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Abstract

Directed testing is a technique to analyze user-specified target locations in the program.

It reduces the time and effort of developers by excluding irrelevant parts of the program

from testing and focusing on reaching the target location. Existing tools for directed testing

employ either symbolic execution with heavy-weight program analysis or fuzz testing mixed

with hand-tuned heuristics.

In this thesis, we explore the feasibility of using a data-driven approach for directed test-

ing. We aim to leverage the data generated by fuzz testing tools. We train an agent on the

data collected from the fuzzers to learn a better mutation strategy based on the program in-

put. The agent then directs the fuzzer towards the target location by instructing the optimal

action for each program input. We use reinforcement learning based algorithms to train the

agent. We implemented a prototype of our approach and tested it on synthetic as well as

real-world programs. We evaluated and compared different reward functions.

In our experiments, we observe that for simple synthetic programs, our approach can

reach the target location with fewer mutations compared to AFL and AFLGo that employ

random mutations. However, for complex programs, the results are mixed. No one technique

can perform consistently for all programs. For real-world programs, our approach failed to

find an input that reaches the target location.
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Chapter 1

Introduction

Software testing is the process of finding bugs and vulnerabilities in a given software

application. The process usually involves generating inputs for the program such that the

generated inputs cause a crash due to a bug in the program. There are a variety of tools

developed for software testing. All these tools generally focus on “whole-program” testing,

i.e., they do not differentiate between different portions of the program. However, often,

we need to focus only on a specific portion of the program. For example, these “interesting”

portions can be a parser which validates the input from the user before passing it for further

computation, or it can be newly added code for a new feature or a patch to fix some bug. This

kind of testing is referred to as directed testing. In directed testing, only specific “interesting”

portions of the program are analyzed for buggy behaviour. These “interesting” portions are

either specified by the user or automatically deduced by other static analysis tools. Since

programs are written incrementally, focusing on testing the altered or newly added sections

in the program would be judicious use of time and resources.

Symbolic execution is the most popular technique for directed testing [1, 2]. It is a way

of analyzing programs by inferring a logical formula representing program execution, based

on concrete execution. Symbolic execution involves using heavy-weight program analysis and

SMT solvers. To generate an input that reaches the target location, tools based on symbolic

execution first need to collect all the path constraints leading to the target location. All of

these path constraints are satisfied by all the possible inputs that reach the target location

following that path. The path constraints thus collected are passed to a constraint solver like

Z3 [3] that attempts to generate a concrete program input satisfying all the path conditions.

The generated concrete program input is guaranteed to reach the target location.

Ma et al. [1] cast directed testing as a line reachability problem, i.e., given a target

statement in the program, the goal is to find a realizable path to the target. They have

1



1. INTRODUCTION

proposed multiple directed symbolic execution search strategies for reachability. These search

strategies differ in the order of collection of the path constraints. KATCH [2] is the state of

the art tool for patch testing based on symbolic execution. It starts by selecting an input from

the existing test cases of the program’s regression suite based on its estimated distance to the

patch. It then combines symbolic execution with three heuristics based on program analysis

to derive a new input that reaches the target location.

Although symbolic execution, in theory, is capable of finding inputs that reach the target

location, it has several limitations. Any symbolic execution driven tool has to iterate over

all the feasible paths in the program. The number of such paths grows exponentially as the

program grows and can be infinite in some instances, e.g., when the program has unbounded

loops. Even in the case of directed testing, where the search space for the paths reaching the

target location is significantly reduced, the problem persists. The program analysis employed

is heavy-weight as in that requires a detailed understanding of the underlying language se-

mantics and memory models. It also requires accurate translation of each path condition to

its corresponding constraint. The SMT solvers employed are dependent on the underlying

theories and theories for many program constructs are not always available. Moreover, even

when the theories are available, SMT solvers are known to take a considerable amount of time

to come up with a solution. For example, real-world programs often involve non-linear arith-

metics, which are undecidable for the solver. These limitations hamper the use of tools based

on symbolic execution for large programs. For example, KATCH [2] was able to increase the

patch coverage considerably, yet the authors claim that the tool was not able to find most of

the targets and that more advances are needed to realize the goal of fully automated patch

testing.

Recently, fuzz testing has gained much traction in the community for its simplicity, scala-

bility and effectiveness to find bugs [4, 5, 6, 7, 8, 9]. Fuzz testing (or fuzzing) is an automated

process of testing a program by providing it with random inputs. The user provides an initial

set of inputs, called seeds, to the fuzzing tool (called fuzzer). Fuzzers then generate more

inputs from these seed inputs by mutating them. These mutations range from single-bit op-

erations like bit flip to single-byte mutations like byte flip, addition/subtraction to multi-byte

mutations like insert bytes to or delete bytes from a location. Fuzzers typically do not employ

heavy analysis on the program which makes them lightweight and thus scalable. Popular

fuzzers like AFL [4] and libfuzzer [5] have found numerous bugs in large programs [10, 11].

Fuzzers are generally used to find bugs in the whole program. The main objective of

any such generic fuzzer is code coverage, i.e., to cover as much code as possible. Since

these generic fuzzers do not differentiate between paths, they are not incentivized to reach

2



1. INTRODUCTION

a particular location in the program. It makes the generic fuzzers unsuitable for directed

testing as they would unnecessarily mutate irrelevant inputs. Recent works [12, 13] have

tried to modify these generic fuzzers for directed testing.

AFLGo [12] is the first such attempt to adapt generic fuzzers for directed testing. It is

an extension of AFL [4] for directed greybox fuzzing. In greybox fuzzing, the fuzzers apply

lightweight techniques, like program instrumentation, to approximate the internal structure

of the program. AFLGo casts reachability as an optimization problem and tries to minimize

the seed distance. Seed distance for a program input is defined as the average of the distances

between each executed basic block in the program and the target basic block. The distance

computed for each basic block is based on the intra-procedural control-flow graph (CFG) of

each function, and the call graph (CG) of the whole program. Each basic block’s distance to

the target location is computed and instrumented during compile time. The seed distance,

thus calculated, determines the energy of the seed. The energy of a seed is a measure of

time the fuzzer spends mutating it. AFLGo employs simulated annealing as a meta-heuristic to

minimize the seed distance. Simulated annealing is implemented as a power schedule, which

controls the energy of all seeds.

Hawkeye [13] improves upon both static and dynamic analyses done by AFLGo. It presents

a robust distance-based mechanism for the directed fuzzer by taking all the paths to the target

location into account. During runtime, Hawkeye categorizes seeds into three queues based on

the seed distance and covered function similarity. Based on the queue, Hawkeye prioritizes

and schedules each seed for mutation. It also adopts an adaptive mutation strategy based on

the seed distance. It prioritizes fine-grained mutation for inputs which are closer to the target

location and vice-versa.

All the approaches mentioned earlier are heavily engineered and tweaked for directed

testing. KATCH employed multiple heuristics based on program analysis to complement sym-

bolic execution and mitigate some of its shortcomings. AFLGo had to come up with a specific

meta-heuristic like simulated annealing to minimize the seed distance. Hawkeye also adopts

various fine-tuned strategies for best results. All of these approaches try to find the best pos-

sible combination of tweaks needed for directed testing. These tweaks work for most of the

programs but need scrupulous engineering.

To mitigate the task of trying to find the best heuristic, this thesis seeks to explore a

data-driven approach for directed testing. Recent advances in fuzzing have used machine

learning techniques to learn the grammar from the inputs [14], increase the efficiency of

fuzzers [15], and learn about the optimal locations in the input files to mutate [16]. In

this thesis, we explore the application of reinforcement learning for directed testing. There

3



1. INTRODUCTION

are several reasons that intuitively suggest that reinforcement learning is a good fit for this

domain, and we intend to evaluate whether these intuitions hold empirically. Reinforcement

learning (RL) is an area of machine learning which deals with an agent and its interaction

with the environment. RL agents have been used extensively in game environments where

they have beaten world champions in the game of Go, Chess and Atari [17, 18, 19]. RL agents

have also been used in robot control and traffic light management [20, 21].

An RL agent is an entity which learns about its environment by taking actions and ob-

serving the result. An RL environment is modelled as Markov Decision Process (MDP) which

formulates decision making in a stochastic process. In an RL environment, the agent’s goal is

to maximize the cumulative reward until it reaches the final state. The final state is a unique

state in the environment, where after reaching, the agent doesn’t need to take any further

actions. A robot reaching the target location on the floor, or a player winning in the game

of chess or pong are some example of the final state in their respective environment. The

agent chooses an action for each state to reach the next state and receives a corresponding

reward for that action. For example, in a game of chess, the agent has to choose a piece to

make a move. In a robot manoeuvering environment, the agent has to choose to either go

right or left or go keep moving forward to reach the target location. A reward is a scalar

quantity which approximates the goodness of the action for that state. A positive reward

means that the action taken resulted in the agent getting closer to its goal state. Similarly,

a negative reward may mean that the action taken by the agent leads it away from the goal

state. Winning a game of chess can be treated as a positive reward and losing the game

incurs a negative reward. Similarly, a robot reaching its destination gets a positive reward

and crashing into the wall receives a negative reward. Based on the experiences the agent

gains from the exploration, the agent learns to choose the optimal action for each state to

maximize the cumulative reward.

In this thesis, we attempt to adopt reinforcement learning algorithms for directed fuzzing.

In our context, we model the fuzzer as an RL agent and the program under test as the en-

vironment. Each program input is an agent state, and the set of mutations on the program

input are the possible actions for the agent on that state. So, the search space for the agent is

the set of all possible inputs to the program. The final state or the goal state is any program

input which reaches the target location in the program.

Thus, the problem can now be pictured as an agent trying to find a program input which

reaches the target location by continuously mutating the present program input. The agent

moves from one state to another and accumulates the reward in each transition. Since the

maximum reward earned by an agent is bounded, the agent learns to avoid negative rewards,

4



1. INTRODUCTION

i.e., mutations that deviate it from the target location. Rewards are the only source of infor-

mation for the agent to learn and thus, it is essential to choose a useful reward function for the

agent. We propose three different kinds of rewards (§3.4.3) for the agent and compare their

performance (§4.3). To train our agent, we have used three state-of-the-art RL algorithms,

namely Deep Q-Network (DQN) [19], Double Duelling deep Q-Network (DDQN) [22], and

Asynchronous Advantage Actor-Critic (A3C) [23] network.

In our experiments (§4.2), an agent trained with DDQN algorithm outperformed other

agents based on DQN and A3C. On synthetic benchmarks, our approach was able to reach

the target location in all instances. In some programs, our approach was able to reach the

target location with fewer mutations than the state of the art fuzzers. However, in terms of

the time taken to find an input that reaches the target location, our approach was significantly

slower. This overhead is expected as the fuzzer waits for the agent’s response before every

mutation.

1.1 Contribution of the Thesis
The main contribution of this thesis are summarized as follows:

1. We explore a data-driven approach for directed fuzz testing.

2. We propose an approach using reinforcement learning to train an agent to learn a better

mutation strategy.

3. We implemented and evaluated our proposed approach against the state of the art di-

rected fuzzers.

4. We trained the agent with various state-of-the-art RL algorithms and measured their

effectiveness for program input mutation.

5. We have evaluated and compared various reward functions for the agent.

1.2 Outline of the Thesis
This thesis is organized as follows:

• Chapter 2: It provides an overview of the techniques used in the thesis. We start by

explaining the working of American Fuzzy Lop, a popular greybox fuzzer. Next, we

explain different components of reinforcement learning and how it works.

5



1. INTRODUCTION

• Chapter 3: Here, we describe the design of our approach. We discuss all the compo-

nents of the tool and its functionality.

• Chapter 4: In this chapter we evaluate our approach and detail our findings.

• Chapter 5: We describe related work in this area. We discuss each technique, its limi-

tations and how it differs from our approach.

• Chapter 6: In this chapter we conclude our work and provide directions for future

work.

6



Chapter 2

Background

2.1 Fuzzing
Fuzz testing (or fuzzing) is an automated process of software testing by providing the

program with random inputs. Fuzzing is one of the best tools available for detecting vulnera-

bilities in a program. The underlying concept of fuzzing is to generate inputs for the program

that can trigger a bug in the program. Since its introduction, a substantial amount of effort

has been made to increase the efficiency of these fuzz testing tools (called fuzzer). Fuzzers

differ in the choice of technique that is used to generate inputs to the program.

Based on the awareness of the program under test, fuzzers are classified as black-box,

grey-box, and white-box fuzzers. Black-box fuzzers like zzuf [24] have no information about

the program under test. It generates new inputs for the program in a purely random manner

and observes the results. Black-box fuzzers are very fast in generating new program inputs,

but lack in producing useful program inputs. On the other hand, white-box fuzzers like DART

[25] collect knowledge about the inner working of the program. To gather information, it

analyses the binary or the source code of the program. Often it also inspects the runtime

behavior of the program to generate efficient program inputs. White-box fuzzers produce

useful program inputs but are very slow in generating new program inputs.

Grey-box fuzzers try to create a balance between speed and effectiveness. It collects little

information about the program under test and utilizes it to generate useful inputs to the

program. Grey-box fuzzers often instrument the program to collect runtime information like

line coverage. Grey-box fuzzers are very effective in finding bugs in the program and are

often preferred over black-box and white-box fuzzers. In the next section, we describe the

working of one such grey-box fuzzer, American Fuzzy Lop (AFL) [4].

7
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6
Program Source

Ò
Instrumentation

è
Compilation

3
Program Binary

Figure 2.1: Block diagram of compilation phase of AFL

2.2 American Fuzzy Lop (AFL)
AFL [4] is the state-of-the-art grey-box fuzzer. The primary objective of AFL is to generate

program inputs such that it increases the code coverage of the program under test. AFL

employs genetic mutation strategies to generate new inputs. It employs minimal compile-

time instrumentation to gather runtime information for each program input. Based on the

runtime information, it decides whether to preserve the input for further mutations. AFL

is easy to use, scalable, and its effectiveness in finding numerous bugs [10] in a variety of

programs has gained it much popularity.

AFL works in two phases, a compilation phase, and a fuzzing phase. The compilation

phase is responsible for adding instrumentation to the program source and building an instru-

mented program binary. The fuzzing phase is responsible for the generation of new program

inputs and look for interesting behavior. We describe each phase in detail in the following

subsections.

2.2.1 Compilation Phase

Every input to the program exercises an execution path in the program. An execution

path is defined as a feasible sequence of basic blocks of the program. AFL instruments each

basic block in the program to collect information about the execution path. This runtime

information is used during the fuzzing phase to prioritize certain inputs.

To collect this runtime information, AFL identifies each basic block in the program with a

random integer determined during compilation. Each branch is identified as a tuple (branch

source, branch target). Since AFL captures branch coverage, it only needs to store the branch

tuples. AFL computes the branch identifier as the output of the exclusive disjunction operator

(XOR) of the branch tuple. To maintain these branch identifiers, AFL creates an array as

shared memory where each byte corresponds to a branch identifier. A non-zero byte in the

array signifies that the branch was hit during execution and the value of the byte represents

the count of the number of times the branch got executed. The shared memory is attached to

the instrumented binary during runtime. The fuzzer resets the shared memory before every

execution. Note that AFL only stores the set of basic block executed and the sequence of the

8
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Figure 2.2: Block diagram of fuzzing phase of AFL

basic blocks executed is neglected.

The instrumentation added to each basic block is equivalent to:

cur location = < Compile Time Random Integer >;

shared mem[cur location ˆ prev location]++;

prev location = cur location� 1;

Here, cur location denotes the identifier associated with each basic block. prev location

stores the identifier of the last basic block executed by the program. Before executing a

basic block, the array in the shared memory region (shared mem) is updated based on the

cur location and prev location. prev location is updated to cur location bit shifted by 1. The

shift operator serves two purposes. First, it preserves the directionality of the branch as the

XOR operator is commutative. Second, it retains the identity of small loops. It is relevant for

loops with a single basic block as the XOR operator nullifies the identifier (as xˆx = 0), and

multiple loops with a single basic block can be distinguished.

AFL uses LLVM compiler architecture to instrument the program. LLVM provides easy

access to each basic block and APIs to add instrumentation. After instrumenting each basic

block, the program is compiled normally, and the instrumented program binary is generated.

Figure 2.1 shows the flow in the compilation phase of AFL. The instrumented program binary

is used to get the runtime information during the fuzzing phase.

2.2.2 Fuzzing Phase

Fuzzing phase is the core of AFL, and it is responsible for the generation of new inputs.

Algorithm 1 describes the procedure and figure 2.2 shows the flow in this phase. Every fuzzer

need some program inputs, called seed inputs or seed, from the user to start fuzzing. AFL
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initializes the Queue with these user-provided seed inputs. The Queue maintains the interest-

ing seed inputs during fuzzing session. The fuzzer selects a seed from the Queue for further

mutations. It calculates the energy of each seed which defines the number of times the seed

is mutated. It is calculated based on execution time, branch coverage, and freshness. The

freshness of a seed is a representation of the number of times the seed has been fuzzed al-

ready. An input that is not yet fuzzed is fresh and preferred over another input which has

been fuzzed multiple times. Also, seeds with less execution time and more branch coverage

get higher energy.

Algorithm 1: American Fuzzy Lop - Fuzzing Phase Algorithm
Input: Program P, Program arguments A, Seed Inputs S

Output: Interesting Seeds Q

1 Function AFL Fuzz Loop(P, A, S)
2 Q← φ

3 foreach seed ∈ S do

4 add to queue(Q, seed)

5 end foreach

6 while True do

7 seed← select seed(Q)

8 energy ← calculate score(seed)

9 for i← 1 to energy do

10 mutation← select mutation()

11 seed′ ← mutate seed(seed,mutation)

12 status← run target(P,A, seed′)

13 if status == INTERESTING then

14 add to queue(Q, seed′)

15 end if

16 end for

17 end while

18 return Q

19 end Function

After selecting a seed and calculating its energy, the fuzzer starts to mutate the seed. The

mutation operations range from bit level mutations to byte level mutations, and multi-byte

level mutations also. Bit level mutations include flipping a bit, a nibble, or consecutive bytes.

Byte level mutations include addition or subtraction of random bytes at random locations.

10
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It also involves overwriting bytes with some interesting bytes and generally represents the

edge cases. Examples of such interesting bytes are 0, 1, 100, 32678, and -1. AFL also has

insertion and deletion operations that insert or delete multiple bytes from random location

in the program input. AFL applies a sequence of these mutation operations (termed stacking)

on each seed to generate new program inputs. The instrumented program binary is executed

with each new input seed′ and checked for interesting behaviors. If the newly generated seed

is interesting, it is saved in the Queue for further mutations.

An input is said to be interesting if it either executes a new branch or changes the execu-

tion count of some branch substantially. To check for interesting behavior, AFL maintains a

global array, virgin bits. virgin bits aggregates the hit count of each branch of the program

by all the seed inputs. After each execution of the instrumented program binary with a new

seed, the shared memory is compared with virgin bits for interesting behavior.

Interesting program inputs execute previously unexplored branches and thus mutating

them is more likely to generate more interesting program inputs. AFL maintains and mutates

only the interesting seed inputs to maximize its chances of increasing the branch coverage.

AFL also maintains the efficacy of each seed in the Queue and periodically removes ineffective

seeds from the Queue. One more fuzzing strategy that is effective is the splicing operator.

When AFL gets stuck in finding new interesting seeds, it splices two seeds at random locations

to generate a new program input and applies stacked mutations on it. The low-level compile-

time instrumentation and low runtime overhead mixed with such heuristics and optimizations

make it very fast and effective to find bugs in programs.

2.3 Reinforcement Learning : Basics
Reinforcement learning (RL) is a field in machine learning that involves learning from

interactions. The learner (or agent) has to learn the optimal action to perform in any situation

such that it maximizes the cumulative reward. The agent has no information about the

optimal actions, and it learns this mapping by continuous interaction with the environment.

RL agents are known to learn complex games like chess, Go, and Atari and have defeated

human world champions [17, 18, 19]. RL agents are not just confined to game environments

and are used in robot control and traffic light management also [20, 21]. We describe the

agent’s learning process in section 2.3.2.

Reinforcement learning is different from supervised learning, which is the most prevalent

form of machine learning. In supervised learning, the learner is given a set of labeled exam-

ples to train itself. These labeled examples are in the form of feature values (state) and the

corresponding labels (actions). The labels provide precise information about the target value
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Figure 2.3: Reinforcement learning - Block Diagram

to be learned by the learner. Classification tasks like classifying an image as a picture of a cat

or a dog fall under supervised learning. On the other hand, an RL agent doesn’t know about

the optimal action for a given situation. There is no Oracle to provide the RL agent with this

information. To learn this information, the RL agent explores the environment and learns

from its own experiences.

Reinforcement learning is also different from unsupervised learning, which is mainly used

to find hidden patterns in the data. In unsupervised learning, the learner is given a set of

unlabeled data to find patterns, associations, or detect anomalies. Clustering algorithms,

like aggregating customers based on purchasing behaviour, is an example of unsupervised

learning. It seems similar to reinforcement learning, as in both cases, the learner is not

provided with prelabeled output data to train itself. However, in reinforcement learning, the

learner uses the output (reward) as a metric to evaluate its choice of action. This self-feedback

mechanism is not available in unsupervised learning.

2.3.1 Reinforcement Learning : Components and Elements

There are two components in reinforcement learning, the agent, and the environment.

• Agent: An agent in reinforcement learning context is a learner who is tasked with the

purpose of understanding the environment. An agent decides which action to choose in

a situation. In a game of chess, a computer player is an agent which plays the game by

choosing to play a chess piece. Initially, the agent doesn’t know the rules of chess and

how the game progresses.

12
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• Environment: In reinforcement learning, an environment is a system which the agent

seeks to understand. It consists of everything apart from the agent. The functioning of

the environment is not known to the agent a priori. For example, in a game of chess,

the chessboard and the opponent are part of the environment.

Figure 2.3 describes the interaction between the agent and the environment. Apart from

the components, other elements in reinforcement learning are discussed below.

• State: A state is a representation of the environment’s present situation. The position

of each chess piece on the chessboard is the state of the environment.

• Reward Signal: After each interaction, the agent receives a numerical value from the

environment. This numerical value, called reward signal or reward, describes the result

of the action as good or bad. A high positive reward means that the action chosen by the

agent was right, and a negative reward means that the action was terrible. The goal of

an agent is to maximize the cumulative reward it receives from the environment over a

period of time. The reward signal can be modeled differently for the same environment.

For example, in a game of chess, an RL agent can be rewarded each time it takes a piece

of the opponent and penalized if the opponent takes the agent’s piece. Here we reward

the agent for each take. Alternatively, the agent can be rewarded only when it is able to

win the game and penalized for losing the game.

• Policy: A policy describes the behavior of the agent in a state. It is a mapping from the

state of the environment to the action to be performed on that state. The agent tries to

learn an optimal policy to choose the best action for each state. A policy in the game

of chess can be described as a mapping from the position of chess pieces to the optimal

action that can lead to a victory for the agent.

• Value Function: A value of a state describes the goodness of the state. The value of

a state is the total amount of reward an agent can expect to collect in the long term,

starting from that state. The value of each of the possible state, s′, that can be reached

from a given state, s, determines the action chosen on that state. The value of a state in

the game of chess describes how likely it is that the agent can win the game. The value

of a state where the agent is about to lose will be very low as compared to the initial

state of the chessboard.

• Model: A model of an environment is an approximation of how the environment be-

haves in any situation. It is an optional element in reinforcement learning and is used
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to create model-based methods to train the agent.

2.3.2 Reinforcement Learning : Overview

To learn about the environment, the RL agent starts with exploring the environment.

To explore, the agent performs random actions and observes the reward it gets from the

environment. Based on such experiences, the agent learns the mapping between the situation

and the optimal action to choose. Choosing the optimal action based on the experiences is

known as exploitation. One of the major challenges in reinforcement learning is the trade-off

between exploration and exploitation, i.e. when to stop exploring and start exploiting the

information. To maximize its cumulative reward, the agent has to perform the optimal action

each time and to learn this optimal mapping it has to explore more. If the agent doesn’t

explore, it won’t be able to learn meaningful information and thus will fail to reach its goal.

On the other hand, if the agent performs too much exploration, it won’t be able to leverage

the information learned from past experiences.

The other major challenge in reinforcement learning is to perform actions keeping future

rewards in mind. The goal of the agent is to maximize its cumulative reward, and it doesn’t

imply to choose an action with the highest immediate reward. An immediate positive reward

doesn’t necessarily translate to getting closer to the goal state with the maximum cumulative

reward.

To explain the working of an agent, we take an example of robot maneuvering. In this

environment, the robot is tasked to reach a target location on the floor from a given start

location. The floor (environment) can have obstacles which are not known to the agent a

priori. The agent is allowed to move forward, backward, left, or right which constitutes the

set of possible actions. The agent gets rewarded only when it reaches the target location and

is penalized every time it hits an obstacle. At any block, the agent can see only one block in

each direction, and this is the state of the environment for the agent. The agent decides the

direction of its movement based on the state.

To learn to maneuver in this environment, the agent starts to explore the environment. In

the beginning, the value of each state is the same, and the policy is uniform, i.e., each action

is equally likely to happen, as shown in figure 2.5a and 2.5c. Initially, it moves randomly and

collects data. Figure 2.4 shows one such run of the agent. The agent starts exploring the

possible paths from its present location. Every time the agent hits an obstacle, it learns not

to take that action on that state. When the agent reaches the target location, it gets a reward

that incentivizes it to take actions such that it can reach this state. After multiple iterations,

it learns the path from the start location to the target location, avoiding all obstacles. Figure
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Figure 2.4: Reinforcement learning - Robot maneuvering environment

Each block represents a possible location for the agent. Special blocks are color-coded as: Green
block: Start location, Red block: Target location, and Black block: Obstacle. The goal of the agent is
to reach the target location with the highest cumulative reward. In this context, the agent receives a
reward only when it reaches the target location and receives a penalty when it hits an obstacle.

2.5b show the value for each state and figure 2.5d shows the policy learned for a trained

agent.

2.3.3 Deep Reinforcement Learning

The above example shows a simple environment and how an agent learns to take the

optimal path for any given position. In this example, the number of possible states is small

(just 13) and maintaining values for each state-action pair is reasonably straightforward.

However, for real-world problems, the state space is enormous and storing and maintaining

values for each state-action pair is not a feasible option. To mitigate such problems and

increase the practicality of RL algorithms, Mnih et al. [19] came up with deep reinforcement

learning.

For a trained agent, each state-action pair is uniquely mapped to a specific value. Using

deep reinforcement learning, we try to find this function or an approximation of the function.
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5.0 2.0 -- 20.0
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20.0 30.0 45.0 50.0

(b) Final Values

(c) Initial Policy (d) Final Policy

Figure 2.5: Reinforcement learning - Value and Policy

Neural networks are generally employed as a function approximator for this purpose. These

networks take a representation of the state in vector form and give the optimal action for that

state. These networks have successfully learnt to play Atari games [19].

Over the years, there have been many efforts to decrease training time and increase the

stability and robustness of the training process. Describing each algorithm is beyond the

scope of the thesis. We have compared some of the popular algorithms in section 4.2.
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Chapter 3

Design

In this chapter, we discuss our approach and give details of our implementation choices.

First we provide insight on why we chose reinforcement learning for our purpose. We move

on to a high-level overview of the various components of our approach. Then we explain the

various components of reinforcement learning in our environment. We end the chapter with

the description of changes made in the fuzzing algorithm.

3.1 Why Reinforcement Learning
Machine learning has three main areas, supervised learning, unsupervised learning, and

reinforcement learning. In supervised learning, the agent needs to have lots of definitive in-

stances. Definitive instance means that the best action for a state is known apriori. Generally,

an Oracle is present that tells the agent whether an action taken is correct or not. In our

environment, there is no such Oracle present. Also, in the fuzzing environment, applying the

same mutation multiple times on the same program input results in different rewards. Thus

agents based on supervised learning are not useful.

On the other hand, in unsupervised learning, the agent doesn’t need any such oracle for

training. It can be easily argued that training an agent without any knowledge of how close it

is from the target is a tough task. After each program execution, we have information about

the closeness of the agent to the target location. It would be beneficial to use this information

to train an agent.

This brings us to reinforcement learning. Reinforcement learning involves training an

agent to accomplish a pre-defined goal. It tries to imitate humans by trial and error. The

agent performs some action on the state of the environment and receives a scalar reward for

the action. The agent interprets the reward as the goodness of its decision. The agent trains
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Figure 3.1: Block diagram of interaction between fuzzer and the RL agent

on these intermediate rewards and tries to maximize the cumulative reward for a sequence

of actions. For directed testing, we visualize the agent trying to mutate (action) the program

input (state) to reach the target location. Based on the change of distance from the target

location, we can either reward or penalize the agent. We describe our approach in detail in

the following sections.

3.2 Overview
Presently, any fuzzer chooses the mutations randomly. The choice of mutation is not

dependent on the program input. Karamcheti et al. [26] have shown that not all mutations

are beneficial for a given program input. In this thesis, we intend to find this relation between

the program input and the optimal mutation. We employ reinforcement learning to train an

agent to learn this relation.

Our approach integrates reinforcement learning in fuzzing. Figure 3.1 shows the interac-

tion between the fuzzer and the RL agent. In step 1, the fuzzer sends the program input to

the RL agent. The RL agent decides on a mutation based on past experiences and responds to

the fuzzer in step 2. Based on the response from the agent, the fuzzer mutates the program

input to generate a mutated program input. The fuzzer then executes the program with the

mutated input. After getting the runtime information, the fuzzer sends the mutated input and

the reward to the RL agent, termed as an experience as shown in step 3. Over time, based on

these experiences, the RL agent tries to learn a better mutation strategy based on program

inputs.

3.3 Distance Calculation
To measure the closeness of a seed input to the target location, we compute the distance

from each basic-block to the target location. We start by generating the interprocedural

control-flow graph (ICFG) from the program source code. The distance from a basic-block to

the target location is calculated from the ICFG. Generating an ICFG from the program source
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Figure 3.2: Block diagram of the modified compilation phase of AFL

is an arduous task, time-consuming, and often imprecise. To minimize the time complexity

and to simplify the process, we calculate an approximation of this distance.

Figure 3.2 shows the changes in the compilation phase of the fuzzer. First, from the pro-

gram source, we generate the control-flow graph (CFG) of each function and the callgraph

(CG) of the whole program. These graphs are readily available in the LLVM compiler infras-

tructure. The target location is provided by the user during compilation. The basic-block

that contains the target location, is referred to as the target basic-block (Tb) and the function

containing the target basic-block is referred to as the target function (Tf). We calculate the

function level target distance and basic-block level distance for each function and basic-block,

respectively.

Function distance df(n, n′) between two functions n and n′ is defined as the shortest dis-

tance between the functions in the callgraph. The distance is calculated as the number of

edges in the path. Function c distance Df for a function n is defined as the harmonic mean of

the function distance between the function n and the reachable target function Tf .

Df (n, Tf ) =

undefined if no path from f to Tf

d otherwise
(3.1)

where d is the harmonic mean of the function distance from function f to all reachable target
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functions Tf .

Note that the function level target distance is calculated for multiple target functions. In

our experiments, we have only one target function, so the function level target distance for a

function is same as its function distance to the target function. This is useful when there are

multiple target functions.

Basic-block distance, dbb(b1, b2), between two basic-blocks b1 and b2 that belong to the same

function f , is defined as the length of the shortest path from b1 to b2 in the CFG of the

function f . Basic-block level target distance, Dbb(m,Tb), on the other hand, is defined for each

basic block as the distance from a basic-block m to the target basic-block, (Tb). It can span

across function calls. It is calculated as the harmonic mean of the basic-block distance to any

basic-block that calls a function towards the target basic-block.

Dbb(m,Tb) =


0 if m ∈ Tb

c · min
n ∈ N(m)

(Df (n, Tf )) if m ∈ T[ ∑
t∈T

(Dbb(m, t) +Dbb(t, Tb))
−1
]−1

otherwise

(3.2)

where N(m) is the set of functions called by the basic-block m, and T is the set of basic-blocks

in the function containing m that has a function call. Here c has a fixed value of 10 and is an

approximation the function-level distance.

Similar to function level target distance, basic-block level target distance is useful when there

are multiple target basic blocks. Note that the distance calculation is the same as the one used

by Boehme et al. in AFLGo [12].

3.4 RL components

3.4.1 State

A fuzzer interacts with the program under test by mutating the input to the program. We

model the sequence of bytes of the program input as the state. Thus, the state is represented

as

S = t0t1t2...tn−1

Here ti represents the ith byte in the program input and n is the length of the program input.

As the length of each program input is variable, we cap the length of each program input to

some threshold. For program inputs with length less than the threshold, we pad it with zeros.
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For program inputs with length more than the threshold, we truncate the input accordingly.

3.4.2 Action

We define the set of mutations applied by the fuzzer on each program input as the action

set for the agent. The mutations applied by the fuzzer is described below:

• Bit flip: Flip a bit at any location in the program input.

• Overwrite with interesting values: Overwrite a byte with some interesting values like

0, 1, 32768, -1. The values range from 1 byte to 4 bytes.

• Add to a byte: Add a random integer to a byte, word, or double word.

• Subtract from a byte: Subtract a random integer from a byte, word, or double word.

• Random overwrite a byte: Set a random byte to a random value.

• Delete bytes: Delete bytes from a random location in the input. The fuzzer decides the

block length at runtime.

• Insert bytes: Insert bytes at a random location in the input. The inserted block is either

a clone of the existing input or a block of constant bytes. The fuzzer decides the block

length at runtime.

• Overwrite bytes: Overwrite bytes from a random location in the input to another loca-

tion in the input. The fuzzer decides the block length at runtime.

3.4.3 Reward Function

The reward for actions by the agent is calculated based on the closeness to the target

location. The agent receives a reward when the mutation (action) suggested by it results in

a new program input (state) that is closer to the target location than the previous program

input (old state). Similarly, if the new program input after applying the mutation moves away

from the target location, the agent is penalized.

Since the agent is sensitive towards the reward function, we have tested our approach

with various reward functions. We describe each of them as follows:

• Average Distance: In this method, we first calculate the distance of each basic-block

to the target location. The distance is calculated from the interprocedural control-flow

graph (ICFG) of the program as described in section 3.3. Note that the distances are
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calculated for only those basic-blocks which have a path to the target location in the

ICFG.

The seed distance is then calculated as the mean of the distances of the executed basic-

block to the target location.

distseed =

∑
m ∈ N(seed)Dbb(m,Tb)

|N(seed)|

where N(seed) is the set of basic blocks executed by the seed and have a path to the

target basic-block, (Tb). The reward is calculated as:

reward = distorg − distmut

where distorg is the seed distance of the original seed (seed) and distmut is the seed

distance of the mutated seed (seed′).

• Least Distance: This method calculates the basic-block level target distance for each

seed as described in the previous method. To calculate the seed distance for each seed

input, we find the closest basic-block to the target location that was executed by the

seed input. The distance from this basic-block to the target location is the seed distance

for that seed input.

distseed = min
m ∈ N(seed)

(Dbb(m,Tb))

Here N(seed) is the set of basic blocks executed by the seed and have a path to the

target basic-block, (Tb). The reward is calculated similarly to the previous method.

reward = distorg − distmut

where distorg is the seed distance of the original seed (seed) and distmut is the seed

distance of the mutated seed (seed′).

• Basic-Block Hit Count: In this method, we count the basic-blocks that were executed

by the seed input and can reach the target location. The idea behind this technique is

that a seed input which is closer to the target location would execute a higher number

of such interesting basic-blocks compared to a seed input which is farther away from

the target location.
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Note that we count each basic-block only once. This is done to avoid counting the

interesting basic-blocks inside loop multiple times. So the hit count for a seed input is:

bbhcseed = |N(seed)|

Here N(seed) is the set of basic blocks executed by the seed and have a path to the

target basic-block, (Tb). The reward is calculated as:

reward = bbhcmut − bbhcorg

where bbhcorg is the hit count of the original input and bbhcmut is the hit count of the

mutated seed.

We have evaluated each of the technique mentioned above, and the results are presented

in section 4.3.

3.5 Fuzzing algorithm changes
To integrate reinforcement learning into fuzzing, we made some changes in the fuzzing

algorithm. We highlight these changes in Algorithm 2. The function select mutation() is

modified to receive a seed input (seed) as a parameter. It sends the seed to the RL agent, as

shown in figure 3.1 and waits for the response from the agent. This encapsulates both step 1

and 2 from figure 3.1. It then applies the mutation and checks for interesting behavior.

The helper function GET REWARD() determines the reward for each mutation. The

reward is determined based on the difference of the distance to the target location in the

interprocedural control flow graph, as already discussed in subsection 3.4.3. Rewards are

normalized to the range [-1,1] for stability in gradient updates. send experience() sends the

experience to the RL agent for training and completes the step 3 in figure 3.1.
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Algorithm 2: American Fuzzy Lop - Modified Fuzzing Phase Algorithm
Input: Program P, Program arguments A, Seed Inputs S

Output: Interesting Seeds Q

1 Function AFL Fuzz Loop(P, A, S)
2 Q← φ

3 foreach seed ∈ S do

4 add to queue(Q, seed)

5 end foreach

6 while True do

7 seed← select seed(Q)

8 energy ← calculate score(seed)

9 for i← 1 to energy do

10 mutation← select mutation(seed)

11 seed′ ← mutate seed(seed,mutation)

12 status← run target(P,A, seed′)

13 if status == INTERESTING then

14 add to queue(Q, seed′)

15 end if

16 reward = GET REWARD(seed, seed′)

17 send experience(seed,mutation, reward, seed′)

18 end for

19 end while

20 return Q

21 end Function

22

23 Function GET REWARD(seed, seed’)
24 distance = get distance(seed)

25 distance′ = get distance(seed′)

26 reward = distance− distance′
27 reward = normalize(reward)

28 return reward

29 end Function
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Evaluation and Lessons Learned

In this chapter, we describe and evaluate our approach across various synthetic

programs. We tried several algorithms and strategies, and we assess each of them

separately and summarise our findings. We start by comparing different training

mechanisms for the agent. It is followed by a comparison of different reinforce-

ment learning algorithms. Finally, we evaluate the different reward functions on

some synthetic and real-world programs.

4.1 Training mechanism
Any reinforcement learning (RL) agent needs to learn about the environment to make

informed decisions. To acquire this information, the agent starts by gathering experiences.

These experiences are the accumulation of the continuous interaction between the agent and

the environment. Each experience E is a tuple of 5 elements.

E = {s, a, r, s′, d}

where,

s : State of the environment, s ∈ S, finite set of states.

a : Action selected for the state s, a ∈ A, finite set of actions.

r : Reward for the action a selected for state s, r ∈ R
s′ : New state of the environment after executing the action a on state s, s′ ∈ S

d : Has the agent reached its goal, d ∈ {0, 1}

The agent can only choose the action a for any state s. Initially, the agent starts by picking

random actions. The agent observes the reward for each of these random actions. The agent
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repeatedly performs these steps to improve its knowledge of the environment and chooses

the best action for any given state. This kind of learning by continuously interacting with the

environment is known as online learning.

Online learning is the most common approach for training agents. Although it is known

to work for a variety of tasks, the agent converges slowly, and thus the training takes a long

time. The agent has to wait for the reward and the new state after each interaction with the

environment. The continuous interaction with the environment adds considerable delays in

training time.

To navigate around the problem of waiting for the response from the environment, we

came up with an approach of training the agent with saved experiences. We term it as

offline learning. In offline learning, the agent doesn’t interact with the environment during

the training phase. The idea is to let the agent train on saved experiences without the need

for continuous interaction with the environment. Offline learning can reduce the training

time for the agent by a considerable margin.

4.1.1 Environment

We start with a simple task to compare the performance of online and offline learning. In

this task, the goal of the agent is to mutate any given character string such that it transforms

into a different target character string. The target character string is not known to the agent

a priori. The agent is allowed to mutate the string in three ways to transform a given string

to the target string.

• Insert character (1): This mutation inserts a random character at a random location in

the source string.

• Delete character (2): This mutation deletes a character from a random location in the

source string.

• Overwrite character (3): This mutation overwrites a character in the source string at a

random location with a random character.

In this task, we model the character string as the agent state. The agent gets a reward

when the mutation on the source string leads it closer to the target string. To measure the

closeness of two strings, we use Levenshtein distance [27]. Levenshtein distance or edit

distance is a popular technique to measure differences between two strings. It measures the

minimum number of single-character edits required to transform a given source string to a

target string.
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Example 4.1.1. Example showing the action and reward mechanism for the environment.
Source string : ‘abc’

Target string : ‘fuzz’

Step Source String Action Mutated String Reward Distance

1 abc 3 abb 0 4

2 abb 3 fbb 1 3

3 fbb 1 fubb 1 2

4 fubb 2 ubb -1 3

5 ubb 3 fbb 0 3

... ... ... ... ... ...

80 fuz 1 fuzz 100 0

Table 4.1: Steps showing each interaction of the agent with the environment.

An experience for the agent is a 5-tuple {s, a, r, s′, d}:
Step 1 : {‘abc’, 3, 0, ‘abb’, 0}
Step 2 : {‘abb’, 3, 1, ‘fbb’, 0}
...

Step 80 : {‘fuz’, 1, 100, ‘fuzz’, 1}

Rewards for each action is determined as follows:

• Positive (+1): The mutation decreases the edit distance between the mutated and

target string, as shown in step 2 and 3 in example 4.1.1.

• Negative (-1): The mutation increases the edit distance between the mutated and tar-

get string, as shown in step 4 in example 4.1.1.

• Null (0): The mutation has no effect on the difference of edit distance between the

mutated and target string, as shown in step 1 and 5 in example 4.1.1.

• Completion (+100): The mutation successfully converted the string to the target string

as shown in step 80 in example 4.1.1.

A high reward for completion of task acts as an incentive for the agent to complete the

task. Also, to increase the robustness of the agent, we start each episode with a different

source string.
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Thus, the task can be pictured as an agent trying to modify a given random string to a

fixed target string by continuously mutating the source string. The agent has to learn the

best mutation for any given state and successfully steer away from any bad mutations. For

evaluation, we compare three agents, each based on a different learning mechanism.

These are described as follows:

• Random Agent: Selects a random action for any given string. The action chosen is

entirely oblivious of the state.

• Online learning based RL agent: Selects an action based on the string. It continuously

interacts with the environment and learns from its own experiences.

• Offline learning based RL agent: Selects an action based on the string. It doesn’t

interact with the environment and learns from the experiences of a different agent. For

our experiment, we have trained this agent using the experiences of the random agent.

We have used Double Duelling Deep Q Networks (DDQN) algorithm [22] to train both the RL

agents. Due to timing constraints, in these experiments, we have also limited the maximum

size of the string to 32 bytes.

4.1.2 Experiment Configuration

We implemented our techniques in Tensorflow [28] using an open-source implementation

of DDQN [29]. We modified the implementation to adapt to our environment. In particular,

we have used three 1-dimensional Convolution Neural Network (CNN) layers and a fully

connected layer to encode the state. Each convolution layer has a kernel of size 9 and a stride

of length 3 and uses ReLU as their activation function. The final fully connected layer uses

sigmoid as its activation function. Two dropout layers, each with a dropout rate of 25%, are

also added after the final convolution layer and the fully connected layer. As the input length

can vary, we have fixed the size of the agent state to 200 bytes and padded the input with

0 whenever necessary. Please note that this limit differs from the string length limit that is

capped at 32 bytes for experiments.

All experiments are carried out on a system which has a pair of Intel Xeon Gold 2.7GHz

processors totaling 72 cores and 256 GB of memory running Ubuntu 16.04. The agent was

also provided access to an NVIDIA 1080Ti 11GB GPU to accelerate the training process. For

offline learning, we generated experiences from the random agent. We ran the random agent

for 3 hours and collected 3.6 million experiences for training. We trained each agent for 7

hours and saved the trained model after every 15 minutes. Each episode length is capped at

5000 mutations, and the agent starts a new episode with a new random string.
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Approach Total Episodes for training
Offline 8024
Online 2022

Table 4.2: Total number of episode runs for training

4.1.3 Evaluation

Any agent that claims to learn this simple task should be able to transform any given string

to the target string. We selected a set of 100 random strings for testing. We tested each saved

model from both the agents against this test suite. An episode run is said to be successful if

the agent was able to transform the given source string to the target string within the limit

of the number of mutations. We ran each experiment 5 times, and plot the average of all the

runs as shown below. We compare both of our RL agents against the baseline agent.

Figure 4.1: Comparison of Offline and Online training w.r.t. baseline random mutation

This experiment shows that online learning can learn the appropriate mutation to be ap-

plied to each state. Although it was not able to successfully mutate all the random strings

from the test suite to the target string, it was able to increase the efficiency of the baseline

agent by 64%. On the other hand, our third agent that employed offline learning was not able

to acquire any relevant information and performed similar to the random agent. It is contrary

to our expectations.

We suspect that as the agent was learning from the experiences of the random agent, it

was limited to those experiences. The agent was unable to verify its choice of action. In the

case of our agent based on online learning, it repeatedly learned from its own experiences.

It allowed the agent to learn from any mistakes made during training. Also, as training con-
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tinued, our online learning based agent was able to gather more experiences with positive

rewards, which could have acted as positive feedback for the agent. For the agent based on

offline learning, there was no such positive feedback. It relied on the experiences of the ran-

dom agent that had no such feedback mechanism.

Lessons Learned

• Offline learning is not able to learn any relevant information from stored experiences.

• Online learning, which is very slow, can figure out the appropriate mutation strategy.

4.2 Comparison of different RL algorithms
In the past few years, there has been a multitude of work in the area of reinforcement

learning. There have been many algorithms developed to decrease the training time for the

agent. The performance of these algorithms was mostly tested in game environments. There

has been no prior work which explores different RL algorithms in software testing. In this

section, we compare some of the popular training techniques used in reinforcement learning

to choose the best algorithm to train our fuzzer.

4.2.1 Training Algorithms

• Deep Q-Network (DQN) : Q-learning is one of the basic algorithms to train an RL

agent. In the most straightforward implementation, the agent maintains a table where

the rows represent the state, and the columns represent the actions. The agent calcu-

lates the value, called Q-value, for each such state-action pair from the past experiences.

Tables work fine for small environments where the state space is small, but it doesn’t

scale for larger environment with large state space. For handling such environments,

neural networks are used as a function approximator. The network learns the map-

ping of the state representation to its corresponding Q-values. Neural networks help to

calculate the Q-values for each state-action pair without the need to store it in a table.

• Double Duelling Deep Q Network (DDQN) : Although DQN has enabled to use re-

inforcement learning for a large number of problems, it faces stability issues and con-

verges very slowly. Various enhancements have been made to work around these prob-

lems. Some of these enhancements include adding convolution layers to gather only rel-

evant information from the state and using experience replay to increase the robustness

of the learning process. Double DQN uses a second network to reduce overestimation,

train faster and reliably. Duelling DQN also uses two networks, but to compute two
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different functions (advantage and value) and combines them to get the Q-value for a

state. Calculating two different functions, and combining them later helps in generating

robust estimates of the state value. Double Duelling DQN combines all these techniques

for the best possible results.

• Asynchronous Advantage Actor-Critic Network (A3C) : A3C is the most popular and

the go-to algorithm for reinforcement learning tasks. The main differentiating factor

is the employment of multiple agents which learn the task separately and periodically

update a global network. It also uses convolution layers, experience replay, and utilizes

two networks to learn the value function and the policy separately.

4.2.2 Environment and Configuration

We have used the same environment from the previous section to evaluate the above men-

tioned reinforcement learning algorithms. For DQN, we have used a single neural network

layer as a function approximator. For DDQN, we have used the same configuration from the

previous experiment. For A3C, we used an open-source implementation [29]. In particular,

we modified the state representation as described in the previous experiment.

4.2.3 Evaluation
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Figure 4.2: Comparison of different RL algorithms training on the same task.
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Algorithm Total Episodes for training
DQN 2082
DDQN 2241
A3C 3548

Table 4.3: Total number of episode runs for training

We trained the three agents for 8 hours and saved the model after every 15 mins. Each

episode was capped at 5000 mutations, and every agent starts a new episode with a new

random string. For testing, we generated 30 random strings of different length. We tested

each saved model against the test set of strings. Each experiment ran for 5 times, and the

average is plotted and shown in figure 4.2.

From this simple experiment, we observe that not all agents based on reinforcement learn-

ing algorithms can learn the appropriate mutation strategy. The first agent, based on Deep

Q-Network (DQN), is not able to perform consistently over time. In our environment, the

rewards are stochastic, i.e., applying the same mutation on the same state may result in dif-

ferent rewards. As the agent is highly sensitive to these rewards, getting negative rewards

for the same actions that previously gave positive rewards destabilizes the algorithm. Our

experiment confirms this drawback.

The second agent, based in Double Duelling Deep Q-Network (DDQN), is performing

consistently. It has learned the appropriate mutation strategy, and unlike DQN based agent,

it is not highly sensitive to immediate rewards. We credit the stability of the algorithm to the

use of experience replay during the training phase. Experience replay is used to soften the

sensitiveness of the agent towards immediate rewards.

The third agent, based on Asynchronous Advantage Actor-Critic Network (A3C), is not

able to perform better than DDQN based agent. Although A3C is known to perform better

than the DDQN in a variety of tasks, it was not able to perform any better than the random

agent. Like DDQN, due to the employment of experience replay during the training phase,

the network was stable.

Lesson Learned

• DDQN based agent outperforms both DQN and A3C based agents.
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4.3 Synthetic Benchmarks
In this section, we evaluate our approach with the three reward functions, as described

in section 3.4.3 on some synthetic programs. We choose to first test our approach on some

small and simple programs to validate the feasibility of our approach. In each example, we

train three agents, each based on one such reward function, and compare its performance

with AFL and AFLGo. The three agents are labeled as Average, Minimum, and Hit Count

corresponding to each reward function as described in 3.4.3. Since our aim is to reduce the

number of mutations applied to reach the target location, we use it as a performance metric.

We also compare the time taken by each agent to reach the target location.

4.3.1 Experimental Configuration and Plot

In each experiment, the fuzzer starts with an empty string as the seed input. We use

DDQN as the choice of algorithm for training the agent. We used the same configuration

as used in 4.1.2 for state representation. As the input to the program varies in length, we

capped the length of the program input in each case which is mentioned in each test case.

We trained each agent for 16 hours and saved the model every 1 hour. For testing, we used

the last saved model.

Each experiment was repeated 10 times for statistical significance. Performance of each

agent is plotted in the standard box-and-whiskers plot. Each box is bounded by the 1st and

3rd quartile values. The centre line in each box shows the median value. The lines extending

from box on each side show the minimum and maximum values. Any outlier is shown as a

dot outside the range of the whiskers.

4.3.2 Program - 1: Consecutive same characters

1 #include <s t d i o . h>
2 #include <s t r i n g . h>
3 #include <a s s e r t . h>
4
5 in t main ( in t argc , char ∗argv [ ] )
6 {
7 char s t r [30] ;
8
9 scan f ( ”%30s ” , s t r ) ;

10 s t r [29] = ’ \0 ’ ;
11
12 i f ( s t r [0] == ’A ’ )
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13 i f ( s t r [1] == ’A ’ )
14 i f ( s t r [2] == ’A ’ )
15 i f ( s t r [3] == ’A ’ )
16 i f ( s t r [4] == ’A ’ )
17 i f ( s t r [5] == ’A ’ )
18 i f ( s t r [6] == ’A ’ )
19 i f ( s t r [7] == ’A ’ )
20 i f ( s t r [8] == ’A ’ )
21 i f ( s t r [9] == ’A ’ )
22 i f ( s t r [10] == ’A ’ )
23 i f ( s t r [11] == ’A ’ )
24 i f ( s t r [12] == ’A ’ )
25 i f ( s t r [13] == ’A ’ )
26 i f ( s t r [14] == ’A ’ )
27 i f ( s t r [15] == ’A ’ )
28 i f ( s t r [16] == ’A ’ )
29 i f ( s t r [17] == ’A ’ )
30 i f ( s t r [18] == ’A ’ )
31 i f ( s t r [19] == ’A ’ )
32 i f ( s t r [20] == ’A ’ )
33 i f ( s t r [21] == ’A ’ )
34 i f ( s t r [22] == ’A ’ )
35 i f ( s t r [23] == ’A ’ )
36 i f ( s t r [24] == ’A ’ )
37 i f ( s t r [25] == ’A ’ )
38 i f ( s t r [26] == ’A ’ )
39 i f ( s t r [27] == ’A ’ )
40 i f ( s t r [28] == ’A ’ ){
41 a s s e r t ( s t r [2] == ’B ’ ) ;
42 }
43 return 0;
44 }

We start with a very simple program that accepts a string from the user and checks if the

input string starts with 29 consecutive ‘A’ and aborts the program if it is the case. In this

example, as the fuzzer finds an input that reaches closer to the target location, the mutation

involving overwriting bytes should be preferred over any other mutation. Our agent should

be able to learn this fact from experience and should be able to reach the target location in a

fewer number of mutations. The target location in this program is line 41 and the program

input length is capped at 32 bytes.

Figure 4.3 shows the number of mutations, and figure 4.4 shows the time taken by each
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fuzzer to find an input that reaches the target location. All the agents were able to find the

crashing input in fewer mutations than the baseline. On average, our approach reduced the

number of mutations by a factor of 2.8x w.r.t. AFL and 1.3x w.r.t. AFLGo. However, in terms

of time taken, our approach was 2-3x slower than AFL and 4-5x slower than AFLGo to reach

the target location. The fuzzer had to wait for the agent’s response before each mutation,

and as a result, it got slowed down.
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Figure 4.3: Program-1: Mutations applied by each agent to reach the target location.
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Figure 4.4: Program-1: Time taken by each agent to find an input that reaches the target
location

4.3.3 Program - 2: Arithmetic operations

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <errno . h>
4 #include <a s s e r t . h>
5
6 long in t c o n v e r t t o i n t ( char ∗ s )
7 {
8 long in t i = s t r t o l ( s , NULL , 10) ;
9 i f ( errno == ERANGE | | i == 0)

10 return −1;
11 return i ;
12 }
13
14 in t main ()
15 {
16 char ∗ s t r = ( char ∗) malloc (11) ;
17 scan f ( ”%10s ” , s t r ) ;
18 s t r [10] = ’ \0 ’ ;
19 i f ( s t r [0] == ’ f ’ )
20 i f ( s t r [1] == ’ u ’ )
21 i f ( s t r [2] == ’ z ’ )
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22 i f ( s t r [3] == ’ z ’ )
23 {
24 long in t r = c o n v e r t t o i n t ( s t r +4) ;
25 i f ( r != −1 )
26 i f ( r % 25 == 0)
27 a s s e r t ( r%25 == 1) ;
28 }
29 return 0;
30 }

In the next example, we introduce arithmetic operations in the program. Unlike the previ-

ous example, there is no clear choice of mutation for all inputs, thus making the agent’s task

arduous. The program accepts a string from the user and crashes if the string starts with the

literal “fuzz” followed by an integer that is a multiple of 25. The program input was capped

at 16 bytes.

Figure 4.5 shows the number of mutations, and figure 4.6 shows the time taken by each

fuzzer to find an input that reaches the target location. In this example, only one agent

(Hit Count) was able to match the performance with both the baseline fuzzers. It also has

low variance compared to both AFL and AFLGo. However, it was 3.8x and 5.2x slower than

AFL and AFLGo, respectively, to reach the target location. The other two agents, based on

Average and Minimum distance, performed worse than the baselines both in terms of the

number of mutations and time taken to reach the target location. This experiment shows that

the agent’s performance is highly dependent on the choice of reward function.
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Figure 4.5: Program-2: Mutations applied by each agent to reach the target location
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Figure 4.6: Program-2: Time taken by each agent to find an input that reaches the target
location

4.3.4 Program - 3: Buffer Overflow

1 #include <s t d i o . h>
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2 #include <a s s e r t . h>
3 #include <s t r i n g . h>
4
5 in t main( in t argc , char ∗∗ argv )
6 {
7 FILE ∗ fp ;
8 char l i n e [40] , s t r [20] ;
9 in t read , len =40;

10 fp = fopen ( argv [1] , ” r ” ) ;
11
12 while ( f g e t s ( l ine , len , fp ) != NULL) {
13 i f ( l i n e [0] == ’# ’ )
14 continue ;
15 s t r c p y ( s t r , l i n e ) ;
16 break ;
17 }
18 i f ( s t r [0] == ’ f ’ )
19 i f ( s t r [1] == ’ u ’ )
20 i f ( s t r [2] == ’ z ’ )
21 i f ( s t r [3] == ’ z ’ )
22 i f ( s t e l e n ( s t r ) > 20)
23 a s s e r t ( s t r l e n ( s t r ) < 20) ;
24 return 0;
25 }

In this example, the program takes a filename as an argument, opens the file and reads

it line by line. It copies the content of the first line to the string buffer name. The program

ignores any line that starts with ‘#’. If the first valid line starts with “fuzz” and contains more

than 20 characters, it fails the assertion at line 23. We set our target location at line 23 to

find such strings and the file length was capped at 64 bytes.

From figures 4.7 and 4.8, we observe that AFL surprisingly outperformed all other fuzzers

both in the number of mutations and time taken to reach the target location. It is contrary to

our expectations as AFL is not “directed” towards the target location. However, our approach

outperforms AFLGo, a directed fuzzer based on AFL, in terms of the number of mutations

performed; but lags in the time it took to reach the target location. This example shows that

fine-tuned heuristics are not always effective, and a data-driven approach can be useful.
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Figure 4.7: Program-3: Mutations applied by each agent to reach the target location
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Figure 4.8: Program-3: Time taken by each agent to find an input that reaches the target
location

4.3.5 Program - 4: Function Calls

1 #include <s t d i o . h>
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2 #include <a s s e r t . h>
3 #include <s t r i n g . h>
4
5 in t c a l c u l a t e h a l f ( char ∗ s t r , in t n)
6 {
7 in t sum = 0;
8 for ( in t i = 0; i < n ; i++)
9 {

10 sum += s t r [ i ] ;
11 }
12 return sum;
13 }
14
15 in t check pal indrome ( char ∗ src , char ∗ dest , in t n)
16 {
17 i f ( strncmp ( src , dest , n) == 0)
18 return −2;
19 for ( in t i = 0; i < n ; i++)
20 {
21 i f ( s r c [ i ] != des t [n−i −1])
22 return −1;
23 }
24 return 0;
25 }
26
27 in t c a l c u l a t e ( char ∗ s t r , in t n)
28 {
29 i f (n < 10)
30 return −1;
31 in t v1 , v2 ;
32 v1 = v2 = 0;
33 v1 = c a l c u l a t e h a l f ( s t r , n/2) ;
34 i f ( v1 % 50 == 0)
35 v2 = c a l c u l a t e h a l f ( s t r + n/2 , n/2) ;
36 i f ( v1 == v2 )
37 return check pal indrome ( s t r , s t r + n/2 , n/2) ;
38 else
39 return v1 − v2 ;
40 }
41
42 in t main ()
43 {
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44 char s t r [30] ;
45 scan f ( ”%30s ” , s t r ) ;
46 i f ( ! ( s t r [0] >= ’ a ’ && s t r [0] <= ’ z ’ ) | | s t r l e n ( s t r )%2 == 1)
47 return 0;
48
49 in t r = c a l c u l a t e ( s t r , s t r l e n ( s t r ) ) ;
50 a s s e r t ( r == 1) ;
51 return 0;
52 }

In the final synthetic example, we added more functions and constraints in the program.

Here, the program takes a string from the user and checks if the input string is palindrome of

even length. There are some prerequisites for the string that it needs to satisfy (line 51, 32,

37, and 41). The program crashes if it passes all the prerequisites and is also a palindrome.

The target location for this program is set at line 56 and the input was capped at 32 bytes.

From the figure 4.9, we observe that the baseline fuzzers outperformed our apporach.

Although the agent based on the minimum distance reward function performed better than

the other two agents, it failed even to match the performance of AFL. Figure 4.10, which

compares the time taken by each fuzzer, shows similar trends from the previous experiments.
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Figure 4.9: Program-4: Mutations applied by each agent to reach the target location
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Figure 4.10: Program-4: Time taken by each agent to find an input that reaches the target
location

Lessons Learned

• Agents are able to learn simple tasks but have mixed results in complex tasks.

• Agent’s performance is heavily dependent on the reward function used.

• No one technique is the clear winner in all cases.

4.4 Real World Programs
We tried our approach on two real-world programs, namely libxml2, an XML parsing tool,

and binutils, a binutils a collection of tools for creating and managing program binaries. Both

these programs are reasonably large, with libxml2 having more than 240k lines of code, and

binutils has close to 1 million lines of code 1.

In libxml2, we selected a patch (commit id: ef709ce2 2). This commit fixes a bug 3

introduced by a patch for a fix of an earlier bug 4. The first modified line in the patch was set

as the target location for the fuzzer. The seed input for the fuzzer was a small, well-formed

XML file. The length of the program input was capped at 4 kilobytes.

1calculated using Cloc, https://github.com/AlDanial/cloc
2https://gitlab.gnome.org/GNOME/libxml2/commit/ef709ce2
3https://bugzilla.gnome.org/show bug.cgi?id=737840
4https://bugzilla.gnome.org/show bug.cgi?id=724903
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In binutils, we selected three vulnerabilities for testing. Each of these vulnerability has

been assigned a CVE-ID and is listed in table 4.4 with its type. In each test, the target location

for the fuzzer was set to the point of the crash. The fuzzer was seeded with an empty file,

and the length of the program input was capped at 512 bytes.

CVE-ID Type of vulnerability

CVE-2016-4487 Invalid Write

CVE-2016-4488 Invalid Write

CVE-2016-4490 Write Access Violation

Table 4.4: List of vulnerabilities in binutils tested and its type.

We trained three agents, each based on a different reward function, as described in section

3.4.3. We have used DDQN algorithm to train each agent, and the configuration of the

network has been kept unchanged from the last section. Each agent trained for 48 hours.

During testing, we ran each experiment 5 times with a timeout of 6 hours.

To our surprise, none of the agents were able to find an input that reached the target loca-

tion within the stipulated time. None of the agents were able to learn an effective mutation

strategy from the experiences. We have listed some of the possible reasons for this failure in

chapter 6.
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Chapter 5

Related Work

In this chapter, we discuss some of the popular techniques used for directed testing and

how it differs from our approach. Later in the chapter, we analyze some machine learning

based techniques that are used for program testing.

5.1 Symbolic Execution Based Approaches
Symbolic execution is the choice of technique for directed testing. The underlying idea

in symbolic execution is to infer a logical formula representing the program execution. For

directed testing, tools based on symbolic execution often leverage concrete executions. We

discuss some of the influential works in this area.

1. Directed Symbolic Execution - This work [1] studied the problem of directed test-

ing as a line reachability problem. Given a target line in the program, it tries to

find an input which reaches that program point. It has proposed and evaluated three

different strategies for directed symbolic execution. The first one is the shortest −
distance symbolic execution (SDSE). It uses the distance from the interprocedural con-

trol flow graph to guide the symbolic execution in a top-down approach. The second

one is the call − chain − backward symbolic execution (CCBSE). In this technique, the

tool starts from the target line and move backward to reach the start of the program.

This technique doesn’t scale well, so a third technique, mixed−strategy CCBSE (Mix-

CCBSE) is introduced. Here, the CCBSE technique is used alternately with a separate

forward strategy like KLEE[30]. The results show that the SDSE strategy works well in

most cases, but it fails to reach the target location for all the test programs. Overall the

Mix-CCBSE strategy was able to generate test cases reaching the target location in more

number of programs.
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2. KATCH - KATCH [2] attempts to test software patches using symbolic execution, aided

with several heuristics. It starts by taking a set of inputs to the program and selects the

one which is closest to the patch based on the interprocedural control flow graph. It

uses symbolic execution and iteratively modifies the chosen input to reach the patch.

Three heuristics, namely greedy exploration, informed path regeneration, and definition

switching, are used to aid symbolic execution. These heuristics are based on the control

and data dependencies of the program. Although KATCH increases patch coverage

significantly, it fails to reach a considerable amount of target locations in the program.

3. Driller - Driller [31] is a hybrid vulnerability excavation tool which tries to achieve

higher code coverage. It employs concolic execution and fuzzing in a complementary

manner to find bugs hidden deep in the program. It starts with a random fuzzer to

explore the paths in the program. Whenever the fuzzer gets stuck and is unable to find

new paths, the concolic execution engine kicks in and generates a new input which

can guide the fuzzer to the next “compartment”. Combining concolic execution with

fuzzing negates some of the limitations of any symbolic execution based tool. Despite

some limitations, it was able to find more vulnerabilities in the program, compared to

both concolic execution and random fuzzing.

Despite being the most popular technique, symbolic execution based tools have many limita-

tions. Path explosion, inability to scale to large programs, and dependencies on underlying

SMT theories, calls for better alternative solutions. Also, tools based on symbolic execution

have to employ heavyweight program analysis which requires a deep understanding of the

language semantics and underlying memory models. Our proposed approach, which is data

driven, doesn’t depend on such heavyweight program analysis. We apply lightweight instru-

mentation in the program to collect data about the flow of input data during program execu-

tion. This data is used by an RL agent to learn a better strategy and increase the efficiency of

the fuzzer.

5.2 Taint Tracing Based Approaches
Taint analysis is another choice of technique for directed testing. The goal of tools based

on taint analysis is to find bytes in the input to the program which influences the program

execution. It works on the belief that not all bytes of the input to the program have an equal

impact on the program execution path. For directed testing, taint analysis is often combined

with fuzzing techniques. Taint analysis library tells the fuzzer which input bytes are useful

and which are not. The fuzzer skips perturbing the bytes that do not affect the program
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execution.

BuzzFuzz [32] uses dynamic taint tracing to find the significant bytes in the program

input automatically. It records the input bytes influencing each computation in the program.

BuzzFuzz inserts call to its taint tracing library at appropriate locations in the program to

record this information. A random fuzzer uses this information to mutate only the influential

bytes as provided by the BuzzFuzz library. Although BuzzFuzz was able to reach deeper in

the program, it was unable to find bugs in the program. The performance overhead of the

taint tracing library, a 20-30 times slowdown, neutralizes its efficiency to find bugs.

5.3 Heuristics Based Approaches
Here we discuss some of the recent works in the area of directed testing where fine-tuned

heuristics were employed to existing techniques to achieve their goal.

1. VUzzer - VUzzer [33] is coverage based fuzzer and applies application-aware evolu-

tionary fuzzing strategy. It combines various data flow and control flow features to aid

the fuzzer. It also employs dynamic taint analysis to capture common characteristics of

valid inputs, such as magic bytes, and error handling code. These heuristics helps the

fuzzer to find bugs quicker than the baseline fuzzer. Although applying such lightweight

techniques to aid the fuzzer results in increased performance, we still need to find the

best-performing heuristics. Alternatively, a data-driven approach doesn’t require such

fine tuning as it can learn from past experiences.

2. AFLGo - AFLGo [12] is a directed greybox fuzzer based on the popular tool AFL [4].

AFLGo casts reachability as an optimization problem. The objective of the fuzzer is to

decide the scheduling time of each seed input based on its seed distance. A seed distance

for a program input is defined as a harmonic mean of the distances of each basic block

from the target basic block. Here the distance is computed from the interprocedural

control flow graph of the program. It employs simulated annealing as a meta-heuristic
to solve the power scheduling of the seed inputs. AFLGo was able to reach the target

location in the program most of the time, but it failed to do so in a consistent manner.

Due to the random nature of fuzzing tools, it is tough to evaluate and compare these

tools empirically. Also, tools like these require us to continually look out for better

heuristics which can outperform the current one.

3. Angora - Angora [7] is coverage based fuzzer and doesn’t explicitly perform directed

testing. It tries to solve path constraints, as generated by any symbolic execution based
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tool, without using symbolic execution. It uses techniques like context-sensitive branch

coverage, and byte-level taint tracking to explore the program and generate path con-

straints. It adopts gradient descent algorithm, which is a prominent technique in many

machine learning algorithms, to solve these path constraints, Also, to increase the effi-

ciency of gradient descent algorithm, it tries to infer the type and shape of bytes in the

program input. It was able to increase code coverage substantially and find more bugs

in the various benchmarks, as compared to AFL [4].

4. Hawkeye - Hawkeye [13] is a directed grey-box fuzzer. It builds on top of techniques

used in AFLGo [12] by adding several heuristics and additional program information. It

strives to achieve a balance between limitations and benefits in static and dynamic anal-

yses. To reach the target location quickly, it employs heuristics like power scheduling,

adaptive mutation strategy, and seed prioritization. Although it was able to reach the

target location quicker than ALFGo, it still suffers from the same limitations of AFLGo,

i.e., to find the right mix of heuristics to employ for best performance. Our approach,

on the other hand, is data-driven and doesn’t require much external fine-tuning.

5.4 Machine Learning Based Approaches
In recent years, machine learning, and its application in various areas have garnered

much attention. People have tried to apply machine learning techniques for program testing

purposes also. We discuss some of the relevant works in this area.

1. Learn&Fuzz - Learn&Fuzz [14] is one of the earliest works which applies machine

learning for input fuzzing. This work explores the possibility of learning the program-

input grammar from sample inputs. Blind or random fuzzing suffer from the problem

of generating useless inputs which almost always fail to pass the initial checks. The

random fuzzer doesn’t know about the grammar of the program input and often mutates

parts of the input which leads to malformed input to the program. Learn&Fuzz also

learns which parts of the input, if mutated, are more likely to generate useful test cases.

Although there is a conflict between the learner and the fuzzer, as the learner wants

to keep the structure valid and the fuzzer wants to break that structure to find bugs, it

was still able to learn the structure of PDF inputs. This work shows that a data-driven

approach is also useful for fuzzing purposes.

2. Not all bytes are equal - This work [34] explores the possibility of finding the optimal

locations in the program input to mutate. It starts by gathering data generated by a
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grey-box fuzzer like AFL [4]. This data is then used by a neural network architecture

to learn a function that can predict these optimal locations. It works on the bit-level

and generates a heat-map of the input bits. The fuzzer uses this heat-map to make

informed choices in selecting the location of the next mutation. Architectures like LSTM

(Long Short Term Memory), [35] and sequence-to-sequence with attention [36] were

evaluated. Overall, the LSTM architecture was found to be most effective among all

others in increasing code coverage over the baseline AFL across a variety of programs.

3. NEUZZv1 - NEUZZv1 [15] seeks to learn a neural program which approximates the

actual program under test. Based on the learned neural program, it tries to find a muta-

tion strategy that maximizes code coverage. To learn this neural program, it learns the

association between the control flow edges and the program input bytes. Convolution

Neural Networks (CNN), a prominent architecture to learn associations, are used for

this purpose. The result shows huge improvements both in terms of code coverage and

finding new bugs in the program.

4. NEUZZv2 - NEUZZv2 [37] improved upon the work of NEUZZv1. It moved to a sim-

pler Neural Network architecture and introduced neural program smoothing. The idea

is to learn a “smooth” version of the neural program that helps the optimization algo-

rithms. It was able to find more bugs and increase code coverage in target programs as

compared to the existing state of the art fuzzers.

5. Deep Reinforcement Fuzzing - This work [38] tries to adopt reinforcement learning

for fuzzing purposes. It formalizes input fuzzing as a Markov decision process [39].

Based on past experiences, it learns an efficient mutation strategy to increase code

coverage. It encodes a fixed length sub-string of the program input as a state for the

agent, and the set of mutations are the set of possible actions for the agent. The agent

receives either a reward or a penalty based on the coverage and/or execution time

information. Results indicate that the agent was able to learn the task and improved

upon the baseline random fuzzer.

6. FuzzerGym - FuzzerGym [40] also applied reinforcement learning to optimize mutation

operators for efficient fuzzing. It encodes the whole program input in the form of a bit

sequence as a state for the agent. For rewards, it uses a simple metric of line coverage,

i.e., if the mutation were able to increase the line coverage, it would reward the agent;

otherwise, it would penalize it. With 8 hours of training time, it was able to outperform

the baseline fuzzer, which shows that it is possible to learn effective mutation strategies.
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7. Adaptive Grey-Box Fuzz Testing with Thompson Sampling - This work [41] attempts

to improve the mutation-selection strategy to increase the efficiency of the fuzzer. It

casts the selection of a mutation operator as pulling an arm in a multi-armed bandit

problem. It uses Thompson sampling [26] to adaptively learn a distribution over the

mutation operators. The results show that there were significant improvements in the

fuzzer performance.

All the works mentioned above are coverage oriented and not directed towards a particu-

lar location. It shows that machine learning can help to increase code coverage and find bugs.

It also shows that data-driven approaches can be effective for a variety of learning tasks rang-

ing from learning the program input grammar to finding efficient mutation strategies. Our

work builds on top of these observations and tries to find an efficient mutation strategy for

directed testing.
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Chapter 6

Conclusion and Future Work

This thesis presents a data-driven approach for directed fuzz testing. The key insight of

the thesis is to leverage the data generated by fuzz testing tools to create a better mutation

strategy. We use reinforcement learning to train an agent for this purpose. Our experiments

show that for simple programs, the agent can learn a better mutation strategy based on the

given program input. However, for complex programs, it is not able to perform better than a

random strategy and often fails to reach the target location.

We detail some of the reasons that we suspect contributed to the failure of our approach.

First, any agent trying to learn from experiences need a lot of positive rewards for training.

Most of the mutated program inputs fail basic sanity checks and result in fewer positive

rewards. For example, in libxml2, the mutations resulting in positive rewards constitute only

2-5% of all mutations. The agent was not able to gain any information from the very few

positive rewards.

Second, the reward metrics did not convey enough information about the environment to

the agent. RL agents are sensitive to reward functions and should be selected carefully. We

had tested our approach with three different reward functions, and it is not an exhaustive list

by any means. In some experiments, we see that one of the agents is performing better than

others. We intend to explore it further with a variety of reward functions that provide more

information about the environment.

Third, the state was not well represented. For our experiments, we selected the sequence

of bytes of the program input to represent the state. Although the agents are not very sensitive

to the state representation like reward functions, more informative representation of state

could have helped.

Fourth, the agent had very less control over the decision making. In our approach, the

agent only had control over the mutation to be applied. However, the fuzzer was free to
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choose the location of the mutation. So even if our agent responded with an appropriate

mutation, applying it at a different position could result in negative or nil rewards.

Although our proposed approach was not able to perform as good as the state-of-the-art

fuzzers, we learned some valuable lessons. We hope that this thesis acts as a stepping stone

for anyone seeking to use a data-driven approach for directed fuzzing.

Future Work
We have identified some of the shortcomings in our approach and intend to follow up on

it. Some of the areas that can be looked upon are:

• Reward Functions: As the agents are very sensitive to the reward function, one can

explore more reward functions that provide more information about the state of the

environment.

• State Representation: A simple byte sequence can be combined with more information

about the program. This information can be obtained from the program execution, e.g.,

function call sequence, complete trace, call stack.

• Combining States: Presently, every program input is a different state for the agent.

However, many program inputs take the same execution path and can be combined to

form a single state.
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