Derived Fields

Eugene Zhang and Vijay Natarajan

Abstract This chapter reviews various methods for multifield visualization that are
based on the notion of derived fields. The derived fields are categorized based on
properties like the number and type of input fields. Mathematical properties, algo-
rithms, and applications are discussed for each derived field. Correlation and align-
ment measures are examined for a set of homogeneous fields, including pairwise
similarity/dissimilarity measurements. Multifield analysis is also discussed in the
context of input fields being the components of the decomposition of another field,
possibly of a different type. Finally, research challenges are discussed in the context
of the design of multifield analysis and visualization methods based on the concept
of derived fields.

1 Introduction

In this chapter we consider the notion of derived fields in the context of multifield
analysis and visualization. We discuss a categorization based on the number of fields
studied, their homogeneity, and the type of relationship between the input fields that
is captured by the derived field.

First, given a set of at least two fields of the same type, it is possible to define
pairwise similarity and dissimilarity for any two of the fields as well as the global
alignment and dependency of the fields considered as a whole. These quantities,
namely pairwise similarity/dissimilarity, global alignment, and dependency, are de-
rived quantities that can provide critical information on the input fields. For exam-
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ple, when tracking features in fluid flow datasets, it is often desirable to measure the
alignment of a sequence of consecutive time-slices in the data. In Section 2 we will
review existing work on pairwise derived fields, i.e., the number of input fields is
two. In Section 3 we will consider global alignment and dependency measures for
the case when there are more than two input fields.

Another scenario of derived fields in the context of multifield visualization is
referred to as decomposition and componentization. In this case, this input may
be considered as a single field. However, its key characteristics are revealed by a
decomposition into multiple derived fields. The behavior of the input field can be
better understood by studying each derived field in the decomposition as well as
the interplay among them. An example of this is the well-known Hodge-Helmholtz
decomposition, where an input vector field is decomposed into the sum of three
vector fields: (1) divergence-free, (2) curl-free, and (3) harmonic vector fields. We
will review techniques corresponding to this category in Section 4.

2 Pairwise Distances and Correlation Measures

A first step towards capturing the relationships between fields in multifield data
is to consider pairwise interactions. In this context we discuss the use of distance
measures, similarity measures, and local correlations between two fields.

2.1 Correlation Measures

The correlation coefficient is a standard and popular statistical measure used to de-
termine if two sets of real values are linearly related by comparing their deviations
from the respective mean values [4, Chapter 8]. When two scalar functions are sam-
pled at discrete points, the correlation coefficient is computed as
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where x;,y; are the corresponding values of the two functions and X,y are the mean
values of the two functions. Two scalar functions have a high correlation coefficient
if they deviate consistently from their respective mean values i.e. if one function
takes a value close to its mean then so does the other function at the same point on
the domain. Note that the correlation coefficient as defined above is a global mea-
sure. However, in the context of two time-varying fields, the correlation coefficient
can be computed at each point resulting in a derived field over the domain. This field
captures the linear relationship between the two time series data at each point.

Xu et al. [27] track features in a flow dataset by treating the 3D flow field as a
stack of 2D vector fields. Given a point in one slice in the stack, points in other slices
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can be correlated to this point by treating the 2D vector fields as spin images. This

idea is then extended to using the velocity gradient tensor fields of the vector fields,
leading to more efficient feature matching.
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Fig. 1: Tracking flow features by treating a stack of vector fields as spin images and using vector
and tensor field measurements [27].

2.2 Gradient Comparison

Correlation between a pair of scalar fields has also been defined based on the gradi-
ents. The use of the gradients allows the incorporation of the spatial locality into the
correlation computation. We now describe two derived fields that compare gradients
and discuss their relative merits.
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2.2.1 Definitions and Properties

Sauber et al. [22] introduce a gradient similarity measure (GSIM) between two gra-
dient fields V f; and V f; that assumes high values when the gradients have similar
magnitude and direction. The measure is defined at each point as

sV, VL) = (sa(Vfi, VL) - sm(Vi, Vi), where
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In the above expression, s; represents the similarity in gradient direction, s, rep-
resents the similarity in gradient magnitude, and the exponent r is a parameter that
determines the sensitivity of the measure. The fields are normalized to have a com-
mon range before computing gradients.

Edelsbrunner et al. [3] define a derived field that assumes high values when the
gradients are orthogonal to each other. The derived field, denoted by K, is essentially
the length of the cross product between the two gradients vectors.

While the two fields are different in the sense that GSIM measures similarity
whereas kK measures dissimilarity, both derived fields have many similarities besides
the fact that both are based on gradient comparison. Both GSIM and k depend
on the scale and length of the gradients, are pointwise comparisons, and do not
distinguish between positive and negative correlation. The similarities imply that
both techniques are applicable to the same data sets. Gosink et al. [5] also compute
correlation between gradient fields to study the interactions between the different
pairs of scalar fields in multifield data. The inner product of the gradients of two
fields of interest is computed over principle level sets of a third field. They employ
this approach to study combustion in methane and hydrogen. The correlation field
proposed by Gosink et al. is similar to GSIM described above with the difference
being the domain over which the correlation field is computed.

Sm(vflavfj) =4

2.2.2 Applications

Figure 2 shows the derived field GSIM for two pairs of quantities measured in the
simulation of hurricane Isabel. The transfer function assigns non-zero opacity to
regions with values of GSIM greater than 0.9. Patterns in the derived field can help
in the analysis of various phenomena like fronts in the hurricane.

A visualization of x helps in the study of the different phases in a combustion
simulation as shown in Figure 3. Three time steps are shown: the ignition, burn-
ing, and the final phase. The flame front is tracked by regions with large values of
k computed for the scalar field pair progand H;,, which represent the progress
of combustion and fuel concentration, respectively. The higher peaks in the terrain
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Fig. 2 Gradient similarity
measure (GSIM) computed
for two pairs of scale fields:
precipitation vs vapour (left)
and vapour vs temperature.
Image courtesy of Sauber et
al. [22].

correspond to sections of the flame front that are progressing faster. They also dis-
cuss an application to the study of a protein-protein complex in structural biology. A
protein-protein complex consists of two or more proteins docked in a stable confor-
mation. For example, the barnase-barstar complex (1BRS) consists of two proteins.
The electrostatic potential defined by barnase (N) and barstar (S) individually in
their docked conformation and the potential defined by the complex are available as
scalar fields sampled over the space, namely fy, fs, and fiprs. Regions where k be-
tween fy and fs is high correspond to salt bridges/strong hydrogen bonds. Figure 4
shows a visualization of k. The colored dots in the figure indicate high values of k
values, namely those in the range [0.002,0.0207] and are mapped from blue to red.
The dots with values lower than 0.002 are not displayed. The gold lines indicate the
hydrogen bonds corresponding to those regions of space.
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Fig. 3: Local comparison of two scalar fields progand H>from a combustion simulation. The
derived field k, which compares the gradients of the two scalar fields, is shown using a terrain
map and prog is mapped to color. From left to right: ignition phase, burning phase, and the end of
combustion. The fronts of the flames are tracked by a region with higher values of k. This region
is represented by the peaks that enclose the burnt region. Image courtesy of Edelsbrunner et al. [3].

3 Alignment and Dependency Measures

We now discuss derived fields that capture the variation or dependency between
multiple (greater than two) fields.
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Fig. 4: Visualization of the derived fieldk between electrostatic potentials defined by barnase and
barstar in the complex 1BRS. Left: an overview of the regions with high values of k in the complex.
The proteins are shown as alpha-carbon traces, with barnase in magenta and barstar in yellow.
Bottom: a closeup of a hydrogen bond cluster. Asp 39 of barstar hydrogen bonds with Arg 87,
Arg 83, and His 102 of barnase. All four residues are highly important in the interaction
between barnase and barstar. Image courtesy of Edelsbrunner et al. [3].

3.1 Local Gradient-Based Comparison Measures

The gradient comparison measures discussed in the previous section also extends
to multiple scalar fields. We now describe these extensions, their properties and
applications.

3.1.1 Definitions and Properties

The gradient similarity measure GSIM is extended to k gradient fields by computing
the minimum gradient pair similarity

Cie = min{s(Vfi, Vfj) |1 <i < j<k}.

The measure assumes low values if the gradient directions are equally distributed in
the domain. Given k fields, GSIM can be computed for all possible subsets of fields.
The size of this set grows exponentially with the number of fields and hence it is
impractical to compute and analyze GSIM for all subsets of fields. Sauber et al. [22]
address this issue by introducing the multifield-graph. Nodes of this graph corre-
spond to each subset of input fields and are displayed with icons that graphically
represent the similarity between the fields. Nodes are laid out in layers correspond-
ing to the number of fields in the subset. Two nodes in adjacent layers are connected
by an edge if the fields in lower layer node are also compared in the upper layer node.
The correlation/similarity and the size of domain with high correlation/similarity are
represented by the size and color of a disk displayed within each node. A selective
display of nodes enables focusing on nodes that represent high correlations.

The derived field k also extends to multiple fields. Given k scalar fields, k is
defined as the norm of the wedge product between the 1-forms df;,

K=||dfiAdfo A...Adfi ] -
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Each one form df; corresponds to the gradient Vf;. The wedge product is a nat-
ural extension of the cross product of two gradient vectors and represents the k-
dimensional volume of the parallelpiped spanned by the k gradients [3]. While the
comparison measure kK does not satisfy the triangle inequality, it satisfies a number
of useful algebraic properties.

. Symmetry: k(... fi,.os fiy-o ) =Koy fiyeoo fison)-

. Degeneracy: k(F) =0ifdfi=df;for1 <i# j <k

. Scaling: k(ocfi + B, f2,-- -, fir) =|o| - K(f1, f2s- -, fx), with a, B € R.

. Sub-additivity: k(fi+81,f2,--., fk) < K(f1, f2s- -, fi) + K81, f2, -, fio)-

. Sub-multiplicativity: ’C(fl"""/fl’(%"“"fk) <K(f1y e 1) K (fists s i)

| N N R

3.1.2 Computation and Applications

In practice, the scalar fields are measured at discrete points in the domain and lin-
early interpolated within elements in a triangulation of the manifold. In such a set-
ting, GSIM and «k can be computed in a loop over the d-simplices in the triangula-
tion. Since all functions are linear over a d-simplex, their gradients/differentials are
constant within each mesh element. The norm of the k-form is evaluated at a point
within the d-simplex directly from the formula and weighted by the volume of the
d-simplex.

In a typical application of the multifield-graph, the user selects a particular node
using a visual interface and analyzes the derived field corresponding to that partic-
ular node. Figure 5 shows the multifield-graph for the hurricane Isabel data set with
six scalar fields. Selected nodes are displayed within three of the five possible layers.
The extension of Kk to k fields is directly visualized for two- and three-dimensional
domains to study the relationship between the fields.

Fig. 5 Multifield-graph com-
puted for the hurricane Isabel
data set. The size and color i . . .
of the disks represent the de- Q vas s S zas zas sas
gree of correlation/similarity

between the fields. Image ; JJ J f: 4 JJJJ;{TJJ

courtesy of Sauber et al. [22].

3.2 Local Statistical Complexity

Multifield data have also been studied using statistical and information theoretic
methods. Jinicke et al. [10] adapt the notion of local statistical complexity to the
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context of time-varying fields and apply it to study data available from PDE simula-
tions [11]. The local statistical complexity is a measure of the amount of information
required from the past to predict the field in the current time step a specific point. It
is computed using the notion of entropy and mutual information as a time-varying
scalar field. Consider a time-varying field. All points that could possibly influence
the value of the field at a point p are arranged into a light cone. The size of the re-
gion of influence increases by one for each time step away from p. A light cone (™)
into the future time steps is also considered, similar to the light cone in the past
(I7), for the computation. A conditional distribution P(/*|/™) can be defined on
the light cones. The local statistical complexity is computed as the mutual informa-
tion between the distribution represented by a particular light cone and the equiva-
lence class of past light cones that have similar conditional distribution. Janicke et
al. [10, 11] describe efficient algorithms to compute the local statistical complexity.
Features are identified as complex if the probability that they occur again is low.
They demonstrate applications of this derived field to a wide range of data from
diffusion, flow, and weather simulations.

3.3 Multifield Comparison Measure

Nagaraj and Natarajan introduced a gradient-based comparison measure for multi-
ple scalar fields [14]. The measure is defined as the norm of a matrix comprising the
gradient vectors of the different functions. Let A be a m X n matrix of real numbers.
The norm of the matrix A, denoted as ||A||, is defined as

1Al [[Ax],

= max
[Ix||=1, xeR"

where ||x|| represents the Euclidean norm of vector x [9]. Let F = {1, f>, /3, -+ fm }
be a set of smooth scalar fields defined on a manifold M. The derivative at a point
p € M is written as a matrix of partial derivatives,

d d
L) $p)

dF(p) =

J m. . d m.

S (p) o ()

The multifield comparison measure nlf at point p is defined as the norm of the
matrix dF (p), 1 = |dF (p)||.

3.3.1 Properties and Computation

The measure 7 ,f satisf{e's three important properties: symmetry, coordinate system
independence and stability.



Derived Fields 9

Symmetry. The measure is independent of the permutation of the functions in F.
Coordinate system independence. The norm of the matrix dF" at a point p does
not depend on the coordinate system used to represent p.

e Stability. A finite change in the functions results in a bounded change in the
multifield comparison measure. The amount of change additionally depends on
the size of the triangle.

Evaluating the multifield comparison measure at a point requires the solution
to a maximization problem. Nagaraj and Natarajan show that this computation can
be reduced to the faster evaluation of the maximum eigenvalue of a positive semi-
definite matrix A = (dF (p))T (dF (p))

1
2
n[f = (x max xTAx)

R ||x||=1
max{V/A : A is a diagonal element of A }
max{V/A : A is an eigenvalue of (dF (p))” (dF(p))}.

The derivative matrix dF (p) is constant within each mesh element if the scalar field
is available as a sample and linearly interpolated within elements of a triangulation.

3.3.2 Applications

The multifield comparison measure has been applied to study various real-world
data from weather modeling, climate simulations, and combustion simulations. In
particular, it was used to study a simulation of the hurricane Isabel and the analysis
of a global wind pattern data set.

-y

(d

(a) ()

Fig. 6: Fronts in Hurricane Isabel at hour 40. (a) Volume rendering (top view) of horizontal wind
speed Uf. (b) Volume rendering (top view) of horizontal wind speed Vf. (c) Volume rendering
(top view) of multifield comparison measure n*" computed for Uf and Vf showing the rainbands at
different fronts. The cold front leads the warm front resulting in an occlusion. (d) Volume rendering
from a different viewpoint. Image courtesy of Nagaraj and Natarajan [14].

Rainbands and fronts. A simulation of the hurricane Isabel that struck the At-
lantic region in USA was performed on a physical area of 2139km x2004km % 19.8
km over 48 simulated hours [26]. The data is available over a 600 x 600 x 600 grid
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over 48 time steps. Among the multiple quantities computed, the scalar fields cor-
responding to pressure (Pf) and the horizontal wind velocity components (Uf and
Vf) were considered in this experiment. Cloud structures associated with an area of
rainfall, called rainbands, occur mainly at boundaries separating two masses of air
of different densities and temperatures, called fronts. The leading edge of the cooler
mass of air is called the cold front and the leading edge of a warm air mass is called
the warm front. The turbulence of the horizontal wind velocity is high near rain
bands. The fronts can be analyzed by computing the multifield comparison measure
for the pair of 3D scalar fields Uf and Vf, where the 3D domain corresponds to the
volume in the altitude range 1500m-5800m.

First, the multifield comparison measure is computed for the fields Uf and Vf
in the 10" time step. A visualization of the measure clearly shows the two warm
fronts and a cold front [14]. The warm front leads the cold front. This information
about fronts cannot be extracted from the two functions individually. The multifield
comparison measure is computed next for the fields Uf and Vf in the 40" hour of
simulation. The warm front at the north disappears, see Figures 6¢ and 6d. The pre-
viously leading warm front is overtaken by the cold front resulting in an occlusion.

Wind patterns. Prevailing winds blow in a dominant direction at a particular
point and are affected by movements in the Earth’s atmosphere. In regions of mid-
latitudes, the winds blow from west to the east and are known as westerlies. The
winds found in the tropics near the equator are easterlies or trade winds. Data from
a climate simulation for a 50 year period between 1960 and 2009 is available over
600 time steps corresponding to each month [21]. Data within each time step is
available on a 3D grid with resolution corresponding to 1° x 1° x 16plev (pressure
elevations) on earth.

The wind velocity on the grid is a vector field. The matrix norm for 600 vector
fields is computed by replacing the rows with the wind velocities. The norm n*
measures the variation of the wind velocities over the time period of the simulation,
see Figure 7b. Comparing with the wind patterns in Figure 7a, we see that high
values of N correspond to the prevailing winds, particularly the westerlies found
in the regions surrounding Antarctica, the region of hurricanes in Atlantic, the cy-
clone prone region between Madagascar and Australia, and the trade winds across
the Atlantic sea traveling towards the Caribbean sea. The distribution of the com-
parison measure over the isobar for pressure level 300 hPa, which corresponds to
approximately 30000 feet above sea level, is shown in Figure 7c. The comparison
measure assumes high values over the temperate regions corresponding to the west-
erly jet. This is a semi-permanent feature of the mid-latitudes. Many regions in the
tropics undergo a seasonal reversal of wind (called the monsoons). Lower values of
the comparison measure over the tropics indicates unsteadiness and corresponds to
a seasonal reversal in wind pattern over this part of the world.

Storm tracks. The regions over the ocean with warm temperatures (> 27°C) are
susceptible to storms. Filtering out regions with lower temperatures and restricting
the analysis to the months from June to November helps locate storm tracks. Regions
shown in blue in Figure 7e have been filtered out. The red regions match closely with
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Fig. 7: Multifield comparison measure 1 computed for wind velocities over the years 1960-2009,
where the comparison is over a set of six hundred 3D vector fields. (a) Map of world showing
wind patterns (source: Wikipedia) (b) Distribution of " over surface corresponding to pressure
elevation 925 hPa. The dark red regions correspond to the wind patterns. (c) Distribution of n* over
surface corresponding to pressure elevation 300 hPa. The temperate regions exhibit higher values.
(d) Storm track for the years 1985-2005 (source: Wikipedia) (e) Distribution of " after removing
regions with low mean temperature (< 27°C). Red regions correspond to the storm tracks. The
world map is overlaid for clarity. Image courtesy of Nagaraj and Natarajan [14].

the storm tracks shown in Figure 7d. Even though the west coast of South America
has trade winds, storms are particularly absent due to lower temperatures. The storm
prevalent regions in the Indian, Atlantic, and Pacific oceans have high values of the
comparison measure.

4 Decomposition and Componentization

In this section we examine a different situation in which multiple fields can arise as
the components of a decomposed field.
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4.1 Hodge Decomposition

A classical example of this is the Hodge-Helmholtz decomposition [18, 25] of a
vector field V as follows:

V=V.+V;4+V, (1)

where V. is curl-free (7 x V. = 0), V; is divergence-free (7 -V; = 0), and V}, is
harmonic (7 -V, =0 and 7 x V;, = 0).

Such a decomposition can have applications in many scientific and engineering
domains such as fluid simulation and modeling, electromagnetism, weather predic-
tion, engine design, scientific visualization, and computer graphics. In these appli-
cations, one often needs to analyze an input vector field such as the velocity of fluid
particles and the direction of the magnetic field. One of the most important aspects
of a vector field is singularities, which are points in the domain that satisfy V (p) = 0.
A singularity can be classified by its Jacobian (gradient tensor) as follows [6]:

source: both eigenvalues of the Jacobian are positive.

sink: both eigenvalues are negative.

center: both eigenvalues are imaginary numbers.

saddle: one of the eigenvalues is positive and the other negative.

el

Through the decomposition, the sources, sinks, and some saddles can be captured
by the curl-free component, while the centers and some other saddles are captured
by the divergence-free component. The harmonic component is often seemingly
featureless in the planar case. However, on hyperbolic surfaces, the harmonic com-
ponent can capture the saddles that arise as a result of surface topology. For example,
any smooth vector field on a genus-two surface must contain at least four saddles or
some higher-order saddles.

Polthier and Preuss develop techniques to efficiently perform Hodge-Helmholtz
decomposition a triangular mesh with a piecewise constant vector field [18, 19]
(Figure 8). Such techniques are later extended to volumes [25].

Another important application of Hodge-Helmholtz decomposition is in fluid
simulation. In this case the fluids are assumed to divergence-free. However, nu-
merical solvers often introduce errors which lead to flow fields with a non-zero
divergence, thus causing unrealistic fluid behaviors. This is corrected by a projec-
tion step, for which the Hodge-Helmholtz decomposition is performed on the vector
field, and the curl-free part is removed [23, 24].

4.2 Components of tensor field

There has been some recent trend in studying asymmetric tensor fields [29, 28, 1,
13], with applications in flow visualization and earthquake engineering. Given a
vector field V such as the velocity of fluid particles or the deformation of land, the
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Fig. 8: Two examples of Hodge-Helmholtz decomposition: (top) a planar vector field, and (bottom)
a vector field defined on a torus. From left to right are: (a) the original field V, (b) the curl-free
component V., (c) the divergence-free component V,;, and the harmonic component Vj,. Notice
that singularities in the original field can be captured effectively by the decomposition. Moreover,
the harmonic component is more prominent for fields defined on a hyperbolic manifold. Image
courtesy of Polthier and Preuss [18, 19].

gradient 7 = 7V is an asymmetric tensor field which can be used to describe the
deformation of particles in both fluid and solid movements. This can be explained
by the following decomposition of the gradient tensor:

T=D+R+S 2)

where D = y,;1d is a multiple of the identity matrix, R is an anti-symmetric matrix,
and S is a traceless, symmetric matrix. There are three fundamental fluid motions
besides translation, and they are isotropic scaling, rotation, and anisotropic stretch-
ing or pure shearing. Interesting these motions correspond to the three components
described in Equation 2. D describes the isotropic stretching. When 7,; > 0, the par-
ticle’s volume will increase, while when J; < 0, the particle will lose volume when
it travels. R represents rotations, i.e., spinning around the center of the particle. This
is related to the vortices in the flow. S corresponds to the anisotropic stretching
or stretching. In this case the particle is under pure shearing, which refers to si-
multaneous expansion along some axis or axes and contraction along perpendicular
directions without changing the volume. Pure shearing is linked to the rate of an-
gular deformation, rate of mixing of multiple interacting fluid materials, and energy
dissipation.
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While these fields can be studied independently, in this context it is often im-
portant to study their interaction. For example, for two-dimensional cases, i.e., T is
a 2 x 2 matrix, Zhang et al. [28] introduce the notion of eigenvalue manifold and
eigenvector manifold. We will examine these concepts in detail.

In 2D, the components in Equation 2 can be written as follows:

10 0 -1 cos® sin6
D_%’(m)’ R_%<1 0)’ S_%(sine —cose> 3

where Y;, ¥, and Y, > 0 are the strengths of isotropic scaling, rotation, and pure
shearing, respectively. 6 decodes the orientation of the shearing. Note the the
eigenvalues of 7 is purely decided by 7, 7+, and ¥;. Zhang et al. [28] treat the
triple (4,7 %) as a vector and consider the configurations corresponding to unit
vectors. Such vectors form a hemisphere which they refer to as the eigenvalue
manifold (Figure 9 (left)). There are five canonical points on this manifold (Fig-
ure 9: colored dots), corresponding to (y; = 1,7 = 0,7 = 0) (pure expansion),
(va = —1,% = 0,7 = 0) (pure contraction), (y; = 0,% = 1,% = 0) (pure coun-
terclockwise rotation), (7, = 0,% = —1,% = 0) (pure clockwise rotation), and
(74 =0,7% = 0,7 = 1) (pure shearing). A configuration is said to be dominated by
one of these five canonical motions, U, if the point corresponding to the this config-
uration has the smallest geodesic distance to the canonical motion p. The partition
of the eigenvalue manifold in turns leads to a partition of the domain of tensor field
T, although the map is not bijective.

anisotropic

stretching anisotropic

isotropic stretching ®

scalin (
\ clockwise counterclockwise

—Q- -k o>
4 rotation

positive scaling

egative scaling

Eigenvalue manifold Eigenvalue manifold
(top-down view)

Fig. 9: Eigenvalue Manifold: there are five special points on the manifold, which are positive and
negative scaling, counterclockwise and clockwise rotation, and anisotropic stretching. The Voronoi
decomposition with respect to these five special points partitions the manifold into five cells where
the flow is dominated by different characteristics [28].

Figure 10 illustrates this with an example vector field that is generated by com-
bining two counter-rotating Sullivan vortices. Notice that the flow is predominantly
expanding in the middle (yellow), contracting on the outside (blue), rotating (red
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and green), and pure shearing (white). Note that a region of predominant expansion
motion cannot be directly adjacent to a region of predominant contraction. Simi-
larly, a counterclockwise rotation region cannot be adjacent to a region dominated
by clockwise rotation. Such results have led Lin et al. [13] to define asymmetric
tensor field topology in terms of graphs whose nodes correspond to the regions in
the partition and whose edges encode adjacency relationships between the regions.

Fig. 10: Coloring coding based on the eigenvalue manifold (left) and the combined eigenvalue and
eigenvector manifold (right) [28].

The eigenvector information in the tensor field is determined purely by ¥, ¥, and
6 from Equation 3. Note that asymmetric tensors may have real eigenvalues (real do-
mains) or complex eigenvalues (complex domains). In the latter case no real-valued
eigenvectors exist. Zheng and Pang [29] introduce the notion of dual-eigenvectors
which they show are the continuous extension of major and minor eigenvectors from
the real domains into complex domains. Dual-eigenvectors are also the semi-axes
of the elliptical flow patterns inside the complex domains.

Zhang et al. [28] realize that the decomposition from Equation 3 can be simplified
and reparameterized as follows:

T(p,6,9) = pcose (Cose Sme) +psing <(1) _B) )

sin® —cos O

where p = /2 + ¥?2 is the tensor magnitude. Notice that D, the isotropic scaling
component, does not impact the directional information in a tensor field and can be
dropped when considering eigenvectors. Furthermore, (%, ¥;) is considered as a vec-
tor since it is their respective strength that determines whether a tensor is in the real
domain or complex domain, the angle between the major and minor eigenvectors in
the real domain, and the eccentricity of the elliptical flow patterns in the complex
domain. Similar to the definition of eigenvalue manifold, Zhang et al. define the
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eigenvector manifold by consider unit vectors, i.e., yrz + ysz = 1. Such tensors can
be parametrized using spherical coordinates shown in Equation 4. Zhang et al. [28]
demonstrate that a tensor is in the real domain if —F < ¢ < 7 and complex do-
main if ¢ < —% or ¢ > Z. The equator (¢ = 0) correspond to the pure shearing
tensors while the poles (¢ = £%) correspond to pure rotations (degenerate points
in the tensor). The boundary between the real and complex domains (¢ = i%) is
referred to degenerate curves. Points on these curves correspond to simple shears
which are different from pure shears. Notice that equator serves as the boundary
between counterclockwise rotating flows and clockwise rotating flows. Figure 11
illustrates these facts, while Figure 12 demonstrates some special configurations.

@=m/2: pure counterclockwise rotation

Northern hemisphere:
counterclockwise rotatig

major eigenvector =
minor eigenvector
major dual-eigenvector =
major pseudo-eigenvector ===
@=-1/2: pure clockwise rotation minor pseudo-eigenvector ===

Eigenvector manifold (side view) Eigenvector manifold: northern
hemisphere (top-down view)

0=3m/2

Fig. 11: Eigenvector manifold: the orientation of the rotational component is counterclockwise
in the northern hemisphere and clockwise in the southern hemisphere. Each hemisphere is par-
titioned into real domains and complex domains. The equator represents pure symmetric tensors
(irrotational flows), while the poles represent pure rotations. The directions of expansions and con-
traction in the real domain as well as the orientations of the elliptical patterns are determined by
the relative stretches between the rotation and stretching components in the decomposition [28].

=2 ¢=—m2

Fig. 12: Example tensors and their corresponding vector field patterns [28].
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The decomposition in Equation 4 can also be used to symmetric tensor fields. In
this case ¥ = 0 and the tensor can be rewritten as:

psing <(1) (1)) +pcosd (COSG sinO) 5

sin@ —cos0

where p = 4/ yj + 9?2 again is the tensor magnitude. Like Equation 4, this equation
is a special case of Equation 2 where one of the three components disappears (the
anti-symmetric component). Nieser et al. [15] et al. have applied this to the curvature
tensor to extract surface features for remeshing purposes. Figure 13 illustrates this
classification with a bunny surface.

K1 =hke >0

}{1)-‘{2)0

K]}HQ:U
I‘;1>U>K.2
k1| > |2l
S
0 v K1 = —HK2
: K1 > 0> Ko

= "
2

Ky =Ry <0 0> Ky > Ko

ool

oolx

Fig. 13: The tensor decomposition in Equation 4 can be adapted to symmetric tensors. In this exam-
ple the symmetric tensor is the curvature tensor in the surface. Note that this tensor decomposition
can lead to surface classification and feature extraction [15].

4.3 Higher order tensor fields

The decomposition of the asymmetric tensor field is intrinsically linked to the
Hodge-Helmholtz decomposition. D, R, and S from Equation 2 correspond to the
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curl-free, divergence-free, and harmonic component in the Hodge-Helmholtz de-
composition.

Higher-order tensors, i.e., tensors of a rank larger than two, are of great interests
to scientists and engineers in many application domains. For example, general rela-
tivity deals with higher-order tensors. Elasticity tensor, a fourth-order tensor, relates
the strain tensor (deformation) to the stress tensor (force). The spatial gradient of an
N-th order tensor is an N + 1-th order tensor. This has been used by Delmarcelle and
Hesselink to classify degenerate points for symmetric second-order tensors [2]. A
special class of higher-order tensors have also been used to describe rotational sym-
metries on surfaces [16], with applications in pen-and-ink sketching [7], remesh-
ing [20, 15], and regular texture and geometry synthesis on surfaces [15].

There have been a number of decomposition methods [12]. However, physical
interpretation of these decompositions as well as effective analysis and visualization
is still lacking. The only prominent work available at this point is [8].

5 Conclusions

In this chapter we have examined applications and existing techniques on multi-
field visualization based on the notion of derived fields. The derived fields play an
important role in understanding relationships between multiple input fields. In ad-
dition, for a single input field, multiple derived fields can be generated as a result of
decomposition which have the potential of providing insights on the input field.

There are a number of future research directions that we believe are important
and can have major impact on multifield visualization:

1. Adaptation of pairwise similarity/dissimilarity as well as global alignment and
dependency measures to a set of heterogeneous fields.

2. A detailed study of the sensitivity of the derived fields to the mesh that represents
the domain. This study will be particularly useful if the input fields are specified
on different meshes representing a common domain.

3. An effective interface using derived fields that supports identification of (a) im-
portant fields that can further analyzed in detail and (b) redundant fields that can
be discarded from further studies.

4. Integrating the derived fields with existing techniques for interactive exploration
like query-based visualization framework [5], focus+context, and show and brush
for visual analysis.

Acknowledgements Natarajan acknowledges support from the Department of Science and Tech-
nology, India under grant SR/S3/EECE/048/2007. Zhang is partially supported by National Science
Foundation awards IIS-0546881 and CCF-0830808.
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Fig. 14: Higher-order tensors have been used to present N-way rotational symmetries (N-
RoSy [16]), with applications in pen-and-ink sketching (a), regular pattern synthesis (b), archi-
tectural modeling (c), and geometry remeshing (d). Image (a) and (c) are courtesy of [17].
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