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Abstract

In this paper we propose a parallel algorithm to construct a one-sided
monotone polygon from a Hamiltonian 2-separator chordal graph. The al-
gorithm requires O(log n) time and O(n) processors on the CREW PRAM
model, where n is the number of vertices and m is the number of edges in
the graph. We also propose parallel algorithms to recognize Hamiltonian
2-separator chordal graphs and to construct a Hamiltonian cycle in such a
graph. They run in O(log® n) time using O(mn) processors on the CRCW
PRAM model and O(log?® n) time using O(m) processors on the CREW
PRAM model, respectively.

Keywords: Chordal graphs, Hamiltonian cycle, monotone polygon, par-
allel algorithms and complexity, visibility graphs.

1 Introduction

The Visibility Graph is an important combinatorial structure in com-
putational geometry used in computing shortest paths amidst polygonal
obstacles in the plane [7] and in decomposing 2D shapes into clusters [8].
The wvisibility graph G of a simple polygon P is a graph whose vertices
{v1,v2,...,vn} correspond to the vertices {p1,p2,...,pn} of P and v;v; is
an edge in G iff p; is visible from p;, i.e., the line segment joining p; and
p; does not intersect the exterior of P.

The general problem of reconstructing simple polygons from their vis-
ibility graphs still remains unsolved. Most results in this area have been



obtained by restricting the class of graphs or polygons, and also the de-
veloped algorithms have been sequential. El Gindy [3] provided an al-
gorithm for reconstructing a representative embedding for any maximal
outer-planar graph. Sreenivasa Kumar and Veni Madhavan [12] intro-
duced the concept of 2-separator (in short, 2-sep) chordal graphs. The
motivation behind introducing 2-sep chordal graphs comes from ElGindy’s
construction of polygons whose visibility graphs are maximal outer-planar
graphs. The construction roughly proceeds as follows: Start with an equi-
lateral triangle and fix one of its sides as a base line. Mount triangles on
the other sides of the existing polygon such that appropriate visibility is
maintained. This idea can be extended so that this type of construction
can be done even if cliques of arbitrary size > 3 take the place of triangles
in a maximal outer-planar graph. Hamilonian 2-sep chordal graphs are
precisely this kind of graphs. Therefore, the study of Hamiltonian 2-sep
chordal graphs is important.

In [12], the authors showed that Hamiltonian 2-sep chordal graphs are
visibility graphs of one-sided monotone polygons, by giving a linear time
sequential algorithm to construct a one-side nonotone polygon for a given
Hamiltonian 2-sep chordal graph.

So far only some special classes of graphs are shown to be visibility
graphs. Researchers have shown these classes of graphs to be visibility
graphs by proposing sequential algorithms to construct the appropriate
visibility polygons. However, no parallel algorithms exist to construct
visibility polygons for these known classes of visibility graphs. So, it
would be interesting to design parallel algorithms for recognizing these
known classes of visibility graphs and to construct visibility polygons for
these known classes of visibility graphs in parallel.

In this paper, we first propose two characterizations of 2-sep chordal
graphs. With the help of these characterizations, we present a parallel
algorithm for recognizing 2-sep chordal graphs which runs in O(log?n)
time using O(mn) processors on the concurrent read concurrent write
(CRCW), parallel random access machine (PRAM) model, where n is the
number of vertices and m is the number of edges. We also present a new
characterization of Hamiltonial 2-sep chordal graphs, based on which we
propose parallel algorithms to recognize Hamiltonian 2-sep chordal graphs
and to construct a Hamiltonian cycle for such a graph. The recognition
of Hamiltonian 2-sep chordal graphs requires O(log” n) time and O(mn)
processors on the concurrent read exclusive write (CREW) PRAM model.
Given a Hamiltonian 2-sep chordal graph, our parallel algorithm for con-
structing a Hamiltonian cycle takes O(log” n) time and O(m) processors
on the same CREW PRAM model. Finally, we propose a parallel algo-
rithm for constructing one-sided Monotone polygons from Hamiltonian
2-sep chordal graphs. This algorithm requires O(log®n) time and uses
O(n) processors on the CREW PRAM model.

The rest of the paper is organized as follows. Section 2 introduces
some preliminary concepts and summarizes results pertaining to our study.
Section 3 presents the characterization and recognition of 2-sep chordal
graphs. In Section 4, we propose a parallel algorithm for constructing one-
sided monotone polygons from Hamiltonian 2-sep chordal graphs. The
final section concludes the paper.



2 Preliminaries

Throughout this paper we use “iff” to stand for if and only if, “w.r.t” for
with respect to, and “s.t.” for such that. We consider only simple, finite
and undirected graphs having n vertices and m edges.

A graph G = (V, E) is called chordal if every cycle of length at least
four, has a chord i.e., an edge joining two non-consecutive vertices of the
cycle. Let G[S], S C V, denote the induced subgraph of G on S. If
G[C], C C V,is a complete subgraph of G, then C is called a cligue of G.
Let N(v) = {w € V(G) | vw € E(G)}, be the neighborhood (the set of
adjacent vertices) of v. A vertex v is said to be simplicial if G[N(v)] is a
clique in G. A perfect elimination ordering(peo) o = (v1,v2,...,vn) of G is
an ordering of the vertices of G s.t. v; is simplicial in G[{vi, Vit1,---,vn}],
1 <4< mn A graph G is chordal iff it has a peo [5]. The monotone
adjacency set of v; w.r.t peo o is defined as N(v;,0) = {v; € V(G) | j >
i and viv; € E(G)}.

A subset B of the vertex set of a chordal graph G is called a base set
w.r.t a peo o if 3 a vertex v; s.t. B = N(v;,0) and B is not a maximal
clique in G[{vit1,...,vn}]. The number of such vertices that exist for a
particular base set is called its multiplicity, and is denoted by u(B, o).

The concept of base set was originally introduced in [11], and the
following results on base sets have been established in [11] and [12]. We
state them here for the sake of completeness.

Lemma 2.1 ([11]) Let B be a base set of a chordal graph G w.r.t a peo o.
Then B is a clique and a vertex separator of G.

Theorem 2.2 ([11]) Let a and B be two peos of a chordal graph G. (i)
If B is a base set w.r.t « then it is also a base set w.r.t B. (i) p(B,a) =

w(B, B)

Hereafter, no particular peo will be assumed while referring to base sets,
unless it is specifically mentioned.

A chordal graph is called a k-separator (k-sep, in short) chordal graph
[12] if every base set is of size k.

Lemma 2.3 ([12]) A base set B of a k-sep chordal graph G is contained
in ezactly p(B) + 1 mazimal cliques.

Let Q1,Q2,...,Q% be the maximal cliques of a Hamiltonian 2-sep
chordal graph G. A tree T is associated with G, whose vertices {q1, q2,...,qx}
correspond to the maximal cliques of G and ¢;¢; is an edge in T iff Q;
and @; share a base set. T is called the clique tree of G.

The next theorem characterizes Hamiltonian 2-sep chordal graphs, and
the corolary follows immediately.

Theorem 2.4 ([12]) A 2-sep chordal graph G is Hamiltonian iff (i) ev-
ery base set of G has multiplicity one, and (it) for every mazimal clique Q
of G, 3 a Hamiltonian cycle C(Q) of Q s.t. each of the base sets contained
in Q appears as an edge in C(Q).

Corollary 2.5 ([12]) Every edge of the Hamiltonian cycle of a 2-sep
chordal graph lies in exactly one mazimal clique.

The following lemma is equivalent to the second condition of Theo-
rem 2.4, but is simple and easy to test.



Lemma 2.6 ([12]) Let Q = (V, E) be a complete graph on n vertices. Let
S be a set of edges of Q, where |S| < n. There exists a Hamiltonian cycle
C(Q) for Q containing the edges in S iff the graph Q' = (V, S) is either a
cycle on n vertices or a disconnected graph in which each component is a
singleton vertez (i.e., a trivial component) or a path.

If G — C is disconnected by a maximal separating clique C into com-
ponents H; = (V;,E;), 1 < ¢ <r,r > 2, then G; = G[V;UC(C], 1 <
1 < r, is said to be a separated subgraph of G w.r.t C. Define w(G;) =
{v € C | there is a vertex w € (V(G;) U C) s.t. vw € E(G;)}. Maximal
cliques of G; which contain w(G;) are called principal cliques of G;. The
existence of a principal clique in every separated subgraph of a chordal
graphi is assured by this lemma.

Lemma 2.7 ([9]) Every separated subgraph G; of a chordal graph has a
principal clique.

A polygon P is said to be monotone w.r.t a line [ if the intersection
of any line perpendicular to ! with P is a connected segment, possibly
empty. P is called a one-sided monotone polygon w.r.t [, if I is parallel to
one of the edges.

3 Characterization and Recognition of 2-
Sep Chordal Graphs

The recognition of Hamiltonian 2-sep chordal graphs is performed in two
steps: (1) testing if the given graph is a 2-sep chordal graph, and (2)
checking if it has a Hamiltonian cycle. We present two characterizations
of 2-sep chordal graphs, one of which is used to recognize them.

Let us characterize the base sets of a k-sep chordal graph G by showing
that they are exactly all minimal separators of G.

Lemma 3.1 Let G be a k-sep chordal graph. B is a base set of G iff it
is a minimal separator.

Proof: First we prove that every minimal separator of G is a base set. Let
B (|B| = k) be a minimal separator of G and Hi, Ha,...,H,, r > 2, be the
connected components of G— B. Let G; = G[V (H;)UB], 2 < i <r. Since
B is a minimal separator, 3 a vertex v of G1 which is adjacent to all the
vertices in B (see [5]). Let (v1,v2,...,v,.) be a peo of G1, with v = v,s_y,
and {v,r _g41,Vp _ga2,--,00} = B, and let (x1,2,...,2,) be a peo of G
with z; = v; for 1 <4 <r'. Such peos can be constructed [10]. Since B is
a minimal separator, it is not a maximal clique in any of the components
G; and hence, it is not a maximal clique in G[ {,/ _g41,Tr' _gt2,-- -, Tn }]-
Therefore, B is a base set w.r.t v.

Next we prove that all the base sets of G are minimal separators. Let
B be a base set of G and not a minimal separator. By Lemma 2.1 B is
a vertex separator. This means that a proper subset of B is a minimal
separator of G. Therefore, by the sufficiency of Lemma 3.1, a proper
subset of B with size less than k is a base set. This is a contradiction
to the fact that all base sets are of size k in G. Hence, B is a minimal
separator. O

We now present two characterizations of 2-sep chordal graphs, one of
which can be used to construct a parallel algorithm for recognizing them.



Let G be a chordal graph. If G has one maximal clique, then G is a
2-sep chordal graph. If G has two maximal cliques, say @1 and @2, the G
is a 2-sep chordal graph iff |Q1 N Q2| = 2. So, we consider chordal graphs
with at least three maximal cliques.

Theorem 3.2 The following three statements are equivalent for a chordal
graph G having at least 3 mazimal cliques.

(1) G is a 2-sep chordal graph.

(2) For every mazimal separating cligue C of G, |w(G;)| = 2 for all
separated subgraphs G; w.r.t C.

(3) G is biconnected and |Q1 N Q2| < 2, where Q1 and Q2 are any two
distinct mazimal cliques of G.

Proof: Let us prove that 1 = 2. Let C be a maximal clique of G and
let Gi, i > 2, be the separated subgraphs of G w.r.t C. As C is a vertex
separator of G, by its definition w(G;) is a vertex separator of G for all
i, 1 <14 <r. Again, by Lemma 2.7, G; has a principal clique, implying 3
a vertex z; € G; — w(G;) s.t. z; is adjacent to all the vertices of w(G;).
Also, since C is a maximal clique, 3 at least one vertex in C — w(G;).
So, w(G;) is a minimal vertex separator. Hence by Lemma 3.1, w(G;) is
a base set of G for all 4, 1 < i < r. Since G is a 2-sep chordal graph,
|lw(G;)|=2forall 4,1 <i<r.

Next we prove that 2 = 3. If possible, let v be a cut vertex of G. Let
Hy, H,,...,H,, where r > 2, be the connected components of G — {v}.
Let G; = GIV(H; U {v})], 1 < ¢ < r. Let C be a maximal clique of
G containing v. Now, consider the separated subgraphs of G w.r.t C.
Clearly, each G;, 2 <i <r,r > 2, is a separated subgraph of G w.r.t C.
Now, |w(G;)| =1 for 2 < ¢ < r which is a contradiction to statement (2)
of the theorem. In other words, G is biconnected.

If possible, let @; and @; be two maximal cliques of G s.t. |@Q:NQ; | >
3. Since G has at least 3 maximal cliques, either @Q); or @); is a separating
clique of G. Without loss of generality, let Q; be a separating clique and
Gi, i > 2, be the separated subgraphs of G w.r.t @;. Again, without
loss of generality, assume that G1 contains @;. Since |@; N Q;| > 3,
we get |{w(G1)| > 3 which is a contradiction to statement (2). Hence
statement (3) is true.

Finally we prove that 3 = 1. Consider any base set B. It follows
from the definition of a base set that B lies in at least 2 maximal cliques
(say Q: and Q;). Therefore, |B| < |Q; N Qj;|. But, [Q: N Q;| < 2, which
implies that |B| < 2. Since G is biconnected, any separator should be of
size greater than 1. So |B| = 2 and hence, G is a 2-sep chordal graph.

Statement (3) of Theorem 3.2 leads to a parallel 2-sep chordal graph
recognition algorithm described below. For this algorithm, we assume the
CRCW PRAM model of computation.

Algorithm 2-Sep_Chordal
flag=TRUE

Step 1. Test, in parallel, whether G is biconnected. If not, set flag =
FALSE and go to Step 9.

Step 2. Check, in parallel, if G is chordal. If not, set flag = FALSE
and go to Step 9.



Step 3. Find the maximal cliques of G.
/* Let Q1,Q2,...,Qr be the maximal cliques of G */

Step 4. If r =1, go to Step 9.

Step 5. If r = 2, check if |Q1 N Q2| = 2. If no, set flag = FALSE and
go to Step 9. (Note that @1 N Q2 is the set of vertices having degree
n—1.)

Step 6. Form a list L consisting of triplets (Q:, @;,v) with ¢ < j and v
contained in both @; and Q;.

Step 7. Lexicographically sort L on the first two components.

Step 8. Check, in parallel, if three consecutive triplets of L have the
same first and second components. If yes for some processor, set
flag = FALSE.

Step 9. If flag is TRUE, then G is 2-sep chordal, else it is not.

Because of statement (3) of Theorem 3.2, the above algorithm cor-
rectly tests if a given graph is a 2-sep chordal graph. Below we show its
complexity.

Theorem 3.3 A 2-sep chordal graph can be recognized in O(log? n) time
using O(mn) processors on a CRCW PRAM model.

Proof: The biconnectivity (Step 1) can be tested in O(log? n) time us-
ing O(n”/log®n) processors [13]. Checking if G is chordal and finding
its maximal cliques (Steps 2-3) requires O(log®n) time using O(m + n)
processors [6]. Step 5 takes O(log n) time using O(m + n) processors . Let
n, be the number of maximal cliques containing v. Then the size of the
list L is Zvev(g) ( n; ) < ZveV(G) ni < Alnzvev(g) ny, < Asnm,
for some constants A; and As. Therefore, the number of triplets in L is
O(mn). Step 7 can be performed in O(log mn) (= O(logn3) = O(log n),
as m = O(n?)) time with O(mn) processors using a parallel merge sort
algorithm [2]. Step 8 takes constant time using O(mn) processors. Hence
the theorem. 0

3.1 Hamiltonian 2-sep chordal graphs

Let us now discuss the problem of recognizing whether a given 2-sep
chordal graph is Hamiltonian. For the following two algorithms we as-
sume the CREW PRAM model of computation.

Note that, a graph G is a set of cycles or paths iff the maximum
degree of the graph is at most three. This fact, together with Theorem 2.4
and Lemma 2.6, gives rise to the following alternate characterization of
Hamiltonian 2-sep chordal graphs.

Theorem 3.4 A 2-sep chordal graph G is Hamiltonian iff

(1) Every edge of G is contained in exactly two mazimal cliques.

(2) No three base sets lying in the same mazimal clique have a vertex in
common.

(8) For every mazimal cligue Q of G, either Q' is connected or each
non-trivial connected component of Q' has ezactly two vertices of
degree 1, where Q' = (Q, S) and S = {(u,v) | {u,v} is a base set of
G contained in Q}.



The following parallel recognition algorithm for Hamiltonian 2-sep
chordal graphs is based on the above characterization.

Algorithm Ham_2-Sep_Chordal
flag=TRUE

Step 1. /* This step checks if each edge is contained in exactly two max-
imal cliques. This is done by forming a list of pairs of edges with
the maximal cliques that contain them and by checking if there are
exactly two pairs with the same edge after sorting this list. If this
is not true then the first condition in the above theorem fails and
hence, G is not a Hamiltonian 2-sep chordal graph. */

1.1 For every maximal clique Q; of G, insert pairs (e;,Q;) into a
list L' for each edge e; in Q;.

1.2 Lexicographically sort L' on the first coordinate.

1.3 In parallel, check if three consecutive pairs have the same first
coordinate. If yes for some processor, set flag = FALSE and
go to Step 4.

Step 2. /* This step checks if the second condition of Theorem 3.4 holds.
This is done by forming lists L? of base sets corressponding to each
maximal clique and by checking if any vertex appears thrice in one
of these lists after sorting them in parallel*/

2.1 For every maximal clique @Q;, perform Steps 2.2 to 2.4 in parallel.

2.2 For every base set B = {a, b} in Q;, insert the ordered pair (a,b)
into a list L? corresponding to the maximal clique.

2.3 Sort the lists L? on the first coordinate.

2.4 In parallel, check if any three consecutive pairs have the same

first coordinate. If yes for some processor, set flag = FALSE
and go to Step 4.

Step 3. For each maximal clique @; do in parallel:

/* Let |Qi| = k and Q; = (V',E’), where V' = Q; and E' =

{(u,v) | {u,v} is a base set contained in Q;} */

3.1 Find all the connected components of Q.

3.2 If Q; is connected (i.e., it has exactly one component), then
check if it has either zero or two degree-1 vertices. If no, set
flag = FALSE and go to Step 4.

3.3 For each vertex v of @}, insert the non-trivial connected compo-
nent of @} containing v, say A, into a list L} if v is a degree-1
vertex in A.

3.4 Sort the list L?.

3.5 In parallel, check if there are exactly two entries for each non-

trivial connected component. If no for some processor, set
flag = FALSE.

Step 4. If flag = TRUE then G is Hamiltonian.

The proof of correctness of this algorithm follows from Theorem 3.4.
Note that Step 1 also generates the base sets of the graph G. These are
given by those edges e; that lie in exactly two maximal cliques.

Theorem 3.5 A 2-sep chordal graph can be tested for Hamiltonicity in
O(log® n) time using O(mn) processors on a CREW PRAM model.



Proof: The number of pairs in the list L' is O(mn) because there are
at most n maximal cliques. The number of pairs in L} is O(m) and the
number of cliques is O(n). Therefore, there is a total of O(mn) pairs in
all the L7s put together. The list L? has O(k) elements and so, the total
number of entries in all the L}s put together is O(}_ |Qi|) = O(m). So,
Steps 1.2,2.3 and 3.4 can be implemented in O(logmn) (= O(logn®) =
O(logn), as m = O(n?))time with O(mn) processors using a parallel
merge sort algorithm [2]. Steps 1.3,2.4,3.2 and 3.5 take constant time.
The connected components of Q} (|Qi| = k) can be found in O(log® k)
time using O(k?/log? k) processors [1]. By a similar analysis as for the
number of entries in L2, the number of processors required to find the
connected components of @Q; for all 4, 1 < i < r is O(mn). Hence the
theorem.

Next we propose a parallel algorithm to construct a Hamiltonian cycle
in a Hamiltonian 2-sep chordal graph.

Algorithm Create_Ham_Cycle

Step 1. For each ordered pair (vj, @;), where v; is a vertex in the maxi-
mal clique @);, do Steps 2 to 4 in parallel.

Step 2. If v; is a degree-1 vertex in Q] as defined in the previous algo-
rithm, insert the pair (Ay;,v;) to a list L;, where A,; is the con-
nected component of @Q; in which v; lies.

Step 3. If v; is an isolated vertex in Qj, insert (0,v;) into the list L;.
Step 4. Sort L; on the first coordinate.

Step 5. For every pair of consecutive elements (A, ,ve) and (A, ,vs) of
L;, insert the edge (va,vs) into the list C(Q;) if they differ in the
first coordinate or both have ‘0’ as the first coordinate. (Note C(Q;)
is the Hamiltonial cycle of the clique Q;.)

Step 6. For each of these lists L;, insert edge (vy,v;) into C(Q;), where
vy is the second coordinate of the first entry and v; is the second
coordinate of the last entry in L;.

Step 7. Take the union of all lists C'(Q;) to result in C(G), the Hamilto-
nian cycle of G.

The complexity of the above algorithm is proved below.

Theorem 3.6 A Hamiltonian cycle can be constructed in a 2-sep chordal
graph in O(log® n) time using O(m) processors on a CREW PRAM model.

Proof: Let G be a Hamiltonian 2-sep chordal graph S(G) be the set of all
maximal cliques of G. Then, UQes(G) C(Q) — B(Q) is a Hamiltonian cy-
cle of G, where C(Q) is a Hamiltonian cycle of the clique @ containing all
the base sets in @ and B(Q) is the set of all edges in @ which correspond
to base sets in G. Therefore, algorithm Create_Ham Cycle correctly con-
structs a Hamiltonian cycle of the given Hamiltonian 2-sep chordal graph.
The number of pairs in all the L;s put together is O(m). Step 4 of the al-
gorithm requires O(log? n) time using O(m) processors. The Hamiltonian
cycle of G, i.e., C(QG) is obtained as a set of n — 1 edges. Given this edge
list, using the Euler tour technique [4], we can order the vertices along
the Hamiltonian cycle in O(log? n) time using O(n) processors. Thus, the
theorem is proved. 0



a=q) b=24]

Figure 1: The convex polygon corresponding to (1

4 Polygon Reconstruction

In this section we present a parallel algorithm for constructing a one-
sided monotone polygon (w.r.t the X-axis) whose visibility graph is a
Hamiltonian 2-sep chordal graph. Before proceeding further, let us give
a brief overview of the sequential algorithm for this construction due to
Sreenivasa Kumar and Veni Madhavan [12].

Let ab be an edge in C(G), the Hamiltonian cycle of G. By Corol-
lary 2.5, ab is contained in a unique maximal clique, say 1. Draw the
convex polygon corresponding to (1 with edge ab parallel to the X-axis
as shown in Figure. 1. Note that ab is the base line for ;. To embed
the remaining vertices, the clique tree T' of G that is rooted at @i, is
traversed in a depth-first-search (DFS) manner and the convex polygons
corresponding to the maximal cliques are constructed, with the base line
given by the base set B; that corresponds to the edge joining Q; and its
parent. Two points p1 and g1, are determined taking the visibility con-
straints into consideration. The vertices of (); — B; are plotted on an arc
passing through p; and ¢ and between the vertical lines at p; and ¢,
the order in which they appear being given by C(Q;). The point p; is
calculated as the intersection of the line passing through b and s with the
vertical line through r (see Figure 2). Similarly, ¢; is calculated as the
point of intersection of the line passing through a and r with the ver-
tical line through s. The two special cases, (i) r = a and s = a1 and
(it) r = ax—1 and s = b are handled separately [12].

The proposed parallel algorithm for the polygon construction is de-
scribed below. For this purpose, we need the CREW PRAM model of
computation. Since the DFS traversal of the clique tree leads to a linear
time algorithm, we avoid its use in the following manner. Given the clique
tree T' as an edge list, we calculate the shortest path of each vertex in T
from the root of T. Note that we consider Q1 as the root of T as men-
tioned in the previous paragraph. This gives the depth of each maximal
clique in T. We then construct in parallel the convex polygons corre-
sponding to the maximal cliques. We fix the z-coordinate of the vertices
of the polygon by setting them equal to their label, i.e., z; = 7. Therefore,
the construction is essentially the calculation of the y-coordinate for each
vertex.

Suppose we are to draw the convex polygon corresponding to the max-
imal clique @;, with the base line as the base set B; and whose depth in



a=ag b=agy]

Figure 2: Constructing the convex polygon with base line (r, s)

T is t. Once the points p1 and ¢q1 are calculated, we set the y-coordinates
of p1 and q1 to y,, = maz(yp,,Yq,) and plot all the vertices of Q; — B; on
the parabola passing through p1(zp,, Yp,) and g1(zp,, yp, )- This parabola
is given by the equation

Y =Yp, + (2s —2)(z — /) (1)
where B; = {r, s}.

Lemma 4.1 If pi and q1 are the points as defined in Figure 2, then the
y-coordinate of p1 is given by

g = [(1;’_—;) ((n—2)" 1) +kt2-‘ (2)

2
n

where k = m (3)

i 0= | (22)]

Proof: Just as p1 corresponds to the base of polygon P», let p» and
ps correspond to the base of the polygons that are constructed in the
previous two steps before P», i.e. ps corresponds to the base of polygon
P, in Figure 2. The point p; is calculated as the intersection of the line
passing through s and b with the vertical line at r. So,

Yor — Y6 _ Ypo +cCs — Y
r—b s—b

where p5 is the point corresponding to the polygon P; (see Figure 2) and
¢s is the vertical displacement of s from p2. Hence,

r—b
Y1 = (s—b) (Ypa + s — Y) + Wb

r—b
<n-1
(s—b) ="

10

Now,




and

2 2
Ts — Ty n— 1)
<|—- < .
o —( 2 ) = {( 2 J
From Figure 2, it is clear that p1 can have y-coordinate greater than

yp, and still satisfy the visibility criteria. So, we substitute these upper
bounds in the expression for y,, to get

Yo = (0= 1)ups + {("T”)J o) + i

Expressing ¥ in terms of the displacement of b from the point ps, which
was used to plot a and b, we have

Yoy = (n—1) (ym + \‘(ng I)ZJ) + (2 —n)(yps + cb)-

Again, |cp| < n — 1. Substituting this bound, rearranging the terms and
setting the y-coordinate of p; to this bound we get

o = (= D+ 2= + | (25

This is a recurrence relation in the depth ¢ of the maximal clique in the
clique tree T and can be rewritten as

n—1

Y

where y; is the y-coordinate of the point m; corresponding to the maximal
clique at depth t in T'. Solving this recurrence we get

= —2)t kt?
yp=am-2)"+8 + .

general solution particular solution

where k is given by Eq. 3.

The initial conditions are yo = 0 and y; = D (say). The upper bound
for D is [(n —1/2)?| which we denote by D’. Substituting this value and
taking the ceiling of the resultant we get an integral value for y; which is
given by Eq. 2. 0

The coordinate y,, can be calculated similarly. The following algo-
rithm gives the entire construction.

Algorithm Construct_Polygon

Step 1. Let the Hamiltonian cycle of G be C(G) = v1,v3,...,v, and the
maximal cliques be Q1,Q2. .. Qk.

Step 2. Choose an edge v;v; in C(G) and draw the line segment joining
the points(1,0) and (n,0). This is the base line of G.

Step 3. Relabel the vertices from v; to v; along the Hamiltonian cycle
as 1,2,...,n.

Step 4. Set @1, the maximal clique containing v;v;, as the root of the
clique tree T'.
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Step 5. For ¢ =1 to n, in parallel, find y,, for the point p; corresponding
to Q; using Eq. 2 (The depth of Q; in T is calculated as the length
of the shortest path from the root to Q; ).

Step 6. For v = 1 to k, in parallel, plot the point v of the clique @Q; as
(v,yp + (s —v)(v — x,)) where (r, s) is the base line of the clique.

Step 7. For ¢ = 1 to n, in parallel, draw the line segment joining the
points ¢ and 7 + 1.

Theorem 4.2 A one-sided monotone polygon, whose visibility graph is
a Hamiltonian 2-sep chordal graph, can be reconstructed, given the graph
along with a Hamiltonian cycle, in O(log® n) time using O(n) processors
on a CREW PRAM model.

Proof: Step 3 requires O(log®n) time using O(n) processors. Given the
clique tree T', in the form of an edge list, it can be rooted to get the parent-
child information in O(logn) time using O(n) processors [13]. Once the
parent-child information is available we can find the depth of each node
using the standard doubling technique. So, Step 5 takes O(log?®n) time
using O(n) processors. All other steps require constant time. We
make the following remark. One important difference in the polygons con-
structed by our algorithm and the approach in [12] is that all the vertices
of the polygon constructed by our algorithm have integer coordinates.
This is ensured by the fact that (¢) the z-coordinates are fixed by setting
them to the value of the vertex labels and (i¢) the vertices are plotted
on the parabola y = y,, + (s — z)(x — z,). So, the y-coordinates are
integers for integral values of . Due to this feature, our algorithm is
practical and involves lesser computation than that required for floating
point operations as in [12].

5 Conclusions

We have presented a parallel algorithm to recognize Hamiltonian 2-sep
chordal graphs that run in O(log®n) time using O(mn) processors on
a CRCW PRAM model. We have also given a parallel algorithm to
construct one-sided monotone polygons from Hamiltonian 2-sep chordal
graphs which has a running time of O(log” n) time and uses O(n) proces-
sors on a CREW PRAM model, once the Hamiltonian cycle is given. The
Hamiltonian cycle construction takes O(log?n) time using O(m) proces-
sors on a CREW PRAM model.
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