. Our

work attempts to address this gap.

The contribution of this work is as follows:

1. A platform-agnostic design for protecting a user’s confidential input and an

app’s confidential output using a TEE

2. A payment system that makes use of this design to secure all payment trans-

actions

3. An implementation of the design for Android devices with ARM TrustZone

The rest of this thesis is organized as follows. Chapter 2 gives relevant back-

ground about Android, ARM TrustZone and important standards. Chapter 3

describes the threat model and the design. Chapter 4 gives the Android-specific

and TrustZone-specific implementation details of our design and performance mea-

surements. Chapter 5 describes some related work and Chapter 6 concludes the

thesis.

4

Chapter 2

Background

2.1 Trusted Execution Environments

The term Trusted Execution Environment was introduced by Open Mobile Ter-

minal Platform (OMTP) [48] in their standard Advanced Trusted Environment :

OMTP TR1 [47] published in 2009. The standard has two sets of security require-

ments named Profile 1 and Profile 2 and any execution environment that conforms

to one of these two is considered a Trusted Execution Environment. GlobalPlat-

form [31], a standards organization, in its standard TEE System Architecture [32]

describes Trusted Execution Environment as ”an execution environment that runs

alongside but isolated from an REE” where REE stands for Rich Execution Envi-

ronment. The REE is supposed to run a Rich OS, which has rich functionality and

provides a wide variety of features to applications, whereas the TEE typically runs

a relatively simple OS called a Trusted OS. Figure 2.1 shows the typical architec-

ture of a system which has a TEE. Based on the standards mentioned above and

other works that describe TEEs [87, 121, 126], here are some essential properties

of a TEE.

• Secure Boot: The Trusted OS that is executed in the TEE needs to be

booted securely. The executable for the Trusted OS needs to be stored

in a protected partition in the non-volatile storage available on the device.

Only the Trusted OS should have write access to the protected partition to

prevent a potentially malicious Rich OS from updating it with a compromised

5

Public OTP Fields
Trusted OTP

Cryptographic Assets

Trusted
Peripherals

Trusted
ROM

Public
PeripheralsPublic ROM

Public
Crypto

Accelerators
Public RAM

Trusted
Crypto

Accelerators

Trusted
RAM

Public
Processing

Core(s)

Trusted
Processing

Core(s)

Replay Protected
Area

Protected Area

REE TEE

External
Non-Volatile
Memory

External
Volatile
Memory

Figure 2.1: Hardware Architectural View of REE and TEE [32]

executable. The most common way of ensuring secure boot is to use a chain

of trust rooted by a public key stored by the device manufacturer in tamper

resistant read-only memory on the device. The corresponding private key is

kept securely at the factory. The bootloader that runs immediately after a

cold boot is signed by the manufacturer using this private key and during a

cold boot the hardware must verify this signature using the public key stored

in the device. The verified bootloader contains public key that is required to

verify the signature of the next stage in the boot flow which in turn might

have the public key for the next stage. In this way a chain of public keys is

6

used to ensure that only code trusted by the manufacturer runs in the TEE.

The manufacturer (or any of its authorised partners) can release an updated

version of any of the executables involved in booting, provided the cold-boot

bootloader’s signature is verifiable using the root public key stored in ROM.

The root public key cannot be modified once the device leaves the factory.

• Isolated execution: The Trusted OS and the Trusted Applications (TAs)

that run on top of it are isolated from the Rich OS and the untrusted ap-

plications. The TEE ensures the confidentiality and integrity of the code

and data used by it. To enable this isolation, the hardware needs to have

some way of partitioning the main memory, caches and the CPU registers

into secured and unsecured parts. Only the Trusted OS should have access

to the secured part. For I/O it would be impractical to have an entirely

separate set of peripherals for the Trusted OS. A more practical solution is

for the hardware to provide the Trusted OS with some way of seizing control

of a peripheral from the untrusted OS and yield it once it is done using that

peripheral. For example, the Trusted OS may need control over the display

device to show some confidential information to the user.

• Secure Storage: To protect data at rest the Trusted OS needs access to a

protected storage device or a protected region on shared storage device. Se-

cure storage is necessary for storing cryptography keys, access credentials and

other confidential data. To prevent downgrade attacks in which malicious

actors attempt to modify code and/or data to an older valid (but more vul-

nerable) version, some form of rollback prevention is required. Some modern

storage devices have a separate partition called Replay Protected Memory

Block (RPMB). To write to RPMB, a MAC needs to be calculated using an

authentication key. Both the TEE and the storage device are provisioned

with an authentication key at the factory to enable the TEE to write to the

RPMB. RPMB can be used to securely store counters, which in turn can

help in preventing rollback attacks.

• Remote Attestation: The ability of a TEE to prove to a remote third party

that a message was sent by the TEE is called remote attestation. Remote

7

attestation enables the TEE to share the networking hardware on the de-

vice with the REE. All messages exchanged between the remote third party

and the TEE can go through untrusted networking hardware without get-

ting (undetectably) tampered with. Remote attestation is possible only with

an authenticated channel of communication between the TEE and the third

party. This authenticated channel cannot be established using an untrusted

channel during runtime. It has to be provisioned at the time of manufac-

turing. It is typically done with the help of an asymmetric key pair stored

in secure storage at the factory. The public key in the pair is certified by a

Certificate Authority (CA) that is trusted by the third party. During run-

time, this certified key pair can be used in a key exchange protocol to agree

on one or more shared secret key(s) which in turn help create a protected

communication channel between the TEE and the third party.

• Trusted Path: A trusted path [50] is a protected channel of communication

between the user and the TEE. The trusted path in combination with remote

attestation helps in protected communication between a remote third party

and the user. For example, the remote third party could be a bank asking

for the user’s consent to go ahead with a transaction on the user’s account.

The TEE can get confidential input from and show confidential output to

a user using a trusted path. In addition to having control over an I/O

device, the TEE needs a security indicator to inform the user that they are

communicating with the TEE and not the REE. In absence of a security

indicator, the untrusted OS can easily fool the user by mimicking the UI of

a TA and get them to share confidential input.

Hardware technologies such as Platform Security Processor from AMD [7, 8],

Software Guard eXtensions (SGX) from Intel [61], TrustZone from ARM [88] and

MultiZone from Hex Five Security [45] have been developed to enable implemen-

tation of TEEs. We have used TrustZone in our implementation. But our design

described in Chapter 3 can be implemented with any TEE that has secure access

to a touchscreen.

8

Firmware / Secure Monitor

Hypervisor

Rich OS Rich OS

App App AppApp

Secure Partition Manager

Trusted OS

Trusted App Trusted App

Secure WorldNormal World

EL3

EL2

EL1

EL0

Figure 2.2: Exception Levels in ARMv8-A architecture [14]

2.2 ARM TrustZone

TrustZone [14, 88, 116] is the name of security extensions first made available in

2003 in ARM’s ARM1176JZF-S processor [12] which implements the ARMv6 in-

struction set. Subsequently, ARM continued offering TrustZone in its Cortex-A

processors that implement ARMv7-A or ARMv8-A instruction sets. TrustZone

helps create two protection domains called normal world and secure world. At any

given point in time, each processor core (referred to as PE in official documents)

operates in one of these two domains. TrustZone introduced the Secure Configu-

ration Register (SCR) in which the 0th bit is called NS (Non-secure) bit. When

this bit is set, it means the core is in the normal world and if the bit is reset, it

indicates the core is in the secure world. A new processor mode (exception level

in ARMv8) called Monitor is responsible for preserving processor state when the

processor switches between worlds. The monitor sets or resets SCR.NS bit to in-

dicate which world the processor is executing in. The AMBA AXI system bus is

TrustZone-aware and uses the NS bit as a 33rd address bit to determine whether

an access request came from the secure or normal world. The two worlds share the

9

same caches in which the tags indicate which world a cache line belongs to. The

two worlds have separate base registers pointing to translation tables (page tables)

for virtual memory management. The Generic Interrupt Controller v3 (GICv3)

supports TrustZone. The GIC can be programmed to treat some interrupt sources

as secure so that the interrupts from those sources are delivered only to the secure

world. Only software executing in the secure world is allowed to program the GIC.

Figure 2.2 shows the four exception levels in ARMv8-A architecture along with the

part of the software stack that is supposed to execute at each of the levels. EL2

is an optional extension that may or may not be available in an ARM processor.

Until ARMv8-A v8.3, EL2 was only available in the normal world. ARMv8-A

v8.4 introduced EL2 in the secure world to enable concurrent execution of mul-

tiple Trusted OSs (not shown in the figure). TrustZone added a new privileged

instruction to ARM’s instruction set - SMC (Secure Monitor Call). When the

SMC instruction is executed in either of the two worlds, the Secure Monitor mode

is entered and depending on the arguments provided with the instruction, the

Secure Monitor software determines whether a world switch is required to serve

the request. Typically it is the normal world that executes SMC to request some

services from the firmware residing in EL3 or from the Trusted OS. EL0 cannot

execute SMC in either of the worlds. ARM has published a specification named

SMC Calling Convention [62] to standardize the interface between EL3 and other

exception levels.

ARM has defined some TrustZone-aware peripherals to enable the secure world

to create protected regions in memory and control access to peripherals. The

TrustZone Address Space Controller (TZASC) allows marking some regions in the

DRAM as secure and thus only accessible by the secure world. The TrustZone

Memory Adapter (TZMA) performs the same function for on-chip SRAM. Trust-

Zone Protection Controller (TZPC) allows the secure world to control access to

various peripherals on the system e.g. the touchscreen. These three components

are optional and are not necessarily present in all ARM-based Systems-on-Chip

(SoCs).

10

2.3 GlobalPlatform API Standards

The Rich OS and the Trusted OS need to interoperate even when they are devel-

oped by different manufacturers. GlobalPlatform [31] has published several spec-

ifications with stardard APIs [33] which manufacturers can adhere to, to ensure

interoperability with software developed by other manufacturers. The important

API standards published by GlobalPlatform are listed below.

• TEE Client API: This standard defines the API used by the untrusted

applications running on top of the Rich OS (called Client Applications in

the standard) for communicating with and requesting services from Trusted

Applications running in the TEE. This API serves as a base layer upon

which higher level protocols for things like cryptography, secure storage can

be built.

• TEE Internal Core API: This standard defines an API for developing

Trusted Applications that run in the TEE. In addition to a core API, the

standard also defines a Trusted Storage API, a Cryptographic Operations

API, a Time API and an Arithmentic API.

• Trusted User Interface API: This standard defines an API that can be

used by Trusted Applications running in a TEE on a device with a touch-

screen (or a screen and a keyboard) for creating a UI for the user. This

trusted UI can be used to display sensitive information to the user or fetch

sensitive input from the user.

• TEE Trusted User Interface Low-level API: While Trusted User In-

terface API only supports creation of simple PIN entry screens and message

boxes, this standard enables creation of more complex UIs.

2.4 ARM Trusted Firmware

To assist OEMs in adopting TrustZone technology for their SoCs, ARM developed

and released an open source reference implementation of secure world software

called ARM Trusted Firmware [15]. OEMs can use ATF as a good starting point

for developing secure world software for their SoCs. ATF implements secure boot.

11

The bootloader stages are listed below in the order that they are executed in a

cold boot.

• Application Processor Trusted ROM (BL1): Unmodifiable code that per-

forms the minimum initialization necessary to validate, load and hand off

control to the 2nd stage loaded in RAM.

• Trusted Boot Firmware (BL2): Performs additional initialization followed

by validating and loading BL31 through BL33 stages.

• EL3 Runtime Software (BL31): Unlike previous 2 stages this stage is not

discarded after execution. It executes in EL3 and provides runtime services

such as handling transitions between secure and normal worlds. During boot

it initializes and hands off control to BL32 and BL33.

• Secure-EL1 Payload (BL32): This is an optional stage. It is usually (but

not necessarily) a Trusted OS.

• Application Processor Normal World Firmware (BL33): Boots the Rich OS.

BL31 contains a Secure Payload Dispatcher (SPD) that dispatches service re-

quests from the Rich OS to the Secure Payload. Different Secure Payloads have

different SPDs and ATF needs to be compiled with the appropriate SPD before

being flashed onto a device.

2.5 OP-TEE

Open Portable Trusted Execution Environment (OP-TEE) [49] is an open source

Trusted OS that conforms to the GlobalPlatform standards. It was open sourced

in June 2014 after being jointly developed by STMicroelectronics and Linaro’s Se-

curity Working Group (SWG). Since 2015, SWG is the sole owner and maintainer

of OP-TEE. Besides the Trusted OS, SWG has created a library libutee that im-

plements GP TEE Internal Core API, another library libteec that implements the

GP TEE Client API and a driver for Linux kernel (upstreamed in 2017) that helps

normal world apps communicate with Trusted Apps that run on top of OP-TEE.

Figure 2.3 shows the architecture of OP-TEE and how it interacts with Linux ker-

nel. tee-supplicant is a normal world daemon that OP-TEE communicates with

12

tee-supplicant

TEE Client
API

Generic TEE API (ioctl)

TEE Subsystem
OP-TEE
Driver

User

Kernel
OP-TEE Msg SMC Call

TEE Internal
APIs

OP-TEE
Static

Trusted
App

Dynamic
Trusted

App

Client
App

Normal World Secure World

Figure 2.3: OP-TEE Architecture [41]

using RPC for some functionalities like secure storage which require participation

of the normal world. A Static Trusted App (also called Pseudo Trusted App) is

statically built into the OP-TEE OS binary. Pseudo TAs cannot make use of the

TEE Internal Core API because libutee is not linked with the OS binary. Dynamic

TAs (also called User mode TAs) are TAs in the true sense that link against libutee

to make use of TEE Internal Core API. User mode TAs, as their name suggests,

run in Secure-EL0 level unlike Static TAs which run in Secure-EL1. The SMC

calls made by the kernel driver go through an SPD called OP-TEE Dispatcher

(not shown in the figure) that is part of ATF.

2.6 Security Enhancements in Android

Since the Android platform was launched more than a decade ago, the security

provided by the platform has improved with each new release due to various en-

hancements [23]. This section describes a few of those enhancements that are

relevant to the security of payment applications.

2.6.1 Verified boot

Verified boot was introduced in Android 4.4 (KitKat) along with a kernel feature

called dm-verity [24, 40]. dm-verity enables transparent integrity checking of block

devices by the Device Mapper framework in the Linux kernel [38]. A hash tree

13

containing the hashes of all physical blocks (typically 4K in size) of a particular

partition in the storage device is created at the time of building the OS. The root

hash of this hash tree is signed by the device manufacturer. A table containing this

root hash and some metadata about the partition is written to the disk in the block

immediately following the partition which is to be verified. The public key required

for verification of the hash is written to the boot partition which also contains the

kernel. Only partitions that are mounted read-only can be verified using dm-verity

because any modifications to the partition’s contents will change the hashes. The

system partition in an Android device contains the Android framework and is

mounted read-only. Therefore it is an ideal candidate for dm-verity. For dm-verity

to be reliable, the kernel needs to be trusted. This requirement is fulfilled using

verified boot. The boot image is signed by the manufacturer and the signature is

verified by the bootloader during device boot. Until Android 6 (Marshmallow), the

user was warned when the verification of boot image failed but boot was allowed.

In Android 7 (Nougat) strict verification was introduced because of which boot

failed whenever verification failed. Android 7 also made changes to dm-verity to

enable use of error-correction for recovery from minor disk corruptions. For the

Android 8 (Oreo) release, the Android framework was completely re-architected

as part of Project Treble [71], such that all vendor-independent components could

live in the system partition and all vendor-dependent components in the newly

introduced vendor partition. A reference implementation of verified boot called

Android Verified Boot that works with Project Treble architecture was released

with Android Oreo. AVB makes use of a data structure called VBMeta stored in

a newly introduced vbmeta partition [16]. VBMeta contains the hash for the boot

image and the root hashes of the hash trees for the system and vendor partitions.

VBMeta also contains a rollback index, which is a number that is increased each

time an updated image (with security fixes) is installed on the device. The rollback

index is used to prevent rollback attacks in which an attacker attempts to install

and boot an older image with known vulnerabilities. The vbmeta image is signed

by the manufacturer and the signature is verified by the bootloader.

14

2.6.2 Hardware-backed Keystore

The Android Keystore system was introduced in Android 4 (Icecream Sandwich)

[22]. The Keystore system provides a container for securely storing cryptographic

keys, preventing extraction of keys from the device. Android 6 introduced the

ability to require local user authentication (e.g. PIN entry) before a key can be

used. Android 6 also introduced the ability to store keys in secure hardware such

as a TEE or a Secure Element. With the release of Android 7, Google mandated

that the Keystore system be protected using secure hardware [68]. Android 7 also

introduced Key Attestation [18, 39]. Key attestation enables an Android app to

prove to a remote server that a cryptographic key has been generated and stored

in secure hardware. An app can request the hardware-backed Keystore system

to create a chain of X.509 certificates that attest various properties of a key such

as whether the key requires user authentication, whether it requires fingerprint

authentication and other useful information. The first certificate in this chain

contains a description of the key in an extension (RFC 5280 § 4.2 [57]). The

format of data in this extension is specified in official reference documentation [39].

To prevent replay attacks, the app obtains a 64 bit nonce from the server which

is included in the extension by the Keystore system. Android 8 made support

for Key Attestation mandatory. Android 8 also introduced optional support for

ID Attestation. ID Attestation allows a device to securely provide a proof for

hardware identifiers such as IMEI numbers, serial numbers, etc. At the factory,

the hardware identifiers are copied into secure storage protected by the TEE. ID

Attestation builds on top of Key Attestation. The hardware identifiers are added

to the extension that is created for Key Attestation. Android 9 (Pie) introduced

the ability to securely import keys generated elsewhere into the hardware-backed

Keystore. For this purpose, an app first requests the Keystore to generate a

wrapping key pair and an attestation for the public key. The public key and

the attesting certificate chain are sent to the server from which the key is to be

imported. The server encrypts the key using the received public key. On the

device, the wrapped key is unwrapped within the TEE. Android 9 also introduced

support for storing keys in a hardware security module which has its own dedicated

CPU and storage, unlike a TEE which shares CPU and storage with the untrusted

15

Android platform.

2.6.3 Biometric Authentication

Android 6 introduced support for fingerprint sensors. Google mandated the use of

TEEs for storing and matching fingerprints. Along with the changes to Keystore,

the support for fingerprint matching allowed an app to require authentication using

fingerprints for usage of cryptographic keys. Fingerprint authentication is much

faster and more convenient for a user compared to entering PINs/passwords.

2.6.4 Protected Confirmation

Android 9 introduced an optional feature called Protected Confirmation [54]. Pro-

tected Confirmation allows a remote server to securely obtain the user’s consent

for some action that it intends to perform for the user, e.g. executing a money

transfer from the user’s bank account. Protected Confirmation builds upon the

Key Attestation feature introduced in Android 7. To make use of Protected Con-

firmation, an application needs to first enroll a public key with the server. The

server also needs an attestation of the public key. After the server has received

the public key and a valid attestation for it, the server can send any message for

which it needs the user’s confirmation. On the device, the app receives the message

and requests the Protected Confirmation system to obtain the user’s confirmation.

The trusted application (TA) of the Protected Confirmation system takes control

of the touchscreen to display the message to the user and if the user confirms the

message, it returns a confirmation token which is an HMAC-SHA256 value com-

puted over the message using a 256 bit secret key that is shared with the Keystore

system. After receiving the confirmation token, the app sends the message and

the token to the Keystore system which verifies the token using the shared secret

key. If verification is successful, Keystore signs the message using the private key

corresponding to the public key that was enrolled with the server. This signature

can be sent to the server. The server verifies the signature using the enrolled public

key and if the verification is successful the server is assured that the user’s consent

was obtained securely. Because only the TEE has access to the private key used

for signing, there is no way a compromised Android platform can spoof the user’s

confirmation. At the time of writing, Protected Confirmation has only been made

16

available in Google’s Pixel 3 and newer Pixel devices.

2.7 Payment Security Standards

This section describes two payment security standards that are relevant to our

work.

3DS Requester Environment

ACS

3DS
Client

Payment
Network

3DS
Server

DS

AAuthorisation
Message

Authorisation
Message

Payment
Requests

1,4

2,3

2,3

7,8

7,8

5,6

AReq / ARes

AReq / ARes

CReq / CRes

RReq / RRes

RReq / RRes

Issuer Acquirer

Directory
Server

3DS Requester APIs / 3DS Server APIs / Browser Interaction

Access Control
Server

Figure 2.4: 3-D Secure Domains and Components [3]

2.7.1 EMV 3-D Secure 2.0

3-D Secure 2.0 is an authentication protocol created by EMVCo [17] for e-commerce

transactions. It is based on a three-domain model. The three domains are

• Issuer Domain

17

• Acquirer Domain

• Interoperability Domain

Figure 2.4 shows the interaction between the three domains as specified in ver-

sion 2.0 of the protocol [3]. The dashed lines in the figure show interactions that

are not specified by the protocol, but are an essential part of a complete payment

system. The Issuer domain has the Cardholder themself, the Cardholder’s device

used for payments, the Issuer bank which issued a card to the Cardholder and

the Issuer’s Access Control Server (ACS). The Acquirer domain has the 3DS Re-

questor (usually an e-commerce merchant), the 3DS Server deployed by the 3DS

Requestor and the Acquirer bank with which the 3DS Requestor has an account.

The Interoperability domain connects the other two domains. The Interoperabil-

ity domain has a Directory Server (DS) usually run by payment networks such as

VISA, Mastercard, etc. A 3-D Secure authentication flow is initiated with an Au-

thentication Request (AReq) message created by the 3DS Server using information

received from the 3DS Client 1 , which is either an app that embeds an EMVCo-

approved implementation of 3DS SDK specification [5] or a browser. 2 The AReq

message is sent to the ACS via the DS. Based on the information contained in the

AReq message such as Cardholder identity, payment amount, etc., the ACS de-

termines whether a Frictionless flow or a Challenge flow is required to authorize

the transaction. Frictionless flow is one of the highlights of 3DS 2.0 vis-à-vis 3DS

1.0. In Frictionless flow, the transaction is immediately authorized on receiving

the AReq message without any further interaction with the Cardholder. Chal-

lenge flow involves further interaction with the Cardholder to obtain some kind of

credential (e.g. PIN, answer to questions). 3 The ACS communicates its decision

to the 3DS Server by sending an Authentication Response (ARes) message via the

DS. If a Challenge flow is required, then the 3DS Server sends the ACS’s URL and

other necessary data to the 3DS Client 4 . A Challenge Request (CReq) message is

created using information contained in ARes and sent to the ACS directly 5 . The

ACS responds with a Challenge Response (CRes) message 6 . Depending on the

requirements of the ACS there will be one or more exchanges of CReq-CRes pairs

between the 3DS Client and the ACS. Finally, to complete the Challenge flow, the

ACS sends a Results Request (RReq) message to the 3DS Server via the DS 7

18

and the 3DS Server responds to it with a Results Response (RRes) message 8 .

3DS 2.0 has a provision for Decoupled Authentication which does not utilise CReq

and CRes messages for the Challenge flow and happens outside the 3-D Secure

protocol. But RReq and RRes messages are sent even in the case of Decoupled

Authentication.

2.7.2 PCI Data Security Standard

The Payment Card Industry Data Security Standard [52] was first published in

2004 and has since been updated multiple times with the latest release (3.2.1) in

2018. All entities involved in the storing, processing & transmission of payment

card information - merchants, acquirers, issuers, payment networks, etc. are re-

quired to comply with PCI DSS. The compliance is enforced by the PCI Security

Standards Council [81]. PCI DSS requirements are grouped into the following 6

goals.

1. Build and Maintain a Secure Network and Systems

2. Protect Cardholder Data

3. Maintain a Vulnerability Management Program

4. Implement Strong Access Control Measures

5. Regularly Monitor and Test Networks

6. Maintain an Information Security Policy

Out of the above 6 goals, only the 2nd one is relevant to our work. The

requirements under this goal are as follows.

1. Protect stored cardholder data - Cardholder data should never be stored

unencrypted. It should not be stored longer than necessary. Authentication

data such as CVV numbers should not be stored at all, not even in encrypted

form. Only a few authorized persons with a genuine business need should be

able to see more than the first six and last four digits of the PAN (Primary

Account Number).

19

2. Encrypt transmission of cardholder data across open, public net-

works - Strong cryptography should be used while transmitting PAN, au-

thentication codes over public networks. Messaging systems auch as SMS,

instant messaging apps, email, etc. should never be used to transmit unen-

crypted PANs.

20

Chapter 3

Design

3.1 Threat Model

The following entities are trusted in our design:

• The TEE (ARM TrustZone), the trusted OS (OP-TEE in our implementa-

tion), all the trusted apps running on top of it and all the data stored in

TEE-protected secure storage

• The OEM which manufactured the smartphone and its supply chain

• The digital wallet service provider and the servers deployed by it

• The following entities involved in executing a transaction on the user’s pay-

ment card:

– The Issuer bank which issued the card and its Access Control Server

– The card network (e.g. VISA, Mastercard, etc) to which the user’s card

belongs and its Directory Server

• The user of the digital wallet

We assume that the smartphone has verified boot feature that ensures the

integrity of the code running in the secure world. The adversary is assumed to

have complete control over the untrusted OS kernel and all the apps and services

running on top of it (including the normal world app for the digital wallet).

21

Protected
I/O Service

Untrusted OSTrusted OS Untrusted
Touchscreen

driver Trusted
Touchscreen

driver

App 1
App 2

App n

App Server 2
App Server 1

App Server n

Trusted Touchscreen
Controller

Protected
I/O Trusted

App

Touchscreen

Security
Indicator

LED

Secure World Normal World

Figure 3.1: Protected I/O Framework

The aim of the design is to prevent an attacker from executing fraudulent trans-

actions with the help of a compromised normal world. A transaction is fraudulent

if the user does not give informed consent to it. The design cannot prevent (or even

detect) DOS (Denial of Service) attacks. Since all communication between the ap-

plication server and the secure world goes through the normal world, it is trivial

for a compromised normal world to stop this communication thus making transac-

tions impossible. Side channel attacks, exploitation of vulnerable implementations

of standard cryptography algorithms and sophisticated hardware attacks on the

TEE are outside the scope of this work.

3.2 Protected I/O

This section describes the various components involved in Protected I/O, the API

exposed by the TEE to the normal world and the flow of messages between the

Application Server and the TEE. Subsequent sections describe how Protected I/O

can be used to secure payment transactions.

3.2.1 Protected I/O Framework

Figure 3.1 shows the various components involved in Protected I/O. The Trusted

OS runs within the secure world i.e. the TEE. It is supposed to be very lightweight

— both in terms of the amount of code and the memory usage — with a minimal

22

set of features. It is more privileged than the Untrusted OS. It has access to all of

the RAM on the device, some of which is only accessible to it and not the Untrusted

OS. It has a trusted touchscreen driver that is used in secure entry of confidential

user input and secure display of confidential output. In our implementation, OP-

TEE is used as the Trusted OS. The Untrusted OS runs within the normal world.

As stated in section 3.1, the Untrusted OS is assumed to be under the control

of the adversary. Therefore adversary has access to all the input received from

the user via the untrusted touchscreen driver and the ability to show misleading

output to the user to get confidential information and/or to execute fraudulent

transactions. In our implementation, Android is the Untrusted OS. There is a

Protected I/O Service that runs in the normal world and talks to the Protected

I/O Trusted App running in the secure world via the two OSes. The normal

world apps request the services of the Protected I/O TA via the Protected I/O

Service. The Protected I/O TA has access to TEE-protected Secure Storage. The

Secure Storage contains a set of root CA certificates for verifying the publick

key certificates of App Servers. Additionally, the Secure Storage has chain of

certificates loaded into the device at the factory by the OEM, that is used to

attest the security of any public key generated by Protected I/O TA. App Servers

that use the public keys generated by Protected I/O TA, need to trust the root

certificate of the certificate chain. Hence the root certificate needs to be from

a CA that is very well known and trusted by all the service providers whose

services the user might need. For Android devices, Google has mandated the

use of Google Hardware Attestation Root certificate in order for the device to be

certified for Google Play services [21]. Secure Storage is also used to store the

private key of every asymmetric key pair generated by the Protected I/O TA.

The device has a Trusted Touchscreen Controller which multiplexes the device’s

touchscreen between the Trusted and Untrusted OSes. The Trusted OS can use

it to wrest control of the touchscreen from a potentially compromised Untrusted

OS, or the Untrusted OS can voluntarily yield control to it. On a device with

ARM TrustZone, TrustZone Protection Controller (TZPC) [70] can be used to

perform the function of Trusted Touchscreen Controller. The Trusted Touchscreen

Controller ensures that when (and only when) the touchscreen is under the control

of the Trusted OS, the Security Indicator LED is lit. The LED gives the user an

23

assurance that any information he enters while it is lit, is protected by the TEE.

Since the Untrusted OS has no control over the LED, any attempt by the adversary

to mislead the user with an imitation of the user interface of Protected I/O TA

will be thwarted by an attentive user.

3.2.2 Protected I/O API

This section describes the API used by the Protected I/O Service (PIO Service)

to request the services of the Protected I/O TA (PIO TA). Details of encryption

and signing of messages are described in the next section. PIO TA and PIO

Service communicate using shared memory. The data exchanged between them

is formatted according to the Concise Binary Object Representation (CBOR) [26]

specification for serialization of data. Appendix A shows various data types used

in the exchange of data between PIO Service and PIO TA expressed using the

Concise Data Definition Language (RFC 8610) [27]. We now describe the API

calls exposed by the PIO TA alongwith details of input and output parameters for

each of them.

For the data types written in monospace please refer to Appendix A.

• GENERATE KEY PAIR FOR SERVER

Input: {server_info, key_params}

Output: {error_code, pub_key}

Given an App Server’s Common Name and public key certificate chain and

desired key parameters, this method first checks if the certificate chain is

trusted and anchored by one of the root certificates available in Secure Stor-

age. If so, it generates a new pair of elliptic curve keys and returns the

public key in the output. The private key, the Server’s Common Name and

the Server’s public key (extracted from the certificate chain) are stored to-

gether in Secure Storage. If the curve or the key size is not supported or

if the certificate chain is not trusted, the method returns the appropriate

error_code indicating reason for failure.

• GET PUBLIC KEY FOR SERVER

Input: {common_name}

24

Output: {error_code, pub_key}

If a key pair has been generated for the server identified by the Common

Name, the public key is returned as output, else an error is returned.

• CHANGE PUBLIC KEY FOR SERVER

Input: {server_info}

Output: {error_code}

This method can be used to change the saved public key for an App Server.

• DELETE KEY PAIR FOR SERVER

Input: {common_name}

Output: {error_code}

Given an App Server’s Common Name, this method deletes the generated

keypair as well as the saved public key for the App Server. It asks the user

for confirmation before deleting.

• GET ATTESTATION FOR SERVER

Input: {common_name, attestation_challenge}

Output: {error_code, cert_chain}

This method returns a public key certificate chain (with one or more certifi-

cates) attesting the key pair (or more specifically the public key) generated

for the App Server identified by common_name. This certificate chain acts as

a proof of the fact that the private key of key pair for the Server is stored in

Secure Storage. The certificate chain can be sent to the App Server which

will validate it to decide whether or not to use the generated public key for

Protected I/O. The first certificate in the chain (the one with the generated

public key) contains attestation_challenge in an extension (RFC 5280 §
4.2 [57]). This API is similar to the attestKey API specified in the Keymaster

3 HIDL specification [20]. attestKey expects the key and a list of character-

istics (e.g. whether the key requires user authentication) to attest as input

from the normal world. But this API just expects the Server’s Common

Name and the attestation challenge.

25

• GET SIGNED INPUT FOR SERVER

Input: {common_name, signed_message_from_server}

Output: {error_code, signed_message_for_server}

This method expects an input_form in the data field of

signed_message_from_server and the is_confidential boolean in it

to be set to false. The method first checks whether a key pair exists for the

Server identified by common_name. If not, it returns an error. Otherwise, it

verifies the signature in signed_message_from_server using the Server’s

public key that was stored during key pair generation. If the signature is

valid, the TA takes control of the touchscreen and displays the input form to

the user along with Submit and Cancel buttons and the Server’s Common

Name (to prevent phishing). After the user enters the requested information

and taps Submit, an instance of filled_input_form is created and put in

the data field of signed_message_for_server, which is returned as output.

The nonce from signed_message_from_server instance is copied into the

signed_message_for_server instance. This method is meant for receiving

non-confidential input from the user.

• GET SECRET INPUT FOR SERVER

Input: {common_name, signed_message_from_server}

Output: {error_code, encrypted_message_for_server}

This method expects an input_form in the data field of

signed_message_from_server and the is_confidential boolean in it

to be set to true. The method first checks whether a key pair exists for the

Server identified by common_name. If not, it returns an error. Otherwise, it

verifies the signature in signed_message_from_server using the Server’s

public key that was stored during key pair generation. If the signature is

valid, the TA takes control of the touchscreen and displays the input form to

the user along with Submit and Cancel buttons and the Server’s Common

Name (to prevent phishing). After the user enters the requested information

and taps Submit, an instance of filled_input_form is created, encrypted

and put in the encrypted_data field of encrypted_message_for_server,

26

which is returned as output. The nonce from signed_message_from_server

instance is copied into the encrypted_message_for_server instance.

• DISPLAY MESSAGE FROM SERVER

Input: {common_name, signed_message_from_server}

Output: {error_code, signed_message_for_server}

This method expects a UTF-8 encoded string in the data field of

signed_message_from_server. The signature is verified and if it is valid, the

message is displayed to the user with an OK button and the Server’s Com-

mon Name. When the user taps the OK button, the same message is signed

with the private key generated for the Server identified by common_name,

included in the data field of signed_message_for_server and returned as

output. The nonce from signed_message_from_server instance is copied

into the signed_message_for_server instance. The output can optionally

be sent to the Server by the App to prove that the message was indeed shown

to the user.

• DISPLAY SECRET MESSAGE FROM SERVER

Input: {common_name, encrypted_message_from_server}

Output: {error_code, encrypted_message_for_server}

This method expects an encrypted UTF-8 encoded string in the

encrypted_data field of encrypted_message_from_server. The string is

decrypted and displayed to the user with an OK button and the Server’s

Common Name. When the user taps OK button, the same string is en-

crypted again for the Server and written to the encrypted_data field of

an encrypted_message_for_server instance which is returned as output.

The nonce is copied from the encrypted_message_from_server instance to

the encrypted_message_for_server instance. The output can optionally be

sent to the Server by the App to prove that the secret message was indeed

shown to the user.

• GET USER CONFIRM FOR SERVER

27

Input: {common_name, signed_message_from_server}

Output: {error_code, signed_message_for_server}

This method expects a UTF-8 encoded string in the data field of

signed_message_from_server. The signature is verified and the string

is displayed to the user along with the Server’s Common Name, a Con-

firm and a Deny button. Only if the user taps the Confirm button,

the string is copied into the data field of a signed_message_for_server

instance which is returned as output. The nonce is copied from the

signed_message_from_server instance to the signed_message_for_server

instance. If the user taps the Deny button, an error code indicating that

is returned. This method can be used to securely acquire the user’s con-

sent for some action (e.g. a transaction on the user’s bank account). It is

slightly different from Android’s Protected Confirmation because it requires

the message received from the server to be signed.

• DISPLAY PUBLIC KEY FOR SERVER

Input: {common_name}

Output: {error_code}

If a key pair has been generated for the Server identified by common_name,

then PIO TA asks the User to confirm whether he wishes to display the

public key on the screen and on obtaining confirmation it takes control of

the touchscreen and displays the public key as a JAB Code [36] along with

a Close button. When user presses Close button, the method returns. If no

key pair exists, an error is returned.

• ABORT

Input: No input required

Output: {error_code}

This method can be used by the normal world to abort any ongoing operation

of the Protected I/O TA that is waiting for user input. The need for aborting

may arise when the normal world urgently needs control of the touchscreen,

28

e.g. to allow the user to receive a phone call. For reasons explained in Section

3.3.1, the DISPLAY PUBLIC KEY FOR SERVER call cannot be aborted.

Except for the DISPLAY PUBLIC KEY FOR SERVERmethod, all methods men-

tioned above have been implemented by us in a Trusted App. Out of the six form

field types proposed by us, our Trusted UI implementation supports three - text,

password and integer.

3.2.3 Encryption and Signing

In our design, Elliptic Curve cryptography is used for encryption and signing of

data exchanged between PIO TA and App Server. Compared to non-EC cryptog-

raphy, EC cryptography requires much smaller keys for equivalent security. Large

keys cannot be displayed as JAB codes in the limited screen space available in

smartphones. Therefore, it is necessary to use EC cryptography. PIO TA gen-

erates and stores an asymmetric key pair (AppPrivKeyPIO, AppPubKeyPIO) for

each App Server that it communicates with. PIO TA gets the App Server’s pub-

lic key ServerPubKeyPIO from its certificate chain. The App fetches public key

AppPubKeyPIO and sends it to the App Server before any confidential data is ex-

changed. AppPubKeyPIO & ServerPubKeyPIO cannot be directly used for encrypt-

ing messages of arbitrary length. So a hybrid approach involving both symmetric

and asymmetric cryptography is used in our design.

Whenever PIO TA needs to encrypt data for an App Server, it first generates an

ephemeral key pair (AppPrivKeyEphePIO, AppPubKeyEphePIO). Then the Elliptic

Curve Diffie Hellman key exchange protocol is executed to derive a shared secret

EpheSharedSecret using AppPubKeyEphePIO and ServerPubKeyPIO. The SHA-

256 hash of EpheSharedSecret gives a 256-bit symmetric key EpheSymKey that is

used for AES-256 encryption of messages of arbitrary length. The encrypted mes-

sage and AppPubKeyEphePIO are sent to the App Server. The Server can derive

EpheSharedSecret by executing the ECDH protocol on AppPubKeyEphePIO and

ServerPubKeyPIO and from that it can derive the key EpheSymKey for decryp-

tion. When the Server needs to encrypt data for PIO TA, the process is similar

except this time the ephemeral key pair is generated by the Server. All messages

exchanged between PIO TA and the App Server are signed by the sender using the

29

Elliptic Curve Digital Signature Algorithm (ECDSA). For signing, PIO TA uses

AppPrivKeyPIO and the Server uses ServerPrivKeyPIO.

3.2.4 Protected I/O Protocol

User

App AppServerPIO TA

call GENERATE_KEY_PAIR_FOR_SERVER

AppPubKeyPIO

Request attestation challenge

attestation challenge
call GET_ATTESTATION_FOR_SERVER

Attestation of AppPubKeyPIO

Attestation of AppPubKeyPIO

Verification result

Request input form

Input form

call GET_SECRET_INPUT_FOR_SERVER

or GET_SIGNED_INPUT_FOR_SERVER
display input form

input

Encrypted or signed input

Encrypted or signed input

Figure 3.2: Protected I/O Protocol

To receive confidential input from a user, the App Server first needs the public

key AppPubKeyPIO and also needs to ensure that the corresponding private key

AppPrivKeyPIO is held in TEE-protected secure storage. The App running in the

normal world first requests the Protected I/O TA to generate a key pair for the

App Server using the GENERATE KEY PAIR FOR SERVER API call (Figure 3.2). The

App next fetches the attestation challenge from the App Server and then uses the

challenge received to call GET ATTESTATION FOR SERVER for obtaining an attes-

tation for AppPubKeyPIO from the TA. Since the TA stored the Server’s Common

Name during key generation, it knows which key to attest. On obtaining the attes-

30

tation, the App sends it to the App Server. The App Server verifies the certificate

chain and if found valid, extracts AppPubKeyPIO from it and associates it with

its current session with the App. Subsequently, in this session, all Protected I/O

related data exchanged between PIO TA and the Server needs to be signed by the

sender using its private key. When the session expires due to inactivity or other

reasons, in a new session, key attestation needs to be repeated. With the public

key AppPubKeyPIO enrolled, the Server can start receiving confidential input from

the user. Next, the App requests an input_form from the Server. Depending

on requirements, the Server sets the is_confidential field in the form to true

or false. On receiving the form, the App checks the value of is_confidential

and either calls GET SIGNED INPUT FOR SERVER for non-confidential input or

GET SECRET INPUT FOR SERVER for confidential input. A compromised normal

world might call GET SIGNED INPUT FOR SERVER even if is_confidential is set

to true, to try and obtain the User’s confidential input in plaintext. Therefore,

the PIO TA needs to validate the value of is_confidential. The filled_form

received from PIO TA is sent to the Server. If required, the Server can respond

with a signed message acknowledging the receipt of the filled_form which the

App can show to the user by calling DISPLAY MESSAGE FROM SERVER. The nonce

included in the input_form is used for prevention of replay attacks. A compro-

mised normal world can make copies of signed messages from the PIO TA and

try to resend them without the User’s consent. For example, a login request with

confidential credentials may be recorded and replayed. The Server remembers the

nonce included in input_form and if the filled_form does not contain the same

nonce, it is rejected.

3.3 Secure Payments

Section 3.2 described how any app can make use of the Protected I/O facility

to receive authenticated and confidential inputs from a user. This section shows

how digital payments can be made more secure by leveraging our Protected I/O

design. In our design, three Apps and their corresponding App Servers are involved

in securing digital payments.

• WalletApp: A digital wallet app that allows a user to load digital cash

31

in it using Net Banking, Card payments, etc. and use this cash to pay

various Merchants or other users of the app. WalletApp communicates with

WalletServer. Paytm is an example of a digital wallet app.

• BankApp: An app published by the wallet user’s bank. It is required for

authorizing Net Banking and Card transactions. BankApp communicates

with BankServer.

• KYCApp: An app published by an organization in charge of issuing unique

IDs that are allowed to be used for KYC (Know Your Customer) process

in the jurisdiction the user resides in. The KYCApp communicates with

KYCServer. For example, in India, Aadhaar numbers issued by Unique

Identification Authority of India (UIDAI) [72] can be used for KYC. The

mAadhaar app [78], if modified to conform to our design of Protected I/O,

can fulfill the role of KYCApp.

The following subsections describe how these three Apps work together to

secure digital payments.

3.3.1 KYC Process

In most jurisdictions across the world, digital payment service providers are re-

quired to comply with regulations mandating a KYC (Know Your Customer) pro-

cess for their users. In India, the Reserve Bank of India has the authority to issue

rules for KYC [55]. The European Union, under its Single Euro Payments Area

[59] initiative, issued the Payment Services Directive [53] for governing payment

service providers. Even when not required by regulations, it can be very fruitful

for a payment service provider to conduct a KYC process for associating a real

identity with each of its user accounts. This association of an identity with a

user account can be used to let users recover access to their accounts after they

have lost access due to forgotten credentials, stolen devices, etc. Currently, a very

common way of ensuring this association is to have the user enter an OTP (One

Time Password) sent via SMS to a phone number registered at the time of issu-

ing the unique ID (e.g. Aadhaar number in India) allowed for KYC. The phone

number acts as a proxy for the unique ID and submission of the OTP proves that

32

the user owns the phone number. But SMS is accessible to the normal world and

therefore to an attacker who controls the normal world. So a KYC process that

relies on SMS-delivered OTP is not secure against a compromised normal world.

An attacker can impersonate the owner of the phone number by stealing OTPs.

In our design, the Protected I/O API is used for a more secure delivery of OTPs.

To enable this secure delivery of OTPs the user first needs to enroll a public key

PubKeyID. The entities involved in the process are:

• Protected I/O Trusted App (PIO TA)

• KYCApp mentioned earlier

• An Enrolment Device (EDev) at an Enrolment Centre run by the organiza-

tion that issues unique IDs to users (e.g. UIDAI)

• The KYCServer mentioned earlier, which can communicate with KYCApp

as well as EDev

The process of registration is as follows (Figure 3.3). The User visits the

nearest Enrolment Centre with the ID document issued to him and his smart-

phone which has the KYCApp installed in it. The User enters his unique ID

number in EDev. EDev prompts User to present biometrics such as finger-

prints, iris, etc. that were enrolled at the time of issuing the unique ID. The

User presents required biometrics to EDev. The ID number along with the

captured biometrics are sent to KYCServer for verification. KYCServer veri-

fies the ID number and biometrics and sends the result to EDev. If verifica-

tion is successful, EDev prompts user to enroll his public key. Using the KY-

CApp, User initiates generation of key pair (PubKeyID, PrivKeyID). KYCApp

uses the API method GENERATE NEW KEY PAIR FOR SERVER to request the cre-

ation of the key pair as described in Section 3.2.4. PIO TA generates key pair

(PubKeyID, PrivKeyID) and KYCApp receives PubKeyID as response. KYCApp

next sends a request for displaying PubKeyID to PIO TA using the API method

DISPLAY PUBLIC KEY FOR SERVER. After obtaining User’s confirmation PIO TA

securely displays PubKeyID as a JAB Code [36] and enables the security indicator

33

LED. User verifies that the security indicator LED is on and presents his smart-

phone to EDev for scanning of PubKeyID off the screen. EDev captures PubKeyID

off the screen, validates it according to expected elliptic curve and number of bits,

and sends it to KYCServer. If, unknown to the User, the normal world is compro-

mised, it may attempt to abort the DISPLAY PUBLIC KEY FOR SERVER call using

the ABORT call and display a different public key on the screen just before the

scanning happens and the User might fail to notice the change. To prevent this

attack, we have disallowed aborting of public key display in our design. KYCServer

stores PubKeyID in its database with the User’s unique ID, generates an OTP and

sends it to EDev. EDev prompts user to fetch OTP from the server and enter

it. User initiates request for OTP using KYCApp. KYCApp sends User’s unique

ID to KYCServer. KYCServer sends the OTP generated previously, encrypted

with PubKeyID as response to KYCApp. KYCApp asks PIO TA to display the

decrypted OTP to the User using the DISPLAY SECRET MESSAGE FROM SERVER

method. PIO TA displays the decrypted OTP to the User. User enters OTP

in EDev. EDev checks if the entered OTP matches OTP received from KYC-

Server and sends the result to KYCServer. If the OTPs match, it is established

that the User possesses PrivKeyID corresponding to PubKeyID because without

it the decryption of the OTP would have been impossible. KYCServer relies on

the User to ensure that only a public key whose corresponding private key is se-

curely stored is enrolled, and therefore KYCApp does not request attestation of

PubKeyID. The User ensures this by checking the security indicator LED before

letting EDev scan the public key. KYCServer next generates a deregistration code

DeRegCodeID, saves it in its database with the User’s unique ID and sends it to

EDev. EDev informs user that his public key is registered and generates a printout

with DeRegCodeID on it.

The User is expected to keep DeRegCodeID safe. If and when the User’s smart-

phone is stolen, DeRegCodeID can be used to authorize deregistration of the reg-

istered public key PubKeyID to prevent abuse. The organization handling the

registration of public keys can deploy a website and/or an IVRS (Interactive Voice

Response System) to facilitate deregistration. For registering a new public key,

the User needs to revisit an Enrolment centre.

Once PubKeyID is enrolled with the KYCServer, any service provider that needs

34

to verify the identity of the User can request the User for his unique ID and then

use the ID to request KYCServer to securely deliver an OTP generated by the

provider to the User. After that, using its app installed on the User’s smartphone,

the service provider can request User for that OTP. Protected I/O can be used to

ensure that an attacker is unable to change the ID entered by the User and also

unable to steal the OTP.

3.3.2 Account Creation and Sign In

After installing WalletApp on his smartphone, the user needs to create an account

with the payment service provider. Figure 3.4 shows the steps in the account

creation process. When the app is run for the very first time, it requests generation

of a key pair (WalletAppPubKey, WalletAppPrivKey) for WalletServer and enrolls

it with the server as described in Section 3.2.4. After the public key is enrolled,

WalletApp can request WalletServer for an input_form. For creation of a new

account, the input_form needs at least three fields for username, password and

the unique ID that will be used for the KYC process. The is_confidential

boolean in input_form needs to be true because the password is supposed to be

confidential. After the User fills and submits the form securely displayed by PIO

TA, a filled_form that is encrypted and signed as described in Section 3.2.3,

is sent to WalletServer. WalletServer validates the User’s input (e.g. checking

if the username is already taken). If validation fails, a signed error message is

returned to WalletApp which can use the DISPLAY MESSAGE FROM SERVER call

to show it to the user. If validation succeeds, WalletServer sends an input_form

in the response for getting an OTP from the user. This OTP is delivered to

the user’s smartphone with the help of KYCServer as described in Section 3.3.1.

After receiving the correct OTP, WalletServer creates a new account for the user

and associates the public key WalletAppPubKey & the verified identity with this

account. WalletAppPrivKey (and by extension the smartphone in which it is

securely stored) acts as a second factor (the ”something you have” factor) for

authentication. After account creation, whenever the user needs to sign into their

account, WalletApp requests an input_form from WalletServer to be sent to PIO

TA. When the user tries to sign in to the account from another device, then

WalletServer can directly send an OTP to the device with WalletAppPrivKey

35

U
ser

ED
ev

KYC
App

PIO
 TA

KYC
Server

U
nique ID

Biom
etrics

U
nique ID

 + Biom
etrics

M
atch R

esult
Prom

pt for PubKeyID
Initiate R

egistration

G
EN

ER
ATE_N

EW
_KEY_PAIR

_FO
R

_SER
VER

D
isplay PubKeyID

Scan PubKeyID
PubKeyID

O
TP

Prom
pt for O

TP
Initiate O

TP fetch

D
ISPLAY_PU

BLIC
_KEY_FO

R
_SER

VER

U
nique ID

O
TP Encrypted w

ith PubKeyID

D
ISPLAY_SEC

R
ET_M

ESSAG
E_FR

O
M

_SER
VER

D
isplay decrypted O

TP

Enter O
TP

O
TP M

atch R
esult

D
eR

egC
odeID

Print D
eR

egC
odeID

Figure 3.3: Registration of PubKeyID

for authentication. If this other device happens to be a smartphone capable of

Protected I/O, then WalletApp on this device can enroll a new public key which

can be authenticated by sending an OTP to the previous smartphone. Depending

on the policies of the payment service provider, on the enrollment of the new public

key, the older one may or may not be deregistered.

3.3.3 Adding Money to Wallet

Before the user can add money to his digital wallet, he needs to use BankApp to

generate a key pair (BankPubKey, BankPrivKey) and enroll BankPubKey with the

BankServer. The process of enrolling is exactly like the one described in Section

3.3.2 for WalletAppPubKey. After BankPubKey is enrolled, any withdrawal of

money from the User’s bank account can be authorized with the help of BankApp.

The two most common ways of adding money to digital wallets are Net Banking

and CNP (Card Not Present) transactions using credit/debit cards.

In case of Net Banking, for authorizing transactions, instead of showing the

bank’s web page in an embedded browser, as is currently done by wallet apps, the

WalletApp can request the BankServer (via WalletServer) for a signed message

describing the transaction and then use the GET USER CONFIRM FOR SERVER call

to get the user to authorize the transaction. If BankServer determines that a PIN

needs to be entered for authorizing the transaction, then it sends an input_form for

the PIN with the transaction details in the description field and WalletApp calls

GET SECRET INPUT FOR SERVER to fetch the PIN from the User. WalletApp needs

to get the User’s username for their bank account to request signed transaction

details or signed input_form from the BankServer, otherwise BankServer would

not know which public key to use for validating the filled_form or the signed

user confirmation received as response from WalletApp. This process has been

shown in Figure 3.5.

For authorization of CNP transactions, EMVCo [17] released version 2.0 of the

3-D Secure Protocol in 2016 [1, 2, 4]. Neither 3-D Secure 1.0, nor the newer 3-D

Secure 2.0 deal with the threat model that our design is trying to deal with. The

protocol specification does not take into consideration the possibility of the user’s

device being under the control of an attacker. It was not written to leverage a

TEE for transaction security. To authenticate CNP transactions using Protected

37

U
ser

KYC
App

KYC
Server

W
alletServer

PIO
 TA

W
alletApp

O
pen app for the first tim

e

G
EN

ER
ATE_KEY_PAIR

_FO
R

_SER
VER

W
alletAppPubKey

R
equest Attestation C

hallenge

Attestation C
hallenge

Attestation C
ertificate

Attestation C
ertificate verification result

R
equest input form

 for user registration

Input form
 signed w

ith W
alletServerPrivKey

G
ET_ATTESTATIO

N
_FO

R
_SER

VER

Attestation C
ertificate

G
ET_SEC

R
ET_IN

PU
T_FO

R
_SER

VER

Filled input form
 signed w

ith W
alletAppPrivKey

Filled input form
 signed w

ith W
alletAppPrivKey

U
nique ID

 N
um

ber + O
TP

Show
 form

 to the U
ser using Trusted U

I

Enter usernam
e, passw

ord and unique ID
 num

ber

O
TP Encrypted w

ith PubKeyID

D
ISPLAY_SEC

R
ET_M

ESSAG
E_FR

O
M

_SER
VER

N
otify U

ser

Ask to see O
TP

Show
 O

TP to U
ser using Trusted U

I

Ask for O
TP entry screen

Signed input form
 for entering O

TP
Ask U

ser to get O
TP from

 KYC
App

G
ET_SEC

R
ET_IN

PU
T_FO

R
_SER

VER

Show
 input form

 to U
ser using Trusted U

I

Enter O
TP

Filled form
 signed w

ith W
alletAppPrivKey

Filled form
 signed w

ith W
alletAppPrivKey

Figure 3.4: User Account Creation

I/O in the same way as Net Banking transactions, significant changes will need to

be made to the 3-D Secure specification. Thankfully, 3-D Secure 2.0 allows Out-

of-Band authentication for transactions. Therefore Protected I/O can be used to

authenticate CNP transactions without making any changes to the 3-D Secure pro-

tocol. According to the terminology used in the specification, WalletApp is a 3DS

Requestor App, WalletServer is a 3DS Server and BankServer is an ACS (Access

Control Server). According to the protocol specification, to initiate a transaction,

the 3DS Server needs to create an Authentication Request (AReq) message using

information provided by the 3DS Requestor App and a 3DS SDK embedded within

the App. The PAN (Permanent Account Number) of the user’s credit/debit card

is the most sensitive piece of information that 3DS Requestor App sends to 3DS

Server. Since the specification does not specify the exact communication protocol

between 3DS Requestor App and 3DS Server, we can use Protected I/O to securely

send the PAN to the 3DS Server, thus preventing an attacker from stealing it. The

ACS, instead of participating in a Elliptic-Curve Diffie Hellman key exchange with

the 3DS SDK for in-band authentication, uses OOB authentication in which key

pair (BankPubKey, BankPrivKey) and BankApp are used for Protected I/O. Just

like in the case of Net Banking, either a signed message or an input_form is sent

to BankApp by BankServer.

3.3.4 Payment Transaction

Once some money is loaded into the wallet, the User can make payments to mer-

chants and other users of the same wallet provider. Usernames, phone numbers

or QR Codes can be used for identifying the recipients when making a payment.

For securing payments, it is necessary to prevent an attacker from modifying the

recipient and/or the amount in the transaction. This is achieved with the use of

GET USER CONFIRM FOR SERVER call. Entry of the recipient’s identifier and the

transaction amount can be handled by the untrusted WalletApp. The trusted

WalletServer sends a signed message containing these details as a response. This

signed message is used in the call to GET USER CONFIRM FOR SERVER. If a compro-

mised WalletApp makes changes to the transaction details before sending them to

WalletServer, these changes will be caught by the User when the signed message

is securely displayed by PIO TA and the User can refrain from giving confirmation

39

U
ser

BankServer
W

alletServer
PIO

 TA
W

alletAppAsk user to choose from
 list of banks

C
hoice of bank

Ask for usernam
e for the bank

U
sernam

e

bank nam
e, usernam

e, am
ount

Ask for am
ount of m

oney

Am
ount

R
equest signed m

essage or input form

signed m
essage or input form

G
ET_U

SER
_C

O
N

FIR
M

_FO
R

_SER
VER

or G
ET_SEC

R
ET_IN

PU
T_FO

R
_SER

VER
D

isplay form
 or m

essage

G
ive confirm

ation or enter credential

signed m
essage or input form

Signed or encrypted m
essage

Signed or encrypted m
essage

signed or encrypted m
essage

confirm
ation about successful authentication

confirm
ation

confirm
ation

Figure 3.5: Adding Money to Wallet

User

WalletServer PIO TAWalletApp

Ask to enter the recipient's identifier

choice of recipient

ask for amount

amount

recipient's identifier and amount

GET_USER_CONFIRM_FOR_SERVER

or GET_SECRET_INPUT_FOR_SERVER Display form or message

Give confirmation or enter credential

signed message or input form

Signed or encrypted message

Signed or encrypted message

confirmation

confirmation

Figure 3.6: Transfering funds to another wallet user

for it. If the transaction requires authorization with a PIN, WalletServer can send

a signed input_form with the transaction details in the description field, and

GET SECRET INPUT FOR SERVER can be used to securely obtain the PIN from the

User. On receiving the confirmation or the PIN from WalletApp, WalletServer

validates it and if found valid, it executes the transaction. This process has been

shown in Figure 3.6. If the User cancels the transaction, or if the PIN is incorrect

or if the User has insufficient balance, WalletServer terminates the transaction.

WalletServer sends a response to WalletApp about whether the transaction was

executed or terminated. A compromised WalletApp can withhold information

41

about successful execution of the transaction from the User to trick them into

unknowingly repeating the transaction. WalletServer can protect the User from

being tricked like this by simply adding the User’s current balance in the signed

message mentioned above. When the User notices a reduction in their balance,

they can infer that the previous transaction was executed successfully even though

WalletApp did not inform them about it. If due to network issues, any message

exchanged between the WalletApp and WalletServer is lost and the transaction

is not completed, then, after an implementation defined timeout, WalletApp can

send the transaction details again. When WalletServer receives details for a new

transaction while waiting for User’s confirmation/PIN for a previously initiated

transaction, it can infer that some message was lost and it sends a new signed

message or a new signed input_form with a new nonce. In other words, Wallet-

Server supports at most one pending transaction at any given time.

3.3.5 Password Reset and Device Theft

If the user forgets his login password or transaction PIN and needs to reset it, then

WalletServer reverifies the user’s identity by sending an OTP via KYCServer

before allowing him to set a new password/PIN. Unfortunately an application

cannot differentiate between the actual owner of a smartphone and someone who

has stolen the owner’s smartphone and attempting to reset the password to be able

to execute transactions. A user’s primary protection against device theft is on-

device authentication using PIN and/or biometrics such as face scans, iris scans &

fingerprints. If the thief somehow manages to unlock the device, then transaction

PINs can act as a secondary protection. The payment service provider has to

require the user to enter a PIN for transfering a large sum of money, which will

limit the user’s loss in the event of device theft. If the user deregisters his PubKeyID

using DeRegCodeID (Section 3.3.1) soon after theft, then the thief will fail to reset

transaction PIN because KYCServer will be unable to send an encrypted OTP

after deregistration of the required public key.

3.4 Security provided by Protected I/O

The Protected I/O API proposed by us can fully protect a user from fraudu-

lent transactions even if the normal world software is already compromised before

42

the user installs the digital wallet app. Protected I/O helps in establishing a

secure authenticated channel of communication between the user and the wal-

let provider’s server. This is done by first associating a public key PubKeyID

with the user’s identity as described in Section 3.3.1. The process involves user’s

physical presence along with the device that securely stores the PrivKeyID. The

DISPLAY PUBLIC KEY FOR SERVER API ensures that the attacker cannot fool the

user into enrolling a public key for which the corresponding private key is owned

by the attacker. Once PubKeyID is enrolled, KYCServer has the ability to deliver

secret information to the user. This ability can then be used by a wallet service

provider (or other service providers) to securely deliver secret OTPs to the user,

which was not possible with SMS alone. Securely delivered OTPs are required for

reliably associating WalletAppPubKey with the user’s identity. Once that is done,

any message signed with WalletAppPrivKey can be assumed to have the user’s

concurrence. Enrolment of WalletAppPubKey and signing of messages using Wal-

letAppPrivKey was already possible with Android’s hardware-backed Keystore.

Protected Confirmation, which was introduced with Android Pie shortly after we

started our work on secure payments, helps in ensuring that messages are signed

only after the user has seen them and given their consent. But Protected Confirma-

tion can only associate a public key with a device, it cannot verify whether the right

person owns the device. That is where the DISPLAY PUBLIC KEY FOR SERVER

and the DISPLAY SECRET MESSAGE FROM SERVER APIs come in. Once the wal-

let provider is assured that WalletAppPrivKey resides in the correct user’s

device, WalletAppPubKey becomes a reliable proxy for the user. The

GET USER CONFIRM FOR SERVER serves the same function as Android’s Protected

Confirmation except that unlike in case of Protected Confirmation, the message

seen by the user is verified by the TEE using the server’s public key stored in

the TEE. The DISPLAY MESSAGE FROM SERVER method is meant to ensure that

an attacker is unable to use the compromised normal world app to give incorrect

instructions to the user about using the wallet service properly.

Like any security solution, the security provided by our design does not exist in

a vacuum. The design assumes that the people in charge of enrolment of PubKeyID

at the Enrolment Centre are trustworthy. The security indicator used in our design

is useful only if the user pays attention to it.

43

3.5 Portability

Although our work targets Android OS, the design we have proposed is not tightly

coupled with it. On the normal world side it requires a background system service

and a kernel that can communicate with a TEE. Within the TEE it requires an

ability to boot the device with signed binaries, to store keys in a secure location,

to access a dedicated partition in the RAM and to wrest control of the touchscreen

from an untrusted kernel. None of these things are unique to Android or to ARM

TrustZone. While the details on internals of iOS are scant compared to Android,

it is known that modern iOS devices have a dedicated subsystem on the SoC for

trusted boot and cryptography called Secure Enclave in the official documentation

[67]. The official documents do not mention any UI capability for the Secure

Enclave which makes it unusable for our design. But missing hardware capabilities

can be introduced in newer device models. iOS devices also use ARM processors

just like Android and even if they didn’t, TrustZone is not the only TEE system in

existence. Even for implementing our design on Android, the hardware will need

some changes. Android devices don’t have a TEE-protected LED to serve as a

security indicator yet. Our work makes a good case for introducing this change in

new smartphones.

44

Chapter 4

Implementation and Evaluation

Chapter 3 described a platform-agnostic design for a secure digital payments sys-

tem. The design is not tied to any specific TEE implementation. Any TEE

implementation that provides a remotely verifiable root of trust and can give the

trusted OS exclusive control over a display device, an input device & a security

indicator, can be used to secure digital payments using our design. We have cho-

sen to implement the design using ARM TrustZone [88] which is the most widely

deployed TEE implementation because ARM processors dominate the smartphone

market. For the untrusted OS, we have chosen Android, which is used in more

than 80% smartphones. For the trusted OS we have chosen OP-TEE [49] as it is

open source and has a large community of developers supporting it.

For our PoC implementation we have used the HiKey 960 development board

[11] which has the Kirin 960 SoC from HiSilicon. Kirin 960 is an ARM-based

octa-core 64-bit SoC. For the software stack we have made use of existing work

done by Linaro’s Security Working Group [63, 66] to integrate Android Open

Source Project (AOSP) [9, 10] and OP-TEE [49] for HiKey boards. AOSP is

the official upstream code collection for Android maintained by Google. Linaro

SWG maintains a repository named optee android manifest on Github [65] that

helps compile OP-TEE OS and ARM Trusted Firmware along with Android OS.

We have used version 3.4.2 of this repository which combines the following major

components

• Android Pie (9) revision r30

45

Protected I/O
Service

Linux

WalletApp
BankApp

KYCApp

BankServer
WalletServer

KYCServer

OP-TEE OS

Keymaster
TA

Secure World AIDLHIDL

Protected I/O
Daemon

TUI TA

PC

OP-TEE
Message
Protocol

UART Connection

Figure 4.1: Protected I/O implementation

• Android Kernel 4.14

• OP-TEE OS 3.4.0

• ARM Trusted Firmware 2.0

There is no publicly available graphics driver for the secure world on HiKey 960

board and only the hardware vendor is in a position to develop such a driver from

scratch. So, our PoC implementation does not have a touchscreen-based trusted

UI. We have tried to approximate a Trusted UI over a UART connection with

a PC. This Trusted UI is text based and therefore very primitive compared to a

graphical UI that could have been implemented if we had access to a graphics driver

for the secure world. Figure 4.2 shows a screenshot of the Trusted UI displaying an

input form. Because a UART connection is very slow compared to an HDMI or a

MIPI-DSI connection, our Trusted UI implementation is not very performant. The

Kirin 960 SoC does have a TZPC (TrustZone Protection Controller) but HiSilicon

has not published the documentation for it. TZPC can be used to give the secure

world exclusive control over the UART interface and protect it from a potentially

compromised normal world. But due to unavailability of documentation, we have

not been able to make use of the TZPC on the HiKey 960. Our attempts to reach

46

Figure 4.2: Text based Trusted UI

out to HiSilicon via relevant online forums did not receive any response. As a

result, in our implementation, the secure world cannot prevent the normal world

from accessing the UART interface. Hikey 960 also lacks the ability to protect

regions of the DRAM from the normal world.

4.1 Trusted Application

Instead of developing the Protected I/O TA as a separate app, we have chosen to

modify the Keymaster TA developed by Linaro SWG [64] as part of their imple-

mentation of version 3.0 of the Keymaster HAL specification [20]. The Keymaster

TA is the secure world component for Android’s hardware-backed Keystore system

47

discussed in Section 2.6.2. The Keymaster TA developed by Linaro SWG recog-

nizes 15 commands from the normal world for implementing Keystore system. We

introduced 12 new commands corresponding to the 12 API methods described in

Section 3.2.2. All these commands expect exactly one CBOR-encoded map con-

taining the arguments and return a CBOR-encoded map containing the output.

The output map always has at least one key, error code, which indicates the type

of error (if any) that happened during execution of the command. For CBOR

encoding/decoding we have integrated a lightweight open-source CBOR library

called NanoCBOR [46] into the Keymaster TA. For cryptographic operations and

X.509 certificate handling we have used mbedTLS 2.6.1 [79] and LibTomCrypt 1.17

[42] both of which were already integrated with version 3.4.0 of OP-TEE OS. As

it is not possible to display a JAB code on our text-based trusted UI, we have not

implemented DISPLAY PUBLIC KEY FOR SERVER API method. Also, since there

is no fingerprint reader on the Hikey960, we have not implemented biometric au-

thentication for the keys generated for Protected I/O. The Gatekeeper TA (also

developed by Linaro SWG) has been modified to communicate the current time

to the Keymaster TA whenever the user successfully authenticates using a PIN /

Password. This helps in deploying some protection against device theft. If it has

been too long since the last time the user entered the correct password / PIN, the

Keymaster TA can refuse to sign/encrypt Protected I/O messages and require the

user to reauthenticate. For creating attestation certificates we have made use of

the attestation functionality already implemented in SWG’s Keymaster TA. For

validating server certificates, we have hardcoded a single root CA certificate in

the Keymaster TA. Since user input will be available from the PC over UART,

we did not have to implement on-screen keyboard in the TA. But a commercial

implementation will need to display an on-screen keyboard in the trusted UI.

4.2 TEE Kernel Driver

When the secure world needs access to the touchscreen, it should inform the normal

world so that the normal world can refrain from trying to access it and then inform

the normal world again after it is done using it. In our implementation, a PC

connected to Hikey960 via UART acts as a crude substitute for a touchscreen. On

the Hikey960, the UART channel is used for the serial console by the Linux kernel.

48

The secure world also uses the same UART channel for all its log output. We had

to make some minor modifications to OP-TEE’s kernel driver to prevent the output

of the serial console from the Linux kernel from ruining the display of trusted UI

from the secure world. Two commands were added to the RPC interface between

OP-TEE’s kernel driver and the OP-TEE OS running in the secure world. These

two commands use Linux kernel’s console_lock and console_unlock methods

to obtain and release mutex locks on the serial console. Some changes were also

made to the logging mechanism in OP-TEE OS. Since the same UART channel is

to be used for logging and for the trusted UI, locking was introduced in the logging

system of OP-TEE OS to allow synchronization with the trusted UI system. When

the secure world needs to display something to the user or get some input from

the user using the trusted UI, it uses RPC to obtain a lock on the serial console

of Linux kernel to prevent any further output from it and then the trusted UI

implementation also obtains a lock on OP-TEE’s own serial console to prevent

OP-TEE from logging anything while the trusted UI is being displayed to the

user. In a commercial implementation of our design, similar approach will be

required to share the same touchscreen between the two worlds.

4.3 HIDL Interface

HIDL (HAL Interface Description Language) [34] was created by Google to facili-

tate communication between the vendor-independent and vendor-dependent parts

of Android platform. It was introduced in Android Oreo as part of Project Treble.

We have added a new HIDL interface for Protected I/O and we have also imple-

mented this interface. The following listing shows the methods and types in our

HIDL interface.

Listing 4.1: HIDL interface for Protected I/O

import android.hardware.keymaster@3.0::KeyParameter;

struct ServerInfo {

string url;

vec<vec<uint8_t>> certChain;

}

49

enum ProtectedIOErrorCode : uint8_t {

SUCCESS = 1,

ABORTED = 2,

SYSTEM_ERROR = 3,

INVALID_SIGNATURE = 4,

UNSUPPORTED_KEY_SIZE = 5,

UNKNOWN_ELLIPTIC_CURVE = 6,

URL_FORMAT_INVALID = 7,

KEY_PAIR_NOT_GENERATED = 8,

INVALID_SERVER_CERTIFICATE = 9,

USER_CANCELED = 10,

MESSAGE_TOO_LONG = 11

}

interface IProtectedIO {

generateKeyPairForServer(ServerInfo serverInfo,

vec<KeyParameter> keyParams)

generates (ProtectedIOErrorCode error, vec<uint8_t> pubKey)

getPublicKeyForServer(ServerInfo serverInfo)

generates (ProtectedIOErrorCode error, vec<uint8_t> pubKey)

changePublicKeyForServer(ServerInfo serverInfo)

generates (ProtectedIOErrorCode error)

getAttestationForServer(string url, vec<uint8_t> challenge)

generates (ProtectedIOErrorCode error,

vec<vec<uint8_t>> certChain)

getSignedInputForServer(string url, vec<uint8_t> fromServer)

generates (ProtectedIOErrorCode error, vec<uint8_t> forServer)

getSecretInputForServer(string url, vec<uint8_t> fromServer)

generates (ProtectedIOErrorCode error, vec<uint8_t> forServer)

displayMessageFromServer(string url, vec<uint8_t> fromServer)

generates (ProtectedIOErrorCode error, vec<uint8_t> forServer)

50

displaySecretMessageFromServer(string url, vec<uint8_t> fromServer)

generates (ProtectedIOErrorCode error, vec<uint8_t> forServer)

getUserConfirmForServer(string url, vec<uint8_t> fromServer)

generates (ProtectedIOErrorCode error, vec<uint8_t> forServer)

displayPublicKeyForServer(string url)

generates (ProtectedIOErrorCode error)

abort(vec<uint8_t> input) generates (ProtectedIOErrorCode error)

}

4.4 Android System Service

A new System Service (privileged background process), ProtectedIOService, has

been added to the vendor-independent part of Android platform. This System

Service allows applications to communicate with the Keymaster TA via the HIDL

interface to make use of Protected I/O. Applications communicate with the System

Service using Android’s Binder IPC mechanism [25]. To enable this communication

we introduced an AIDL (Android Interface Description Language) [6] interface and

implemented it in C++. The following listing shows the AIDL interface.

Listing 4.2: AIDL interface for Protected I/O

package android.security;

interface IProtectedIOService {

int generateKeyPairForServer(

String url, in List<byte[]> certChain,

String curveName, boolean biometricAuthReqd,

out byte[] pubKey);

int getPublicKeyForServer(String url, out byte[] pubKey);

int changePublicKeyForServer(String url, in List<byte[]> certChain);

int getAttestationForServer(String url, in byte[] challenge,

out List<byte[]> certChain);

51

int getSignedInputForServer(String url, in byte[] fromServer,

out byte[] forServer);

int getSecretInputForServer(String url, in byte[] fromServer,

out byte[] forServer);

int displayMessageFromServer(String url, in byte[] fromServer,

out byte[] forServer);

int displaySecretMessageFromServer(String url, in byte[] fromServer,

out byte[] forServer);

int getUserConfirmForServer(String url, in byte[] fromServer,

out byte[] forServer);

int displayPublicKeyForServer(String url);

int abort();

}

4.5 Android Apps

We have implemented three Android apps.

• WalletApp

• BankApp

• KYCApp

The roles of these three apps have been described in Section 3.3. The three apps

make use of the Protected I/O functionality via the new System Service created

by us. AOSP does not provide a push message service out of the box. In Android

smartphones, a push message service is available as part of Google Mobile Services

[30] which is a collection of proprietary apps and services created by Google. GMS

is not available on developer hardware such as Hikey960. Due to lack of a push

message service, we have not been able to implement push notifications in the

three apps. Push notifications are required for delivering messages from the server

52

e.g. the OTP from the KYCServer (see Section 3.3.2). Since no push message

service is available, in our implementation, the apps request messages from the

server when required. Each of the three apps has a hardcoded X.509 certificate

for the corresponding server. These certificates are required to initiate generation

of Protected I/O public keys for the servers. These certificates are signed using a

root CA which is hardcoded into the Keymaster TA.

4.6 Application Servers

Corresponding to the three apps mentioned in the previous section, we have im-

plemented three server programs.

• WalletServer

• BankServer

• KYCServer

The server programs are written in Python and served using the Apache web server.

Since we did not implement the DISPLAY PUBLIC KEY FOR SERVER API method,

the enrolment of public key with the KYCServer can’t happen as described in

Section 3.3.1. For the purpose of demonstration, the KYCServer is programmed

to accept any public key received from the KYCApp without performing any

verification. The BankServer only supports NetBanking transactions. We haven’t

implemented EMV CNP (Card Not Present) functionality.

The source code of our implementation will be made available on Github [51]

along with instructions to build and use it.

4.7 Performance

We have measured the time spent in the secure world for key pair generation,

public key fetching, key pair deletion and key attestation. The measurements

were taken over 1000 runs each of the 4 operations. A small normal world client

program with a hardcoded server certificate for a P-384 elliptic curve was used for

this purpose.

53

OPERATION Min (µs) Max (µs) Mean (µs)

GENERATE KEY PAIR FOR SERVER 534139 841592 613053

GET PUBLIC KEY FOR SERVER 1843.75 13454.2 4813.47

DELETE KEY PAIR FOR SERVER 9293.23 112708 28202.4

GET ATTESTATION FOR SERVER 97651 223157 120597

For a thorough evaluation of the security of our design, we need hardware that

can protect a dedicated part of the memory from the untrusted normal world

software instead of relying on the normal world kernel to voluntarily keep off the

memory it is not supposed to access. We need the hardware to be able to take

exclusive control of the touchscreen. We also need the ability to program a public

key in secure storage to act as the root of trust for trusted boot to enable us to

boot binaries signed by us. Not only should the hardware be capable of all these

things, we also need the official documentation that describes how to use them.

Unfortunately, this information is usually protected by non-disclosure agreements

and only made available to a few organizations. As mentioned earlier, the Hikey960

board does have a TZPC. But the documentation for it is not public, presumably

because the same SoC is used in some commercially available Huawei phones and

tablets. On the right hardware, we can evaluate our design by booting a kernel

with known vulnerabilities and exploits and attempting to steal information from

the TEE.

54

Chapter 5

Related Work

5.1 Payment Security

Reaves et al. [118, 119] did two studies, one year apart, on the security of some

popular mobile banking applications. They used automated and manual analysis

for finding common vulnerabilities such as improper TLS certificate validation, use

of client side authentication, information exposure through logs, etc. In the first

study they found that several popular apps had glaring vulnerabilities. They re-

ported these vulnerabilities to the developers. Unfortunately, in the second study,

only a few of the reported vulnerabilities were found to be fixed. Castle et al.

[95] conducted a large-scale analysis of many Android apps that provide financial

services and interviewed seven developers from Africa and South America. They

have given a detailed threat model with users, agents and organization employees

as potential adversaries and a list of potential attacks that they can carry out on

a financial service. From their analysis of apps, they found that some vulnerabil-

ities can be fixed by simply dropping support for really old versions of Android.

From the interviews, they found that vulnerabilities are caused by incomplete

threat models (e.g. focusing on threats to the organization but ignoring threats

to the users), limited security education, budget constraints, restrictions imposed

by partner organizations (e.g. avoiding biometric authentication) and overuse of

code from Stack Overflow [69].

Rahaman et al. [117] have assessed the real-world enforcement of PCI Data

Security Standard. They created an e-commerce web application called BuggyCart

55

with PCI DSS related vulnerabilities and evaluated its standard compliance using

PCI scanners. They found that these scanners certified BuggyCart as compliant

despite presence of vulnerabilities. They also created their own scanner called PCI-

CheckerLite using which they scanned more than a thousand payments-card-taking

websites, more than 80% of which were found to be non-compliant. Mahmud et al.

[112] designed a tool called Cardpliance to check PCI DSS compliance of Android

apps that take credit card numbers from the users. The tool uses static program

analysis to identify potential PCI DSS violations. The authors found that more

than 98% of the 358 apps they analyzed with Cardpliance handled credit card

numbers correctly.

Murdoch et al. [114] have criticised the 3-D Secure Protocol (3DS) 1.0 that was

made available by VISA under the brand name Verified by VISA, by MasterCard

under the name SecureCode and by Discover under the name ProtectBuy. The 3DS

form in which customers enter card details and authentication credentials is made

available by merchants in an iframe on their websites. Since iframes do not have an

address bar of their own, customers have no way of verifying whether the details

they are entering are being sent to the issuing bank (or someone authorised by

them). This made customers vulnerable to phishing attacks. 3-D Secure Protocol

2.0 [2, 3, 4] is a major improvement over the 1.0. Corella et al. [98] found issues in

3DS 2.0. The fundamental issue is that the 3DS Server cannot verify whether the

3DS Requestor app is using an EMVCo-approved 3DS SDK, which is a requirement

in the protocol specification. In the current mobile app ecosystem, it is not possible

to verify the integrity of individual libraries loaded by apps. The app as a whole

is signed by developers and the signature is verified by mobile OS (Android and

iOS) during app installation. But even if the supplier of the 3DS SDK signs the

SDK library, the app store cannot verify whether this signed copy is embedded in

the 3DS Requestor app. Thus a malicious merchant can develop and publish a

3DS Requestor app that has a modified 3DS SDK embedded in it and use it to

steal sensitive information from cardholders.

Kumar et al. [104] have analysed the security of UPI 1.0. Because the protocol

details are not public, they had to reverse engineer several UPI payment apps (e.g.

BHIM). They found security holes in the protocol and showed potential attacks

that use an attacker controlled app on the victim’s device to discover the victim’s

56

bank accounts, which is sensitive private information, and in the worst case execute

transactions from the victim’s account. They were unable to reproduce the same

attacks on the updated UPI 2.0 protocol.

5.2 TEE-based Security

TZ-RKP [89] protects the normal world kernel using TrustZone. By instrumenting

the normal world kernel, TZ-RKP prevents it from performing certain critical tasks

such as page table updates. These tasks are performed by the secure world instead.

Because page table updates are made by the secure world, it is able to prevent the

double mapping of physical memory containing critical kernel data into user space

virtual memory. The secure world also prevents code injection into normal world

kernel by refusing to set the executable permission on any new page. TZ-RKP is

deployed in Samsung devices under the name Samsung Knox. SPROBES [100] is

very similar to TZ-RKP.

Brasser et al. [93] have shown how TrustZone can be leveraged to regulate the

behaviour of smart devices in restricted spaces such as examination halls, private

meetings, etc. Their system has a policy server that uses its read/write access to

the device memory to enforce the host’s policy and a vetting server which inspects

the policy to prevent malicious hosts from compromising the guest’s privacy and

security. TrustZone helps in establishing trust in the device’s policy enforcement

code. In Privaros [90], the remote attestation ability provided by a TrustZone-

based TEE is used to verify the integrity of a software stack running in the normal

world on delivery drones. The host of the airspace over which the drones need to

fly, can use remote attestation to verify the integrity of the software stack and be

assured that their privacy policy will be correctly enforced on the drone.

SeCloak [105] is a solution for reliable on-off control over smartphone peripher-

als such as camera, microphone, etc. even in the presence of a compromised normal

world kernel. It uses TrustZone to run a secure kernel which is responsible for se-

curely displaying the user’s peripheral control preferences received from a normal

world app and getting the user’s confirmation for enforcing those preferences. An

LED protected by secure kernel is used as security indicator to assure the user that

the display device is under the secure kernel’s control. As long as there is at least

one disabled peripheral, the secure world prevents a device reboot to ensure that

57

a compromised normal world kernel is unable to re-enable a disabled peripheral.

Liu et al. [110] proposed two software abstractions for exposing sensors present in

mobile devices to applications and cloud services - sensor attestation and sensor

sealing. Sensor attestation protects the integrity and authenticity of sensor read-

ings by attesting both the reading and the code that produced it. Sensor sealing

takes a secret and a policy as input and seals it in such a way that unsealing only

happens when the sensor reading conforms to the policy. The authors used Trust-

Zone to implement these two abstractions on ARM platform and Intel’s Trusted

eXecution Technology [35] for the x86 platform.

Several researchers have worked on the problem of establishing a trusted path

between a user device and an Internet service. TrustUI [106] achieves a very small

TCB by reusing the input, display and network drivers of the normal world instead

of having separate drivers in the secure world. The unmodified normal world

driver acts as a backend and it has a corresponding frontend in the secure world

that requests its services. Both parts communicate with each other using proxies

in both worlds that exchange data using shared memory. For secure display, the

frontend requests a framebuffer from the backend and on receiving it, uses TZASC

to configure that memory region to be accessible to secure world only. Using TZPC,

the secure world prevents the normal world from accessing the display controller.

This prevents a screen capture attack. But a compromised normal world can still

mount an overlay attack by passing a low priority framebuffer to the secure world

and itself writing to a higher priority framebuffer to affect what the user eventually

sees. To prevent this the authors have suggested the use of two multicolour LEDs

- one each for foreground and background colour - as security indicators. These

two LEDs will be exclusively controlled by the secure world. The user is expected

to match the colour of the LEDs with the foreground and background colour of

the display to assure himself that it is a secure display. The colour is randomized

to prevent a compromised normal world from fooling the user by matching the

colours used by the secure world. Because all touch inputs are forwarded to the

secure world by the normal world, to prevent the normal world from recording

keystrokes, the on screen keyboard layout is changed with every key press. As

opposed to TrustUI, in our design we assume the existence of dedicated display

and touch drivers in the secure world. Thus we need only one LED of a single

58

colour and there is no keyboard randomization. The cost for this difference is a

larger TCB. In VeriUI [109], a stripped-down browser called SecureWebkit is used

for secure I/O. No security indicator is used in that design.

TruZ-Droid [129] is very closely related to our work. The design allows any

app to leverage TrustZone for protecting the user’s secret input & confirmation

and to send the secrets to a user-authorized server. To protect SSL connections

from being sabotaged by a malicious normal world, the authors have proposed

splitting SSL functionality such that all cryptographic operations (e.g. X.509

certificate validation, encryption, etc.) are done in the secure world. The authors

have reused the HTTP stack and TCP/IP stack of the normal world with some

minor changes to allow carrying of encrypted data from the secure world. They

have used an LED controlled by secure world as a security indicator. Unlike

TruZ-Droid, in our design, there is no need of a persistent SSL connection for the

secure world to send data to the server. TruZ-View [130] is another closely related

work. In TruZ-View, the authors propose reusing the UI stack of the normal world

instead of creating a completely independent UI stack for the secure world. In their

design the normal world first renders the whole UI of an app except for the parts

that either display sensitive information or take sensitive input from the user.

The rendered UI is handed over to the secure world in the form of a screenshot

along with co-ordinates of UI region(s) that will be used for confidential display,

confidential input or protected user confirmation. The secure world then overlays

protected UI elements on top the screenshot sent by the normal world and displays

the result to the user. Again, an LED controlled exclusively by the secure world

is used as a security indicator to the user. Any input entered by the user is stored

securely by the TEE and only a reference to it is returned to the normal world.

For sending confidential data to the server, the authors have made use of the

split SSL design of TruZ-Droid. Unlike TruZ-View, our design uses a completely

independent UI stack in the secure world which can only render a simple form

and a keyboard as opposed to the rich UI possible with TruZ-View. VButton

[107] proposes using signed images received from a trusted server to create the

UI in the secure world. A signed image from the server can be used to show a

confirmation dialog to the user and if the user confirms the action, the TEE can

send an attestation of the image to the normal world which can pass it on to

59

the server for verification. If the attested image matches the one sent earlier by

the server, then the server is assured that the user was shown correct information.

Unlike VButton, our design only needs signed text from the server and not images.

This means less work for the server but also means less control over the look and

feel of the secure world’s UI. SchrodinText [122] deals with only secure display

and not secure input. In SchrodinText, confidential text is encrypted by the app’s

backend server using a symmetric key established in a handshake with the secure

monitor during install/login time. The normal world sends the rasterized glyphs

for all the characters of the currently chosen font style and font size and layout

information to the secure world. The secure world decrypts the text received from

the backend server, chooses the correct glyphs from the set of glyphs received from

the normal world and places the glyphs in the correct position in the framebuffer

using the layout information received. A novel technique that the authors have

named multi-view page is used to prevent the potentially malicious normal world

OS from being able to access the confidential contents of the framebuffer. The

MMU and IOMMU on the device are programmed by the secure monitor to show

a protected view of the framebuffer (with all the confidential text) to the display

device and an unprotected view of the same framebuffer to the OS, the GPU and

other I/O devices on the system. Thus without using an additional framebuffer

secure world manages to prevent the normal world from accessing confidential

information. But this design requires significant changes to the normal world

rendering libraries and the OS kernel. Additionally, the compositing of glyphs by

the secure monitor increases the latency for rendering text.

Zheng et al. [131] proposed a secure mobile payments system which uses a

Mobile Trusted Module (MTM) [43] service and a payment service running in the

secure world. The MTM service provides key generation, encryption and remote

attestation and the payment services handles displaying of payment information

and user input. The remote attestation method provided by the MTM service in

their design is different from our design. In their design the device is attested as a

whole by the MTM service that functions like a Trusted Platform Module. In our

design an individual public key is attested using a certificate present in a secure

storage. For authenticating a server, their design proposes encrypting the server’s

public key using a public key generated by the MTM service and sent to the server.

60

This encryption of the server’s public key is unnecessary and also ineffective for

verifying the identity of the server. We believe that our approach of using PKI

certificates for verification is more secure. Unlike our design, in their design, the

payment information sent by the normal world app to the secure world is not

signed by the app’s server. Our design is more general than theirs because there

is no need for a separate payment TA. Zheng et al. published one more work [128]

that proposed a secure payment system called TrustPay. Just like the previously

described work, this work proposed encryption of the server’s public key using a

public key generated in the secure world and sent to the server. In TrustPay the

authors have not made use of remote attestation. In TrustOTP [124], authors

have suggested running HOTP [56] and TOTP [58] algorithms in the secure world

along with a secure touchscreen driver for display and user input. In our design

the OTPs are not generated on the smartphone but on the app’s server.

Some authors have tried to tackle the problem of using TEEs for protecting

legacy applications which were written before TEEs became widely deployed with

no/minimal modifications to the code. In TrustShadow [101], the authors have

proposed a runtime system that protects applications from a malicious OS without

requiring any changes in the applications. The runtime system executes a ’shadow’

process in the secure world that corresponds to a ’zombie’ process in the normal

world that never gets scheduled to run. The runtime system manages the page

tables of the process in the secure world, handles page faults and page table updates

by leveraging the page fault handler of Linux (with integrity checks for the returned

values to prevent malicious modifications), intercepts exceptions & system calls to

forward them to Linux and performs random number generation and floating point

computations. The values returned by system calls are verified to prevent Iago

attacks [97]. Rubinov et al. [120] developed an automated partitioning framework

for splitting an existing application into two parts, one for the normal world and the

other for the secure world. In their approach a developer is required to annotate

sources of confidential data in the application’s source code to facilitate taint

analysis for identifying sinks where confidential data is output. The framework

takes the original application’s binary and the annotations as input and outputs

refactored source code in which all the methods that handle confidential data are

isolated as static Java methods. Developers are expected to transform the static

61

Java methods to C code which in turn is transformed to TEE-specific code by a

Wrapper that is part of the framework. Lind et al. [108] developed a framework

with similar aim of partitioning existing applications but their work targets Intel

SGX [60] instead of ARM TrustZone and only requires the developers to annotate

sources of confidential data as opposed to the work by Rubinov et al. which

required developers to write additional code.

A paper by Tamrakar et al. [125] is closely related to ours. They provided a

reference design for enabling the use of TEEs for storing and using the electronic

IDs that are issued to European citizens. They implemented their design using two

different TEEs - ARM TrustZone and Onboard Credentials [103] available on Nokia

Windows 8 Phones. In their design a pre-existing smart card based electronic ID

enables remote enrolment of user’s smartphone as a substitute for the smart cards,

unlike our design in which a user has to physically visit an enrolment centre. The

smart card based electronic ID is used to login to an online enrolment portal

which sends a registration code in the form of a QR code, which is then scanned

by the phone’s camera. The EId TA running in the secure world sends back this

registration code along with a certificate request (CSR) to the enrolment server

which verifies the registration code and forwards the CSR to a CA which generates

a certificate for the user that is forwarded to the user’s device by the enrolment

portal. Marforio et al. [113] have suggested software and hardware changes to

the baseband processor on smartphones to enable usage of SMS for enrolment of

user’s smartphone. Their work suggests that baseband processor should be able

to recognize specially crafted SMSs meant for enrolment and they should only

forward these SMSs to the secure world unlike. Until the changes suggested by

them are introduced in baseband processors, our suggestion of physical visits to

enrolment centres can be followed.

5.3 Attacks on TEEs

Since the security of our payment system relies on the security of the TEE imple-

mentation in the user’s smartphone, a successful attack on the TEE will nullify

the security provided by our design. Several researchers have found design and

implementation flaws in various TEEs currently deployed in consumer devices.

Machiry et al. [111] showed how the ’semantic gap’ between the secure and the

62

non-secure world can be exploited by a malicious normal world app to perform a

confused deputy attack that causes the secure world to modify memory not owned

by that app. They were able to exploit this vulnerability in commercial TEE

implementations from Qualcomm and Trustonic. They have also proposed a novel

defence they dubbed Cooperative Semantic Reconstruction. In this defence, the

normal world’s untrusted OS includes the PID of a normal world app in SMC

calls to the secure world. When a TA requests the trusted OS to resolve a virtual

address received as argument from the normal world, the trusted OS queries the

untrusted OS with the address, the buffer length and the PID. The untrusted OS

checks whether the buffer belongs to the address space of the process with the given

PID and if the check is successful, it returns corresponding physical address. The

trusted OS then checks whether the returned physical address is part of untrusted

region of memory (which is accessible to the untrusted OS) and if the check is

successful, the TA is allowed to access that buffer.

Ning et al. [115] performed a security analysis of debugging features in ARM

processors and found security vulnerabilities that can allow a malicious normal

world OS to gain complete control over code executing in the secure world. Since

ARMv7, it is possible for an on-chip processor to debug another on-chip processor

within the same SoC [13]. The debug authentication signals available on the

platform only consider the privilege level of the debug target and not the debug

host. It is possible for a processor executing code in the non-secure mode to

debug another processor on the same SoC executing code in secure mode, thereby

breaking the isolation that TrustZone is supposed to provide. Ning et al. found

that debug authentication signals were enabled by default on commercial devices

like Raspberry Pi, Huawei Mate 7, Motorola E4 Plus, Xiaomi Redmi 6, etc. The

authors crafted an attack they have called Nailgun that was able to steal AES

encryption key from the secure world on an NXP i.MX53 Quick Start Board [77],

execute arbitrary payload in EL3 on ARMv8 Juno board r1 [37] and extract the

fingerprint from secure storage on Huawei Mate 7 [44].

Fabian et al. [99] analyzed the exploitability of TAs on OP-TEE OS, which is

the trusted OS we have used in our implementation. They implemented multiple

vulnerable TAs with vulnerabilities inspired by flaws found in commercial TEEs

[86, 91, 92, 94, 123]. They have made their vulnerable TAs available at [29]. The

63

TAs have memory corruption bugs that allow control flow hijacking or arbitrary

code execution.

Cerdeira et al. [96] did a systematic study of disclosed vulnerabilities in com-

mercial TrustZone-based TEE implementations. After analyzing 207 TEE bug

reports from 5 major vendors - Qualcomm, Huawei, Trustonic, Linaro, NVIDIA -

the authors came up with a list of 23 different issues with TEE implementations

such as overly bloated TCBs, weak ASLR, failure to prevent TA downgrades by

the untrusted OS, cache side channels, etc. and a list of 9 defences proposed by

the research community.

64

Chapter 6

Conclusion

In this work we have shown how TEEs can be leveraged to securely obtain confi-

dential input from a user and send it to a remote server even when the kernel is

controlled by an attacker. Our design can be used to protect confidential input for

any app, but payment apps were the primary focus for us. Our design is platform-

agnostic and can be realized with any TEE implementation that allows exclusive

access to a touchscreen and a security indicator. We hope that our PoC imple-

mentation using ARM TrustZone and Android will be useful for other researchers

working on smartphone app security in general and digital payment security in

particular. Because of the absence of a security indicator in the smartphones cur-

rently available in the market, our design cannot be deployed commercially with

a simple software update. But we believe that our work makes a good case for

introducing a security indicator LED in new smartphone devices. Because of the

limitations of the hardware, unavailability of documentation and paucity of pub-

licly available drivers for the secure world, we weren’t able to create a truly secure

implementation. This is one possible direction for future work. The hardware

needs to have user programmable secure boot. It also needs a graphics driver

and a touchscreen driver for the secure world so that the secure world can display

things on the screen and take input from the user. The graphics and touch drivers

don’t need to have advanced features like multi-touch support, 3D acceleration,

etc. Given the required information about the graphics hardware, a simple driver

can be developed from scratch. Once we have graphics and touch capability, we

65

will need to write software for rendering text on the screen. We don’t need support

for multiple fonts or text formatting because the Trusted UI is not meant to be

used for entering large amounts of formatted text. It only needs one font with

glyphs for characters from all major languages that need to be supported by a

phone. Our current Trusted UI implementation can only support the ASCII sub-

set of the larger UTF-8 character set. With the text rendering facility developed

we need to write a Trusted App for an on-screen keyboard. The current imple-

mentation is also missing support for biometric authentication using fingerprints

or face scans because the Hikey960 board we have used does not have a fingerprint

reader or a camera integrated with it. Without biometric authentication we can-

not have strong local authentication on the device and therefore cannot limit the

harm caused by device theft.

We have reasoned about the security of our design in Chapter 3, but we haven’t

formally verified the security of the proposed protocols. We plan to use Verifpal

[102, 85] to model and test our protocols. We also intend to try and have our API

accepted into the official upstream Android project. For that we will have to make

sure that our implementation works with the latest version of Android.

66

Appendix

A Data Types used in Protected I/O API

error_code = uint .size 4

; DER-encoded X.509 public key certificate

cert = bstr

;Server’s Common Name as recorded in its certificate

common_name = tstr

server_info = {

common_name: tstr,

cert_chain: [+ cert]

}

key_params = {

; Name of a standard elliptic curve

curve: tstr,

; Whether biometric authentication is required for using key

bio_auth_reqd: bool

}

attestation_challenge = bstr .size 8

; Input form received from server

input_form = {

is_confidential: bool,

title: tstr,

; Optional description for the form

67

? description: tstr,

; one or more form fields

fields: [+ form_field]

}

form_field = text_field // password_field // integer_field //

currency_field // select_field // checkbox_field

field_types = (

text: 1, password: 2, integer: 3, currency: 4,

select: 5, checkbox: 6

)

;Common data in all types of input fields

form_field_base = (

type = &field_types,

label: tstr,

? description: tstr

)

; Different types of input fields

text_field = {

form_field_base,

min_length: uint,

max_length: uint,

? default_val: tstr

}

password_field = {

form_field_base,

min_length: uint,

max_length: uint

}

integer_field = {

form_field_base,

min_value: int,

max_value: int,

? default_val: int

68

}

currency_field = {

form_field_base,

; optional 3 letter currency code

? cur_code: tstr .size 3,

; a currency value expressed as two unsigned integers

min_value: [2*2 uint],

max_value: [2*2 uint],

? default_val: [2*2 uint]

}

select_field = {

form_field_base,

choices: [+ tstr],

default_choice: uint

}

checkbox_field = {

form_field_base,

choices: [+ tstr],

; minimum number of choices that need to be entered

; should be 0 for a non mandatory field

min_choice_count: uint,

max_choice_count: uint,

? default_choice: [+ uint]

}

filled_form_field = {

type = &field_types,

; for text and password field

value: tstr //

; for integer field

value: int //

; for select field

value: uint //

; for currency field

values: [2*2 uint] //

; for checkbox field

69

values: [* uint]

}

filled_form = {

fields: [+ filled_form_field]

}

encrypted_message_for_server = {

message: {

nonce: bstr .size 8,

; 32 bit value for time

current_time: uint .size 4,

; Generated afresh for each new message

ephemeral_pub_key = bstr,

; Encrypted CBOR-formatted byte array

; Its contents depend on the API call

encrypted_data: bstr,

},

; ECDSA signature on message field

signature: {

r: bstr,

s: bstr

}

}

encrypted_message_from_server = encrypted_message_for_server

signed_message_for_server = {

message: {

nonce: bstr .size 8,

; 32 bit value for time

current_time: uint .size 4,

; Generated afresh for each new message

ephemeral_pub_key = bstr,

; Encrypted CBOR-formatted byte array

; Its contents depend on the API call

data: bstr,

},

; ECDSA signature on message field

70

signature: {

r: bstr,

s: bstr

}

}

signed_message_from_server = signed_message_for_server

71

References

[1] 3-D Secure, . URL https://www.emvco.com/emv-technologies/

3d-secure/. 37

[2] 3-D Secure 2.0 Announcement, . URL https://

www.emvco.com/wp-content/uploads/documents/

EMV-3DS-2-Spec-Launch-Final-October-2016.pdf. 37, 56

[3] EMV® 3-D Secure Protocol and Core Functions Specification, . URL

https://www.emvco.com/wp-content/uploads/documents/

EMVCo_3DS_Spec_v220_122018.pdf. vi, 17, 18, 56

[4] 3-D Secure Press Kit, . URL https://www.emvco.com/

terms-of-use/?u=wp-content/uploads/documents/

EMV-3DS-press-kit-FAQ_FINAL-1.pdf. 37, 56

[5] EMV® 3-D Secure Protocol and Core Functions Specification, . URL

https://www.emvco.com/wp-content/uploads/documents/

EMVCo_3DS_SDKSpec_220_122018.pdf. 18

[6] AIDL — Android Open Source Project. URL https://source.

android.com/devices/architecture/aidl/overview. 51

[7] Dissecting the AMD Platform Security Processor, . URL https://www.

youtube.com/watch?v=n9dhHG4tbE0. 8

[8] AMD PRO Security, . URL https://www.amd.com/en/

technologies/pro-security. 8

72

https://www.emvco.com/emv-technologies/3d-secure/
https://www.emvco.com/emv-technologies/3d-secure/
https://www.emvco.com/wp-content/uploads/documents/EMV-3DS-2-Spec-Launch-Final-October-2016.pdf
https://www.emvco.com/wp-content/uploads/documents/EMV-3DS-2-Spec-Launch-Final-October-2016.pdf
https://www.emvco.com/wp-content/uploads/documents/EMV-3DS-2-Spec-Launch-Final-October-2016.pdf
https://www.emvco.com/wp-content/uploads/documents/EMVCo_3DS_Spec_v220_122018.pdf
https://www.emvco.com/wp-content/uploads/documents/EMVCo_3DS_Spec_v220_122018.pdf
https://www.emvco.com/terms-of-use/?u=wp-content/uploads/documents/EMV-3DS-press-kit-FAQ_FINAL-1.pdf
https://www.emvco.com/terms-of-use/?u=wp-content/uploads/documents/EMV-3DS-press-kit-FAQ_FINAL-1.pdf
https://www.emvco.com/terms-of-use/?u=wp-content/uploads/documents/EMV-3DS-press-kit-FAQ_FINAL-1.pdf
https://www.emvco.com/wp-content/uploads/documents/EMVCo_3DS_SDKSpec_220_122018.pdf
https://www.emvco.com/wp-content/uploads/documents/EMVCo_3DS_SDKSpec_220_122018.pdf
https://source.android.com/devices/architecture/aidl/overview
https://source.android.com/devices/architecture/aidl/overview
https://www.youtube.com/watch?v=n9dhHG4tbE0
https://www.youtube.com/watch?v=n9dhHG4tbE0
https://www.amd.com/en/technologies/pro-security
https://www.amd.com/en/technologies/pro-security

REFERENCES

[9] Git repositories for Android, . URL https://android.

googlesource.com. 45

[10] Git repositories for Android, . URL https://source.android.com.

45

[11] Using Reference Boards — Android Open Source Project, . URL https:

//source.android.com/setup/build/devices. 45

[12] ARM1176JZF-S Technical Reference Manual, . URL https://

developer.arm.com/documentation/ddi0301/h. 9

[13] ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition:

Part 3, Debug Architecture, . URL https://developer.arm.com/

documentation/ddi0406/c/Debug-Architecture. 63

[14] TrustZone for AArch64, . URL https://developer.

arm.com/architectures/learn-the-architecture/

trustzone-for-aarch64/single-page. vi, 9

[15] Trusted Firmware A. URL https://www.trustedfirmware.org/

projects/tf-a/. 11

[16] Android Verified Boot 2.0. URL https://android.googlesource.

com/platform/external/avb/+/master/README.md. 14

[17] Overview of EMVCo. URL https://www.emvco.com/about/

overview/. 17, 37

[18] Android 7.0 for Developers, . URL https://developer.android.

com/about/versions/nougat/android-7.0?hl=en#key_

attestation. 15

[19] Android Security Bulletins, . URL https://source.android.com/

security/bulletin. 3

[20] Keymaster 3.0 HIDL Specification, . URL https://android.

googlesource.com/platform/hardware/interfaces/+/

pie-release/keymaster/3.0. 25, 47

73

https://android.googlesource.com
https://android.googlesource.com
https://source.android.com
https://source.android.com/setup/build/devices
https://source.android.com/setup/build/devices
https://developer.arm.com/documentation/ddi0301/h
https://developer.arm.com/documentation/ddi0301/h
https://developer.arm.com/documentation/ddi0406/c/Debug-Architecture
https://developer.arm.com/documentation/ddi0406/c/Debug-Architecture
https://developer.arm.com/architectures/learn-the-architecture/trustzone-for-aarch64/single-page
https://developer.arm.com/architectures/learn-the-architecture/trustzone-for-aarch64/single-page
https://developer.arm.com/architectures/learn-the-architecture/trustzone-for-aarch64/single-page
https://www.trustedfirmware.org/projects/tf-a/
https://www.trustedfirmware.org/projects/tf-a/
https://android.googlesource.com/platform/external/avb/+/master/README.md
https://android.googlesource.com/platform/external/avb/+/master/README.md
https://www.emvco.com/about/overview/
https://www.emvco.com/about/overview/
https://developer.android.com/about/versions/nougat/android-7.0?hl=en#key_attestation
https://developer.android.com/about/versions/nougat/android-7.0?hl=en#key_attestation
https://developer.android.com/about/versions/nougat/android-7.0?hl=en#key_attestation
https://source.android.com/security/bulletin
https://source.android.com/security/bulletin
https://android.googlesource.com/platform/hardware/interfaces/+/pie-release/keymaster/3.0
https://android.googlesource.com/platform/hardware/interfaces/+/pie-release/keymaster/3.0
https://android.googlesource.com/platform/hardware/interfaces/+/pie-release/keymaster/3.0

REFERENCES

[21] Verifying hardware-backed key pairs with Key Attestation, . URL

https://developer.android.com/training/articles/

security-key-attestation. 23

[22] Android Keystore system, . URL https://developer.android.com/

training/articles/keystore. 15

[23] Security Enhancements — Android Open Source Project, . URL https:

//source.android.com/security/enhancements. 13

[24] Verified Boot — Android Open Source Project, . URL https://source.

android.com/security/verifiedboot. 13

[25] Using Binder IPC — Android Open Source Project. URL

https://source.android.com/devices/architecture/hidl/

binder-ipc. 51

[26] Concise Binary Object Representation. URL https://cbor.io. 24

[27] Concise Data Definition Language. URL https://tools.ietf.org/

html/rfc8610. 24

[28] EMV Payment Tokenisation Specification. URL https://www.emvco.

com/emv-technologies/payment-tokenisation/. 2

[29] OP-TEE TAs vulnerable to memory corruption bugs. URL https://

github.com/teesec-research/optee_examples. 63

[30] Google Mobile Services. URL https://www.android.com/intl/en_

in/gms/. 52

[31] GlobalPlatform. URL https://globalplatform.org/. 5, 11

[32] GlobalPlatform Device Technology TEE System Architecture. URL

https://globalplatform.org/wp-content/uploads/2017/

01/GPD_TEE_SystemArch_v1.1_Public_Release.pdf. vi, 5, 6

[33] GlobalPlatform Specification Library. URL https://globalplatform.

org/specs-library/?filter-committee=tee. 11

74

https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://source.android.com/security/enhancements
https://source.android.com/security/enhancements
https://source.android.com/security/verifiedboot
https://source.android.com/security/verifiedboot
https://source.android.com/devices/architecture/hidl/binder-ipc
https://source.android.com/devices/architecture/hidl/binder-ipc
https://cbor.io
https://tools.ietf.org/html/rfc8610
https://tools.ietf.org/html/rfc8610
https://www.emvco.com/emv-technologies/payment-tokenisation/
https://www.emvco.com/emv-technologies/payment-tokenisation/
https://github.com/teesec-research/optee_examples
https://github.com/teesec-research/optee_examples
https://www.android.com/intl/en_in/gms/
https://www.android.com/intl/en_in/gms/
https://globalplatform.org/
https://globalplatform.org/wp-content/uploads/2017/01/GPD_TEE_SystemArch_v1.1_Public_Release.pdf
https://globalplatform.org/wp-content/uploads/2017/01/GPD_TEE_SystemArch_v1.1_Public_Release.pdf
https://globalplatform.org/specs-library/?filter-committee=tee
https://globalplatform.org/specs-library/?filter-committee=tee

REFERENCES

[34] HIDL — Android Open Source Project. URL https://source.

android.com/devices/architecture/hidl. 49

[35] Intel® Trusted eXecution Technology Software Devel-

opment Guide. URL https://www.intel.com/

content/dam/www/public/us/en/documents/guides/

intel-txt-software-development-guide.pdf. 58

[36] JAB Code sources on Github. URL https://github.com/jabcode/

jabcode. 28, 33

[37] ARM Versatile Express Juno r1 Development Platform (V2M-Juno

r1) Technical Reference Manual. URL https://developer.

arm.com/documentation/100122/0100/Introduction/

About-the-Versatile-Express-Juno-r1-Development-Platform.

63

[38] dm-verity — The Linux Kernel documentation . URL https://www.

kernel.org/doc/html/latest/admin-guide/device-mapper/

verity.html. 13

[39] Key and ID Attestation. URL https://source.android.com/

security/keystore/attestation. 15

[40] Using KitKat verified boot . URL https://nelenkov.blogspot.com/

2014/05/using-kitkat-verified-boot.html. 13

[41] Linux Plumber’s Conference 2016 - OP-TEE. URL http://www.

linuxplumbersconf.net/2016/ocw/system/presentations/

3675/original/LPC%202016%20-%20OP-TEE.pdf. vi, 13

[42] LibTomCrypt 1.17 sources on Github. URL https://github.com/

libtom/libtomcrypt/tree/1.17. 48

[43] TCG Mobile Trusted Module Specification. URL

https://trustedcomputinggroup.org/resource/

mobile-phone-work-group-mobile-trusted-module-specification/.

60

75

https://source.android.com/devices/architecture/hidl
https://source.android.com/devices/architecture/hidl
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://github.com/jabcode/jabcode
https://github.com/jabcode/jabcode
https://developer.arm.com/documentation/100122/0100/Introduction/About-the-Versatile-Express-Juno-r1-Development-Platform
https://developer.arm.com/documentation/100122/0100/Introduction/About-the-Versatile-Express-Juno-r1-Development-Platform
https://developer.arm.com/documentation/100122/0100/Introduction/About-the-Versatile-Express-Juno-r1-Development-Platform
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
https://source.android.com/security/keystore/attestation
https://source.android.com/security/keystore/attestation
https://nelenkov.blogspot.com/2014/05/using-kitkat-verified-boot.html
https://nelenkov.blogspot.com/2014/05/using-kitkat-verified-boot.html
http://www.linuxplumbersconf.net/2016/ocw/system/presentations/3675/original/LPC%202016%20-%20OP-TEE.pdf
http://www.linuxplumbersconf.net/2016/ocw/system/presentations/3675/original/LPC%202016%20-%20OP-TEE.pdf
http://www.linuxplumbersconf.net/2016/ocw/system/presentations/3675/original/LPC%202016%20-%20OP-TEE.pdf
https://github.com/libtom/libtomcrypt/tree/1.17
https://github.com/libtom/libtomcrypt/tree/1.17
https://trustedcomputinggroup.org/resource/mobile-phone-work-group-mobile-trusted-module-specification/
https://trustedcomputinggroup.org/resource/mobile-phone-work-group-mobile-trusted-module-specification/

REFERENCES

[44] Huawei Mate 7. URL https://consumer.huawei.com/en/

support/phones/mate7/. 63

[45] A Clean Slate Approach to Linux Security RISC-V Enclaves.

URL https://hex-five.com/wp-content/uploads/

MultiZone-Linux-Enclave-White-Paper.pdf. 8

[46] NanoCBOR sources on Github. URL https://github.com/

bergzand/NanoCBOR. 48

[47] OMTP Advanced Trusted Environment v1.1, . URL

https://www.gsma.com/newsroom/resources/

omtp-documents-1-1-omtp-advanced-trusted-environment-omtp-tr1-v1-1/.

5

[48] Open Mobile Terminal Platform, . URL http://www.omtp.org/. 5

[49] Open Portable Trusted Execution Environment. URL https://www.

op-tee.org/. 12, 45

[50] DoD 5200.28-STD - Trusted Computer System Evaluation Criteria (the

Orange Book). URL https://csrc.nist.gov/publications/

history/dod85.pdf. 8

[51] Source code for our implementation. URL https://github.com/

iisc-cssl/secure_payments. 53

[52] Introduction to PCI DSS. URL https://www.cryptomathic.com/

news-events/blog/an-introduction-to-pci-dss. 2, 19

[53] Payment Services Directive. URL https://eur-lex.europa.eu/eli/

dir/2015/2366/oj. 32

[54] Android Protected Confirmation: Taking transaction security to the

next level. URL https://android-developers.googleblog.com/

2018/10/android-protected-confirmation.html. 16

76

https://consumer.huawei.com/en/support/phones/mate7/
https://consumer.huawei.com/en/support/phones/mate7/
https://hex-five.com/wp-content/uploads/MultiZone-Linux-Enclave-White-Paper.pdf
https://hex-five.com/wp-content/uploads/MultiZone-Linux-Enclave-White-Paper.pdf
https://github.com/bergzand/NanoCBOR
https://github.com/bergzand/NanoCBOR
https://www.gsma.com/newsroom/resources/omtp-documents-1-1-omtp-advanced-trusted-environment-omtp-tr1-v1-1/
https://www.gsma.com/newsroom/resources/omtp-documents-1-1-omtp-advanced-trusted-environment-omtp-tr1-v1-1/
http://www.omtp.org/
https://www.op-tee.org/
https://www.op-tee.org/
https://csrc.nist.gov/publications/history/dod85.pdf
https://csrc.nist.gov/publications/history/dod85.pdf
https://github.com/iisc-cssl/secure_payments
https://github.com/iisc-cssl/secure_payments
https://www.cryptomathic.com/news-events/blog/an-introduction-to-pci-dss
https://www.cryptomathic.com/news-events/blog/an-introduction-to-pci-dss
https://eur-lex.europa.eu/eli/dir/2015/2366/oj
https://eur-lex.europa.eu/eli/dir/2015/2366/oj
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html

REFERENCES

[55] KYC Master Direction. URL https://www.rbi.org.in/Scripts/

BS_ViewMasDirections.aspx?id=11566. 32

[56] RFC 4226 - HOTP: An HMAC-Based One-Time Password Algorithm, . URL

https://tools.ietf.org/html/rfc4226. 61

[57] RFC 5280 - Internet X.509 Public Key Infrastructure Certificate and Certifi-

cate Revocation List (CRL) Profile, . URL https://tools.ietf.org/

html/rfc5280. 15, 25

[58] RFC 6238 - TOTP: Time-Based One-Time Password Algorithm, . URL

https://tools.ietf.org/html/rfc6238. 61

[59] Single euro payments area. URL https://ec.europa.eu/

info/business-economy-euro/banking-and-finance/

consumer-finance-and-payments/payment-services/

single-euro-payments-area-sepa_en. 32

[60] Intel® Software Guard Extensions Programming Reference, . URL

https://software.intel.com/sites/default/files/

managed/48/88/329298-002.pdf. 62

[61] Intel® Software Guard Extensions, . URL https://

software.intel.com/content/www/us/en/develop/topics/

software-guard-extensions.html. 8

[62] ARM DEN 0028C - SMC Calling Convention. URL https://

developer.arm.com/documentation/den0028/c/. 10

[63] Linaro Security Working Group on Github, . URL https://github.

com/linaro-swg. 45

[64] Keymaster and GateKeeper HAL implementations from Linaro, . URL

https://github.com/linaro-swg/kmgk. 47

[65] Android manifest for building OP-TEE in AOSP, . URL https://

github.com/linaro-swg/optee_android_manifest. 45

77

https://www.rbi.org.in/Scripts/BS_ViewMasDirections.aspx?id=11566
https://www.rbi.org.in/Scripts/BS_ViewMasDirections.aspx?id=11566
https://tools.ietf.org/html/rfc4226
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc6238
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/consumer-finance-and-payments/payment-services/single-euro-payments-area-sepa_en
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/consumer-finance-and-payments/payment-services/single-euro-payments-area-sepa_en
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/consumer-finance-and-payments/payment-services/single-euro-payments-area-sepa_en
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/consumer-finance-and-payments/payment-services/single-euro-payments-area-sepa_en
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://developer.arm.com/documentation/den0028/c/
https://developer.arm.com/documentation/den0028/c/
https://github.com/linaro-swg
https://github.com/linaro-swg
https://github.com/linaro-swg/kmgk
https://github.com/linaro-swg/optee_android_manifest
https://github.com/linaro-swg/optee_android_manifest

REFERENCES

[66] Security work at Linaro, . URL https://www.linaro.org/

engineering/core/security/. 45

[67] Apple Platform Security - Secure Enclave, . URL https://support.

apple.com/en-in/guide/security/sec59b0b31ff/web. 44

[68] Android 7.0, N Compatibility Definition, Section 9.11, . URL https:

//source.android.com/compatibility/7.0/android-7.

0-cdd#9_11_keys_and_credentials. 15

[69] Stack Overflow. URL https://stackoverflow.com/. 55

[70] TrustZone Protection Controller. URL https://developer.arm.com/

documentation/dto0015/a/. 23

[71] Here comes Treble: A modular base for Android. URL

https://android-developers.googleblog.com/2017/05/

here-comes-treble-modular-base-for.html. 14

[72] Unique Identification Authority of India. URL https://uidai.gov.

in/. 32

[73] Unified Payments Interface. URL https://www.npci.org.in/

product-overview/upi-product-overview. 1

[74] Cashless India. URL http://cashlessindia.gov.in/. 1

[75] FreeCharge. URL https://www.freecharge.in/. 1

[76] Google Pay. URL https://pay.google.com/. 1

[77] i.MX53 Quick Start Board. URL https://

www.nxp.com/design/development-boards/

i-mx-evaluation-and-development-boards/

i-mx53-quick-start-board:IMX53QSB. 63

[78] mAadhaar. URL https://play.google.com/store/apps/

details?id=in.gov.uidai.mAadhaarPlus. 32

78

https://www.linaro.org/engineering/core/security/
https://www.linaro.org/engineering/core/security/
https://support.apple.com/en-in/guide/security/sec59b0b31ff/web
https://support.apple.com/en-in/guide/security/sec59b0b31ff/web
https://source.android.com/compatibility/7.0/android-7.0-cdd#9_11_keys_and_credentials
https://source.android.com/compatibility/7.0/android-7.0-cdd#9_11_keys_and_credentials
https://source.android.com/compatibility/7.0/android-7.0-cdd#9_11_keys_and_credentials
https://stackoverflow.com/
https://developer.arm.com/documentation/dto0015/a/
https://developer.arm.com/documentation/dto0015/a/
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://uidai.gov.in/
https://uidai.gov.in/
https://www.npci.org.in/product-overview/upi-product-overview
https://www.npci.org.in/product-overview/upi-product-overview
http://cashlessindia.gov.in/
https://www.freecharge.in/
https://pay.google.com/
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx53-quick-start-board:IMX53QSB
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx53-quick-start-board:IMX53QSB
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx53-quick-start-board:IMX53QSB
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx53-quick-start-board:IMX53QSB
https://play.google.com/store/apps/details?id=in.gov.uidai.mAadhaarPlus
https://play.google.com/store/apps/details?id=in.gov.uidai.mAadhaarPlus

REFERENCES

[79] mbedTLS 2.6.1 sources on Github. URL https://github.com/

ARMmbed/mbedtls/tree/mbedtls-2.6.1. 48

[80] Paytm. URL https://paytm.com/. 1

[81] PCI Security Standards Council. URL https://www.

pcisecuritystandards.org/about_us/. 2, 19

[82] PhonePe. URL https://www.phonepe.com/en/. 1

[83] Samsung Pay. URL https://www.samsung.com/global/galaxy/

samsung-pay/. 1

[84] Venmo. URL https://venmo.com/. 1

[85] Verifpal Website. URL https://verifpal.com/. 66

[86] Alexandre Adamski, Joffrey Guilbon, and Maxime Pe-

terlin. A deep dive into samsung’s trustzone (part

3), Jul 2020. URL https://blog.quarkslab.com/

a-deep-dive-into-samsungs-trustzone-part-3.html. 63

[87] G. Arfaoui, S. Gharout, and J. Traoré. Trusted execution environments:

A look under the hood. In 2014 2nd IEEE International Conference on

Mobile Cloud Computing, Services, and Engineering, pages 259–266, 2014.

doi: 10.1109/MobileCloud.2014.47. 5

[88] ARM Limited. Building a Secure System using TrustZone Technol-

ogy. URL http://infocenter.arm.com/help/topic/com.arm.

doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_

security_whitepaper.pdf. 3, 8, 9, 45

[89] Ahmed M. Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Gu-

ruprasad Ganesh, Jia Ma, and Wenbo Shen. Hypervision across worlds: Real-

time kernel protection from the arm trustzone secure world. In Proceedings

of the 2014 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’14, page 90–102, New York, NY, USA, 2014. Association

79

https://github.com/ARMmbed/mbedtls/tree/mbedtls-2.6.1
https://github.com/ARMmbed/mbedtls/tree/mbedtls-2.6.1
https://paytm.com/
https://www.pcisecuritystandards.org/about_us/
https://www.pcisecuritystandards.org/about_us/
https://www.phonepe.com/en/
https://www.samsung.com/global/galaxy/samsung-pay/
https://www.samsung.com/global/galaxy/samsung-pay/
https://venmo.com/
https://verifpal.com/
https://blog.quarkslab.com/a-deep-dive-into-samsungs-trustzone-part-3.html
https://blog.quarkslab.com/a-deep-dive-into-samsungs-trustzone-part-3.html
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

REFERENCES

for Computing Machinery. ISBN 9781450329576. doi: 10.1145/2660267.

2660350. URL https://doi.org/10.1145/2660267.2660350. 57

[90] Rakesh Rajan Beck, Abhishek Vijeev, and Vinod Ganapathy. Privaros:

A framework for privacy-compliant delivery drones. Proceedings of the

2020 ACM SIGSAC Conference on Computer and Communications Secu-

rity, 2020. 57

[91] Gal Beniamini. Qsee privilege escalation vulnerability and exploit (cve-

2015-6639), May 2016. URL https://bits-please.blogspot.com/

2016/05/qsee-privilege-escalation-vulnerability.html.

63

[92] Gal Beniamini. Trust issues: Exploiting trustzone tees, Jul

2017. URL https://googleprojectzero.blogspot.com/2017/

07/trust-issues-exploiting-trustzone-tees.html. 63

[93] Ferdinand Brasser, Daeyoung Kim, Christopher Liebchen, Vinod Ganap-

athy, Liviu Iftode, and Ahmad-Reza Sadeghi. Regulating arm trustzone

devices in restricted spaces. In Proceedings of the 14th Annual Interna-

tional Conference on Mobile Systems, Applications, and Services, MobiSys

’16, page 413–425, New York, NY, USA, 2016. Association for Comput-

ing Machinery. ISBN 9781450342698. doi: 10.1145/2906388.2906390. URL

https://doi.org/10.1145/2906388.2906390. 57

[94] Marcel Busch and Kalle Dirsch. Finding 1-day vulnerabilities in trusted

applications using selective symbolic execution. 63

[95] Sam Castle, Fahad Pervaiz, Galen Weld, Franziska Roesner, and Richard

Anderson. Let’s talk money: Evaluating the security challenges of mobile

money in the developing world. In Proceedings of the 7th Annual Sympo-

sium on Computing for Development, ACM DEV ’16, New York, NY, USA,

2016. Association for Computing Machinery. ISBN 9781450346498. doi: 10.

1145/3001913.3001919. URL https://doi.org/10.1145/3001913.

3001919. 55

80

https://doi.org/10.1145/2660267.2660350
https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://doi.org/10.1145/2906388.2906390
https://doi.org/10.1145/3001913.3001919
https://doi.org/10.1145/3001913.3001919

REFERENCES

[96] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto. Sok: Understanding the

prevailing security vulnerabilities in trustzone-assisted tee systems. In 2020

IEEE Symposium on Security and Privacy (SP), pages 1416–1432, 2020. doi:

10.1109/SP40000.2020.00061. 64

[97] Stephen Checkoway and H. Shacham. Iago attacks: why the system call api

is a bad untrusted rpc interface. In ASPLOS ’13, 2013. 61

[98] F. Corella and K. Lewison. Fundamental security flaws in the 3-d secure 2

cardholder authentication specification. 2019. 56

[99] Fabian Fleischer, Marcel Busch, and Phillip Kuhrt. Memory corruption

attacks within android tees: A case study based on op-tee. In Proceed-

ings of the 15th International Conference on Availability, Reliability and

Security, ARES ’20, New York, NY, USA, 2020. Association for Comput-

ing Machinery. ISBN 9781450388337. doi: 10.1145/3407023.3407072. URL

https://doi.org/10.1145/3407023.3407072. 63

[100] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. Sprobes: Enforcing

kernel code integrity on the trustzone architecture. Proceedings of the 2014

Mobile Security Technologies (MoST) workshop, 2014. 57

[101] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu,

and Trent Jaeger. Trustshadow: Secure execution of unmodified applica-

tions with arm trustzone. In Proceedings of the 15th Annual International

Conference on Mobile Systems, Applications, and Services, MobiSys ’17,

pages 488–501, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4928-4.

doi: 10.1145/3081333.3081349. URL http://doi.acm.org/10.1145/

3081333.3081349. 61

[102] Nadim Kobeissi, Georgio Nicolas, and Mukesh Tiwari. Verifpal: Crypto-

graphic protocol analysis for the real world. Cryptology ePrint Archive,

Report 2019/971, 2019. https://ia.cr/2019/971. 66

[103] Kari Kostiainen, Jan-Erik Ekberg, N. Asokan, and Aarne Rantala. On-board

credentials with open provisioning. In Proceedings of the 4th International

81

https://doi.org/10.1145/3407023.3407072
http://doi.acm.org/10.1145/3081333.3081349
http://doi.acm.org/10.1145/3081333.3081349
https://ia.cr/2019/971

REFERENCES

Symposium on Information, Computer, and Communications Security, ASI-

ACCS ’09, page 104–115, New York, NY, USA, 2009. Association for Com-

puting Machinery. ISBN 9781605583945. doi: 10.1145/1533057.1533074.

URL https://doi.org/10.1145/1533057.1533074. 62

[104] Renuka Kumar, Sreesh Kishore, Hao Lu, and Atul Prakash. Security analysis

of unified payments interface and payment apps in india. In 29th USENIX

Security Symposium (USENIX Security 20), Boston, MA, August 2020.

USENIX Association. URL https://www.usenix.org/conference/

usenixsecurity20/presentation/kumar. 56

[105] Matthew Lentz, Rijurekha Sen, Peter Druschel, and Bobby Bhattacharjee.

Secloak: Arm trustzone-based mobile peripheral control. In Proceedings of

the 16th Annual International Conference on Mobile Systems, Applications,

and Services, MobiSys ’18, page 1–13, New York, NY, USA, 2018. Associa-

tion for Computing Machinery. ISBN 9781450357203. doi: 10.1145/3210240.

3210334. URL https://doi.org/10.1145/3210240.3210334. 57

[106] Wenhao Li, Mingyang Ma, Jinchen Han, Yubin Xia, Binyu Zang, Cheng-

Kang Chu, and Tieyan Li. Building trusted path on untrusted device drivers

for mobile devices. In Proceedings of 5th Asia-Pacific Workshop on Sys-

tems, APSys ’14, New York, NY, USA, 2014. Association for Computing

Machinery. ISBN 9781450330244. doi: 10.1145/2637166.2637225. URL

https://doi.org/10.1145/2637166.2637225. 58

[107] Wenhao Li, Shiyu Luo, Zhichuang Sun, Yubin Xia, Long Lu, Haibo Chen,

Binyu Zang, and Haibing Guan. Vbutton: Practical attestation of user-

driven operations in mobile apps. In Proceedings of the 16th Annual Inter-

national Conference on Mobile Systems, Applications, and Services, MobiSys

’18, pages 28–40, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5720-3.

doi: 10.1145/3210240.3210330. URL http://doi.acm.org/10.1145/

3210240.3210330. 59

[108] Joshua Lind, Christian Priebe, D. Muthukumaran, D. O’Keeffe, Pierre-Louis

Aublin, Florian Kelbert, T. Reiher, David Goltzsche, D. Eyers, Rüdiger

82

https://doi.org/10.1145/1533057.1533074
https://www.usenix.org/conference/usenixsecurity20/presentation/kumar
https://www.usenix.org/conference/usenixsecurity20/presentation/kumar
https://doi.org/10.1145/3210240.3210334
https://doi.org/10.1145/2637166.2637225
http://doi.acm.org/10.1145/3210240.3210330
http://doi.acm.org/10.1145/3210240.3210330

REFERENCES

Kapitza, C. Fetzer, and Peter R. Pietzuch. Glamdring: Automatic appli-

cation partitioning for intel sgx. In USENIX Annual Technical Conference,

2017. 62

[109] Dongtao Liu and Landon P. Cox. Veriui: Attested login for mobile de-

vices. In Proceedings of the 15th Workshop on Mobile Computing Sys-

tems and Applications, HotMobile ’14, pages 7:1–7:6, New York, NY, USA,

2014. ACM. ISBN 978-1-4503-2742-8. doi: 10.1145/2565585.2565591. URL

http://doi.acm.org/10.1145/2565585.2565591. 59

[110] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software abstractions for trusted

sensors. In MobiSys ’12, 2012. 58

[111] Aravind Machiry, E. Gustafson, Chad Spensky, C. Salls, N. Stephens, Ruoyu

Wang, A. Bianchi, Yung Ryn Choe, C. Krügel, and G. Vigna. Boomerang:

Exploiting the semantic gap in trusted execution environments. In NDSS,

2017. 62

[112] Samin Yaseer Mahmud, Akhil Acharya, Benjamin Andow, William Enck,

and Bradley Reaves. Cardpliance: PCI DSS Compliance of Android Applica-

tions. In 29th USENIX Security Symposium (USENIX Security 20), Boston,

MA, August 2020. USENIX Association. URL https://www.usenix.

org/conference/usenixsecurity20/presentation/mahmud. 56

[113] Claudio Marforio, Nikolaos Karapanos, Claudio Soriente, Kari Kostiainen,

and Srdjan Capkun. Secure enrollment and practical migration for mobile

trusted execution environments. In Proceedings of the Third ACM Workshop

on Security and Privacy in Smartphones & Mobile Devices, SPSM ’13, page

93–98, New York, NY, USA, 2013. Association for Computing Machinery.

ISBN 9781450324915. doi: 10.1145/2516760.2516764. URL https://doi.

org/10.1145/2516760.2516764. 62

[114] Steven J. Murdoch and R. Anderson. Verified by visa and mastercard se-

curecode: Or, how not to design authentication. In Financial Cryptography,

2010. 56

83

http://doi.acm.org/10.1145/2565585.2565591
https://www.usenix.org/conference/usenixsecurity20/presentation/mahmud
https://www.usenix.org/conference/usenixsecurity20/presentation/mahmud
https://doi.org/10.1145/2516760.2516764
https://doi.org/10.1145/2516760.2516764

REFERENCES

[115] Z. Ning and F. Zhang. Understanding the security of arm debugging features.

In 2019 IEEE Symposium on Security and Privacy (SP), pages 602–619,

2019. doi: 10.1109/SP.2019.00061. 63

[116] Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A comprehen-

sive survey. ACM Comput. Surv., 51(6), January 2019. ISSN 0360-0300. doi:

10.1145/3291047. URL https://doi.org/10.1145/3291047. 9

[117] Sazzadur Rahaman, Gang Wang, and Danfeng Yao. Security certification in

payment card industry: Testbeds, measurements, and recommendations. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-

munications Security, pages 481–498, 2019. 55

[118] Bradley Reaves, Nolen Scaife, Adam Bates, Patrick Traynor, and Kevin

R. B. Butler. Mo(bile) money, mo(bile) problems: Analysis of branchless

banking applications in the developing world. In Proceedings of the 24th

USENIX Conference on Security Symposium, SEC’15, page 17–32, USA,

2015. USENIX Association. ISBN 9781931971232. 55

[119] Bradley Reaves, Jasmine Bowers, Nolen Scaife, Adam Bates, Arnav Bhar-

tiya, Patrick Traynor, and Kevin R. B. Butler. Mo(bile) money, mo(bile)

problems: Analysis of branchless banking applications. ACM Transac-

tions on Privacy and Security, 20(3), August 2017. ISSN 2471-2566. doi:

10.1145/3092368. URL https://doi.org/10.1145/3092368. 55

[120] Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, and Abhik Roychoud-

hury. Automated partitioning of android applications for trusted execu-

tion environments. In Proceedings of the 38th International Conference

on Software Engineering, ICSE ’16, pages 923–934, New York, NY, USA,

2016. ACM. ISBN 978-1-4503-3900-1. doi: 10.1145/2884781.2884817. URL

http://doi.acm.org/10.1145/2884781.2884817. 61

[121] M. Sabt, M. Achemlal, and A. Bouabdallah. Trusted execution environment:

What it is, and what it is not. In 2015 IEEE Trustcom/BigDataSE/ISPA,

volume 1, pages 57–64, 2015. doi: 10.1109/Trustcom.2015.357. 5

84

https://doi.org/10.1145/3291047
https://doi.org/10.1145/3092368
http://doi.acm.org/10.1145/2884781.2884817

REFERENCES

[122] A. A. Sani. Schrodintext: Strong protection of sensitive textual content of

mobile applications. In MobiSys, 2017. 60

[123] Nick Stephens. BEHIND THE PWN OF THE TRUSTZONE. URL

https://www.youtube.com/watch?v=jDTXTLkKUcM. Slides

- https://www.slideshare.net/GeekPwnKeen/nick-stephenshow-does-

someone-unlock-your-phone-with-nose. 63

[124] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. Trustotp: Trans-

forming smartphones into secure one-time password tokens. In Proceed-

ings of the 22Nd ACM SIGSAC Conference on Computer and Commu-

nications Security, CCS ’15, pages 976–988, New York, NY, USA, 2015.

ACM. ISBN 978-1-4503-3832-5. doi: 10.1145/2810103.2813692. URL

http://doi.acm.org/10.1145/2810103.2813692. 61

[125] S. Tamrakar, J. Ekberg, and P. Laitinen. On rehoming the electronic id

to tees. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages 49–56,

Aug 2015. doi: 10.1109/Trustcom.2015.356. 62

[126] Amit Vasudevan, Emmanuel Owusu, Zongwei Zhou, James Newsome, and

Jonathan M. McCune. Trustworthy execution on mobile devices: What

security properties can my mobile platform give me? In TRUST, 2012. 3, 5

[127] Wikipedia contributors. 2016 Indian banknote demonetisation — Wikipedia,

the free encyclopedia. https://en.wikipedia.org/w/index.php?

title=2016_Indian_banknote_demonetisation, 2020. 1

[128] Xianyi Zheng, Lulu Yang, Jiangang Ma, Gang Shi, and Dan Meng. Trustpay:

Trusted mobile payment on security enhanced arm trustzone platforms. In

2016 IEEE Symposium on Computers and Communication (ISCC), pages

456–462, 2016. 61

[129] Kailiang Ying, Amit Ahlawat, Bilal Alsharifi, Yuexin Jiang, Priyank Thavai,

and Wenliang Du. Truz-droid: Integrating trustzone with mobile operat-

ing system. In Proceedings of the 16th Annual International Conference

on Mobile Systems, Applications, and Services, MobiSys ’18, pages 14–27,

85

https://www.youtube.com/watch?v=jDTXTLkKUcM
http://doi.acm.org/10.1145/2810103.2813692
https://en.wikipedia.org/w/index.php?title=2016_Indian_banknote_demonetisation
https://en.wikipedia.org/w/index.php?title=2016_Indian_banknote_demonetisation

REFERENCES

New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5720-3. doi: 10.1145/

3210240.3210338. URL http://doi.acm.org/10.1145/3210240.

3210338. 59

[130] Kailiang Ying, Priyank Thavai, and Wenliang Du. Truz-view: Developing

trustzone user interface for mobile os using delegation integration model. In

Proceedings of the Ninth ACM Conference on Data and Application Security

and Privacy, CODASPY ’19, pages 1–12, New York, NY, USA, 2019. ACM.

ISBN 978-1-4503-6099-9. doi: 10.1145/3292006.3300035. URL http://

doi.acm.org/10.1145/3292006.3300035. 59

[131] X. Zheng, L. Yang, G. Shi, and D. Meng. Secure mobile payment employing

trusted computing on trustzone enabled platforms. In 2016 IEEE Trust-

com/BigDataSE/ISPA, pages 1944–1950, 2016. 60

86

http://doi.acm.org/10.1145/3210240.3210338
http://doi.acm.org/10.1145/3210240.3210338
http://doi.acm.org/10.1145/3292006.3300035
http://doi.acm.org/10.1145/3292006.3300035

	Acknowledgements
	Abstract
	Contents
	List of Figures
	1 Introduction
	2 Background
	2.1 Trusted Execution Environments
	2.2 ARM TrustZone
	2.3 GlobalPlatform API Standards
	2.4 ARM Trusted Firmware
	2.5 OP-TEE
	2.6 Security Enhancements in Android
	2.6.1 Verified boot
	2.6.2 Hardware-backed Keystore
	2.6.3 Biometric Authentication
	2.6.4 Protected Confirmation

	2.7 Payment Security Standards
	2.7.1 EMV 3-D Secure 2.0
	2.7.2 PCI Data Security Standard

	3 Design
	3.1 Threat Model
	3.2 Protected I/O
	3.2.1 Protected I/O Framework
	3.2.2 Protected I/O API
	3.2.3 Encryption and Signing
	3.2.4 Protected I/O Protocol

	3.3 Secure Payments
	3.3.1 KYC Process
	3.3.2 Account Creation and Sign In
	3.3.3 Adding Money to Wallet
	3.3.4 Payment Transaction
	3.3.5 Password Reset and Device Theft

	3.4 Security provided by Protected I/O
	3.5 Portability

	4 Implementation and Evaluation
	4.1 Trusted Application
	4.2 TEE Kernel Driver
	4.3 HIDL Interface
	4.4 Android System Service
	4.5 Android Apps
	4.6 Application Servers
	4.7 Performance

	5 Related Work
	5.1 Payment Security
	5.2 TEE-based Security
	5.3 Attacks on TEEs

	6 Conclusion
	Appendix
	A Data Types used in Protected I/O API

	References

