Chapter 8
Basic Cryptography

YORK: Then, York, be still awhile, til] time do serve:
Watch thou and wake when others be asleep.

To pry into the secrets of the state:

—The Second Part of King Henry the Sixth, 1, 1, 249-260.

Cryptography is a deep mathematical subject. Because this book focuses on system
security, we view cryptography as a supporting tool. Viewed in this context, the
reader needs only a brief overview of the major points of cryptography relevant to
that use. This chapter provides such an overview.

Cryptographic protocols provide a cornerstone for secure communication.
These protocols are built on ideas presented in this chapter and are discussed at
Iength later on.

8.1 What Is Cryptography?

The word cryptography comes from two Greek words meaning “secret writing” and
is the art and science of concealing meaning. Cryptanalysis is the breaking of codes.
The basic component of cryptography is a cryptosystem.

Definition 8-1. A cryprosystem is a 5-tuple (E. D, ‘M. I, C), where ‘M is
the set of plainrexts. K the set of kevs. Cis the set of ciphertexts, F- M x K
— Cis the set of enciphering functions, and D: C x K — M is the set of
deciphering functions.

EXAMPLE: The Caesar cipher is the widely known cipher in which letters are
shifted. For example. if the key is 3. the letter A becomes D, B becomes E. and so
forth. ending with Z becoming C. So the word “HELLO"™ is enciphered as
“KHOOR” Informally. this cipher is a cryptosystem with:

M = { all sequences of Roman letters ]
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K={ilian integer such that 0 <; < 251

L= {E ke Kand for ali e MOEm) = (m + k) mod 26 }

Representing each letter by its position in the alphabet (with A in position ().
“HELLO”is 74 11 11 14:if k= 3, the ciphertext is 107 14 14 I7. or “KHOOR

D=y Dy lke Kand for ali ¢ e C Dyr(c) = (26 +¢—k)mod 26 }

Each Dy simply inverts the corresponding £

C=M

because F is clearly a set of onto functions.

The goal of cryptography is to keep enciphered information secret. Assume
that an adversary wishes to break a ciphertext. Standard cryptographic practice is to
assume that she knows the algorithm used to encipher the plaintext, but not the spe-

cific cryptographic key (in other words. she knows 7D and T). She may use three
types of attacks:

L. Ina ciphertext only attack, the adversary has on]

to find the corresponding plaintext. if possible, sh
2. In a known plaintext attack, the adversary has the ciphertext and the
plaintext that was enciphered. Her goal is to find the key that was used.

In a chosen plaintext attack, the adversary may ask that specific plaintexts

be enciphered. She is given the corresponding ciphertexts. Her goal is to
find the key that was used.

y the ciphertext, Her goal is
€ may try to find the key. too.

2

A good Cryptosystem protects against al three types of attacks.

Attacks use both mathematics and statistics. The statistical methods make
assumptions about the statistics of the plaintext language and examine the ciphertext
to correlate its properties with those assumptions. Those assumptions are collectively
called a model of the language. Figure §— presents a character-based. or I-gram.
model of English text: others are 2-gram models (reflecting frequencies of pairs of
letters), Markov models, and word models. In what follows. we use the I-gram
model and assume that the characters are chosen independently of one another

8.2 Classical Cryptosystems

Classical cryptosystems (also ¢

alled single-key or syn
cryptosystems that use th

nunerric Ccryptosystems) are
¢ same key for encipherment

and decipherment. In these
a Dy e D such that Dp=E""

systems. forall £ € Candk e K. there i
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a 0.080 h  0.060 n 0.070 t 0.090
b 0.015 i 0.065 o 0.080 v 0.030
¢ 0.030 i 0.005 p 0.020 v 0.010
d 0.040 k  0.005 g 0.002 w  0.015
e 0.130 I 0.035 r 0.065 x 0.005
f  0.020 m 0.030 s 0.060 y 0.020
g 0.015 z 0.002

Figure 8-1 Table of character frequencies in the English language, from
Denning [242], Figure 2.3, p. 65.

EXAMPLE: The Caesar cipher discussed earlier had a key of 3, so the enciphering
function was E;. To decipher “KHOOR.” we used the same key in the decipherment
function Dj;. Hence, the Caesar cipher is a classical cipher.

There are two basic types of classical ciphers: transposition ciphers and sub-
Stitution ciphers.

8.2.1 Transposition Ciphers

A transposition cipher rearranges the characters in the plaintext to form the cipher-
text. The letters are not changed.

EXAMPLE: The rail fence cipher is composed by writing the plaintext in two rows,
proceeding down, then across, and reading the ciphertext across. then down. For
example, the plaintext “HELLO, WORLD” would be written as:

HLOOL
ELWRD

resulting in the ciphertext “HLOOLELWRD.”

Mathematically, the key to a transposition cipher is a permutation function.
Because the permutation does not alter the frequency of plaintext characters, a trans-
position cipher can be detected by comparing character frequencies with a model of
the language. If, for example, character frequencies for 1-grams match those of a
model of English, but 2-gram frequencies do not match the model. then the text is
probably a transposition cipher.

Attacking a transposition cipher requires rearrangement of the letters of the
ciphertext. This process, called anagramming, uses tables of n-gram frequencies to iden-
tify common n-grams. The cryptanalyst arranges the letters in such a way that the
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characters in the ciphertext form some 7-grams with highest frequency. This process is
repeated, using different n-grams, until the transposition pattern is found.

EXAMPLE: Consider the ciphertext “HLOOLELWRD.” According to a Konheim’s
digram table [527], the digram “HE” occurs with frequency 0.0305' in English. Of
the other possible digrams beginning with “H.” the frequency of “HO” is the next
highest, at 0.0043, and the digrams “HL.” “HW.” “HR.” and “HD” have frequencies
of less than 0.0010. Furthermore, the frequency of “WH” is 0.0026, and the digrams
“EH.” “LH.” “OH,” “RH,” and “DH” occur with frequencies of 0.0002 or less. This
suggests that “E” follows “H.” We arrange the Jetters so that each letter in the first
block of five letters (from “H” up to but not including the “E”) is adjacent to the cor-
responding letter in the second block of five letters, as follows.

HE
LL
ow
OR
LD

Reading the letters across and down produces “HELLOWORLD.” Note that the
shape of the arrangement is different from that in the previous example. However.
the two arrangements are equivalent, leading to the correct solution.

8.2.2  Substitution Ciphers

A substitution cipher changes characters in the plaintext to produce the ciphertext.
EXAMPLE: The Caesar cipher discussed earlier had a key of 3, altering each letter in
the plaintext by mapping it into the letter three characters later in the alphabet (and
circling back to the beginning of the alphabet if needed). This is a substitution cipher.

A Caesar cipher is susceptible to a statistical ciphertext-only attack.

EXAMPLE: Consider the ciphertext “KHOOR ZRUOG.” We first compute the fre-
quency of each letter in the ciphertext:

G 01 H 01 KOi O 03 R 02 U Ot Z 01

! This means that in Konheim’s sample, 3.05% of the digrams were “HE.”
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(i) o) i o) ()

0.0482 0.0442 13 0.0520 19 0.0315
0.0364 0.0202 14 0.0535 20 0.0302
0.0410 0.0267 15 0.0226 21 0.0517
0.0575 0.0635 16 0.0322 22 0.0380
0.0252 0.0262 17 0.0392 23 0.0370
0.0190 0.0325 18 0.0299 24 0.0316
0.0660 25 0.0430

Figure 8-2 The value of ¢(i) for 0 < i < 25 using the model in Figure 8-1,

We now apply the character-based model. Let @(7) be the correlation of the frequency
of each letter in the ciphertext with the character frequencies in English (see Figure
8—1). Let f{c) be the frequency of character ¢ (expressed as a fraction). The formula
for this correlation for this ciphertext (with all arithmetic being mod 26) is

¢ =2 <. <5 )plc— i) = 0.1p(6 - i) + 0.1p(7 = i) + 0.1p(10 - i) +
0.3p(14 =) + 0.2p(17 = i) + 0.1p(20 — i) + 0.1p(25 — 1)

This correlation should be a maximum when the key k translates the ciphertext into
English. Figure 8-2 shows the values of this function for the values of ;. Trying the
most likely key first, we obtain as plaintext “EBIIL TLOIA” when ; = 6. “AXEEH
PHKEW” when i = 10, “HELLO WORLD” when ; = 3, and “WTAAD LDGAS”
when i = 14.

The example above emphasizes the statistical nature of this attack. The statis-
tics indicated that the key was most likely 6, when in fact the correct key was 3. So
the attacker must test the results. The statistics simply reduce the number of trials in
most cases. Only three trials were needed, as opposed to 13 (the expected number of
trials if the keys were simply tried in order).

EXAMPLE: Using Konheim’s model of single-character frequencies [527], the most
likely keys (in order) are i = 6. i = 10, i = 14, and i = 3. Konheim’s frequencies are
different than Denning’s, and this accounts for the change in the third most probable
key.

8.2.2.1 Vigenére Cipher

A longer key might obscure the statistics. The Vigenére cipher chooses a sequence of
keys, represented by a string. The key letters are applied to successive plaintext
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Y

ABCDEFGHI JKLMNOPQRSTUV WX
A ABCDEFGHI JKLMNOPQRSTUV WX
B BCDEFGHI JKLMNOPQRSTUV WX
C CDEFGHI JKLMNOPQRSTUV WX
D DEFGHI JKLMNOPQRSTUV WXY
E EFGHI JKLMNOPQRSTUVWXYZ
F FGHI JKLMNOPQRSTUVWXYZA
G GHI JKLMNOPQRSTUVWXYZAB
H HI JKLMNOPQRSTUVWXYZABTC
;| 1 JKLMNOPQRSTUVWXYZABCD
J JKLMNOPQRSTUVWXYZABCDE
K KLMNOPQRSTUVWXYZABCDEF
L LMNOPQRSTUVWXYZABCDEFG
M MNOPQRSTUVWXYZABCDETFGH
N NOPQRSTUVWXYZABCDEFGHI
O OPQRSTUVWXYZABCDEFGHI J
P PQRSTUVWXYZABCDEFGHI JK
Q QRSTUVWXYZABCDEFGHI J KL
R RSTUVWXYZABCDEFGHI JKLM
S STUVWXYZABCDEFGHI JKLMN
T TUVWXYZABCDEFGHI JKLMNDO
U UVWXYZABCDEFGH! JKLMNOP
V VWXYZABCDEFGHI JKLMNOPNAQ
WWXYZABCDEFGHI JKLMNOPAQR
X XYZABCDEFGHI JKLMNOPOQRS
Y YZABCDEFGHI JKLMNOPQRST
7 ZABCDEFGH! JKLMNOPQRSTU

Figure 8-3 The Vigenére tableau.

< C -l 0w DOHUVOoOZZINM XN T ITOTMOOTW>»N

§<C—1(DJJO"UOZ§T_XC-—I(D“HmUOUJ)>N-<

><§<C-{U):UQ'UOZZF'7QC—”‘IG)TIFTIUOUJJ>N~<"~<
< X £ < C - MW DO UVTOZZTT XN T IOMNMMUOO®>ENN

characters, and when the end of the key is reached. the key starts over. The length of
the key is called the period of the cipher. Figure 8-3 shows a tableau, or table, to
implement this cipher efficiently. Because this requires several different key letters,

this type of cipher is called polvalphabetic.
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EXAMPLE: The first line of a limerick is enciphered using the key “BENCH.” as follows.

Key B ENCHBENC HBENC HBENCH BENCHBENCH
Plaintext LIMERICK PACKS LAUGHS ANATOMICAL
Ciphertext B PVOLSMPM WBGXU SBYTJZ BRNVVANMPC S

:
=

The index of coincidence measures the differences in the frequencies of the
letters in the ciphertext. It is defined as the probability that two randomly chosen let-
ters from the ciphertext will be the same. Let F . be the frequency of cipher character

¢, and let NV be the length of the ciphertext. It can be shown (see Exercise 7) that the
25
. . , ] o
index of coincidence IC is IC = m Z F(F,-1). Figure 8—4 shows the
i=0

expected values of /C for several periods. The lower the index of coincidence. the
less variation in the characters of the ciphertext and (from our model of English) the
longer the period of the cipher.

For many years, the Vigenére cipher was considered unbreakable. Then a
Prussian cavalry officer named Kasiski noticed that repetitions occur when charac-

ters of the key appear over the same characters in the ciphertext. The number of char-
acters between the repetitions is a multiple of the period.

EXAMPLE: Let the message be THE BOY HAS THE BAG and let the key be VIG.
Then:

Key VIGVIGVIGVIGVIG
Plaintext THEBOYHASTHEBAG
Ciphertext OPKWWECIYOPKWIM

In the ciphertext, the string OPK appears twice. Both are caused by the key sequence
VIG enciphering the same ciphertext, THE. The ciphertext repetitions are nine char-
acters apart. Hence, 9 is a multiple of the period (which is 3 here).

We examine the ciphertext for multiple repetitions and tabulate their length
and the number of characters between successive repetitions. The period is likely to

Period 1 2 3 4 5 10 Large
Expected IC 0.066 0.052 0.047 0.045 0.044 0.041 0.038

Figure 8-4 Indices of coincidences for different periods. From Denning [242],
Table 2.2, p. 78.
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be a factor of the number of characters between these repetitions. From the repeti-
tions, we establish the probable period, using the index of coincidence to check our
deduction. We then tabulate the characters for each key letter separately and solve
each as a Caesar cipher.

EXAMPLE: Consider the Vigenere cipher

ADQYS MIUSB OXKKT MIBHK IZOOC EQOOG IFBAG KAUMF
VVTAA CIDITW MOCIO EQOOG BMBFV ZGGWP CIEKQ HSNEW
VECNE DLAAV RWKXS VNSVP HCEUT QOIOF MEGJS WTPCH

AJMOC HIUIX

Could this be a Caesar cipher (which is a Vigenere cipher with a key length of 1)? We
find that the index of coincidence is 0.043, which indicates a key of length 5 or more.
So we assume that the key is of length greater than I, and apply the Kasiski method.
Repetitions of two letters or more are as follows.

Factors of
gap length

Letters Start End Gap length

MI 5 15 10 2,5
00 22 27 5 5

OEQOOG 24 54 30 2,3,5

FV 39 63 24 2,2,2,3
AR 43 87 44 2,2, 11
MOC 50 122 72 2,2,2 3,3
00 56 105 49 7,7

pC 69 117 48 2,2,2,23
NE 77 83 6 2,3

sv 94 97 3 3

CH 118 124 6 2 3

The longest repetition is six characters Jong; this is unlikely to be a coincidence. The
gap between the repetitions is 30. The next longest repetition, MOC, is three charac-
ters long and has a gap of 72. The greatest common divisor of 30 and 72 is 6. Of the
11 repetitions, six have gaps with a factor of 6. The only factors that occur more in
the gaps are 2 (in eight gaps) and 3 (in seven gaps). As a first guess, let us try 6.

To verify that this is reasonable, we compute the index of coincidence for each
alphabet. We first arrange the message into six columns.
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U< X OO0 WX =z

N © —

O < <z 2z

OOG)OICD)>OCDO<OO"<G)OO'"QU)

§—4§—I<XF'<D§[IJD§>§EDO-—-I(DO

xo'umo"ox>mI‘U'nOOO'n>oN§m—<
I I «

FPOOMZIMMMEBDOAA» — 0T x — »
CCSETTCOETUSXOEZMS>PCNIMR X o

Each column represents one alphabet. The indices of coincidence are as follows.

Alphabet #1: IC = 0.069 Alphabet #4: IC = 0.056
Alphabet #2: IC = 0.078 Alphabet #5: IC = 0.124
Alphabet #3: IC = 0.078 Alphabet #6: IC = 0.043

All indices of coincidence indicate a single alphabet except for the ICs associated
with alphabets #4 (period between 1 and 2) and #6 (period between 5 and 10). Given
the statistical nature of the measure. we will assume that these are skewed by the dis-
tribution of characters and proceed on the assumption that there are six alphabets.
and hence a key of length 6.
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Counting characters in each column (alphabet) yields:

Column 2
#1 3
#2 1
#3 1
#4 2
#5 1
#6 0

B P
1 0
0 0
2 11 0
1 3
0 0
1 0

An unshifted alphabet has the following characteristics (L meaning low fre-
quency, M meaning moderate frequency. and H meaning high frequency).

HMMMHMMHHMMMMHHEHMLHEHEHHEMLILILLTL

We now compare the frequency counts in the six alphabets above with the fre-
quency count of the unshifted alphabet. The first alphabet matches the characteristics
of the unshifted alphabet (note the values for A, E, and I in particular). Given the gap
between B and I, the third alphabet seems to be shifted with I mapping to A. A simi-
lar gap occurs in the sixth alphabet between O and V, suggesting that V maps to A.
Substituting into the ciphertext (bold letters are plaintext) produces

ADIYS RIUKB OCKKL MIGHK AZOTO EIOOL IFTAG PAUEF
VATAS CIITW EOCNC EIOOL BMTFV EGGOP CNEKI HSSEW
NECSE DDAAA RWCXS ANSNP HHEUL QONOF EEGOS WLPCM
AJECC MIUAX

In the last line, the group AJE suggests the word ARE. Taking this as a
hypothesis, the second alphabet maps A into S. Substituting back produces

ALIYS RICKE OCKSL MIGHS AZOTO MIOOL INTAG PACEF
VATIE CIITE EOCNC MIOOL BUTFV EGOOP CNESI HSSEE
NECSE LDAAA RECXS ANANFP HHECL QONON EEGOS ELPCM
AREOC MICAX

The last block suggests MICAL, because AL is a common ending for adjec-
tives. This means that the fourth alphabet maps O into A, and the cipher becomes
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ALIMS RICKP OCKSL AIGHS ANOTO MICOL INTOG
VATIS QIITE ECCNC MICOL BUTTY EGOOD CNEST
NSCSE LDOAA ANAND HHECL EONON ESGOS
ARECC MICAL

In English, a Q is always followed by a U. so the I in the second group of the
second line must map to U. The fifth alphabet maps M to A. The cipher is solved:

ALIME RICKP ACKSL AUGHS ANATO MICAL INTOS PACET
HATIS QUITE ECONC MICAL BUTTH EGOOD ONESI VESEE
NSOSE LDOMA RECLE ANAND THECL EANON ESSOS ELDOM
ARECO MICAL

With proper spacing and punctuation, we have

A LIMERICK PACKS LAUGHS ANATOMICAL
INTO SPACE THAT IS QUITE ECONOMICAL
BUT THE GOOD ONES I'VE SEEN
SO SELDOM ARE CLEAN,
AND THE CLEAN ONES SO SELDOM ARE COMICAL.

The key is ASIMOV.

It is worth noting that the Vigenere cipher is easy to break by hand. However,
the principles of attack hold for more complex ciphers that can be implemented only
by computer. A good example is the encipherments that several older versions of
WordPerfect used [75, 78]. These allowed a user to encipher a file with a password.
Unfortunately, certain fields in the enciphered file contained information internal to
WordPerfect, and these fields could be predicted. This allowed an attacker to derive
the password used to encipher the file, and from that the plaintext file itself.

8.2.2.2 One-Time Pad

The one-time pad is a variant of the Vigenére cipher. The technique is the same. The
key string is chosen at random, and is at least as long as the message, so it does not
repeat. Technically, it is a threshold scheme [815], and is provably impossible to
break [115]. The implementation issues of the pad, including random generation of
the key and key distribution, do not concern us here (although a later chapter will
touch on them).
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8.2.3 Data Encryption Standard

The Data Encryption Standard (DES) [662] was designed to encipher sensitive but
nonclassified data. It is bit-oriented, unlike the other ciphers we have seen. It uses
both transposition and substitution and for that reason is sometimes referred to as a
product cipher. Its input, output, and key are each 64 bits long. The sets of 64 bits are
referred to as blocks.

The cipher consists of 16 rounds. or iterations. Each round uses a separate key
of 48 bits. These round keys are generated from the key block by dropping the parity
bits (reducing the effective key size to 56 bits), permuting the bits, and extracting 48
bits. A different set of 48 bits is extracted for each of the 16 rounds (see Figure 8-5).
If the order in which the round keys is used is reversed, the input is deciphered.

The rounds are executed sequentially, the input of one round being the output
of the previous round. The right half of the input, and the round key, are run through
a function f that produces 32 bits of output; that output is then xor’ed into the left
half, and the resulting left and right halves are swapped (see Figure 8-6).

The function f provides the strength of the DES. The right half of the input (32
bits) is expanded to 48 bits, and this is xor’ed with the round key. The resulting 48
bits are split into eight sets of six bits each, and each set is put through a substitution

[Pcl |

Co DO

@SH @H
. PC-2 —— KI

C1 DI
PC2 __ KI6

Figure 8-5 DES key schedule generation. PC-1 and PC-2 are permutation
tables; LSH is a tabie of left shifts (rotations).
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input

output

Figure 8-6 DES message encipherment and decipherment.

table called the S-box. Each S-box produces four bits of output. They are catenated
into a single 32-bit quantity, which is permuted. The resulting 32 bits constitute the
output of the f function (see Figure 8-7).

When the DES was first announced, it was criticized as too weak. First, Diffie
and Hellman [268] argued that a key length of 56 bits was simply too short, and they
designed a machine that could break a DES-enciphered message in a matter of days.
Although their machine was beyond the technology of the time, they estimated that it
could soon be built for about $20,000,000. Second, the reasons for many of the deci-
sions in the design of the DES—most notably, those involving the S-boxes—were
classified. Many speculated that the classification hid “trapdoors.” or ways to invert
the cipher without knowing the key.

Some properties of the DES were worrisome. First, it had four weak keys
(keys that were their own inverses) and 12 semiweak keys (keys whose inverses were
other keys). Second, let &, 1, and ¢ be the complement of the key &, the plaintext m,
and the ciphertext ¢, respectively. Let DES (i) be the encipherment of plaintext m
under key k. Then the complementation property states that

DES(m)=c= DES;(E) =c
Third, some of the S-boxes exhibited irregular properties. The distribution of odd and

even numbers was nonrandom, raising concerns that the DES did not randomize the
input sufficiently. Several output bits of the fourth S-box seemed to depend on some
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R, | (32 bits) K, (48 bits)

i1 (48 bits) »G‘) 6 bits into each

@@®¢ OO

4 bits out of each

32 bits

Figure 8-7 The ffunction.

of the output bits of the third S-box. This again suggested that there was a structure
to the S-boxes, and because some of the design decisions underlying the S-boxes
were unknown, the reasons for the structure were unknown. The structure made
hardware implementation of the DES simpler [907]. It distributed the dependence of
each output bit on each input bit rapidly, so that after five rounds each output bit
depended on every key and input bit [625]. It could have been needed to prevent the
cipher from being broken easily. It also could enable a trapdoor to allow the cipher to
be broken easily. There was considerable speculation that the NSA had weakened the
algorithm, although a congressional investigation did not reflect this [59].

In 1990, a breakthrough in cryptanalysis answered many of these questions.
Biham and Shamir applied a techmque called dzﬁfezemzal cryptanalysis to the DES
{90, 91, 92]. This technique required them to generate 247 pairs of chosen plaintext
and ciphertext, considerably fewer than the trial-and-error approach others had used.
During the development of this technique, they found several properties of the DES
that appeared to answer some of the questions that had been raised.

First, for a known plaintext attack, differential cryptanalysis requires
plamtext and ciphertext pairs for a 15-round version of the DES. For the full 16
rounds, 2° known plaintext and ciphertext pairs are needed, which is more than suf-
ficient for a trial-and-error approach. (Matsui subsequently 1mpr0ved this using a
variant attack called linear cryptanalysis [596]; this attack requires 2% known plam~
text and ciphertext pairs on the average.) Second, small changes in the S-boxes
weakened the cipher (so that the required number of chosen plaintext and ciphertext
pairs was reduced). Third, making every bit of the round keys independent (for an

256
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effective key length of 16 x 48 = 768 bits) did not make the DES resistant to differen-
tial cryptanalysis, which suggests that the designers of the DES knew about differen-
tial analysis. Coppersmith later confirmed this [209].

The DES is used in several modes [663]. Using it directly is called electronic code
book (ECB) mode, and is very rare. Modes in which it can be used to generate a pseudo-
one-time pad are cipher feed back (CFB) mode (see Section 10.2.1.2) and output feed
back (OFB) mode (see Section 10.2.1.1). Its most common modes of use are cipher block
chaining (CBC) mode (see Section 10.2.2), encrypt-decrypt-encrypt (EDE) mode. and
triple DES mode (the EDE and triple DES modes are described in Section 10.2.2.1).

The CBC mode is an iterative mode in which a block of ciphertext depends not
only on its input but also on the preceding ciphertext block. In addition to a 64-bit key. it
requires a 64-bit initialization vector. Figure 8-8 shows this mode. It has the self-healing
property. This property says that if one block of ciphertext is altered. the error propagates
for at most two blocks. Figure 8-9 shows how a corrupted block affects others.

Cy

fow

init vec mg ‘ uy init vec €

x l i |
(? s CSESD QI;ESD

DES> ( D;Es> T
A 4

v | v v
Co Cq Mg my

Figure 8-8 Cipher block chaining mode. The left diagram shows
encipherment; each ciphertext is “fed back” into the cipher stream. The right
diagram shows decipherment.

Incorrect ciphertext: ef7cdchbl2bdce6flb
746ab9a6308£4256
Corresponding plaintext: efcablel9r4836f1
3231343336353837
The real plaintext: 3231343336353837
3231343336353837

Figure 8-9 Exampie of the self-healing property. The cipheriext at the top was
stored incorrectly (the italicized 4c should be 4b). Its decipherment is shown
next, with the incorrect octets italicized. The plaintext used to create the
ciphertext is shown at the bottom.
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The EDE mode is used by many financial institutions. It requires two
64-bit keys k and k. The ciphertext ¢ corresponding to some data m is ¢ = DES;
(DESkf‘l(DES w(m))). Triple DES uses three keys k, &*, and £”*, and the second step is
an encipherment, not a decipherment: ¢ = DES W DES ADES;-A(m))).

In 1998, a design for a computer system and software that could break any
DES-enciphered message in a few days was published [358]. This design comple-
mented several challenges to break specific DES messages. Those challenges had
been solved using computers distributed throughout the Internet. By 1999, it was
clear that the DES no longer provided the same level of security as it had 10 years
earlier, and the search was on for a new, stronger cipher (to be called the Advanced
Encryption Standard, or AES) to fill the needs that the DES no longer filled.

The DES is one of the most important classical cryptosystems in the history of
cryptography. It provided the impetus for many advances in the field and laid the the-
oretical and practical groundwork for many other ciphers. While analyzing it,
researchers developed differential and linear cryptanalysis. Cryptographers devel-
oped other ciphers to avoid real, or perceived, weaknesses: cryptanalysts broke many
of these ciphers and found weaknesses in others. Many of the features of the DES are
used in other ciphers. Hence, even though it is nearing the end of its useful lifetime.
it is well worth understanding.

In late 2001, the National Institute of Standards and Technology announced
the selection of Rijndael as the Advanced Encryption Standard [672], the successor
to the DES. Like the DES, the AES is a product cipher. Unlike the DES. the AES can
use keys of 128, 192, or 256 bits and operates on blocks of 128 bits. It was specifi-

cally designed to withstand the attacks to which the DES showed weaknesses [228].
Time will show how rapidly it supplants the DES, but the lessons learned from the
DES have borne fruit.

8.2.4  Other Classical Ciphers

Several algorithms have been proposed to overcome the weaknesses in the DES.
NewDES (which, despite its name, is not a variant of DES but a new algorithm) has a
block size of 64 bits and a key length of 120 bits [803]. However, it can be broken
using an attack similar to differential cryptanalysis [796]. FEAL is another block
cipher, with a block size of 64 bits and a key size of 64 bits [642, 822]. FEAL-4
(FEAL with four rounds) and FEAL-8 (FEAL with eight rounds) fell to differential
cryptanalysis with 20 [658] and 10,000 [357] chosen plaintexts, respectively. Biham
and Shamir broke FEAL-N, which uses N rounds, for N < 32 by differential crypt-
analysis more quickly than by trial-and-error [91]. It was proposed that the key be
lengthened to 128 bits, but the 128-bit key proved as easy to break as FEAL-N with
the original 64-bit key. REDOC-II [226] has an 80-bit block and a 160-bit key. It has
10 rounds, and although a single round was successfully cryptanalyzed [89], the use
of 10 rounds appears to withstand differential cryptanalysis.
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LOKIB9 [137], proposed as an alternative to the DES, was vulnerable to differ-
ential cryptanalysis [89]. Its successor, LOKI91 [138], uses a 64-bit key and a 64-bit
block size. Differential cryptanalysis fails to break this cipher [516]. Khufu [623] has a
block size of 64 bits and a key size of 512 bits. When used with 24 or 32 rounds, it
resists chosen plaintext attacks. Its S-boxes are computed from the keys. Khafre [623],
similar in design to Khufu. uses fixed S-boxes, but it has been broken [89].

IDEA is an eight-round cipher that uses 64-bit blocks and 128-bit keys [541].
It uses three operations: exclusive or’s, addition modulo 216 and multiplication mod-
ulo 2164 1. It appears to withstand known attacks but is too new for any definitive
statement to be made about its security [796]. It is used in noncommercial soft-
ware—notably, in the electronic mail program PGP [965]—but is patented and
requires licensing for use in commercial software.

8.3 Public Key Cryptography

In 1976, Diffie and Hellman [267] proposed a new type of cryptography that distinguished
between encipherment and decipherment keys.? One of the keys would be publicly known:;
the other would be kept private by its owner. Classical cryptography requires the sender
and recipient to share a common key. Public key cryptography does not. If the encipher-
ment key is public, to send a secret message simply encipher the message with the recip-
ient’s public key. Then send it. The recipient can decipher it using his private key.
(Chapter 9, “Key Management,” discusses how to make public keys available to others.)

Because one key is public, and its complementary key must remain secret, a
public key cryptosystem must meet the following three conditions.

1. It must be computationally easy to encipher or decipher a message given
the appropriate key.

[

It must be computationally infeasible to derive the private key from the
public key.

3. It must be computationally infeasible to determine the private key from a
chosen plaintext attack.

The RSA cipher provides both secrecy and authentication.

% James Ellis, a cryptographer working for the British government’s Communications-
Electronics Security Group, said “he showed proof of concept in a January 1970 CESG report
titled ‘The Possibility of Secure Non-Secret Digital Encryption.”” Two of his colleagues found
practical implementations. This work remained classified until 1997 ({244], p. 299).
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8.3.1 RSA

RSA [756] is an exponentiation cipher. Choose two large prime numbers p and g.
and let n = pq. The totient ¢(n) of 1 is the number of numbers less than n with no fac-
tors in common with 7.

EXAMPLE: Let # = 10. The numbers that are less than 10 and are relatively prime to
(have no factors in common with) n are 1, 3, 7, and 9. Hence. ¢(10) = 4. Similarly, if
n = 21, the numbers that are relatively prime to 17 are 1,2.4,5,8,10, 11, 13, 16, 17,
19, and 20. So ¢(21) = 12.

Choose an integer e < n that is relatively prime to &(17). Find a second integer
such that ed mod ¢(n) = 1. The public key is (e. 1), and the private key is d.
Let m be a message. Then:

c=m® modn
and
m=c? modn

EXAMPLE: Let p=7 and g = 11. Then n =77 and ¢(n) = 60. Alice chooses e = 17. s0
her private key is d = 53. In this cryptosystem, each plaintext character is represented
by a number between 00 (A) and 25 (Z): 26 represents a blank. Bob wants to send
Alice the message “HELLO WORLD.” Using the representation above, the plaintext
is0704 11 11 142622 14 17 11 03. Using Alice’s public key, the ciphertext is

07" mod 77 = 28
04!7 mod 77 = 16
11" mod 77 = 44

03'7 mod 77 =75
or 28 16 44 44 423822421944 75.
In addition to confidentiality, RSA can provide data and origin authentication.

If Alice enciphers her message using her private key. anyone can read it, but if any-
one alters it, the (altered) ciphertext cannot be deciphered correctly.

3 Our examples will use small numbers for pedagogical purposes. Actual RSA primes should be
at least 512 bits each, giving a modulus of at least 1.024 bits. In practice. RSA is combined with
cryptographic hash functions to prevent rearrangement of blocks (see Section 10.1.2).
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EXAMPLE: Suppose Alice wishes to send Bob the message “HELLO WORLD"” in
such a way that Bob will be sure that Alice sent it. She enciphers the message with
her private key and sends it to Bob. As indicated above, the plaintext is represented as
0704 111114262214 17 11 03. Using Alice’s private key, the ciphertext is

07°* mod 77 = 35
043 mod 77 = 09
1173 mod 77 = 44

033 mod 77 = 05

or 3509 44 44 93 12 24 94 04 05. In addition to origin authenticity, Bob can be sure
that no letters were altered.

Providing both confidentiality and authentication requires enciphering with
the sender’s private key and the recipient’s public key.

EXAMPLE: Suppose Alice wishes to send Bob the message “HELLO WORLD” in
confidence and authenticated. Again, assume that Alice’s private key is 53. Take
Bob’s public key to be 37 (making his private key 13). The plaintext is represented as
0704 111114262214 17 11 03. The encipherment is

(07°* mod 77)>” mod 77 = 07
(043 mod 77)°7 mod 77 = 37
(113 mod 77)*7 mod 77 = 44

(0373 mod 77)*7 mod 77 = 47
or 07 37 44 44 14 59 22 14 61 44 47.

The recipient uses the recipient’s private key to decipher the message and the
sender’s public key to authenticate it.

EXAMPLE: Bob receives the ciphertext above, 07 37 44 44 14 59 22 14 61 44 47.
The decipherment is

073 mod 77)!7 mod 77 = 07
(373 mod 77)!7 mod 77 = 04
(443 mod 77" mod 77 = 11

(47" mod 77)'7 mod 77 = 03

or 0704 11 11 1426 22 14 17 11 03. This corresponds to the message “HELLO
WORLD” from the preceding example.
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The use of a public key system provides a technical type of nonrepudiation of
origin. The message is deciphered using Alice’s public key. Because the public key is
the inverse of the private key, only the private key could have enciphered the message.
Because Alice is the only one who knows this private key, only she could have enci-
phered the message. The underlying assumption is that Alice’s private key has not been
compromised, and that the public key bearing her name really does belong to her.

In practice, no one would use blocks of the size presented here. The issue is
that, even if n is very large, if one character per block is enciphered, RSA can be bro-
ken using the techniques used to break classical substitution ciphers (see Sections
8.2.2 and 10.1.3). Furthermore, although no individual block can be altered without
detection (because the attacker presumably does not have access to the private key).
an attacker can rearrange blocks and change the meaning of the message.

EXAMPLE: A general sends a message to headquarters asking if the attack is on.
Headquarters replies with the message “ON” enciphered using an RSA cipher with a
1,024-bit modulus, but each letter is enciphered separately. An attacker intercepts the
message and swaps the order of the blocks. When the general deciphers the message.
it will read “NO,” the opposite of the original plaintext.

Moreover, if the attacker knows that headquarters will send one of two mes-
sages (here, “NO” or “ON”), the attacker can use a technique called “forward
search” or “precomputation” to break the cipher (see Section 10.1.1). For this reason,
plaintext is usually padded with random data to make up a block. This can eliminate
the problem of forward searching, because the set of possible plaintexts becomes 00
large to precompute feasibly.

A different general sends the same request as in the example above. Again,
headquarters replies with the message “ON” enciphered using an RSA cipher with a
1.024-bit modulus. Each letter is enciphered separately, but the first six bits of each
block contain the number of the block, the next eight bits contain the character, and
the remaining 1,010 bits contain random data. If the attacker rearranges the blocks.
the general will detect that block 2 arrived before block 1 (as a result of the number
in the first six bits) and rearrange them. The attacker also cannot precompute the
blocks to determine which contains “O,” because she would have to compute 2
blocks, which is computationally infeasible.

8.4 Cryptographic Checksums

Alice wants to send Bob a message of n bits. She wants Bob to be able to verify that
the message he receives is the same one that was sent. So she applies a mathematical
function, called a checksum function, to generate a smaller set of k bits from the
original n bits. This smaller set is called the checksum or message digest. Alice then
sends Bob both the message and the checksum. When Bob gets the message. he
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recomputes the checksum and compares it with the one Alice sent. If they match, he
assumes that the message has not been changed.

EXAMPLE: The parity bit in the ASCII representation is often used as a single-bit
checksum. If odd pariry is used. the sum of the 1-bits in the ASCII representation of
the character, and the parity bit. is odd. Assume that Alice sends Bob the letter AT
In ASCII, the representation of “A” using odd parity is pO111101 in binary, where p
represents the parity bit. Because five bits are set, the parity bit is 0 for odd parity.
When Bob gets the message 00111101, he counts the 1-bits in the message.
Because this number is odd, Bob knows that the message has arrived unchanged.

Definition 8-2. A cryptographic checksum Junction (also called a strong

hash function or a strong one-way function) h: A — B is a function that has the
following properties.

1. For any x € A, h(x) is easy to compute.
2. Forany y € B, itis computationally infeasible to find x € A such that Axy=v

3. It is computationally infeasible to find x, x "€ A, such that x # v~ and
h(x) = h(x"). (Such a pair is called a collision.)

The third requirement is often stated as:

4. Given any x € A, it is computationally infeasible to find another x" e A
such that x # x“and h(x ") = i(x).

However, properties 3 and 4 are subtlely different. It is considerably harder to find an
x " meeting the conditions in property 4 than it is to find a pair x and x“meeting the
conditions in property 3. To explain why, we need to examine some basics of crypto-
graphic checksum functions.

Given that the checksum contains fewer bits than the message, several mes-
sages must produce the same checksum. The best checksum functions have the same
number of messages produce each checksum. Furthermore, given any message, the
checksum it produces can be determined only by computing the checksum. Such a
checksum function acts as a random function.

The size of the output of the cryptographic checksum is an important consid-
eration owing to a mathematical principle called the pigeonhole principle.

Definition 8-3. The pigeonhole principle states that if there are 1 containers
for n + 1 objects, at least one container will hold two objects. To understand
its application here, consider a cryptographic checksum function that com-
putes hashes of three bits and a set of files each of which contains five bits.
This yields 2° = 8 possible hashes for 27 = 32 files. Hence. at least four differ-
ent files correspond to the same hash.
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Now assume that a cryptographic checksum function computes hashes of 128
bits. The probability of finding a message corresponding to a given hash is 27128 put
the probability of finding two messages wath the same hash (that is, with the value of
neither message being constrained) is 2 64 (see Exercise 20).

Definition 8-4. A keyed cryptographic checksum function requires a crypto-
graphic key as part of the computation. A keyless cryptographic checksum
does not.

EXAMPLE: The DES in CBC mode can be used as a message authentication code if
64 bits or fewer are required. The message is enciphered, and the last n bits of the last
output are the cryptographic hash. Because the DES requires a cryptographic key,
this checksum function (called DES-MAC) is a keyed cryptographic checksum func-
tion. Because the DES is vulnerable to attack, so is this checksum technique. Fur-
thermore, because the hash i is at most 64 bits, finding two inputs that produce the
same output would require 2% messages.

Examples of keyless hash functions include MD2 [489]; MD4 [753}; MDS5
[754]; the Secure Hash Algorithm (SHA-1) which produces 160-bit checksums [664.,
663]; Snefru (either 128-bit or 256-bit checksums) [622]; and HAVAL, which produces
checksums of 128, 160, 192, 224, and 256 bits [963]. Of these, Snefru is vulnerable to
differential cryptanalysis if four rounds or fewer are used [92], so Merkle recommends
using at least eight passes. Dobbertin devised a method of generating collisions in
MD4 [274]; a similar method also works against MD35 but is slower [273].

8.4.1 HMAC

HMAC is a generic term for an algorithm that uses a keyless hash function and a
cryptographic key to produce a keyed hash function [531]. This mechanism enables
Alice to validate that data Bob sent to her is unchanged in transit. Without the key,
anyone could change the data and recompute the message authentication code, and
Alice would be none the wiser.

The need for HMAC arose because keyed hash functions are derived from
cryptographic algorithms. Many countries restrict the import and export of software
that implements such algorithms. They do not restrict software implementing keyless
hash functions, because such functions cannot be used to conceal information.
Hence, HMAC builds on a keyless hash function using a cryptographic key to create
a keyed hash function.

Let & be a keyless hash function that hashes data in blocks of b bytes to pro-
duce a hash / bytes long. Let k be a cryptographic key. We assume that the length of £
is no greater than b; if it is, use & to hash it to produce a new key of length 0. Let k "be
the key k padded with bytes containing 0 to make b bytes. Let ipad be a sequence of
bytes containing the bits 00110110 and repeated » times; let opad be a similar
sequence with the bits 01011100. The HMAC-/ function with key k for message m is
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HMAC-A(k, m) = h(k” @ opad | hik™ ® ipad | m))

where @ is exclusive or and Il is concatenation.

Bellare, Canetti, and Krawczyk [65] analyze the security of HMAC and con-
clude that the strength of HMAC depends on the strength of the hash function /1. Var-
ious HMAC functions are used in Internet security protocols (see Chapter 10).

8.5 Summary

For our purposes, three aspects of cryptography require study. Classical cryptogra-
phy uses a single key shared by all involved. Public key cryptography uses two keys,
one shared and the other private. Both types of cryptosystems can provide secrecy
and origin authentication (although classical cryptography requires a trusted third
party to provide both). Cryptographic hash functions may or may not use a secret key
and provide data authentication.

All cryptosystems are based on substitution (of some quantity for another) and
permutation (scrambling of some quantity). Cryptanalysis, the breaking of ciphers,
uses statistical approaches (such as the Kasiski method and differential cryptanalysis)
and mathematical approaches (such as attacks on the RSA method). As techniques of
cryptanalysis improve, our understanding of encipherment methods also improves and
ciphers become harder to break. The same holds for cryptographic checksum func-
tions. However, as computing power increases, key length must also increase. A 56-bit
key was deemed secure by many in 1976; it is clearly not secure now.

8.6 Further Reading

Cryptography is a vast, rich subject. Kahn’s book The Codebreakers [482, 485] 1s
required reading for anyone interested in this field. Kahn has written other excellent
historical books on codebreaking during World War 11 [483, 484]. Helen Fouché
Gaines presents techniques for cryptanalysis of many classical ciphers using tradi-
tional, pencil-and-paper analysis [343]. Sinkov applies basic mathematics to many of
these classical ciphers [836]. Schneier describes many old. and new, algorithms in a
clear, easy-to-understand manner [796]; his book is excellent for implementers. The
underpinnings of these algorithms, and others, lie in statistics and mathematics. For
classical cryptography, Konheim’s book [527] is superb once the reader has mastered
his notation. Unlike other books, it focuses on cryptanalysis of classical ciphers
using statistical attacks. Meyer and Matyas [626] and Biham and Shamir [92] discuss
the strengths and weaknesses of the DES. Seberry and Pieprzyk {805] and Simxmons
[834] discuss modern cryptography and its applications. Koblitz {521]. Coutinho
[215]. and Goldreich [365] discuss modern mathematics, cryptographic theory, and




