
Regulating Smart Devices

in Restricted Spaces

Vinod Ganapathy

vinodg@cs.rutgers.edu

Associate Professor of Computer Science

Rutgers, The State University of New Jersey

Appears in Proc. ACM MobiSys’16

Devices are everywhere!

2

Number of devices is increasing

• Predicted 1.2 billion new smart phones by 2018

• Predicted 50% device use increase year over year
in enterprise sector until 2018 [Gartner 2014]

3

Devices are increasingly capable

Model CPU

(GHz)

Screen

(1000x)

Rear

camera

Front

camera

Battery

(mAh)

Sensors other than

Camera/Microphone

iPhone 0.4 153 2MP - 1,400 3
(light, accelerometer,

proximity)

iPhone3 0.6 153 3MP - 1,150 4
(+= compass)

iPhone4 0.8 614 5MP 0.3MP 1,420 6
(+= gyroscope, infrared)

iPhone5 1.3
(2 core)

727 8MP 1.2MP 1,560 7
(+=fingerprint)

iPhone6 2.0
(2 core)

1000 12MP 5.0MP 1,715 8
(+= barometer)

4

With great power …

5

… comes great responsibility

How can devices be misused?

1. Malicious end-users can leverage

sensors to exfiltrate or infiltrate

unauthorized data

2. Malicious apps on devices can achieve

similar goals even if end-user is benign

6

Government or corporate office

• Problem: Sensitive documents and

meetings can be ex-filtrated using the

camera, microphone and storage media

• Current solution: Physical security scans,

device isolation

7

Faraday

cages

Challenge: Bring your own device

8

Classroom and exam setting

9

Classroom and exam setting
• Problem: Personal devices can be used

to infiltrate unauthorized information

10

[Financial Crypto 2014][NY Times July 2012]

Classroom and exam setting

• Current solution: Deterrence via rules and

threats. Invigilation to ensure compliance

11

Challenge: Assistive devices

• Students may wish to use devices for

legitimate reasons:

– Smart glass or contacts for vision correction

– Bluetooth-enabled hearing aids

– Smart watches to monitor time

12

Other social settings

• Restaurants, conferences, gym locker

rooms, private homes, …

• Problems:

– Recording private conversations

– Pictures of individuals taken and posted to

social networks without their consent

– Pictures and videos of otherwise private

locations, e.g., private homes

13

Other social settings
• Current solutions: Informal enforcement

• Challenge: Social isolation 

14

“For the first time ever this place,

Feast, in NYC just asked that I

remove Google Glass because

customers have complained of

privacy concerns […] I left”

 Early example of

sensory malware
[CCS 2011]

• Use accelerometer

and record keystroke

press vibrations

• Up to 80% accuracy

in word recovery

Malicious apps exploiting sensors

15

Sensory malware

Malicious apps exploiting sensors

16

• Attacks have now been demonstrated
using every imaginable sensor

• Attack accuracy will improve with each
generation of devices and sensors

[NDSS 2011]
[NDSS 2013]

[USENIX Security 2014]

Sensory malware

17

Claim

Smart devices will become integrated

with daily lives  Ad hoc solutions,

e.g., banning device use, will no longer

be acceptable

Vision
Need systematic methods to regulate

devices and ensure responsible use

Discussion: Only considering overt device use. Covert use detection still requires traditional

physical security measures.

What solutions exist today?

18

Mobile device management (MDM) solutions

Mobile device management

• Solution for enterprises that offer Bring
your own device (BYOD) models

• Employees are given a mobile device
outfitted with a secure software stack

• Enterprise policies “pushed” to device
when employee changes device persona

19

Mobile device management

• Solution for enterprises that offer Bring
your own device (BYOD) models

• Employees are given a mobile device
outfitted with a secure software stack

• Enterprise policies “pushed” to device
when employee changes device persona

20

Main shortcoming of current MDM solutions

 Enterprise must trust software stack on guest

device to enforce policies correctly

 But guest devices under control of possibly

malicious end-users

Contributions of our work

• Restricted space: Location owned by a
host, where guest devices must follow
the host’s usage policies

• Enable guest devices to prove policy
compliance to restricted space hosts

• Use a simple, low-level API that reduces
size of trusted computing base on guest
devices

21

Key technical challenges

1. Guest devices are under the control of possibly

malicious end-user

 Solution: Use trusted hardware on guest device

2. What constitutes proof of compliance?

 Solution: Send guest device configuration,

showing policy compliance, to host

3. Doesn’t that compromise guest device privacy?

 Solution: Allow guest to vet all communication to

and from the host

22

Threat model

• Trusted hardware on guest devices:

– Guest devices equipped with ARM TrustZone

• Hosts and guests are mutually-distrusting:

– Hosts do not trust end-user of guest device or its
end-user software stack

– Guests do not trust host’s reconfiguration requests
to ensure policy compliance

• Guest devices are used overtly:

– Host must still use traditional physical methods to
detect covert device use

23

Guest device check-in

24

Restricted spacePublic space

Guest device check-in

25

Restricted spacePublic space

Mutual authentication

26

Restricted space

Host’s policy server

Mutual

authentication

1

Host requests guest analysis

27

Restricted space

Host’s policy server

Request device

memory

2

Addr1, Addr2, Addr3, …

Guest vets host’s request

28

Restricted space

Host’s policy server

Request device

memory

2

Guest’s

vetting

service

Forward host’s

request

Addr1, Addr2, Addr3, …

Addr1, Addr2, Addr3, …

Guest vets host’s request

29

Restricted space

Host’s policy server

2

Guest’s

vetting

service

or

Host analyzes guest device

30

Restricted space

Host’s policy server

Send device

memory

2

Guest’s

vetting

service

Addr1, Addr2, Addr3, …

Host pushes policy to guest

31

Restricted space

Host’s policy server

Send memory

updates

3

Guest’s

vetting

service

Guest vets host’s updates

32

Restricted space

Host’s policy server

Send memory

updates

3

Guest’s

vetting

service

Forward host’s

requested updates

Guest applies host’s updates

33

Restricted space

Host’s policy server

3

Guest’s

vetting

service

Apply

memory

updates

Host requests proof

34

Restricted space

Host’s policy server

Request proof of

policy compliance

4

Guest’s

vetting

service

Guest sends proof

35

Restricted space

Host’s policy server

4

Verification token

Guest’s

vetting

service

Guest device check-out

36

Restricted spacePublic space

Revert changes

Operational details

1. How can host trust guest to apply policy?

 Answer: Leverage ARM TrustZone

2. Why memory snapshots and updates?

 Answer: Powerful low-level API. Reduces TCB

3. How does vetting service ensure safety?

 Answer: Simple, conservative program analysis

4. Can’t guest device simply reboot to undo?

 Answer: REM-suspend protocol

37

The ARM TrustZone

38

Guest device

Normal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

Secure world

(Protected by H/W)

Secure boot protects secure world

39

Secure worldNormal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

Secure boot

Secure world stores keys

40

Secure worldNormal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

Secure boot

PubKeyG, PrivKeyG

Memory is partitioned

41

Secure worldNormal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

Secure boot

PubKeyG, PrivKeyG

Memory is partitioned

42

Secure worldNormal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

Secure boot

PubKeyG, PrivKeyG

We enhance the secure world

43

Secure world

(booted securely)

Normal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

Authentication

NW analysis

NW updates

Verif. tokens

1

2

3

4

Goal

Establish shared session

key ks between

host and guest

Mutual authentication

44

Secure world

ARM TrustZone

Secure-world memory

1

Host’s policy server

ks

ks

Establishing session key

45

1 ks
Simplified TLS/SSL handshake

• Host’s keypair: PubKeyH, PrivKeyH

• Guest’s keypair: PubKeyG, PrivKeyG

1. Guest  Host: Exchange/verify public keys

2. Host  Guest: EncPubKeyG(ks)+ SignaturePrivKeyH

3. Guest (secure world): Verify host signature,

decrypt message and obtain ks

Guest device analysis

46

Restricted space

Host’s policy server

2

Request device

memory

Addr1, Addr2, Addr3, …

Send device

memory

Addr1, Addr2, Addr3, …

ks

ks

SW reads NW memory

47

Secure worldNormal world

(Untrusted)

Normal-world memory

ARM TrustZone

Secure-world memory

ks

2

Analysis of NW memory snapshot

48

ks

Host’s policy server

ks

• Infer what peripherals are installed, and
where in memory their drivers are installed

• Detect guest device for malware infection,
including kernel-level rootkits

[Baliga, Ganapathy, Iftode, ACSAC’08, TDSC’11]

Guest device

2

Why look for NW rootkits?

49

Secure worldNormal world

(Untrusted)

ARM TrustZone

Secure-world memory

ks

Normal

world OS

2

Secure world

applies updates

Rootkit

Why look for NW rootkits?

50

Secure worldNormal world

(Untrusted)

ARM TrustZone

Secure-world memory

ks

Normal

world OS

Rootkit

undoes

host’s

changes

2

Rootkit

Analysis of NW memory snapshot

51

Host’s policy server

Recursive traversal of memory data structures

Root symbols &

kernel entry points

Data

invariants
Code

whitelist

Code

pages

Code

pages

Data

structs

Data

structs

??

2

Vetting host’s requests

52

• Vetting server ensures that host’s requests

do not compromise guest privacy

• Vetting policy: Host only allowed to

request guest device’s kernel memory

Guest device Guest’s vetting service

or

2

Guest device update

53

Restricted space

Host’s policy server

Memory

updates

3

SW updates NW memory

54

Secure worldNormal world

(Untrusted)

ARM TrustZone

Secure-world memory

ks

3

• Device drivers in normal world control

execution of device peripherals

Updating peripheral drivers

55

OS Kernel

Peripheral interface

Device driver

3

• Introduce dummy driver to control peripheral

(e.g., disable it). Update kernel driver hooks.

OS Kernel

Peripheral interface

Dummy driver Original driver

Updating peripheral drivers

56

3

Are driver updates effective?

57

3

Peripheral

considered

Update size

(bytes)

Guest

device

Peripheral

disabled?

USB webcam 302 i.MX53

Camera 212 Nexus phone

WiFi 338 Nexus phone

3G (Data) 252 Nexus phone

3G (Voice) 224 Nexus phone

Microphone 184 Nexus phone

Bluetooth 132 Nexus phone

Vetting host’s updates

58

• An untrusted host can introduce new code
into guest devices

• Vetting policy: Ensure that dummy
drivers are a subset of the original drivers

– Via ARM-binary analysis on

Guest device Guest’s vetting service

or

3

Proof of compliance

59

Restricted space

Host’s policy server

4

Verification token

Request proof of

policy compliance

• Host requests proof of compliance

• Secure world computes a fresh snapshot of

all NW memory locations updated by host

• Verification token:

• Verification token matches if and only if

normal world memory still in compliance

with the host’s usage policy

Verification tokens

60

4

HMAC(,)ks

• Guest device can violate host’s usage

policies by simply rebooting to undo host’s

memory updates!

• Once device checked in, secure world must:

– Mediate all low-battery and power-off interrupts

– Checkpoint device memory to disk

– Upon power up, must restore device memory

from checkpoint

Memory updates are ephemeral

61

• Problem: Checkpoint stored on disk

– Readable by untrusted end-user

– But session key ks must not be stored in clear

– Otherwise, malicious end-user can use it to

impersonate guest’s trusted secure world!

• Solution: REM-suspend protocol

Device checkpoint

62

• ARM TrustZone equips each device with a

device-specific key KDEV

• The key KDEV is only accessible from the

secure world

• We use KDEV to encrypt ks in device

checkpoint

• When device is powered again, secure

world uses KDEV to decrypt and restore ks

REM-suspend

63

REM-suspend

64

Secure world

ARM TrustZone

ks KDEV
Guest

device

storage

ks

REM-suspend

65

Secure world

ARM TrustZone

ks KDEV
Guest

device

storage

ks

ks
KDEV

• Powerful, low-level API for device control

• Simplifies design of secure world (TCB) and

keeps it device-independent

Are memory updates the right API?

66

TCB component SLOC

Memory manager 1381

Authentication 1285

Memory ops., verification tokens 305

REM-suspend 609

SHA1 + HMAC 861

X509 877

RSA 2307

Do memory updates affect app stability?

67

Passive updates: Update memory and start the app

USB MobileWebCam ZOOM FX Retrica Candy Cam HD Cam Ultra

App Error Android Error App Error App Error Android Error

Camera Android Cam Camera MX ZOOM FX Droid HD Cam HD Cam Ultra

Android Error App Error App Error Android Error Android Error

WiFi Spotify Play Store YouTube Chrome Facebook

No Connection No Connection No Connection No Connection No Connection

3G (Data) Spotify Play Store YouTube Chrome Facebook

No Connection No Connection No Connection No Connection No Connection

3G (Voice) Default call application

Unable to place call

Micro-

phone

Audio rec Easy voice rec Smart voice rec Snd/voice rec Smart voice rec

App Error App Error App Error App Error App Error

Do memory updates affect app stability?

68

Active updates: Update memory with “live” app

USB MobileWebCam ZOOM FX Retrica Candy Cam HD Cam Ultra

App Error App Error App Error App Error App Error

Camera Android Cam Camera MX ZOOM FX Droid HD Cam HD Cam Ultra

Blank Screen App Error Android Error Blank Screen Blank Screen

WiFi Spotify Play Store YouTube Chrome Facebook

No Connection No Connection No Connection No Connection No Connection

3G (Data) Spotify Play Store YouTube Chrome Facebook

No Connection No Connection No Connection No Connection No Connection

3G (Voice) Default call application

Unable to place call

Micro-

phone

Audio rec Easy voice rec Smart voice rec Snd/voice rec Smart voice rec

Empty File Empty File Empty File Empty File Empty File

Related approaches

69

• Device virtualization:

– Heavyweight; probably not for all devices

– Still requires host to trust hypervisor on guest

• Mobile device management solutions:

– No proofs to host

– Device-dependent TCB on guest

• Context-based access control:

– Same shortcomings as MDM solutions above

Conclusion

70

• Low-level API allows hosts to analyze and

control guests

– Simplifies design and size of TCB

• Hosts can obtain proofs of guest compliance

– Relies on ARM TrustZone hardware

• Vetting service balances guest privacy with

host’s usage policies

A systematic method to regulate

devices and ensure responsible use

Other research projects…

• Improving cloud platform security
[ACSAC’08a, RAID’10, CCS’12a, SOCC’14]

• Operating system reliability and security
[ASPLOS’08, ACSAC’08b, ACSAC’09a, MobiSys’11, TDSC’11, TIFS’13]

• Hardware support for software and system security
[CCS’08, ECOOP’12a, TIFS’13, MobiSys’16, RU-DCS-TR724]

• Web application and Web browser security
[ACSAC’09b, ECOOP’12a, ECOOP’12b, ECOOP’14, FSE’14]

• Tools for cross-platform mobile app development
[ICSE’13, ASE’15]

• Retrofitting legacy software for security
[CCS’05, Oakland’06, ASPLOS’06, ICSE’07, CCS’08, CCS’12b]

• Validating security retrofitting transformations in
optimizing compilers

[Submitted] 71

Generic theme: Computer Systems Security

A big thank you to my students

72

Graduated PhDs

• Dr. Mohan Dhawan (IBM Research India)

• Dr. Saman Zarandioon (Amazon.com)

• Dr. Shakeel Butt (NVidia  now at Google)

• Dr. Liu Yang (HP Labs  now at Baidu)

• Dr. Rezwana Karim (Samsung Research America)

• Dr. Amruta Gokhale (Teradata)

Former Postdocs

• Dr. Arati Baliga (AT&T Security Labs)

Graduated MS students

• Jeffrey Bickford (AT&T Research)

• Yogesh Padmanaban (Microsoft)

Current PhD students

• Jay P. Lim, Hai Nguyen, Daeyoung Kim.

Email: vinodg@cs.rutgers.edu

URL: http://www.cs.rutgers.edu/~vinodg

