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Abstract—The contour tree is a topological abstraction of a
scalar field that captures evolution in level set connectivity. It
is an effective representation for visual exploration and analysis
of scientific data. We describe a work-efficient, output sensitive,
and scalable parallel algorithm for computing the contour tree
of a scalar field defined on a domain that is represented using
either an unstructured mesh or a structured grid. A hybrid
implementation of the algorithm using the GPU and multi-core
CPU can compute the contour tree of an input containing 16
million vertices in less than ten seconds with a speedup factor
of upto 13. Experiments based on an implementation in a multi-
core CPU environment show near-linear speedup for large data
sets.

I. INTRODUCTION

A level set consists of all points where a given scalar func-
tion attains a given real value. Level sets are used extensively
to visualize three and higher dimensional scalar functions.
The contour tree tracks topology changes in level sets of a
scalar function defined on a simply connected domain, and
therefore serves as a good abstract representation of the given
data. In this paper, we propose a generic parallel algorithm
that computes the contour trees of scalar functions defined on
unstructured meshes, as well as structured grids.

A. Motivation

We motivate the utility of contour trees with a description
of how they are used to efficiently compute and explore level
sets of three-dimensional scalar functions [10], [36]. The level
set at a given real value can consist of multiple connected
components. The contour tree of the input scalar function f
defined on a simply connected domain consists of a set of
nodes and arcs. The nodes correspond to critical points of
the function where the number of components of the level set
change, see Figure 1. An arc in the contour tree corresponds
to a set of equivalent level set components [15]. An arc (c;, cj)
spans a given function value f, if f(c;) < f, < f(c)).

Figure 2(a) shows a volume rendering of the CT-scan of
the torso of the Visible Human Male dataset [4]. The scalar
value at each sample point in the input denotes the radio-
density at that point. This radio-density is mapped to color
and transparency to generate the volume rendering. Figure 2(b)
shows a level set of this input at function value f, = 700,
which consists of more than three thousand components.
Volume rendering and level set (isosurface) extraction are
classical techniques for scalar data visualization [20], [30].
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(a) Input mesh and height function (b) Contour tree

Fig. 1. Scalar function f defined on a surface mesh visualized using a color
map. A few level sets of f are shown in black. The contour tree tracks the
evolution of connected components of level sets of the function f.

Isosurfaces / level sets can be extracted using a variant of the
marching cubes algorithm [24], which scans through the entire
input to compute the level set. To improve the efficiency of the
algorithm, a seed point for each of the level set components
can be computed from the arcs of the contour tree that span
fv [36]. The level set is thus efficiently computed by marching
through the input starting from the set of seed points. This
helps in significantly reducing the overhead of extracting the
level set. Additionally, by simplifying the contour tree to
remove noise, and selecting seed points from significant arcs,
it is possible to extract important components of the level
set. Figure 2(d) shows three components of the level set that
correspond to the skin, lungs and bowels respectively. The
three arcs in the contour tree used to obtain the seed points
are highlighted in Figure 2(c).

Contour trees have also been used in various other appli-
cations including topography and GIS [31], [34], for surface
segmentation and parameterization in computer graphics [23],
[27], [39], image processing and analysis of volume data
sets [13], [33], designing transfer functions for volume render-
ing in scientific visualization [19], [32], [38], [40], and explor-
ing high dimensional data in information visualization [21],
[28].

With the exponential growth in compute power, there is
a massive increase in the amount of data generated through
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Extracting and exploring level sets using contour trees. (a) Volume rendering of a CT scan of the torso of the Visible Human Male. (b) Level set

extracted at the function value 700 and rendered as translucent surfaces. (¢) Simplified contour tree of the input scalar function. (d) Level set components
corresponding to the skin, lungs and bowels are extracted using seed points from the highlighted arcs of the contour tree.

simulations and experiments. The above mentioned applica-
tions will benefit from a fast algorithm that can compute
the contour tree at close to interactive rates for large data
sizes. The pervasive availability of multi-core CPUs and pro-
grammable GPUs drive the development of parallel algorithms
for topological structures such as the contour tree. An efficient
parallel algorithm to compute the contour tree will help in
greatly reducing the processing time in such scenarios.

B. Related Work

de Berg et al. [14] developed the first algorithm to com-
pute the contour tree and applied it to GIS applications for
answering elevation related queries. This algorithm uses a
divide and conquer strategy and computes the contour tree of
a two-dimensional scalar function in O(nlogn) time, where n
is the number of triangles in the input. van Kreveld et al. [36]
developed an algorithm that explicitly maintains the evolving
level sets in order to compute the contour tree. This algorithm
has a running time of O(nlogn) for two-dimensional input,
and O(n?) for three-dimensional input.

Tarasov and Vyalyi [35] described an O(nlogn) algorithm
that computes the contour tree of a three-dimensional scalar
function. This algorithm performs two sweeps over the input
in decreasing and increasing order of function value to identify
the joins and splits of the level set components. The contour
tree is computed by merging the results of the first two
sweeps. Carr et al. [9] simplified and extended this approach,
and proposed an elegant algorithm that computes contour
trees of scalar functions in all dimensions. In two sweeps
over the input, their algorithm computes a join tree and
a split tree, which tracks the evolution of super- and sub-
level sets respectively. These two trees are then merged to
obtain the contour tree. This algorithm has a running time of
O(vlogv+ na(n)), where v is the number of vertices in the
input, and « is the inverse Ackermann function.

Chiang et al. [11] proposed an output sensitive approach

that first finds all component critical points that correspond
to nodes in the contour tree using local neighborhoods. These
critical points are connected using monotone paths in a second
step to obtain the join and split trees. This algorithm has
a running time of O(tlogt +n), where t is the number of
critical points of the input. van Kreveld et al. [37] showed a
Q(rlogt) lower bound for the construction of contour trees.
Since reading the input takes O(n) time, the output sensitive
algorithm is optimal in the worst case.

Pascucci et al. [29] proposed the first and only known paral-
lel algorithm that computes the contour tree of a piecewise tri-
linear function defined on a three-dimensional structured mesh.
Join and split trees of each voxel is individually computed and
later merged to form the join and split trees of the input. This
algorithm has a running time of O(v+rlogv). Dividing the
input is non-trivial for triangular meshes and not implicit as in
the case of structured meshes. Hence, their algorithm does not
scale well for large unstructured meshes. We refer the reader
to the following surveys [6], [8], [7] for a detailed discussion
of various approaches to compute the contour tree.

Existing serial algorithms are not immediately amenable
to parallelization because they sweep the domain in order of
increasing function values, which is an inherently sequential
operation. We compute the contour tree by first computing
monotone paths between critical points and next process these
monotone paths directly to compute the join and split trees.
Different from Chiang et al. [11], who also compute monotone
paths, we allow the computation of monotone paths in any
arbitrary order. Essentially, we redesign the computations such
that they are parallelizable. The critical points are also located
in parallel. An added advantage of this new approach is that the
algorithm works for both triangulated meshes and structured
grids.



C. Contributions

In this paper, we describe a fast and efficient parallel
algorithm for computing the contour tree of a piecewise linear
(PL) function in O(tlogt + n) time. Here ¢ is the number
of critical points, and n is the number of triangles in the
input. The same algorithm also computes the contour tree of a
trilinear function defined on a structured grid in O(tlogs +v)
time, where v is the number of vertices in the input. The
algorithm has the following desirable properties:

¢ Output sensitive. The running time depends on the size
of the output.

« Optimal. The sequential algorithm is optimal in the worst
case.

o Generic. The algorithm works without any modification
on a piecewise-linear function in any dimension. It also
handles trilinear functions defined on structured grids.

« Easily parallelizable. The main operations performed by
the different steps of the algorithm are independent of
each other.

« Work-efficient. The parallel implementation does not
perform additional work compared to the serial algorithm.

We report experimental results that demonstrate the effi-
ciency of our algorithm. Specifically, we show that a hybrid
implementation of the algorithm using both the GPU and a
multi-core desktop CPU can be used to compute the contour
tree of an input with around 16 million vertices in less than
ten seconds. The same parallel implementation using OpenCL
gives a speedup of upto a factor of 25 on a 32-core CPU
environment. Additionally, the time taken by the sequential im-
plementation is comparable or lower than existing algorithms,
demonstrating that the algorithm is efficient even on a single
core.

II. BACKGROUND

In this section, we briefly introduce the necessary definitions
used in this paper. We refer the reader to books on compu-
tational topology, algebraic topology, and Morse theory [16],
[22], [25], [26] for a detailed discussion of these concepts.

A. Scalar function and domain

A scalar function maps points from a spatial domain to
real values. The domain is usually represented as a mesh. The
scalar function is defined at the vertices of the mesh, and
interpolated within each cell of the mesh. In this paper, we
consider two types of mesh representations.

Unstructured mesh. A d-simplex is the convex hull of d +
1 affinely independent points. For example, a O-simplex is
a vertex, l-simplex is an edge, 2-simplex a triangle, and 3-
simplex is a tetrahedron. The input domain is represented as
a set of non-intersecting simplicies. The scalar function is a
piecewise linear (PL) function defined at the vertices of the
mesh, and linearly-interpolated within each simplex.

Structured grid. Three dimensional imaging data is often
available as scalar values sampled on a three dimensional

(a) Vertex in a 2D mesh

(b) Vertex in a 3D grid

Fig. 3. Neighborhood of a vertex. The link of a vertex, which is used to
classify critical points, is highlighted in red.

rectilinear grid. For such an input, the scalar values in the
interior of a cell is computed using trilinear interpolation.

B. Level sets and critical points

Consider a scalar function f defined on a domain D. The
level set corresponding to a real value f; is defined as the set
{x e D|f(x) = fi}. A sub-level set is the set {x € D|f(x) < fi},
while a super-level set is the set {x € D|f(x) > fi}. Consider
the evolution of the level sets with increasing function value.
Points at which the topology of the level sets change during
this evolution are known as critical points. Points that are not
critical are called regular points.

Morse theory studies the relationship between critical points
of a scalar function and the topology of its level sets. If all
critical points of f are isolated and non-degenerate, then f
is a Morse function [25], [26]. Critical points of a Morse
function can be classified based on the behavior of the
function within a local neighborhood. The above condition
typically does not apply for piecewise linear and piecewise
trilinear functions. However, a simulated perturbation of the
function [18, Section 1.4] ensures that no two critical values
are equal. The simulated perturbation imposes a total order on
the vertices and helps in consistently identifying the vertex
with the higher function value between a pair of vertices.
Consequently, critical points can be identified and classified
based on local behavior of the function. We now describe this
classification for the two kinds of meshes that we consider in
this work.

Unstructured mesh. Consider a vertex u in the input mesh
shown in Figure 3(a). The link of u is the set of all vertices
adjacent to u together with the induced edges, triangles, and
higher-order simplices. Adjacent vertices with lower function
value and their induced simplices constitute the lower link,
whereas adjacent vertices with higher function value and
their induced simplices constitute the upper link. Figure 3(a)
highlights the link of u within a two-dimensional triangular
mesh in red.

Banchoff [5] and Edelsbrunner et al. [17] describe a com-
binatorial characterization for critical points of a PL function,
which are always located at vertices of the mesh. Critical



points are characterized by the number of connected compo-
nents of the lower and upper links. The vertex is regular if
it has exactly one lower link component and one upper link
component. All other vertices are critical. A critical point is
a maximum if the upper link is empty and a minimum if the
lower link is empty. Else, it is classified as a saddle.

Structured grid. In case of a structured grid, the local
neighborhood of a vertex u is described by its neighboring
six vertices. Define the link of u as the triangulation of these
six vertices, see Figure 3(b). Critical points are again classified
based on the number of components in the lower and upper
links. In addition to critical points that are present at the
vertices of the mesh, saddles may be located within a face
or a cell of the grid. These face saddles and body saddles can
be computed explicitly or their number can be inferred from a
count of the number of local minima and maxima within a face
and a cell as shown by Pascucci and Cole-McLaughlin [29].

C. Contour tree

Given a scalar function f defined on a simply connected
domain, the contour tree of f is obtained by contracting each
connected component of a level set to a point. It expresses the
evolution of connected components of level sets as a graph
whose nodes correspond to critical points of the function.
Figure 1(b) shows the contour tree of the height function
defined on the model shown in Figure 1(a). The blue, red, and
green nodes denote the set of minima, maxima, and saddles
respectively. Note that not all saddles correspond to degree-3
nodes in the contour tree. In particular, the topology of the
level sets, say the genus, does change when it sweeps past
these critical points but the number of connected components
of the level set remains unchanged.

ITI. CONTOUR TREE ALGORITHM

This section describes our contour tree computation algo-
rithm. We assume that the input domain is simply connected.
Given a mesh together with scalar values defined at its vertices,
the algorithm computes the contour tree of this input in four
steps:

1) Identify critical points.

2) Compute the join tree, which tracks the connectivity of

super-level sets of the input.

3) Compute the split tree, which tracks the connectivity of

the sub-level sets of the input.
4) Merge the join and split tree to construct the contour tree.

The key difference between the proposed method and that of
Chiang et al. [11] and Carr et al. [9] is the computation of
the join tree (split tree) using ascending (descending) paths
between a critical point and a maximum (minimum). This
approach enables a parallel implementation of the algorithm.
The rest of this section is organized as follows. We first give
a detailed description of the different steps of the algorithm in
Sections III-A-III-C. For ease of explanation, we first describe
the algorithm as a sequential procedure. We analyze the time
complexity of the algorithm in Section III-D.

Procedure FindAscPaths
Input: Critical points C
Output: Path lists L,, for each maximum c,,, maximum lists

M; for each critical point c;
1: for each critical point ¢; € C do
2:  for each component in the upper link of ¢; do
3: Trace an ascending path from c¢; to a maximum ¢,
4 Add ¢; to the path list L,, corresponding to the
maximum ¢,

5: Add the maximum c,, to M;
6: end for
7: end for

A. Identify critical points

The algorithm uses the classification described in Sec-
tion II-B to identify the set of critical points of the input.
It counts the number of components of the upper and lower
links of every vertex via a breadth first search in the graph
formed by vertices and edges in the upper and lower links
respectively. In addition to classifying vertices, the algorithm
also stores one representative vertex from each component of
the upper and / or lower links of critical vertices.

B. Join tree computation

The join tree of the input is computed in two phases. In the
first phase, a set of monotonically increasing paths are created,
which are merged in the second phase to obtain the join tree.
The same procedure is used to compute the split tree after
reversing the order on vertices defined by the scalar function.

Find ascending paths. Beginning from each component of
the upper link of every critical point, the algorithm traces a
monotonically increasing path from the critical point to reach a
maximum. This is accomplished by a simple traversal starting
from the representative vertex of each upper link component,
and moving to a vertex with a higher function value until the
traversal reaches a maximum. Each maximum c,, maintains
a list L, consisting of all critical points whose ascending
paths terminate at that maximum. Procedure FINDASCPATHS
outlines this computation. Figure 4 shows the output of this
procedure for the input shown in Figure 1(a). The set of all
maxima reached from a critical point c; is stored in a list M;.

Construct join tree. Procedure CONSTRUCTJOINTREE uses
the following property of the join tree to construct it in a
bottom-up manner.

Property 1: Each node in the join tree has at most one
neighbor with a lower function value.

Figure 5 illustrates the first three iterations of this procedure
for the input shown in Figure 1(a). The join tree initially
consists of the set of maxima, which also forms the initial set
of “growing” nodes. In each iteration, the algorithm connects
a growing node with the highest vertex in the associated path
list and removes the latter from the path list of the former.



Maximum List
My ={ci2} Mg = {ci0,c13}
My ={ci3} M7 = {c13,c14}
Ms = {ci3} Mg = {ci0,c12}
My ={cio} My = {ci4}
Ms = {ci3} My = {c14}
Path List
Lio = {c4,c6,c5} Lia ={c7,c9,c11}
Lip ={c1,c8} L3 = {c2,c3,¢5,C6,¢7}
Fig. 4. Output of Procedure FINDASCPATHS. M; stores all maxima that

are reached from critical point ¢; via an ascending path. L, stores all critical
points whose ascending paths terminate at maximum c;,
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Fig. 5. Constructing the join tree. The growing nodes and their path lists

are updated at each iteration.

When a node is connected to all critical points in its list
M;, it is inserted into the set of growing nodes for the next
iteration. This operation essentially removes a leaf node after
it is processed, thereby creating a new leaf node, a growing
node. All ascending paths that terminate at the removed leaf
will now terminate at the newly created growing node. The
associated path list of a new growing node is computed as
the union of path lists of maxima that it is connected to. The
second iteration in Figure 5 illustrates this operation, in which
cg and cy; become the growing nodes. The above procedure
is repeated until there are no more growing nodes. Figure 6
shows the resulting join and split trees.

Correctness. We now prove the correctness of the join tree
construction algorithm. In order to show that the tree computed
by the above method is indeed the join tree, it is sufficient
to show that, for each critical point, the algorithm correctly
identifies the unique neighbor having a lower function value.

Consider the first iteration, when the set of growing nodes
is equal to the set of maxima. Let ¢, be a maximum under
consideration. Let (cg,cp,) be an arc of the join tree, that is, ¢
is the unique neighbor of ¢, in the join tree. This implies that

Procedure ConstructJoinTree
Input: Set of critical points C
Input: Path lists L,, of every maximum
Input: Maximum lists M; of every critical point
Output: Join Tree T;
1: for each critical point ¢; that is not a maximum do

2:  Initialize L; =0

3: end for

4: Initialize the set GrowingNodes to be the set of maxima

5: Initialize the set NewNodes =0

6: while GrowingNodes # 0 do

7. for each critical point ¢; € GrowingNodes do

8: Let ¢, be the critical point with maximum function
value in L;

9: Add arc (¢, ¢;) to the join tree T

10: Remove ¢, from L;

11: if number of join tree arcs incident on ¢; = |My|
then

12: Add ¢, to NewNodes

13: end if

14:  end for
15:  for each critical point c¢; in NewNodes do

16: for each join tree arc (c,c;) do

17: Set Ly =L, UL;

18: Replace c¢; with ¢ in all maximum lists M; that
contain ¢;

19: end for

20:  end for

21:  Set GrowingNodes = NewNodes
22:  Set NewNodes =0

23: end while

24: return Join tree T

there exists a monotone ascending path from ¢ to ¢, starting
from one of the components of the upper link of ¢ [11]. Let u;
be the representative vertex of such an upper link component.
Also, since ¢ is a neighbor of ¢, in the join tree, it follows
that there is no other critical point in the path between u; and
cm- Therefore, the algorithm traces this path, and adds ¢ to
the path list L,, of the maximum c,,. To show that c¢; has the
maximum function value among all critical points in L,,, let
us assume, for sake of contradiction, that there exists ¢; € L,
such that f(c;) > f(cx). So, there exists an ascending path
from ¢; to ¢,. This implies that, when tracking super-level
set connectivity during a downward sweep in function value,
the super-level set component that is created at c,,, reaches c;
before cx. Hence ¢; is the neighbor of ¢, a contradiction.
Let ¢, be one of the growing nodes at the end of the
first iteration. This implies that ¢, is connected to all the
maxima in its set M,. The set L, essentially stores all paths
that ended in one of the maxima present in M,. Removing
these maxima from the input results in ¢, becoming a leaf
node similar to a maximum. Repeating the above argument
for c¢,, we prove that the unique neighbor of the new leaf
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Fig. 6. Join tree (left) and split tree (right) of the input shown in Figure 1(a).

node is correctly identified during the next iteration. Hence,
the algorithm correctly computes all arcs of the join tree.

C. Constructing the contour tree

The contour tree is constructed from the join and split trees
using the merge procedure described by Carr et al. [9]. For
completeness, we outline this algorithm in Procedure MERGE-
TREES. Here, up-neighbors and down-neighbors correspond
to neighbors having higher and lower function values respec-
tively. Up-degree and down-degree correspond to the number
of up-neighbors and down-neighbors respectively. Each iter-
ation in this procedure identifies an arc of the contour tree
that is incident on a leaf, removes the arc from the join and
split tree and inserts it into the contour tree. This process is
repeated until all arcs of the join and split tree are processed.

D. Running time

Let v be the number of vertices and ¢ be the number
of critical points of the input scalar function. Let n be the
number of triangles when the input is a triangular mesh.
For a structured grid input, n denotes the number of cells
and n = @(v). Identifying critical points requires computing
the link of a vertex, which is accomplished by traversing all
triangles / cells incident on the vertex. Each triangle / cell
is therefore accessed a constant number of times in total and
hence identifying critical points can be accomplished in O(n)
time. When tracing a monotone ascending path, if the traversal
reaches a vertex that was already reached by another path,
then this information can be used to immediately identify the
maximum that ends the path. Hence, each vertex is accessed
a constant number of times and tracing all monotone paths
takes O(v) time.

While constructing the join tree from the set of monotone
paths, the processing performed at each critical point requires
identifying the highest vertex in its path list, and computing
the union of the path lists of its neighbors. Using an efficient
data structure such as a Fibonacci heap, or a skew heap [12],
each of these operations require O(logt) time. Each critical
point contributes to one highest vertex computation, and one

Procedure MergeTrees

Input: Join tree 7, Split tree Ty
Output: Contour tree T¢
1: Set Queue =0
2: for each critical point ¢; do
3:  if up-degree(c;) in T; + down-degree(c;) in Ts = 1
then
4 Add c; to Queue
5 end if
6: end for
7: Initialize the set NextSet = 0
8: while Queue # 0 do
9:  for each critical point ¢; € Queue do

10: if ¢; is a leaf in 7; then

11: set ¢ <— down-neighbor(c;) in Ty

12: else

13: set ¢ < up-neighbor(c;) in Ty

14: end if

15: Add arc (c;,c¢) to the contour tree Tp

16: Remove ¢; from T; and Ty

17: if up-degree(cy) in 7; + down-degree(cy) in Ty = 1
then

18: Add ¢ to NextSet

19: end if

20:  end for

21:  Set Queue = NextSet
22:  Set NextSet =0

23: end while

24: return Contour tree T

union operation. Summing over all critical points, a total of
2t operations are performed on the data structure used to
maintain path lists. Maximum lists are updated in response
to the removal of growing nodes using the union-find data
structure. This operation requires O(to(t)) time, where o is
the inverse Ackermann function. Combining the above steps,
we obtain an O(tlog?) bound on the time taken to construct the
join tree. Note that the same algorithm is used to compute the
split tree. So, the split tree can also be computed in O(tlog?)
time.

Merging the join and split tree takes O(¢) time. Combining
all the steps, we obtain a O(tlogz 4+ n) time algorithm to
compute the contour tree. Note that this is the optimal bound
for the sequential computation of contour trees [37].

IV. PARALLEL IMPLEMENTATION

The algorithm described in the previous section can be
immediately parallelized. We now describe such an implemen-
tation on a shared memory environment.

A. Critical point identification

The classification procedure described in Section III-A
requires the connectivity of the local neighborhood of each
vertex and can therefore be computed independently for each
vertex. This procedure is embarrassingly parallel.



TABLE I
CONTOUR TREE COMPUTATION TIME FOR UNSTRUCTURED MESHES. LIBTOURTRE PERFORMS BETTER THAN PARALLELCT ON A SINGLE CORE FOR
SMALL UNSTRUCTURED MESHES.

Model Input size Time taken (sec)
# Vertices | # Tetrahedra | PARALLELCT | LIBTOURTRE
(1 core)
Torso 168,930 1,082,723 0.72 0.19
Bucky Ball 262,144 1,250,235 0.49 0.24
Plasma 274,626 1,310,720 0.51 0.28
SF Earthquake 378,747 2,067,739 0.95 0.36
TABLE 11

CONTOUR TREE COMPUTATION TIME FOR STRUCTURED GRIDS. PARALLELCT ON A SINGLE CORE PERFORMS BETTER THAN LIBTOURTRE.

Model Input size Time taken (sec)
# Vertices # Cells PARALLELCT | LIBTOURTRE
(1 core)

Head MRT 256 x 320 x 128 | 255x 319 x 127 27.7 74.3
Boston Teapot 256 x 256 x 178 | 255 x255x 177 10.1 11.4
Vis. Human Torso | 256 x 256 x 226 | 255 x 255 x 225 36.0 152.3
Aneurism 256 x 256 x 256 | 255 x 255 x 255 10.5 12.4
Bonsai 256 x 256 x 256 | 255 x 255 x 255 20.2 19.0
Foot 256 x 256 x 256 | 255 x 255 x 255 21.5 31.5

B. Join tree construction

The ascending path from each critical point can be com-
puted independent of each other. Thus, computation of the set
of ascending paths is embarrassingly parallel.

Each iteration of the Procedure CONSTRUCTJOINTREE,
from Line 7 to Line 14, processes a set of maxima. Each
maximum maintains its own path list. Thus, the arc in the
join tree incident on a maximum can be computed independent
of other maxima. We parallelize this arc identification process.
Similarly, updating the path lists of the growing nodes and the
maximum lists (Line 15 - Line 20) can also be implemented
in parallel for each growing node.

The number of growing nodes that are processed decreases
with each iteration. It is possible that this number quickly
becomes one, after which the join tree construction is essen-
tially sequential. Figure 5 shows one such example where
the number of growing nodes decreases to one after the
second iteration. However, note that once the number of
growing nodes reduces to one, the remaining critical points are
processed in decreasing order of function value. To improve
the performance of the algorithm in such scenarios, we modify
the algorithm to stop the CONSTRUCTJOINTREE procedure
when there is a single growing node. Instead, the unprocessed
critical points are sorted in decreasing order of function value.
Arcs are then added between consecutive critical points in this
list. The advantage of this modification is two-fold: (1) the set
of critical points can be sorted in parallel, and (2) the time
complexity of the sequential step (adding the remaining arcs)
is reduced from O(zlogt) to O(r).

C. Merge procedure

We chose to use the sequential implementation of the merge
procedure, since the time taken to perform this operation was
negligible compared to the overall time required to construct
the contour tree. However, note that different iterations of this

step (Lines 9-20), as outlined in Procedure MERGETREES, can
be parallelized.

V. EXPERIMENTAL RESULTS

We implement the steps corresponding to the identification
of critical points, and computing the ascending and descending
paths using OpenCL [2], a parallel programming framework
designed for heterogeneous architectures such as multi-core
CPUs and GPUs. Construction of the join and split trees using
the ascending and descending paths is implemented using
OpenMP [3]. This is because the current OpenCL specification
does not support global barriers, which is required for an
efficient implementation of the join / split tree construction
algorithm. We evaluate the performance of the algorithm on an
8-core Intel Xeon workstation with 16 GB memory and each
core running at 2.0 GHz. The workstation includes a NVIDIA
GeForce GTX 460 GPU having 336 cores and 1GB memory.
In Section V-A, we report the performance of our algorithm
on a single processor. We evaluate the performance of the
hybrid implementation in Section V-B. Finally, in Section V-C
we report the performance of our implementation on a larger
multi-core CPU environment.

A. Single core environment

We first compare the performance of our algorithm with
LIBTOURTRE [1], a publicly available and widely used im-
plementation of the sweep algorithm by Carr et al. [9]. We
restrict our implementation to execute on a single processor
for this comparison. Table I shows the contour tree compu-
tation time of the above two algorithms for 3D unstructured
meshes. Table II compares the performance of our algorithm
with LIBTOURTRE for 3D structured grids. The optimized
LIBTOURTRE library performs better than our algorithm for
unstructured meshes. However, note that for such a structured
mesh input, PARALLELCT running on a single core is faster



TABLE III
SPEEDUP ACHIEVED USING THE HYBRID AND MULTI-CORE CPU
IMPLEMENTATION FOR STRUCTURED GRIDS.

TABLE IV
SPEEDUP ACHIEVED USING THE HYBRID AND MULTI-CORE CPU
IMPLEMENTATION FOR UNSTRUCTURED MESHES.

Model Hybrid 8-core CPU Model Hybrid 8-core CPU
Time (sec) | Speedup || Time (sec) | Speedup Time (sec) \ Speedup || Time (sec) \ Speedup
Head MRT 7.20 3.8 7.60 3.6 Torso 0.32 2.3 0.12 6.0
Boston Teapot 0.95 10.6 1.50 6.7 Bucky Ball 0.37 1.3 0.10 4.9
Vis. Human Torso 9.40 3.8 11.43 3.2 Plasma 0.40 1.3 0.10 5.1
Aneurism 0.82 12.8 1.40 7.5 SF Earthquake 0.60 1.6 0.19 5.0
Bonsai 1.50 13.5 3.20 6.3
Foot 3.40 6.3 4.25 5.1
Table IV depicts the scaling obtained for unstructured
meshes. The benefits are not as pronounced as seen for
= GPU the larger structured grids. This is because, for the smaller
°| mm CPU datasets, the total computation time itself is less than a second.
8f The data transfer time between the CPU and GPU, which is of
S 7t the order of a few hundred milliseconds, takes up a significant
2 6l fraction of the overall computation time. For example, in case
7 5| of the SF Earthquake dataset, the time taken to transfer the
I . input to the GPU takes around 350 ms, which is more than half
L 4 .
£ the time taken to compute the contour tree. We do, however,
"3 expect a significant benefit when the size of the input is large.
2,
1 C. Multi-core CPU environment
0 In this section, we show the scaling obtained by our
Bonsai Foot Head MRT Vis. Human Torso

Fig. 7. Time taken by the steps executed on the GPU (red) and CPU (green)
for the hybrid implementation.

than LIBTOURTRE. This can be attributed to the output-
sensitive nature of our algorithm — it essentially processes only
the critical points of the input. The savings in time become
significant especially when the size of the input is large.

We do not report comparison of our algorithm with the
output-sensitive algorithm by Chiang et al. [11] since its
implementation is not available. However, we note that the
output-sensitive algorithm was shown to have running times
comparable with the sweep algorithm in [11].

B. Hybrid environment

In this section, we discuss the scaling behavior of the hybrid
CPU-GPU implementation. The critical point classification
and ascending / descending path computation, which was
implemented using OpenCL, is executed on the GPU. These
steps, which are embarrassingly parallel, are able to utilize
the large number of cores available on current GPUs. The
join / split tree computation is implemented using OpenMP,
and is therefore executed on the 8-core CPU. Table III shows
the time taken to compute the contour tree of structured grids.
We observe a speedup of up to 13 times on the overall contour
tree computation time. For the steps executed on the GPU, the
speedup is at least a factor of 25. Figure 7 shows the split in
the time taken by the GPU and CPU for a few data sets. Due
to the memory limitation imposed by the GPU, we currently
show results obtained using moderately large datasets, having
approximately 16 million input vertices.

algorithm on a multi-core CPU environment. Tables III and IV
show the speedup obtained when the parallel implementation
was used to compute the contour tree using 8 cores. Note
that, for the smaller datasets (unstructured grids), a multi-core
environment provides a better speedup than a hybrid setup.

In order to demonstrate the scalability on more than 8
processors, the contour tree computation algorithm was eval-
uated on a 32-core AMD Opteron workstation with 64 GB
memory and each core running at 2.4 GHz. The run times are
reported for different number of processors. The initial setup
and memory allocation time together with the time taken by
the sequential steps of the algorithm, which is in the order of
milliseconds, contributes to a significant fraction of the contour
tree computation time for small data sets. This is because, for
small data sets, the total running time is less than a second.
Therefore, we only report scaling results for large data sets.

In order to show the effectiveness of our method for large
data, we triangulated existing structured grids to create an
unstructured mesh. Figure 8 shows the speedup obtained for
such data. Note that the speedup is close to the ideal speedup,
which is denoted by the blue curve.

We would like to note that the parallel algorithm by
Pascucci and Cole-McLaughlin shows a similar speedup for
structured grids [29]. However, they do not report results when
computing contour trees of unstructured meshes. An extension
of their method to unstructured meshes is non-trivial because
determining a good mesh partition is costly and hence affects
the speedup.

Figure 9 shows the speedup obtained with increasing num-
ber of processors for large structured grids. In our experiments,
we observed that when the number of critical points increases,
a significant fraction of the running time is spent in the
sequential processing during the computation of the join and
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Fig. 8. Speedup for unstructured mesh input. The parallel algorithm scales
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Fig. 9. Speedup for structured grid input.

split trees. This causes the dip in the curve as observed in
Figure 9.

VI. CONCLUSIONS

We have presented a simple, output-sensitive and work-
efficient parallel algorithm to compute the contour tree of a
scalar function defined over either an unstructured mesh or
a structured grid. A hybrid CPU-GPU implementation of the
algorithm executed on a common desktop like environment
can be used to compute the contour tree of an input with
around 16 million vertices in a few seconds. The near-linear
speedup obtained on various data sets also indicate that our
algorithm scales well with the number of processors.

The memory limitation posed by the GPU restricts the size
of input that can be processed in a hybrid environment to 256 x
256 x 256 sized grids. A possible solution is to subdivide a
larger grid into smaller grids and process the grids in sequence.
However, it is non-trivial to directly extend this method for
large unstructured meshes.

The time taken by the sequential steps of the algorithm

contributes to a significant fraction of the total running time,
especially when the number of critical points is large. A
majority of these critical points correspond to noisy features
which are removed when simplifying the contour tree. This
simplification is usually performed off-line after computing
the contour tree. A parallel procedure to remove such noisy
critical points on the fly, would help reduce the time taken by
the sequential steps of the algorithm.

Our current implementation requires the entire data to be in
memory even in a multi-core CPU environment. In future,
we intend to use a simple divide and conquer strategy to
extend our algorithm to handle data sets that do not fit in
memory. Specifically, the data can be split into blocks that fit
in memory and processed to compute the contour tree of the
subdomain. These contour trees could be merged together in
a second step. It would also be interesting to identify methods
to automatically choose the runtime environment depending
on the input size.
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