GMPOLY: A Kernel Level Polyhedral Solid Modeler

Vijay Natarajan

Rajesh Kumar

Visual Computing Group

Design and Development Center
TATA ELXSI Ltd.

Bangalore, India

June 8, 1999

Abstract

In this paper we describe GMPOLY, a ker-
nel level polyhedral solid modeler that we
have developed at the Design and Develop-
ment Center of TATA ELXSI Ltd., Banga-
lore, India. The modeler has been designed
as a class library that can be used to create,
model and represent polyhedral solids us-
ing convex polyhedrons as primitives. The
library can also be used to define new prim-
itives. We describe the algorithms and pro-
cedures that have been used in the design
of this modeler.

1 Introduction

A Solid Modeler helps in representing solids
on the computer.
ate/model solid objects, make images of
them for viewing and to calculate some of

It can be used to cre-

their properties like volume, surface area,
center of gravity etc. GMPOLY is a ker-
nel level Polyhedral Solid Modeler that can

be used to represent polyhedral solids i.e.

solids whose boundaries are made up of pla-
nar surfaces. It is a kernel level modeler
because it has been developed as a class li-
brary that can be built into the application

programs.

GMPOLY 1is a hybrid modeler. The
solids are stored in both the CSG and
Boundary (B-rep) forms. CSG is the pri-
mary form of representation. The boundary
model is constantly updated, using the CSG
tree, by the boundary evaluation procedure.
The user, however, has no direct access to
the secondary representation (B-rep). This
means that although boundary models are
included in GMPOLY, the user cannot per-
form modeling operations like local mod-
ifications, which are specific to boundary
models. Modelers like PADL-1 [5], PADL-
2 [2], and GM_SOLID [1] have a similar ar-
chitecture. Mantyla [3] gives a good de-
scription of the common architectures for
hybrid modelers.

GMPOLY models complicated polyhe-
dral solids by taking simple convex poly-
hedrons and combining them together by

using the Boolean operators: Union, In-

tersection and Difference. These opera-
tors are analogous to the ones in set the-
ory. The Boolean operators implemented
in GMPOLY are regularized i.e. they
do not produce solids that have dangling
edges/planes (invalid solids). Mortenson
has given a detailed description of Regu-
larized Boolean operations in his book on
Geometric Modeling [4].

Most of the solid modelers either do
not handle self-intersecting solids or repre-
sent them as a collection of simpler solids,
making the operations on the resulting
solids impossible without additional pre-
processing steps. GMPOLY attempts to
handle various degenerate cases like self-
intersecting and touching solids, by using
the neighbourhood model in the boundary
evaluation procedure.

In the following section we define the ba-
sic terms. Section 3 deals with the bound-
ary evaluation procedure, which is the core
module of GMPOLY. In Section 4 we de-
scribe a few implementation details. In
the last section we give our conclusions and
suggest modifications and further enhance-

ments that can be incorporated.

2 Preliminaries

In this section we define and give brief de-
scriptions of some of the terms that are used
in the later sections.

2.1 Half Spaces

A plane divides the space into 2 half-spaces.
Each of these half-spaces is a semi-infinite

In GMPOLY a half-space

solid region.

Figure 1: A Polyhedron and its CSG tree

(Az + By + Cz + w < 0) is represented
by the equation of the corresponding plane
(Az+ By+4 Cz+w = 0). The < sign is as-
sumed. So, the half-space Az + By + Cz+
w > 0 would be represented by the plane
—Ar—By—Cz—w=0.

2.2 Primitives

The primitives used in GMPOLY to build
complicated solids are convex polyhedrons.
Each primitive is represented as a set of
half-spaces. The primitives form the leaves
of the CSG tree. Every internal node is la-
beled by the Boolean operation to be per-
formed on the two sub-trees rooted at that
node. Figure 1 shows a polyhedron and the
corresponding CSG tree.

2.3 B-rep

The boundary representation (B-rep) of the
object is updated whenever the CSG tree is
modified. This is done by a boundary eval-
uation procedure. The boundary of each
polyhedron is stored as a list of faces. Each
face has a parent (surrounding) loop and a

vV a
p I

Figure 2: A pyramid and the neighbour-

hood of a line segment ab

© @d

Figure 3: Neighbourhoods of the vertex v
on the left, back and top faces

list of child loops (holes). A loop is repre-
sented as a list of edges, which is in turn
represented by its end point vertices.

2.4 Neighbourhood Model

Researchers at the University of Rochester
have proposed a neighbourhood model,
consisting of points close to a line seg-
ment /vertex, to indicate whether the line
segment /vertex is in/on/out of the solid.
Mortenson [4] gives a good description of
this model and how it can be used to clas-
sify line segments/vertices.

Besides classification of line segments and
vertices, GMPOLY uses this model to ex-
tract face and solid information from the

The

neighbourhood of a line segment (i.e. at its

list of boundary edges and vertices.

mid-point) differs from that of a vertex.
The neighbourhood of a line segment
is the cross section (on the plane passing

through its mid-point and having the line
as normal) of the volume neighbourhood at
the mid-point. This neighbourhood is rep-
resented as a sequence of pairs of tangents
to the bounding faces. Figure 2 shows a
solid and the neighbourhood of the line seg-
ment ab alongside. A neighbourhood is con-
structed for a vertex with respect to each
plane that it lies on. This neighbourhood is
represented as a sequence of pairs of bound-
ing line segments. Figure 3 shows the neigh-
bourhoods of the vertex v (in Figure 2) on
the three planes that it lies on.

3 Boundary Evaluation

The operations on the CSG tree, for imple-
menting the Boolean operations on solids,
are similar to ordinary binary tree opera-
tions. So, we are not describing them here.
In this section we will describe the bound-
ary evaluation procedure, which happens to
be non-trivial, in detail. The input to the
boundary evaluation procedure is the CSG
tree and the output is the B-rep of the solid.
Both of the above representations have been
described in the previous section. So, we
will directly move on to the description of
the algorithm.

The boundary evaluation is done in three
stages:

1. Generation of tentative edge and po-
tential vertex list.

2. Classification of tentative edges and
potential vertices to get the list of
edges and vertices on the boundary of

the solid.

3. Extraction of face and solid informa-
tion using the neighourhood model.

We now describe each of these stages.

3.1 Generation of tentative
edge and potential vertex
list

The boundary of the solid, represented by
the given CSG tree, is made up of the set
of faces on the boundaries of the primi-
tives (leaf nodes). In this stage, we gen-
erate the list of all possible boundary edges
(t-edge or tentative edge) and vertices (p-
vert or potential vertex). These lists are
named lote and lopv. A list (lop) of all the
planes on the boundary is first generated.
All planes in lop are intersected to get the
lines on which the t-edges lie. These lines
are now intersected with every plane in lop
to give the list of potential vertices and ten-
tative edges.

3.2 Classification of tentative
edges and potential ver-
tices

Each of the edge segments, obtained from
lote by taking consecutive parameter values
in each line entry, is classified as in/on/out
of the polyhedron. This is done, by first
classifying the edge segment against each
of the primitives (leaf nodes). The edge
neighbourhood is constructed with respect
to the primitives at this stage. These neigh-
bourhoods are, now, combined using the
Boolean operations on the parent node in
the tree. So, we finally land up with the
edge neighbourhood with respect to the en-
tire CSG tree (polyhedron). This neighour-
hood can be easily interpreted to give the
classification. See Mortenson [4] for a de-

tailed description of edge classification us-
ing the neighbourhood model.

All edge segments that are classified as
on are inserted into the list of boundary
edges (lobe) along with their neighbour-
hoods. The list of boundary vertices (lobe)
is also updated by adding the endpoints of
the above edge segment. The neighbour-
hood of each of these boundary vertices,
with respect to each of the planes that they
lie on, is now computed. The neighbour-
hood of a vertex v on a plane p is com-
puted, by first getting those boundary edge
segments that lie on p and are incident on v.
These edge segments are then sorted in the
clockwise order (about the vertex). Now,
the area between 2 successive edge segments
is classified as on/out of the boundary. If
there is a tangent entry in the neighbour-
hood of an edge corresponding to the plane
area to its right, then the region swept
around the vertex from this edge to the next
edge is classified as on the boundary. All
other regions are out of the boundary.

3.3 Extraction of face and
solid information

Once the edges and vertices on the bound-
ary of the object are known, the next step
would be to extract the topological relation-
ships between them i.e. the face informa-
tion. The neighbourhood model is used to
do this, as follows:

First, for each plane that contains bound-
ary vertices, we get the list of loops on the
plane. Then, each of these loops is clas-
sified as a surrounding loop (parent) or a
hole (child). Once this is done, the faces

(consisting of one parent loop and zero, one

e3
v ed

v1
el e2

Figure 4: Two entries in the neighbourhood
of v2 contain e

or more child loops) on each plane are rec-
ognized. These faces are now grouped to-
gether, using shared edges and their neigh-
bourhoods, to give the list of faces for ev-
ery polyhedron. We now describe the above
procedures in detail.

3.3.1 Generation of list of loops

Consider the generation of the loops on a
particular plane (p). The current vertex
(along with its neighbourhood in p) and the
current edge are used to get the next ver-
tex and next edge in the loop. This process
terminates when the next edge is the same
as the first edge. The neighbourhood of the
current vertex gives the pair of the incom-
ing edge (current edge). This is the next
edge. There can be one or two entries cor-
responding to the current edge in the neigh-
bourhood. We explain how the conflict is
resolved (when there are two entries) using
an example (Figure 4).

Let e be the current edge. An edge sta-
tus 1s maintained and used to determine
the correct pair. The initial value of edge
status is FREE_CHOICE. If the edge sta-
tus is IN_FIRST (i.e. €2 is the previous

edge) then e4 is chosen as the next edge.

If edge status is IN.SECOND then e3 is
chosen. In this case el would have been
the previous edge. If the edge status were
FREE_CHOICE then one of the two edges
is chosen arbitrarily. The edge status is up-
dated after the next edge is determined as
described below. If there are two pairs for
the next edge, in the neighbourhood of the
next vertex (v2) on p, the edge status is
computed by getting the orientation of e
with respect to the other pair. If e were the
only pair of the next edge then edge status
remains unchanged.

3.3.2 Classification of loops

A loop can be classified as parent/child by
taking an edge of the loop oriented such
that the interior lies to the right of the edge.
If the edge neighbourhood has a tangent en-
try corresponding to the plane to the right
of the edge (i.e. the area interior to the loop
and near the edge lies on the boundary of
the solid) then the loop is a parent loop.
Else, it is classified as a child loop.

3.3.3 Grouping loops into faces

Given the list of loops on a plane along with
their classification the faces on the plane
can be obtained as follows:

There is a face corresponding to every
parent loop. The parent loop (and hence
the corresponding face) containing a given
child loop can be found out as the smallest
parent loop that encloses the child loop.

3.3.4 Grouping faces into solids

Once the list of faces (lof) is obtained the
next and final step is to group the faces of a
polyhedron together and hence get the list

Figure 5: Neighbourhood of e has two en-
tries corresponding to plane p

of polyhedral solids represented by the CSG
tree. This grouping is done as follows:

The first face can be chosen arbitrarily
from one of the faces in lof that have not
been considered previously. Recursively, for
every edge (e) in this face f add the face
that is paired with f in the edge neigh-
bourhood (provided that the face has not
been considered previously). Getting the
face that is paired with f from the edge
neighbourhood is done in two steps:

Let [be the loop of f that contains
e. Since the edge neighbourhood contains
plane information, the plane pair is found
out initially. There could be 2 tangent
entries, in the edge neighbourhood corre-
sponding to the current plane (the one that
contains the current face). For example, in
Figure 5, plane p corresponding to face f1
has two pairs (f2 and f3) in the edge neigh-
bourhood of e. The correct pair can be de-
termined by generating a point that is on p,
near the edge on the side given by the tan-
gent direction in the neighbourhood, and
checking if it lies in the interior of [. If the
point lies in the interior of [then the cur-
rent tangent entry is the required entry and
its pair is returned.

Once the plane pair is determined, all the

fl f2

p2

Figure 6: Two faces f1 and f2 on the same
plane sharing the edge e

faces lying on that plane are scanned to get
the face pair. The face that contains e is
the correct face. Once again, there could
be two (but, not more) such faces (f1 and
f2). In order to resolve the conflict we use
the previous edge in the loops /1 (from f1)
and [2 (from f2) that contain e. The angu-
lar position of the tangent (that is returned
from the previous step) with respect to the
previous edges and e gives the required loop
and hence the required face. For example,
if the faces are as in Figure 6 and ¢1 (¢2)
is the tangent then f1 (respectively, f2) is
the required face.

4 Implementation De-

tails

In this section, we describe some of the im-
plementation issues involved in the devel-
opment of GMPOLY. The user is provided
with a class library, which could be used to
create both primitives and complex polyhe-
drons. The user need not know the details
of the solid representation and manipula-
tion schemes. A simple interface helps in
necessary operations for modeling a poly-

hedron.

GMPOLY is written in the C++4 lan-
guage. A C+4 compiler along with the
standard template library (STL) is the only
support that is required to use this class li-
brary. This makes it platform independent.

There are 2 classes that can be used. The
first one, called ConvexPolyhedron, corre-
sponds to the primitive. It contains the
half-space representation of the primitive.
Methods to load a primitive from a file, cre-
ate a primitive given the half-spaces and
store a primitive object into a file have been
implemented.

The second class, called Polyhedron, cor-
responds to the modeled object. It contains
the CSG as well boundary representations
of the Polyhedron. The two representations
are made consistent after every operation.
These representations are not visible to the
user though. The + (+ =), * (* =) and
— (= =) operators are overloaded to imple-
ment the Union, Intersection and Difference
operations. Load and Store functionalities
are also provided.

5 Conclusions

GMPOLY has a very simple design philoso-
phy. Any person who has a basic knowledge
of programming in C++ can understand
and start using GMPOLY within a day.
Since it is a kernel level modeler, it can be
built into application programs. The user is
provided with simple tools (that are anal-
ogous to the Boolean operations) to model
complex polyhedral solids. The design is
generic in the sense that the basic skeleton
could be used to design a solid modeler that
handles non-polyhedral solids also.

Many modelers do not support self-
intersecting solids or represent them as a
collection of simpler solids. This makes fur-
ther operations on them impossible without
some pre-processing. GMPOLY attempts
to handle most of the degenerate cases (like
self-intersecting solids) efficiently, by using
the neighbourhood model for edge/vertex
classification.

Further development can be done by op-
timizing the boundary evaluation procedure
and incorporating additional features like
storage of mass proprties. All search rou-
tines could be optimized by storing the
edges and vertices in a geometric data struc-
tures instead of linear lists that are cur-
rently used.

References

[1] J.W. Boyse and J.E. Gilchrist. GM-
SOLID: Interactive Modeling for Design
and Analysis of Solids. IEEFE Computer
Graphics and Applications, 2(2):86-97,
March 1982.

2] C.M Brown. PADL-2 - A Techni-
cal Summary. [EEE Computer Graph-
ics and Applications, 2(2):69-84, March
1982.

Martti Mantyla. An Introduction to
Solid Modeling. Computer Science

Press, Rockville, Maryland, 1988.

[4] M. Michael Mortenson. Geometric Mod-
eling. John Wiley and Sons Inc., 1985.

[5] H.B Voelcker. The PADL-1.0/2 System
for Defining and Displaying Solid Ob-
jects. Computer Graphics, 12(3):257,
July 1978.

