
Control Flow Integrity

Lujo Bauer
18-732

Spring 2015



Control Hijacking Arms Race

2

Control 
Flow 

Integrity 
Attacks

Control 
Flow 

Integrity 
Attacks

http://propercourse.blogspot.com/2010/05/i-believe-in-duct-tape.html



CFI: Goal

Provably correct mechanisms that prevent 
powerful attackers from succeeding  
by protecting against all control flow 
integrity attacks

4



CFI: Idea

During program execution, whenever a 
machine-code instruction transfers control, 
it targets a valid destination, as determined 
by a Control Flow Graph (CFG) created 
ahead of time

5



Attack Model

Powerful Attacker: Can at any time arbitrarily 
overwrite any data memory and (most) 
registers

– Attacker cannot directly modify the PC
– Attacker cannot modify reserved registers 

Assumptions:
 Data memory is Non-Executable
 Code memory is Non-Writable 

6



Lecture Outline

 CFI: Goal
 Background: Control Flow Graph
 CFI: Approach
 Building on CFI

– IRM, SFI, SMAC, Protected Shadow Call Stack
 Formal Study

7



Basic Block

A consecutive sequence of instructions / code such that
 the instruction in each position always executes 

before (dominates) all those in later positions, and
 no outside instruction can execute between two 

instructions in the sequence

8

control is “straight”
(no jump targets except at the beginning,

no jumps except at the end)

control is “straight”
(no jump targets except at the beginning,

no jumps except at the end)1. x = y + z
2. z = t + i
1. x = y + z
2. z = t + i

3. x = y + z
4. z = t + i
5. jmp 1

3. x = y + z
4. z = t + i
5. jmp 1

6. jmp 36. jmp 3

1. x = y + z
2. z = t + i
3. x = y + z
4. z = t + i
5. jmp 1

1. x = y + z
2. z = t + i
3. x = y + z
4. z = t + i
5. jmp 1



CFG Definition

A static Control Flow Graph is a graph where
– each vertex vi is a basic block, and
– there is an edge (vi, vj) if there may be a transfer of 

control from block vi to block vj

Historically, the scope of a “CFG” is limited to 
a function or procedure, i.e., intra-procedural

9



Call Graph
 Nodes are functions
 There is an edge (vi, vj) if function vi calls 

function vj

10

void orange()
{

1. red(1);
2. red(2);
3. green();

}

void red(int x)
{
..
}

void green()
{
green();
orange();

}

orange red green



Super Graph

 Superimpose CFGs of all procedures over 
the call graph

11

1: red1
2
3 2: red

A context sensitive 
super‐graph for orange 

lines 1 and 2

void orange()
{
1. red(1);
2. red(2);
3. green();

}

void red(int x)
{
..
}

void green()
{
green();
orange();

}



Precision

The more precise the analysis, the more 
accurately it reflects the “real” program 
behavior

– Limited by soundness/completeness 
tradeoff

– Depends on forms of sensitivity of analysis

12



Things I say

Soundness

If analysis says X is 
true, then X is true

13

True things

Things I say

Completeness

If X is true, then 
analysis says X is true

True things

Trivially sound: Say nothing Trivially complete: Say everything

Sound and Complete: Say exactly the set of true things!



Context Sensitivity
Different calling contexts are distinguished

14

void orange()
{

1. red(1);
2. red(2);
3. green();

}

void red(int x)
{
..
}

void green()
{
green();
orange();

}

Context sensitive 
distinguishes 2 different 

calls to red()

Context sensitive 
distinguishes 2 different 

calls to red()



Context Sensitive Example

a = id(4);

b = id(5);

15

void id(int z)
{ return z; }

4

5

Context-Sensitive

a = id(4);

b = id(5);

void id(int z)
{ return z; }4,5

4,5

Context-Insensitive
(note merging)



Lecture Outline

 CFI: Goal
 Background: Control Flow Graph
 CFI: Approach
 Building on CFI

– IRM, SFI, SMAC, Protected Shadow Call Stack
 Formal Study

16



CFI Overview

Invariant: Execution must follow a path in a control flow 
graph (CFG) created ahead of run time

Method:
 Build CFG statically, e.g., at compile time
 Instrument (rewrite) binary, e.g., at install time

– Add IDs and ID checks; maintain ID uniqueness
 Verify CFI instrumentation at load time

– Direct jump targets, presence of IDs and ID checks, ID uniqueness
 Perform ID checks at run time

– Indirect jumps have matching IDs

17

Security Principle: Minimal Trusted Computing Base ̶
Trust simple verifier, not complex rewriter

Security Principle: Minimal Trusted Computing Base ̶
Trust simple verifier, not complex rewriter



Build CFG

18

Two possible
return sites due to
context insensitivity

Two possible
return sites due to
context insensitivity

direct calls
indirect calls



Instrument Binary

 Insert a unique number at each destination
 Two destinations are equivalent if CFG contains edges

to each from the same source
19

call 17, R: transfer control to R 
only when R has label 17

call 17, R: transfer control to R 
only when R has label 17



Example of Instrumentation

20

Original code

Instrumented code

Abuse an x86 assembly instruction to
insert “12345678” tag into the binaryJump to the destination only if

the tag is equal to “12345678”



Verify CFI Instrumentation

 Direct jump targets (e.g., call 0x12345678)
– Are all targets valid according to CFG?

 IDs
– Is there an ID right after every entry point?
– Does any ID appear in the binary by accident?

 ID checks
– Is there a check before every control transfer?
– Does each check respect the CFG?

21

Trust simple verifier, not complex rewriterTrust simple verifier, not complex rewriter



Revisiting Assumptions

 UNQ: Unique IDs
– Required to preserve CFG semantics

 NWC: Non-Writable Code
– Otherwise attacker can overwrite CFI dynamic check
– Not true if code dynamically loaded or generated

 NXD: Non-Executable Data
– Otherwise attacker could cause the execution of data 

labeled with expected ID

22



Security Guarantees

 Effective against attacks based on 
illegitimate control-flow transfer
– Stack-based buffer overflow, return-to-libc exploits, 

pointer subterfuge
 Does not protect against attacks that do not 

violate the programʼs original CFG
– Data-only attacks
– Incorrect arguments to system calls
– Substitution of file names
– Incorrect logic in implementation

23



Evaluation

24

x86 Pentium 4, 1.8 GHz, 512MB RAM; average overhead: 
16%; range: 0-45%



Evaluation

 CFG construction + CFI instrumentation: ~10s
 Increase in binary size: ~8%
 Relative execution overhead:

– crafty: CFI – 45%
– gcc: CFI < 10%

 Security-related experiments
– CFI protects against various specific attacks 

(read Section 4.3)

25



Lecture Outline

 CFI: Goal
 Background: Control Flow Graph
 CFI: Approach
 Building on CFI

– IRM, SFI, SMAC, Protected Shadow Call Stack
 Formal Study

26



SFI

 CFI implies non-circumventable sandboxing 
(i.e., safety checks inserted by 
instrumentation before instruction X will 
always be executed before reaching X)

 SFI: Dynamic checks to ensure that target 
memory accesses lie within a certain range 
– CFI makes these checks non-circumventable

27



SMAC: Generalized SFI

 SMAC: Different access checks at different 
instructions in the program
– Isolated data memory regions that are only accessible 

by specific pieces of program code (e.g., library 
function)

– SMAC can remove NX data and NW code assumptions 
of CFI

– CFI makes these checks non-circumventable

28



Example: CFI + SMAC

 Non-executable data assumption no longer 
needed since SMAC ensures target address 
is pointing to code

29



CFI as a Foundation for 
Non-circumventable IRMs
 Inlined Reference Monitors (IRM) work 

correctly assuming:
– Inserted dynamic checks cannot be circumvented by 

changing control flow – enforced using CFI
– IRM state cannot be modified by attacker – enforced 

by SMAC

30



CFI with Context Sensitivity

 Function F is called first from A, then from 
B; whatʼs a valid destination for its return?
– CFI will use the same tag for both call sites, but this 

allows F to return to B after being called from A
– Solution 1: duplicate code (or even inline everything)
– Solution 2: use a shadow call stack 

• place stack in SMAC-protected memory region
• only SMAC instrumentation code at call and return 

sites modify stack by pushing and popping values
• Statically verify that instrumentation code is correct

31



Lecture Outline

 CFI: Goal
 Background: Control Flow Graph
 CFI: Approach
 Building on CFI

– IRM, SFI, SMAC, Protected Shadow Call Stack
 Formal Study

32



Security Proof Outline

1. Define machine code semantics
2. Model a powerful attacker
3. Define instrumentation algorithm
4. Prove security theorem

33

Weakness of Abadi et al. work:
Formal study uses a simple RISC‐style assembly 

language, not the x86 ISA
(cf. McCamant and Morrisett’s PittSFIeld 2006)



Machine Model

Execution State:

 Mc (code memory): maps addresses to 
words

 Md (data memory): maps addresses to 
words

 R (registers): maps register nos. to words
 pc (program counter): a word

34



Operational Semantics

For each instruction, operational semantics 
defines how the instruction affects state 

35



Operational Semantics (normal)

 Semantics of add rd, rs, rt

36

: Binary relation on states that expresses normal execution steps



Operational Semantics (attacker)

 Idea: Attacker may arbitrarily modify data 
memory and most registers at any time

 Formally, attacker transition captured by 
binary relation on states

37

Transitions  are either normal transitions n or 
attacker transitions a



Instrumentation Algorithm

 I(Mc): Code memory Mc is well-
instrumented according to the CFI-criteria

 Example:
– Every computed jump instruction is preceded by a 

particular sequence of instructions, which depends on 
a given CFG

38

Definition of CFG and instrumentation algorithm in paper



CFI Security Theorem

 Requires definition of transition relation , 
instrumentation algorithm I(Mc), and CFG.

 Property holds in the presence of attacker 
steps

 Proof is by induction on execution 
sequences

39



CFI Summary

Invariant: Execution must follow a path in a control 
flow graph (CFG) created ahead of run time.

Method:
 Build CFG statically, e.g., at compile time
 Instrument (rewrite) binary, e.g., at install time

– Add IDs and ID checks; maintain ID uniqueness
 Verify CFI instrumentation at load time

– Direct jump targets, presence of IDs and ID checks, ID 
uniqueness

 Perform ID checks at run time
– Indirect jumps have matching IDs

40

Small Trusted Computing Base:
Trust simple verifier, not complex rewriter

Small Trusted Computing Base:
Trust simple verifier, not complex rewriter



Connections to Other Lectures

 Software analysis methods assume CFG accurately 
reflects possible executions of program
– Software model checking (ASPIER, MOPS)
– Static analysis (Coverity Prevent)

 Language-based methods
– Type systems guarantee memory and control flow safety for 

programs written in that language (PCC, TAL)
– No guarantees if data memory corrupted by another entity or 

flaw
 Run-time enforcement methods can be circumvented if 

CFG not respected
– Software-based Fault Isolation (SFI)
– Inlined Reference Monitors (IRMs)

41



Sources

 Abadi et al., Control-Flow Integrity: 
Principles, Implementations, and 
Applications, TISSEC 2009.

 Some slides from J. Ligatti, D. Brumley, A. 
Datta.

42


