LecTure & , CS447°2

CoNTENTS:

* MoDULAR  ARITHMETIC (pg to7-1t%)
* FERMATS AND EULER'S THecREMS  (Pg. 236 ~243)

» DiScReETE LOGARITHM (pg 248-252
- RSA (pg 268 -2F)

. 'Bé;ejif&ﬁ Qﬁﬂc&hﬁ %%@"z‘iﬁw& (Pg 2392 -395)

We wdl covex +he ‘bigifaﬁ gégnaﬁi'g‘& Mgg—gé i
i defaid i lecke 6.

Discrete LogariTHM g used both i 4he
E\)aﬁtf:&ﬁ gtﬁm&f& }({g@“ﬁ‘f%y‘ﬂ ard . i Diffie

£

Hellman kegy QXCE"&?@Q, [ Lectuve )

Al Hhe above mafexial » Hrom:
"CRYPTOGRAPHY AND NETWORK SECURITY”
3 EDITION, RY WILUAM STALLINGS.
PRENTICE HALL, ISBN 0-13-09|429-0.




4.2 / MODULAR ARITHMETIC 107

the inverse e})e- Let § be the set of even integers (positive, negative. and 0) under the usual oper-
-b=a~+(-b). ations of addition and multiplication. § is a commutative ring. The set of all
n-square matrices defined in the preceding example is not a commutative ring.
on of the group - . . . L L
ty element; and Next_, we Qeflne an integral domain, which is a commutative ring that obeys
( is an integer) the following axioms:
up G,ortobea L . ; .
or infinite. (MS5) Multiplicative identity: There is an element 1 in R such that g1 = 1a .
: =qforaliain R
(M6) No zero divisors: Ifa, b in R and ab = 0, then either g = 0 or |
b =0. |

_Let 8 be the set of integers, positive, negative, and 0, under the usual operations
of addition and multiplication. § is an integral domain.

two binary oper- Fields

1 R the following A field F, sometimes denoted by {F, +, X}, is a set of elements with two binary oper-

ations, called addition and multiplication, such that for all a, b, ¢ in F the following

. axioms are obeyed:
aat is, R satisfies

group, we denote (A1-M6) Fis an integral domain: that is, F satisfies axioms A1l through AS
a. and M1 through Mé.
R, then ab is also (M7) Multiplicative inverse: For each a in F, except 0, there is an element

“ a”'in Fsuch that aa™! = (¢ a = 1.
la,b,cin R .
foralla, b,cin R. ‘ In essence, a field is a set in which we can do addition, subtraction, multipli-
foralla, b,cin R cation, and division without leaving the set. Division is defined with the following

rule: a/b = a(b™").
gtionfa—b=a-+

- Familiar eXamples of fields are the rational numbers, the real numbers, and the

complex numbers. Note that the set of all integers is not a field, because not

rre matrices ove;j% every element of the set has a multiplicative inverse; in fact, only the elements 1
: ]

, and —1 have multiplicative inverses in the integers.
1 ;

Figure 4.1 summarizes the axioms that define groups, rings, and fields.

Iditional condition:
.2 MODULAR ARITHMETIC
by the concatenation ; Given any positive integer n and any integer g, if we divide a by #, we get an inte-
n by 1

ger quotient g and an integer remainder r that obey the following relationship:
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If a is an integer and 1 is a positive integer. we define ¢ mod # to be the
remainder when ¢ is divided by n. Thus, for any integer g, we can always

a=la/nlx n+ (a mod i)

i TTmod7 =4, ~1Tmod7 =

Two integers  and b are said to be congruent meodule 7. if (a =

= (b mod n).
This is written as ¢ = b mod #

73 = 4 mod 23; 21 = Y mod 1(}12

Divisors

We say that a nonzero b divides a if a = mb for some »1. where «. b. and 77 are inte-
gers. That is, b divides a if there is no remainder on division. The notation bla is
commonly used to mean b divides a. Also. if bia. we say that b is a divisor of

The positive divisors of 24 are 1,2, 3. 4. 6. 8. 12, and 24.
L
L
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The following relations hold:

Ifg|l,thena == 1.

If a|b and bla, then a = =b.

Any b #0 divides 0.

If b|g and b|h, then b|(mg + nh) for arbitrary integers m and .
To see this last point, note that

If blg, then g is of the form g = b X & for some integer g;.
If blh, then h 1s of the form h = b X I, for some integer Ay

So
mg + nh = mbg, + nbh, = b X (mg, + nhy)

and therefore b divides mg + nh.

Note that if a = 0 mod 7, then nla.

Properties of the Modulo Operator

The modulo operator has the following properties:

1 a=bmodnifnl(a- b).
2. a= bmodnimpliestamod n.
3 aEbmodnandbzcmodnimplyazcmodn.

To demonstrate the first point, if nl(a — b), then (a — b)=kn for some k.
we can write a = b + kn. Therefore, (amod 1) = (remainder when b + knis divi
by n) = (remainder when b is divided by n) = (b mod n).

The remaining points are as easily proved.

Modular Arithmetic Operations

Note that, by definition (Figure 4.2), the (mod n) 0
set of integers {0, 1, ... (n — 1)}. This suggests the
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naps all integers into the
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metic operations within the confines of this set? It turns out that we can; this tech-
nique is known as modular arithmetic.
Modular arithmetic exhibits the following properties:

Il

1. [(a mod ) + (b mod n)] mod n = (a + b) mod n
2. [(a mod ) — (b mod n)lmod n = (a — b) mod nn
3. [(amod n) X (b mod n)lmodn = (a X b) mod n

i

We demonstrate the first property. Define (¢ mod n) = r, and (b mod n) =
r,- Then we can write ¢ = r, + jn for some integer j and b = r, + kn for some inte-
ger k. Then

(¢ + bymodn = (r, + jn -+ r, + kn)modn

(r, +r, + (k + jynymod n

(r, + r,) mod n

[(a mod n) + (b mod n)jmod n

I

I

The remaining properties are as easily proved. Here are examples of the three
properties:

1Tmod8=3; 15mod8=7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2
(11 + 15)mod 8 = 26 mod 8 = 2
[(11 mod 8) — (15 mod 8)] mod 8
(11 = 15)mod8 = ~4mod 8 = 4
[(11 mod 8) X (15mod 8)] mod 8 = 21 mod 8§ = 5
(11 X 15)mod 8 = 165 mod 8 = 5

—4mod8 =4

I

Exponentiation is performed by repeated multiplication, as in ordinary arith-

metic. (We have more to say about exponentiation in Chapter 8.)
&

To find 117 mod 13, we can proceed as follows:
117 = 121 = 4 mod 13

11" =4’ =3 mod 13

11"=11 x4 x3=132=2mod 13

i

Thus, the rules for ordinary arithmetic involving addition, subtraction, and
multiplication carry over into modular arithmetic.
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Fl’able 4.1 provides an illustration of modular addition and multiplication mod-
ulo 8. Looking at addition, the results are straightforward and there is a regular
pattern to the matrix. Also, as in ordinary addition, there is an additive inverse,
or negative. to each integer in modular arithmetic. In this case. the negative of
an integer x is the integer y such that x + y = 0 mod 8. To find the additive
inverse of an integer in the left-hand column, scan across the corresponding row
of the matrix to find the value 0; the integer at the top of that column is the addi-
tive inverse; thus 2 + 6 = 0 mod 8. Similarly, the entries in the multiplication
table are straightforward. In ordinary arithmetic, there is a multiplicative
inverse, or reciprocal. to each integer. In modular arithmetic mod 8, the multi-
plicative inverse of x is the integer y such that x X y = 1 mod 8. Now, to find the
multiplicative inverse of an integer from the multiplication table, scan across the
matrix in the row for that integer to find the value 1; the integer at the top of
that column is the multiplicative inverse; thus 3 X 3 = 1 mod 8. Note that not all
integers mod 8 have a multiplicative inverse; more about that later.

"

Properties of Modular Arithmetic

Define the set Z,, as the set of nonnegative integers less than
z,=101,....0n— H

This is referred to as the set of residues, or residue classes modulo n. To be more

precise, each integer in Z, represents a residue class. We can label the residue

classes modulo 7 as [0], [1], [2). - - - [n — 1], where

[r] = {a: a is an integer, @ =7 mod #}

The residue classes modulo 4 are

(0] = (..., 16, —12, =8, —4.0,4,8,12.16... 3
M) =1{...-15-11,-7.-3,1.5,9.13.17,.. )
[2]=1.. —14,—10.-6,~2.2,6.10.14.18,.. B!
B]=1...-13-9.-5 -1.3.7.11,1519... ]

Of all the integers in a residue class, the smallest nonnegative integer is the
one usually used to represent the residue class. Finding the smallest nonnegative
integer to which k is congruent modulo 7 is called reducing k modulo 7.

1f we perform modular arithmetic within Z,,. the properties shown in Table 4.2
hold for integers in Z,,. Thus, Z, is a commutative ring with a multiplicative identit:
element (Figure 4.1).

There is one peculiarity of modular arithmetic that sets it apart from ordinar:
arithmetic. First, observe that, as in ordinary arithmetic, we can write the following:
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Table 4.1 Arithmetic Modulo 8
o1 2 3 4

MOV e W N O
m-&-{wNHO\lG\O\
om{#«wr\)uouq

Bl ioledotalodu]wn

(a) Addition modulo 8
0 1 2 3 4

hIO\iO [

el bl bas fondavbales]

I =%

5
0
5
2
7.
4.
1
6
3

MRS o

(b) Multiplication modulo 8

1odulo n. To be more
can label the residue

(c) Additive and multiplicative inverses modulo 8

if(atb)=(a+c)modn then b=cmodn 4.1

(5+23)=(5+7)mod8  23=7mod8

Equation (4.1) is consistent with the existence of an additive inverse. Adding
the additive inverse of a to both sides of Equation (4.1), we have

inegative integer is t‘h
e smallest nonnegatrve
k modulo n.
rties shown in Table 4.2
a multiplicative identity

((ma) +a+b)y=((-a) +a+c)modn

b =cmodn

However, the following statement is true only with the attached condition:
s it apart from ordigar'
can write the following

i{a X b)y=(a X c)modnthen b =cmodn if a is relatively prime ton  (4.2)
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Table 4.2 Properties of Modular Arithmetic for Integersin Z,

Property Expression

Commutative Jaws (w+x)modn = (v + wiymodn
(w > x)ymod n = (x X wimod n

Associative laws [(w+x) + yimodn = {w + (x + ¥)|mod n
[(w x x) X yjmod n = |[w X (x X y)]mod n
]
J

Distributive laws Jw x (x + y)Jmod n = [(w X x) + w x y)]mod n
fw+ (x> y)Jmod n = [(w + x) + w + y)}mod n

Identities (04 wimodn = wmodn
(1 x w)ymod n = wmod n

Additive mverse (-~ w) For each w e Z,, there exists a z such that w + z = Omod n.

where the term relatively prime is defined as follows: Two integers are relatively
prime if their only common positive integer factor is 1. Similar to the case of Equa-
tion (4.1). we can say that Equation (4.2) is consistent with the existence of a mul-
tiplicative inverse. Applying the multiplicative inverse of a to both sides of Equation
(4.1), we have

((a™HYab) = ((a "ac) mod n

b= cmodn

To see this. consider an example in which the condition of Equation (4.2) does
not hold. The integers 6 and 8 are not relatively prime. since they have the com-
mon factor 2. We have the following:

6X3=18=2mod8

6 X7 =42=2mod38

Yet 3 #7 mod 8.

The reason for this strange result is that for any general modulus 7, a multi-
plier a that is applied in turn to the integers 0 through (n — 1) will fail to produce a
complete set of residues if  and n have any factors in common.

With¢ = 6 and n = 8,

Zg 0 1 2 3 4 5 6 7
Multiply by 6 0 6 12 18 24 30 36 42
Residues 0 6 4 2 0 6 4 2

Because we do not have a complete set of residues when multiplying by 6, more
ﬂmn one integer in Z, maps into the same residue. Specifically, 6 X 0 mod 8 =

x 4mod & 6 %X 1mod8 =6 X 5mod 8: and so on. Because th]s is a many-to-
one mapping. there is not a unique inverse to the multiply operation.
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One of the basic techniques of number theory is Euclid’s algorithm, which is a sim-
ple procedure for determining the greatest common divisor of two positive integers.

Greatest Common Divisor
We will use the notation ged(a, b) to mean the greatest common divisor of ¢ and .
The positive integer c is said to be the greatest common divisor of a and b if

1. cis a divisor of a and of b;
2. any divisor of a and b is a divisor of c.

An equivalent definition is the following:
gcd(a, b) = max[k, such that kla and k|b]

Because we require that the greatest common divisor be positive, ged(a, b) =
ged(a, —b) = ged(—a, b) = ged(—a, —b). In general, ged(a, b) = ged(lal, |b]).

Also, because all nonzero integers divide 0, we have ged(a, 0) = |al.

We stated that two integers a and b are relatively prime if their only common
positive integer factor is 1. This is equivalent to saying that a and b are relatively
prime if ged(a, b) = 1.
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Finding the Greatest Common Divisor

Euclid’s algorithm is based on the following theorem: For any nonnegative integer
a and any positive integer b,

ged(a, b) = ged(b, a mod b) (4.3)

ged(55, 22)= ged(22, 55 mod 22) = ged(22,11) = 11

To see that Equation (4.3) works, let d = ged(a, b). Then, by the definition of
gcd, dla and d|b. For any positive integer b, a can be expressed in the form

a=kb+r=rmodb

amodb =r

with k, r integers. Therefore, (a mod b) = a — kb for some integer k. But because
d|b, it also divides kb. We also have dla. Therefore, d|(a mod b). This shows that d
is a common divisor of b and (a mod b). Conversely, if d is a common divisor of b
and (a mod b), then d|kb and thus d|[kb + (a mod b)], which is equivalent to d|a.
Thus, the set of common divisors of a and b is equal to the set of common divisors
of b and (a mod b). Therefore, the gcd of one pair is the same as the ged of the other
pair, proving the theorem.

Equation (4.3) can be used repetitively to determine the greatest common divisor.

ged(18,12) = ged(12, 6) = ged(6,0) = 6
ged(11, 10) = ged(10, 1) = ged(1,0) = 1

Euclid’s algorithm makes repeated use of Equation (4.3) to determine the
greatest common divisor, as follows. The algorithm assumes a > b > 0. It is accept-
able to restrict the algorithm to positive integers because ged(a, b) = ged(|al. []).

EUCLID(a, b)

1. A—agBeb

2. fB=0 return A = gcd(a, b)
3. R= AmodB

4. A« B

5. B« R

6. goto 2

The algorithm has the following progression:

4.4
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F\IZBlXQI—FR1
A2=B2><Q2+R2

mnegative integer

3=B3XQ3+R3
A4=B4><Q4-{—R4

(43)

. To find ged(1970, 1066)
1970 = 1% 1066 9@4

ged(1066, 904)

y the definition of
i the form

gcd(68 26);? ~

ser k. But because
This shows that d
mmon divisor of b
equivalent to da.
f common divisors
he ged of the other

| Therefore, ged(1

:st common divisor.

The alert reader may ask how we can be sure that this process terminates. That
is, how can we be sure that at some point B divides A? If not, we would get an end-
less sequence of positive integers, each one strictly smaller than the one before, and
this is clearly impossible.

i to determine the
b > 0. It is accept-
b) = ged(|al, |b]).

In Section 4.1, we defined a field as a set that obeys all of the axioms of Figure 4.1
and gave some examples of infinite fields. Infinite fields are not of particular inter-
est in the context of cryptography. However, finite fields play a crucial role in many
cryptographic algorithms. It can be shown that the order of a finite field (number of
elements in the field) must be a power of a prime p", where 7 is a positive integer.
We discuss prime numbers in detail in Chapter 8. Here, we need only say that a
prime number is an integer whose only positive integer factors are itself and 1.
The finite field of order p” is generally written GF(p"); GF stands for Galois
field, in honor of the mathematician who first studied finite fields. Two special cases
are of interest for our purposes. For n = 1, we have the finite field GF(p); this finite
field has a different structure than that for finite fields with n > 1 and is studied in
this section. In Section 4.6, we look at finite fields of the form GF(2").
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Finite Fields of Order p

For a given prime. p. the finite field of order p. GF(p) is defined as the set Z,, of inte-
gers {0, 1... .. p — 1}, together with the arithmetic operations modulo p. '

Recall that we showed in Section 4.2 that the set Z, of integers {0, 1, . . ., n -1},
together with the arithmetic operations modulo 1. is a commutative ring (Table 4.2).
We further observed that any integer in Z, has a multiplicative inverse if and only
if that integer is relatively prime to 7 [see discussion of Equation (4.2)]. If n is prime.
then all of the nonzero integers in Z,, are relatively prime to 7, and therefore there
exists a multiplicative inverse for all of the nonzero integers in Z,. Thus, we can add
the following properties to those listed in Table 4.2 for Z;

Multiplicative inverse (w™') Foreachw e Z . w # 0, there existsaz € Z, such
thatw X z = 1 modp

Because w is relatively prime to p, if we multiply all the elements of Z, by w,
the resulting residues are all of the elements of Z, permuted. Thus, exactly one
of the residues has the value 1. Therefore, there is some integer in Z, that, when
multiplied by w, vields the residue 1. That integer is the multiplicative inverse of w.
designated w™'. Therefore, Z is in fact a finite field. Further. Equation (4.2) is con-
sistent with the existence of a multiplicative inverse and can be rewritten without
the condition

if(axXb)=(aXc)modpthenb=cmodp (4.4)
Multiplying both sides of Equation (4.4) by the multiplicative inverse of a. we have

(@) X axb)=((a") X aXc)ymodp

=cmodp

The simplest finite field is GF(2). Its arithmetic operations are easily summa-
rized as follows:

+ 0 1 x 0 1 woo—w ow!
0 1 O 0 0 0 0 —
1 1 0 1 0 1 1 1 i
Addition Multiplication Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and
multiplication is equivalent to the logical AND operation.

Table 4.3 shows GF(7).
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Table 4.3 Arithmetic in GF )
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(a) Addition modulo 7
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1 be rewritten without
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inverse of a. we have (c) Additive and multiplicative inverses modulo 7
2 1mvi 3

p

Finding the Multiplicative Inverse in GF(p)

It is easy to find the multiplicative inverse of an element in GF(p) for small values
of p. You simply construct a multiplication table, such as shown in Table 4.3b, and

the desired result can be read directly. However, for large values of p. this approach
is not practical.

If ged(m, b) = 1,then b has a multiplicative inverse modulo m. That is, for pos-
itive integer b <m, there exists a b™! < m such that bp~! = 1 mod m. Euclid’s algo-
rithm can be extended so that, in addition to finding ged(m, b), if the gcd is 1, the
algorithm returns the multiplicative inverse of b.

EXTENDED EUCLID (i, b)

1. (Al, A2, A3) « (1,0, m); (B1, B2, B3) « (0,1, )
2. fB3 =90 return A3 = ged(m, b); no inverse
3.ifB3 =1 return B3 = ged(m, b); B2 = 5~ mod m

T
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(T1,T2,T3) « (Al — QB1, A2 — QB2, A3 — QB3)
(A1, A2, A3) « (B, B2, B3)

(B1, B2, B3) « (T1, T2,T3)

goto 2

Throughout the computation, the following relationships hold:
mT1 + bT2 ="T3 mAl + bA2 = A3 mB1 + bB2 = B3

To see that this algorithm correctly returns ged(rm, b), note that if we equate
A and B in Euclid’s algorithm with A3 and B3 in the extended Euclid’s algorithm,
then the treatment of the two variables is identical. At each iteration of Euclid’s
algorithm, A is set equal to the previous value of B and B is set equal to the previ-
ous value of A mod B. Similarly, at each step of the extended Euclid’s algorithm.
A3 is set equal to the previous value of B3, and B3 is set equal to the previous value
of A3 minus the integer quotient of A3 multiplied by B3. This latter value is simply
the remainder of A3 divided by B3, which is A3 mod B3.

Note also that if ged(m, b) = 1, then on the final step we would have B3 =0
and A3 = 1. Therefore, on the preceding step, B3 = 1. But if B3 = 1, then we can
say the following:

mB1 + bB2 = B3
mB1 + bB2 =1
pB2 = 1 + mB1
pB2 = 1 mod m

And B2 is the multiplicative inverse of b, modulo m.

Table 4.4 is an example of the execution of the algorithm. It shows that ged(550,
1759) = 1 and that the multiplicative inverse of 550 is 355; that is, 550 X 355 =
1 mod 1759. !

For a more detailed proof of this algorithm, see [KNUT97].

Table 4.4 Finding the Multiplicative Inverse of 550 in GF(1759)
Al AZ A3 B1 B3

0
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The Devil said 1o Daniel Webster: “Set me a task I can’t carry oul, and il give vou

anvihing in the world vou ask for.”

Daniel Webster: “Fair enough. Prove that for n greater than 2, the equaiion
g+ B = ¢ has no non-trivial solution in the integers.”

They agreed on a three-day period for the labor, and the Devil disappeared.

At the end of three days, the Devil presented himself. haggard, jumpy, biting
his lip. Daniel Webster said to him, “Well, how did vou do ar my task? Did you
prove the theorem?’

“Eh? No ... no, I haven't proved it.”

“Then I can have whatever I ask for? Money? The Presidency?”

“What? Oh. that—of course. But listen! If we could just prove the following two
lemmas—"

—The Mathemarical Magpie, Clifton Fadiman

number of concepts from number theory are essential in the design of pubt-

lic-key cryptographic algorithms. This chapter provides an overview of the

concepts referred to in other chapters. The reader familiar with these top-
ics can safely skip this chapter.

PRIME NUMBERS'

A central concern of number theory are prime numbers. Indeed, whole bocks haw
been written on the subject (e.g., [CRANO1], [RIBE96]). In this section we provics
an overview relevant to the concerns of this book.

An integer p > 1 is a prime number if and only if its only divisors are =1 anc
+p. Prime numbers play a critical role in number theory and in the techniques dis-

cussed in this chapter.

Table 8.1 shows the primes under 2000. %

Any integer a > 1 can be factored in a unique way as
a=pipy..pl

where p, < p» <...<p, are prime numbers and where each g, is a positive integer.

91 =7 % 13; 11011 = 7 x 11" x 13 |

'n this section. unless otherwise noted. we deal only with the nonnegative integers. The use of negat:
integers would introduce no essential differences.
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t this another way. If P is the set of all prime In sener

It is useful for what foliows to cas
be written uniquely in the following form:

numbers, then any positive integer can

a= Hp“" where eacha, = 0

pe?P ’
J De
The right-hand side i3 the product over all possible prime numbers p; for any par- - ceding r
ticular value of a, most of the exponents a, will be 0. ' ing the g
[ 3600 =2 x 3 5 |
: o - , o 8.2 FERM
The value of any given positive integer can be specified by simply listing all
the nonzero exponents in the foregoing formulation. 4 ‘
; Two the
: : th
The integer 12 1s represented by {a, = 2,8, =1} eorent
The integer 18 is represented by la,=1,a,= ZJ_J Ferma
e . . . . Fermat’
Multiplication of two numbers is equivalent to adding the corresponding expo- divisibl
: : nents:
% i k=mn— k,=m,+n, forallp e P
P H
g — 12 x 18 = 216 Proot
. k2=2+1=3;k3=1+2=3 all of 1}
g 216 =2 % 3° fore, th
; | bers {1
ﬁ 1 What does it mean, in terms of these prime factors, to say that a divides b (alb)” taking
Any integer of the form p* can be divided only by an integer that is of a lesser or
; equal power of the same prime number, p’ with j = k. Thus, we can say
, k alp = a,=b, for all p
a=12;b=36,1236;12 = 2?2 % 3;36 = 2° X 32 But
. a,=2=b
a;=1=2= b,
It is easy to determine the greatest common divisor® of two positive integers There!
we express each integer as the product of primes.
: 300 =22 %3 x5
18 = 2! x 3 We ca
ged(18, 300) = 2 x3 x5=6 (423}
. . . s *This is
Recall from Chapter 4 that @ divides b if there is no remainder on division. Recall
’Recall from Chapter 4 that the greatest common divisor of integers a and b, expressed ged(a. b). is un that is.
f o and b is a divisor of ¢. i their

integer ¢ that divides both @ and b without remainder and that any divisor 0
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In general.

k=gcd(a. by = k, = min{a,, b,) for all p

Determining the prime factors of a large number is no easy task. so the pre-
ceding relationship does not directly lead to g way of practical method of calculat-
ing the greatest common divisor.

FERMAT’S AND BULER’S THEOREMS

Two theorems that play important roles in public-key cryptography are Fermat's
theorem and Euler's theorem.

Fermat’s Theorem*

I‘ermat’s theorem states the following: If P is prime and « is a positive integer not
divisible by p. then

a”™' = 1mod p (8.1)
Proof: From Chapter 4. we know that if all of the elements of Z,, where Z,is the
wtofintegers {0. 1. . .. - — 1}, are multiplied by a, modulo p, the resuit consists of
Ilof the elements of Z,in some Sequence. Furthermore. ¢ X ) = ( mod p. There-
tore.the (p — 1) numbers {amod p. 24 modp, ... (p -~ 1)a mod plare just the num-
hers {1, 2,000 (p - 1)} in some order. Multiplying the numbers In both sets and
tiking the result mod P yields

a><2a><...><((p—l)a)E[(amodp)X(Zamodp}X...X
((p ~ Da mod p)[mod p
E[]XZX...X(p—l)]modp
E(p-l)!modp

X = Da) = (p - 1)1

tetore,

P = D" = (p ~ 1)1 mod p

@i cancel the (p — 1)l term because it is relatively prime’ to p [see Equation

Vhis yields Equation (3.1,

nutimes referred 1o as Fermat's little theorem.

< Chapter 4 that two numbers are relatively prime if they have no prime factors in common:
¢ only common divisor is | This is equivalent 10 saying that two numbers are relatively prime
dest common divisor is 1.
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a=7p=19

72 = 49 =11 mod 19

74=121 =7 mod 19

78 =49 =11 mod 19

76 =121 =7 mod 19

=78 =70 x 72=7 x 11=1mod 19

An alternative form of the theorem is also useful: If p is prime and a 18 &n3
positive integer, then

a’ =amodp

])—5,a=3,35=24353m0d5
p=>5a=10, 10° = 100000 = 10 mod 5=0mod 5

Euler’s Totient Function

Before presenting Euler’s theorem, we need to introduce an important quantity i1
aumber theory, referred to as Euler’s totient function and written &(n), where &l
is the number of positive integers less than # and relatively prime to 7.

Determine &(37) and ¢(35).
Because 37 is prime, all of the positive integers from 1 through 36 are reli-
tively prime to 37. Thus &(37) = 36.
To determine &(35), we list all of the positive integers less than 35 that are 1ot
atively prime to it:

1,2,3.4,6,8,9,11,12,13. 16, 17, 18,
19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34.

There are 24 numbers on the list, so &(35) = 24.

Table 8.2 lists the first 30 values of (n). The value &(1) is without meaning
Lbiut is defined to have the value 1.

1t should be clear that for a prime number p,

dp)=p—1

Now suppose that we have two prime numbers p and g, with p # g. Then. for

o) = d(pg) = &(p) X &(q) = (P Dx(g-1

To see that d(n) = d(pq), consider that the set of residues in Z,, s {0, 1, ... . {770
The residues that are not relatively prime to n are the set {p, 2p. ..., (g —
set {g.2g,....(p — Dal. and 0. Accordingly,




xd 19
If p is prime and g is any

(8.2

:0mod 5

: an important quantity :f# :
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Table 8.2 Some Values of Euler's Totient F

0N

unction ¢(n)

n d(n) " b(n)
11 10 21 12

-LxO\JACI\I\)J:‘l\)NH»—l

<b(n)=pq~[(q—1)+(p~1)+1]
=pq—(p+gq)+1
=P-1)x(@g-1)
(p) X ¢(q)

i

¢(2]):¢(3)><¢(7)=(3~])X(7~l)==2><6=12
where the 12 integers are {1,2,4,5,8, 10,11, 13, 16, 17, 19, 20}

Euler’s Theorem

Euler’s theorem states that for every a and 7 that are relatively prime:

a®™ =1 mod (8.3)

]

=10; &(10) = 4; 3* = 81 = 1 mod 10
11; ¢(11) = 10; 2% = 1024 = 1 mod 11

I X
i

Proof: Equation (8.3) is true if i is prime, because in that case &(n) = (n — 1) and
'ermat’s theorem holds, However, it 1

i the number of positive integers less
the set of such integers, labeled as follows:

R = {XI. KXoy ot axd>(n)}

~ow multiply each element by a, modulo n:

8 = {(ax, mod n). (ax, mod n), . . . (axy,, mod n))

i set §'is a permutation of R. by the following line of reasoning;

I. Because a is relatively prime to # and ¥; Is relatively prime to n, ax; must also
be relatively prime to 7. Thus,. all the

members of S are integers less than 7
that are relatively prime to #.
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2. There are no duplicates in S. Refer to Equation (4.2). If ax; mod nn = ax; mod 1.
then x; = X, R

Therefore,
i) ()

H(ax,-mod n) = Hxi

F=1 i=1

&) )

T1ax I__[x,r {mod 1)

i=1 i=1]

i oin) &{n)
240 % { I }Ci T1xi (mod n)

i=1 i=1

a® =1 (mod n)
An alternative form of the theorem is also useful:
a®™*!' = g (mod n) (8.4)

We can develop a corollary to Euler’s theorem that is useful in demonstrating
the validity of the RSA algorithm (Chapter 9). Given two prime numbers p and ¢.
and integers n = pg and m, with 0 <m <n, the following relationship holds:

Ut = @D D* ! = 5y mod n

If ged(m, n) = 1, that is, if m and n are relatively prime then the relationship !
by virtue of Euler’s theorem [Equation (8.3)]. Suppose ged(m, n) # 1. What do.
this mean? Because n = pq. the equality ged(m, n) = 1 is equivalent to the logiviil
expression (m is not a multiple of p) AND (m is not a multiple of g). If m is a mu!
tiple of p, then n and m share the prime factor p and are not relatively prime, and !
m is a multiple of g, then n and m share the prime factor g and are not relativeh
prime. Therefore, the expression ged(mm, n) # 1 must be equivalent to the negation
of the foregoing logical expression. Therefore, ged (i, n) = 1 is equivalent to the
logical expression (im is a multiple of p) OR (m is a multiple of g).

Let us look at the case in which m is a multiple of p. so that the relationship
m = cp holds for some positive integer c. In this case, we must have ged(m, g} = |
Otherwise, we have m a multiple of p and m a multiple of g and yet m < pg. i
ged(m, g) = 1. then Euler’s theorem holds and

M4 =1 mod g
But then, by the rules of modular arithmetic,

" A3l 1)
if'??"“‘("'qd)(l]” =1 mod g

d(n}

m®" = 1modg

Therefore. there is some integer k such that
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A similar line of reasoning is used for the case in which 1 is a multiple of g.
Thus, Equation (8.5) is proven. An alternative form of this corollary is directly rel-
evant to RSA:

A = [ e X ] mod
= [(1)* X m] mod r by Euler’s theorem
= m mod n (8.6}

TESTING FOR PRIMALITY

In a number of cryptographic algorithms, it is necessary to select one or more very
lirge prime numbers at random. Thus we are faced with the task of determining
whether a given large number is prime. There is no simple yet efficient means of
+wcomplishing this task.

In this section. we present one attractive and popular algorithm. You may be
-urprised to learn that this algorithm yields a number that is not necessarily a prime.
However, the algorithm can vield a number that is almost certainly a prime. This wil
" explained presently. The algorithm due to Miller and Rabin [MILL75, RABIS0]

ploits Fermat's theorem [Equation (8.1)], which states that "' = 1 mod n if
IS prime.

The algorithm can be explained as follows. For a candidate odd integer 7 = 3.

onsider the even number (n — 1). This number can be expressed in the form of
e power of 2 times an odd number:

n—1=2g with k£ > 0, ¢ odd

‘wis. we divide (7 — 1) by 2 until the result is an odd number, for a total of & divisions.
Next, we choose an integer @ in the range 1 < g < 57 — 1. The algorithm then
hves computation of the residues modulo # of the following sequence of powers:

ata®, .. a* g% (8.7)

I is prime. we know from Fermat's theorem that o= mod n = 4" mod

I'here may or may not be an earlier element of the sequence (8.7} that has
e of 1. To clarify what follows. we characterize the sequence (8.7} in

i
josnd
o

mp form: {9, 0 < 7=k} Then. if n is prime. there is a smallest value of
od n = 1. There are two cases {0 consider.

k) such that o°¥ m
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8.5 DISCRETE LOGARITHMS

Discrete logarithms are fundamental to a number of public-key algorithms, includ-
ing Diffie-Hellman key exchange and the digital signature algorithm (DSA). This
section provides a brief overview of discrete logarithms. For the interested reader.
more detailed developments of this topic can be found in [ORE67] and [LEVES0].

The Powers of an Integer, Modulo n

Recall from Euler’s theorem [Equation (8.3)] that, for every a and 11 that are rela-
tively prime,

g®" =1 modn

where &(n), Euler’s totient function is the number of positive integers less than 7
and relatively prime to n. Now consider the more general expression

a™ =1modn (8.11)

If @ and n are relatively prime, then there is at least one integer m that satisfies
Equation (8.11), namely, m = &(n). The least positive exponent /m for which Equa-
tion (8.11) holds is referred to in several ways:

e the order of a (mod 1)
o the exponent to which a belongs (mod n)
o the length of the period generated by a

To see this last point, consider the powers of 7, modulo 19:

7= 7 mod 19
T =49=2%X19+11= 11 mod 19
=343 =18X19+1= 1 mod 19
74 = 2401 =126 X 19+ 7= Tmod 19
75 = 16807 = 884 % 19 + 11 = 11 mod 19

There is no point in continuing because the sequence is repeating. This can be |
proven by noting that 73 = 1 (mod 19) and therefore 73+ = 77 = 7 (mod 19). |
and hence any two powers of 7 whose exponents differ by 3 (or a multiple of 3}
are congruent to each other (mod 19). In other words, the sequence is periodic. |
and the length of the period is the smallest positive exponent m such that 77 = |
1 (mod 19). ,

Table 8.3 shows all the powers of a. modulo 19 for all positive a < 19.
The length of the sequence for each base value is indicated by shading. Note the

following:

1. All sequences end in 1. This is consistent with the reasoning of the pre-
ceding few paragraphs.
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2. The length of a sequence divides $(19) = 18. That is, an integral number
of sequences occur in each row of the table.

3. Some of the sequences are of length 18. In this case, it is said that the base
integer a generates (via powers) the set of nonzero ntegers modulo 19,
Each such integer is called a primitive root of the modulus 19,

More generally, we can say that the highest possible exponent to which a num-
ber can belong (mod 7) is ¢(x). If a number is of this order, it is referred to as a
primitive root of #. The importance of this notion is that if g is a primitive root of x,
then its powers

2

a, as, ..., a%m

are distinct (mod ») and are all relatively prime to 7. In particular, for a prime num-
ber p, if a is a primitive root of p, then

2

a,a*, ... a""!

are distinct (mod p). For the
14, and 15.

Not all integers have primitive roots. In fact. the only integers with primitive
roots are those of the form 2, 4, p®, and 2p®, where p is any odd prime and « is a
positive integer.

prime number 19, its primitive roots are 2, 3, 10, 13,

Indices

With ordinary positive real numbers, the logarithm function is the inverse of expo-
nentiation. An analogous function exists for modular arithmetic.

5 19:
od 19 i3 Powers of Integers, Modulo 19
od 19
gd 19 a} 34 25 aﬁ a7 as a‘) al() all 312 213 alJ a15 a16 a17 318
19 Lot 1 11 1 1 1 11111 1 1 1
od 8 16 138 7 ¥4 9 18 17 15 113 6 12 5 10
nod 19 8 5 15 7 2 6 18 16 10 111 4 12 17 15 1
i : 79 1T 11 6 5 114 16 7 9 17 1 6 s 3
is repeating. This ¢ U 17 9 7 16 4 115 6 1 17 9 7 16 4 1
Pi=77=7 (m 74 5 11 9 16 116 17 7 4 5 11 9 16 1
r by 3 (or a multiple Ll7 17 n o1 7 uo1 o7 ou 1 s 11
the sequence is per 5 41 12 118 7 18 11 12 1 8 7 18 1 12 1
’ + m such that 6. 16 11 4 17 119 5 7 6 16 11 4 17 1
ponent m " 6 3 U 15 17 18 9 14 7 13 16 8 4 32 ]
i I 11 7 1 11 7 1 11 7 1 11 7 1 17 1
) for all positive 7.8 112 w18 7 8 1 12 11 18 7 8 1
-ated by shading. ! 4 4 1 10 16 18 6 2 7 15 5 8 9 3
7 10 7 3 4 18 5 13 112 9 17 16 is 3
9 2 11 13 5 18 4 3 7 10 17 8 6 11
the reasoning of thi 54 7.7 6 1 116 9 11 5 4 7 17 ¢ i
6 6 7 5 9 1117 4 1o 16 6 7 5 9
) P81 18 1 18 1 18 1 18 1 18 1 18 g
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Let us briefly review the properties of ordinary logarithms. The logarithm ©!
2 number is defined to be the power to which some positive base (except 1) must i«
raised in order to equal the number. That is, for base x and for a value y.

The properties of logarithms include the following:
log\(]‘) =0
log,(x) = 1
log,(yz) = log,(y) + log,(z)
log,(y") = r X log,(y)

Consider a primitive root a for some prime number p (the argument can b
developed for nonprimes as well). Then we know that the powers of a from 1 through
(p — 1) produce each integer from 1 through (p — 1) exactly once. We also know
that any integer b can be expressed in the form

b=rmodp where0=r=(p— 1)

by the definition of modular arithmetic. It follows that for any integer b and a prit:
itive root a of prime number p, we can find a unique exponent i such that

b=a modp where0=i=(p — 1)

This exponent i is referred to as the index of the number b for the base a (
We denote this value as ind, ,(b).
Note the following:

ind, (1) = 0, because a®modp =1modp =1

ind, (a) = 1, because a'modp =a

Here is an example using a nonprime modulus, 71 = 9. Here d(n) = 6 and ¢
is a primitive root. We compute the various powers of a and find

2 =17
2° =35 (mod9)
26 =1

This gives us the following table of the numbers with given indices (mod 9} 1
the root a = 2

Index
Number
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To obtain the index of a given number, we rearrange the table to make the re-
mainders relatively prime to 9 the primary entry:

Number 1 2 4 5 7 8 |

Index 0 1 2 5 4 3
Now consider
x = g mod P v = @™l mod p
xy = a™"* mod p
Using the rules of modular multiplication,
xy mod p = (x mod p)(y mod p)
a™™mod p = (a™“mod p)(a™4mod p)

= (@™ mod p

But now consider Euler’s theorem, which states that, for every a and # that are
relatively prime,

a® =1 mod n
Any positive integer z can be expressed in the form z = g + k¢(n), with 0 = g < d(n).
Therefore, by Euler’s theorem,

a* = g’ mod n if z =g mod &(n)

Applying this to the foregoing equality, we have
ind, ,(xy) = [ind,,(x) + ind, ,(v)] mod ()
and generalizing,
inda,p(yr) = [r X indu.p(y)] mod d)(P)

‘T'his demonstrates the analogy between true logarithms and indices. For this reason,
the latter are often referred to as discrete logarithms.

Keep in mind that unique discrete logarithms mod 71 to some base a exist only
if ¢ is a primitive root of n.

~ Table 8.4, which is directly derived from Table 7.6, shows the sets of discrele
logarithms that can be defined for modulus 19.

Calculation of Discrete Logarithms

¢ onsider the equation

y =g mod p
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Table 8.4 Tables of Discrete Logarithms, Modulo 19

(2) Discrete logarithms to the base 2, modulo 19

a 1 2 3 4 6 7 8 9 |10 111 13 114

1
Ind,.(2) |18 | 1 |13 | 2 |16 |14 | 6] 3|8 [17 12 |1

L

16 |17 |1t
a0 9

wniny

(o

a7

.

[t
L

(b) Discrete logarithms to the base 3, modulo 19

a 1 2 3 4 5 6 7 8 9 110 |11 [12 113 114 115 116 |17 | 18
Indy o(a) |18 7 1 114 4 18 6 3 2 |11 112 {15 {17 |13 5110 (16 ¢

(¢} Discrete logarithms to the base 10, modulo 15

a1 1] 21345617 ] 8] 091011 1213 |14 |15 |16 |17 |1f
Ind, o(a) |18 |17 | 5 |16 | 2 | 4 |12 |15 |10 [ 1 [ 6 [ 3 [13 [11 | 7 |14 | 8¢

(d) Discrete logarithms to the base 13, modulo 19

a 1 4 5 6 7 8 9 |10 |11 112 |13 |14 115 116 | 17
Ind;; o(a) {18 |11 |17 4 114 10 112 |15 (16 7 6

3]
(O3]
[

)
—
h
f—
W
o
(i)
O o

(e) Discrete logarithms to the base 14, moduio 19

a 1 2 3 4 5 6 7 8 9 |10 |11 {12 |13 |14 |15 {16 |17 |18
Ind,, o(a) | 18 |13 7 8§ |10 2 6 3 114 S 112 115 111 1 |17 (16 | 14 9
(f) Discrete logarithms to the base 15, modulo 19

a 1 2 3 4 5 6 7 8 9 110 |11 |12 |13 114 [15 (16 117 |1in
Ind;s o(a) | 18 5111 (10 g 116 |12 |15 4 113 6 3 7 117 1 2 112 b

Given g, x, and p, it is a straightforward matter to calculate y. At the worst. v«
must perform x repeated multiplications, and algorithms exist for achieving greaici
efficiency.

However, given y, g, and p, it is, in general, very difficult to calculate x (takc
the discrete logarithm). The difficulty seems to be on the same order of magnitud:
as that of factoring primes required for RSA. At the time of this writing, the asymyp-
totically fastest known algorithm for taking discrete logarithms modulo a prime
number is on the order of [BETHO91]:

el ) in(in piy )

which is not feasible for large primes.

RECOMMENDED READING AND WEB SITE

There are many basic texts on the subject of number theory that provide far more detail this
most readers of this book will desire. An elementary but nevertheless useful short introdu

8.7
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9.2

attack is infeasible for a particular public-key algorithm. Thus, any given algorithrm.
including the widely used RSA algorithm, is suspect. The history of cryptanalysi
shows that a problem that seems insoluble from one perspective can be found tc
have a solution if looked at in an entirely different way.

Finally, there is a form of attack that is peculiar to public-key systems. This is.
in essence, a probable-message attack. Suppose, for example, that 2 message were
to be sent that consisted solely of a 56-bit DES key. An opponent could encrypt 21!
possible keys using the public key and could decipher any message by matching the
transmitted ciphertext. Thus, no matter how large the key size of the public-ke:
scheme, the attack is reduced to a brute-force attack on a 56-bit key. This attack can
be thwarted by appending some random bits to such simple messages.

THE RSA ALGORITHM

The pioneering paper by Diffie and Hellman [DIFF76b] introduced a new ap-
proach to cryptography and, in effect, challenged cryptologists to come up with 2
cryptographic algorithm that met the requirements for public-key systems. One of
the first of the responses to the challenge was developed in 1977 by Ron Rives:
Adi Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78].* The
Rivest-Shamir-Adleman (RSA) scheme has since that time reigned supreme as thc
most widely accepted and implemented general-purpose approach to public-ke:
encryption.

The RSA scheme is a block cipher in which the plaintext and ciphertext &
integers between 0 and 7 — 1 for some n. A typical size for n is 1024 bits. or 2
decimal digits. We examine RSA in this section in some detail, beginning with
eiﬁigﬁgilon of the algorithm. Then we examine some of the computational
cryptanalytical implications of RSA.

Description of the Algorithm

The scheme developed by Rivest, Shamir, and Adleman makes use of an expres-
sion with exponentials. Plaintext is encrypted in blocks, with each block having =
binary value less than some number n. That is, the block size must be less than o
equal to log,(n): in practice, the block size is & bits. where 2¢ < n = 2**!, Encrvy-
tion and decryption are of the following form, for some plaintext block M and
ciphertext block C:

C=Mmodn
M= C'modn = (M) modn = M mod n

Both sender and receiver must know the value of n. The sender knows the valuc
of e, and only the receiver kn@ws the value of d. Thus. this is a public-key encryption

*Apparently. the first workable public-key system for encryption/decryption was put forward by Clitt
Cocks of Britain’s CESG in 1973 [COCK73]; Cocks’s method is virtually identical to RSA.
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iny given algorithm,
ory of cryptanalysis
ive can be found to

algorithm with a public key of KU = {e. n} and a private key of KR = {d, n}. For this
algorithm to be satisfactory for public-key encryption, the following requirements
must be met:

key systems. This is,
‘hat a message were
:nt could encrypt all
age by matching the
s of the public-key
key. This attack can
>ssages.

1. It is possible to find values of e, d, n such that M* = M mod n for all M < n.

2. It is relatively easy to calculate M "_ggqgfffor all values of M < n.
3. Itis infeasible to determine d given e and n.

For now, we focus on the first requirement and consider the other questions
later. We need to find a relationship of the form

M= Mmodn

A corollary to Euler’s theorem, presented in Chapter 8 [Equation (8.6)], fits
the bill: Given two prime numbers, p and g, and two integers, n and m, such that
n = pg and 0 < m < n, and arbitrary integer k, the following relationship holds:

;roduced a new ap-
s to come up with a
key systems. One of
977 by Ron Rivest,
978 [RIVE78).* The
gned supreme as the
roach to public-key

mk¢(17)+1 — mk(p"l)((l"l)+l = 17 mod n

where ¢(n) is the Euler totient function, which is the number of positive integers
less than n and relati

ely prime to n. It is shown in Chaptﬁer 8 that for p, ¢ prime,
&(pg) = (p — 1)(g — 1). Thus, we can achieve the desired relationship if

t and ciphertext are ed = kd(n) + 1
1 is 1024 bits, or 309
1, beginning with an

- computational and :

This is equivalent to saying:

ed = 1 mod d(n)
d = e 'mod d(n)

That is, e and d are multiplicative inverses mod ¢(n). Note that, according to the
rules of modular arithmetic, this is true only if d (and therefore e) is relatively prime
to &(n). Equivalently, ged(d(n), d) = 1. I

We are now ready to state the RSA scheme. The ingredients are the following:

es use of an expres-
each block having a
must be less than of
< n = 2¢*!, Encryp-
rintext block M and

D, g, two prime numbers (private, chosen)
n=pq (public, calculated)
e, with ged(d(n), e) = 1;1 < e < d(n) (public, chosen)

n d = ¢ ' mod &b(n) (private, calculated)

nder knows the val

. The private key consists of {d, n} and the public key consists of {e, n}. Suppose
yublic-key encryptics

that user A has published its public key and that user B wishes to send the message
M to A. Then B calculates C = M¢ (mod ) and transmits C. On receipt of this
ciphertext, user A decrypts by calculating M = C¢ (mod n).

It is worthwhile to summarize the justification for this algorithm. We have cho-
sen e and d such that

sas put forward by Cliff
itical to RSA.
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d = ¢~ mod o(n)
Therefore,

ed =1 mod ¢(n)

Therefore, ed is of the form kd{n) + 1. But by the corollary to Euler’s theorem, pro-
vided in Chapter 8, given two prime numbers, p and g, and integers n = pg and /7.
with0 < M <

Mkd)(n)*‘l o Mk(/:—l)(t/-lHi = M mod n

So M = M mod n. Now

C= M modn
M= C'modn = (M) modn=M*modn=Mmodn

Figure 9.5 summarizes the RSA algorithm. An example, from [SING99], is
shown in Figure 9.6. For this example, the keys were generated as follows:

1. Select two prime numbers, p = 17 and g = 11.
2. Calculate n = pg = 17 X 11 = 187.
3. Calculate d(n) = (p — D)(g — 1) = 16 X 10 = 160.

Key Generation

Selectp. g p and g both prime, p# g
Calculaten =p X g

Calculate §(m) = (p~Ig- 1)

Select integer e ged(din), e)=1; 1 <e<d(n)
Calculate d d=e lmod b(m)

Public key KU={e, n}

Private key KR ={d. n}

Eneryption

Plaintext; M<n
Ciphertext: C = M€ (mod n)

Decryption

Ciphertext: C
Plaintext: M = (d(mod 1)

Figure 9.5 The RSA Algorithm




Euler’s theorem, ©
tegers 11 = pg anc

2

v

10d 71

¥

le, from [SINGS
:d as follows:

e pEg

l<e<®in
)

the correct
¢ calculated ¢

The resulting |
The example shows
encryption, we need ¢
ular arithmetic. we can QO i

88" mod 187 = [(83"
88" mod 187 =
88" mod 187 =
88 mod 187 =
88" mod 187 =

For decryption. we caiculate M = 11

117 mod 187 = [(11' mod 187) x m
(11 mod 187)><(11*mod 187)] 1




392 CHAPTER. 13 / DIGITAL SIGNATURES AND AUTHENTICATION PROTOCOLS

13.3 DIGITAL SIGNATURE STANDARD

The National Institute of Standards and Technology (NIST) has published Feder !
Information Processing Standard FIPS 186, known as the Digital Signature Standar!
(DSS). The DSS makes use of the Secure Hash Algorithm (SHA) describec
Chapter 12 and presents a new digital signature technique. the Digital Signatu
Algorithm (DSA). The DSS was originally proposed in 1991 and revised in 1992 &
response to public feedback concerning the security of the scheme. There was a
ther minor revision in 1996. In 2000, an expanded version of the standard was is
as FIP 186-2. This latest version also incorporates digital signature algorithms bas
on RSA and on elliptic curve cryptography. In this section. we discuss the originul

DSS algorithm.

The DSS Approach

The DSS uses an algorithm that is designed to provide only the digital signatut
function. Unlike RSA. it cannot be used for encryption or key exchange. Nev.s
theless. it is a public-key technique.

Figure 13.1 contrasts the DSS approach for generating digital signatures i
that used with RSA. In the RSA approach, the message to be signed is input i -
hash function that produces a secure hash code of fixed length. This hash cod
then encrypted using the sender’s private key to form the signature. Both the 7+
sage and the signature are then transmitted. The recipient takes the message +u

@

EKR(;{ H(M)

(a) RSA approach

(b) DSS approach

Figure 13.1 Two Approaches to Digital Signatures
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produces a hash code. The recipient also decrypts the signature using the sender’s
public key. If the calculated hash code matches the decrypted signature, the signa-
ture is accepted as valid. Because only the sender knows the private key, only the
sender could have produced a valid signature.

The DSS approach also makes use of a hash function. The hash code is pro-
vided as input to a signature function along with a random number k generated for
this particular signature. The signature function also depends on the sender’s pri-
vate key (KR, ) and a set of parameters known to a group of communicating princi-
pals. We can consider this set to constitute a global public key (K Ug).* The result is
a signature consisting of two components, labeled s and .

At the receiving end, the hash code of the incoming message is generated. This
plus the signature is input to a verification function. The verification function also
depends on the global public key as well as the sender’s public key (KU,), which is
paired with the sender’s private key. The output of the verification function is a
value that is equal to the signature component r if the signature is valid. The signa-
ture function is such that only the sender, with knowledge of the private key, could
have produced the valid signature.

We turn now to the details of the algorithm.

The Digital Signature Algorithm

The DSA is based on the difficulty of computing discrete logarithms (see Chapter
8) and is based on schemes originally presented by ElGamal [ELGASS5] and
Schnorr [SCHN91].

Figure 13.2Z summarizes the algorithm. There are three parameters that are
public and can be common to a group of users. A 160-bit prime number ¢ is chosen.
Next, a prime number p is selected with a length between 512 and 1024 bits such
that g divides (p — 1). Finally, g is chosen to be of the form 4 ~D% mod p, where
h is an integer between 1 and (p — 1) with the restriction that g must be greater
than 1.

With these numbers in hand, each user selects a private key and generates a
public key. The private key x must be a number from 1 to (g — 1) and should be
chosen randomly or pseudorandomly. The public key is calculated from the pri-
vate key as y = g" mod p. The calculation of y given x is relatively straightforward.
However, given the public key y, it is believed to be computationally infeasible
to determine x, which is the discrete logarithm of y to the base g, mod p (see
Chapter 8).

To create a signature, a user calculates two quantities, r and s, that are func-
tions of the public key components (p. g, g). the user’s private key (x), the hash code
of the message, H(M), and an additional integer & that should be generated ran-
domly or pseudorandomly and be unique for each signing.

‘It is also possible to allow these additional parameters to vary with each user so that they are a part of
a user’s public key. Ir practice. it is more likely that a global public key will be used that is separate from
each user’s public key.

“In number-theoretic terms. g is of order g mod p: see Chapter 8.
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prime number where 2° ' < p < 2
for 512 = L = 1024 and 1. a multiple of 64;
i.e.. bit length of between 512 and 1024 bits
in increments of 64 hits Signature = (7, 5)

= (g" mod p) mod ¢

5=k HEHM) 4 an)]mod g

prime divisor of (p ~ 1). where 2! < g < 2"
i.e.. bit length of 160 bits Verifying

= BT % mod p, wo= (s modg
where h is any integer with 1 < i < (p - 1)
such that 2% P mod p > 1 u, = [H(Mw] mod g

. = (Fjw mod g

User’s Private Key voo= (g vy mod p] mod g

random or pseudorandom integer with 0 < x <7 ¢ TEST: v = '

User’s Publie Key M message (o be signed

= g' mod p ( = hash of M using SHA-1

received versions of M. 7. ¢

User's Per-Message Secret Number

= random or psendorandom integer with 0 < k < g

Figure 13.2 The Digital Signature Algorithm (DSA)

At the receiving end, verification is performed using the formulas shown It
ure 13.2. The receiver generates a quantity v that is a function of the public key
ponents, the sender’s public key, and the hash code of the incoming message. 1
quantity matches the r component of the signature, then the signature is valics

Figure 13.3 depicts the functions of signing and verifying.

The structure of the algorithm. as revealed in Figure 13.3. is quite intere:
Note that the test at the end is on the value r, which does not depend on the
sage at all. Instead. r is a function of & and the three global public-key compc®
The multiplicative inverse of k (mod ¢) is passed to a function that also has as ¢
the message hash code and the user’s private key. The structure of this funct.
such that the receiver can recover r using the incoming message and signatur
public key of the user. and the global public key. It is certainly not obvious fro:
ure 13.2 or Figure 13.3 that such a scheme would work. A proof is provided -
book’s Web site.

Given the difficulty of taking discrete logarithms. it is infeasible for ar
nent to recover k from r o1 to recover x from s.

Another point worth noting is that the only computationally demand:
in signature generation is the exponential calculation ¢" mod p. Because I
does not depend on the message to be signed. it can be computed ahead
Indeed. a user couid precalculate a number of values of 7 to be used to siz
ments as needed. The only other somewhat demanding task is the determir
a multiplicative inverse, k~'. Again. a number of these values can be preca:
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v = {4y, g g HM'), w, 1)

..,
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fatk, p. 9. g) = (g¥ mod p)mod ¢

= (g(HM")w)mod q yr'w mod q) mod p)mod g
(a) Signing (b) Verifying
Figure 13.3 DSS Signing and Verifying

e to be signed
f M using SHA-1

xd versions of M, r, s

[AKL83] is the classic paper on digital signatures and is still highly relevant. A more recent,
and excellent, survey is [MITC92].
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“Digital Signatures.” In [SIMM92a].
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Review Questions

13.1 List two disputes that can arise in the context of message authentication.
13.2 What are the properties a digital signature should have?

13.3  What requirements should a digital signature scheme satisfy?

13.4 What is the difference between direct and arbitrated digital signature?

13.5 In what order should the signature function and the confidentiality function be
applied to a message, and why?
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