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Extraction of Robust Voids and Pockets in Proteins

Raghavendra Sridharamurthy∗ Harish Doraiswamy† Siddharth Patel‡

Raghavan Varadarajan§ Vijay Natarajan¶

Abstract

Voids and pockets in a protein refer to empty spaces that
are enclosed by the protein molecule. Existing meth-
ods to compute, measure, and visualize the voids and
pockets in a protein molecule are sensitive to inaccu-
racies in the empirically determined atomic radii. This
paper presents a topological framework that enables ro-
bust computation and visualization of these structures.
Given a fixed set of atoms, voids and pockets are rep-
resented as subsets of the weighted Delaunay triangu-
lation of atom centers. A novel notion of (ε, π)-stable
voids helps identify voids that are stable even after per-
turbing the atom radii by a small value. An efficient
method is described to compute these stable voids for a
given input pair of values (ε, π).

1 Introduction

Protein molecules have a well packed structure, yet they
contain cavities. A cavity refers to both voids (without
openings) and pockets (with openings). These cavities
play a key role in determining the stability and function
of proteins.

Several methods have been proposed to locate such
cavities in protein molecules. We focus our attention
on geometric methods. Edelsbrunner et al. [6, 8] and
Liang et al. [16, 17] propose a definition that is based
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on the theory of alpha shapes and discrete flows in De-
launay triangulations. Kim et al. [11, 13] propose a
definition of cavities based on an alternate represen-
tation of a set of atoms called beta shapes that faith-
fully captures proximity. Tools based on the above ap-
proach are available and widely used [2, 14, 12]. Till
and Ullmann [24] employ a graph theoretic algorithm to
identify cavities and compute their volume. Parulek et
al. [21] use graph based methods on the implicit repre-
sentation of molecular surfaces to identify pockets and
potential binding sites. Varadarajan et al. [1] employ
a Monte Carlo procedure to position water molecules
together with a Voronoi region-based method to locate
empty space. They discuss the importance of accurate
identification of cavities for the study of protein struc-
ture and stability. Novel Voronoi diagram-based tech-
niques for the extraction and visualization of cavities
have also been developed from the viewpoint of study-
ing and interactively exploring access paths to active
sites [23, 22, 19, 18]. Krone et al. [15] present a visu-
alization tool for interactive exploration of protein cav-
ities in dynamic data.

1.1 Motivation and Problem Statement
The input used for calculations in previous work come
from x-ray crystallography data or other lower resolu-
tion data. Previous cavity detection methods are sen-
sitive to inaccuracies that are inherent in the crystallo-
graphic measurements. While the measurements may
guarantee high resolution, it is important to note that
even small inaccuracies may cause a significant differ-
ence in the reported number of cavities. The inaccu-
racies may also arise due to some fundamental limi-
tations such as the notion of radii of atoms, which is
determined empirically. For example, as illustrated in
Figure 1, presence of such inaccuracies may result in a
cavity detection method to report two distinct but large
cavities in place of one or report very small volume cav-
ities. Figure 2 illustrates the problem as it occurs in a
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Figure 1: Left: Two cavities that are apparently very
near to each other may be a single cavity. Right: A very
small cavity may be reported whereas no such cavity
may exist.

Figure 2: (a) Two voids that appear very near to each
other in a lyzozyme protein (PDB ID: 200l). The solid
surface represents the voids while the wireframe repre-
sents the molecule. (b) Zoomed-in view of the voids
without the molecular skin surface. (c) The two voids
may be a single void.

lyzosyme protein.
We aim to develop an interactive method to compute

robust cavities in proteins. We achieve this by enabling
the user to reduce, if not completely eliminate, the inac-
curacies mentioned earlier. We define what robustness
would mean in this context, why such a notion is impor-
tant and also demonstrate the robustness of the method.
As an auxiliary task, we visualize the protein molecules
and their cavities in an interactive manner and compute
their properties.

From the biologist’s point of view, obtaining a stable
protein is the starting point of many applications, from
in-vitro studies of binding and interactions, to using the
protein as an antigen or vaccine. Whereas surface pock-
ets often form part of the active site of enzymes or inter-
acting sites for other proteins, internal voids are often
relevant structurally as features that affect the overall
stability of the protein. It is established that filling up
internal voids improves the packing of the protein thus
increasing stability. In this respect, detecting and vi-
sualizing structurally robust cavities inside the protein
informs the biologist on which mutations to perform to
improve internal packing and get a stable protein.

Our software while detecting robust cavities and cal-
culating volumes, also provides an interactive frame-
work that the biologist can use, along with their own
knowledge and discretion, to decide which cavities af-

fect their proteins and which mutations would be re-
quired for their specific application.

1.2 Results
The main results described in this paper are in the con-
text of a novel definition and method for computing ro-
bust and stable voids in proteins. We employ a sim-
ple and succinct structure called the alpha complex to
represent protein molecules. The alpha complex is a
simplicial complex that can be stored as a filtration, a
series of simplicial complexes Ki with Ki ⊂ Ki+1.
With the aim of computing a set of voids that are stable
with respect to small perturbations in the atom radii,
we develop a method that modifies the radii of a select
set of atoms symbolically by systematically processing
and modifying the filtration. We show that this modifi-
cation results in controlled changes in the number and
properties of voids and does not violate key properties
of the filtration. The method also supports the elimina-
tion of very small or insignificant voids as measured by
the notion of topological persistence [9]. We also de-
velop software to visualize the stable cavities together
with the molecule, and to calculate cavity volume and
surface areas.

2 Background
In this section, we briefly introduce the topological
background required to define and represent the struc-
ture of biomolecules [20, 5, 4].
Simplicial Complex. A k-simplex σ is the convex hull
of k + 1 affinely independent points. A vertex, edge,
triangle, and tetrahedron are k-simplices of dimension
0 − 3. A simplex τ is a face of σ, τ ≤ σ, if it is the
convex hull of a non-empty subset of the k+1 points. A
simplicial complex K is used to represent a topological
space and is a finite collection of simplices such that
(a) σ ∈ K and τ ≤ σ implies τ ∈ K, and (b) σ1, σ2 ∈
K implies σ1

⋂
σ2 is either empty or a face of both

σ1 and σ2. A subcomplex of K is a simplicial complex
L ⊆ K.
Voronoi diagram and Delaunay triangulation. Let
S ⊆ Rd be a finite set of points. The Voronoi cell Vp, of
a point p ∈ S, is the set of points in Rd whose Eu-
clidean distance to p is smaller than or equal to any
other point in S. The collection of Voronoi cells of
all points in S partitions Rd, and is called the Voronoi
diagram (Figure 3(a)). The Delaunay triangulation D
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(a) (b)

Figure 3: (a) Voronoi diagram of
a point set in R2. (b) The De-
launay complex is the dual of the
Voronoi diagram.

(a) (b)

Figure 4: (a) Intersection of the weighted
Voronoi diagram and the union of balls.
(b) The dual complex is the dual of this par-
tition of the union of balls that captures the
incidence relationship.

(a) (b)

Figure 5: (a) Void and
(b) Pocket in a collection
of 2D balls.

of S is the dual of the Voronoi diagram and partitions
the convex hull of S, see Figure 3(b). The above def-
initions can be extended to a set of balls or weighted
points by choosing an appropriate measure of distance
between a weighted point p and a point in Rd. The
power distance between p and a point x ∈ Rd is equal
to πp (x) = ‖x − p‖2 − wp, where wp is the weight of
p.
Alpha Complex. Molecules are often represented us-
ing a space-filling model such as a union of balls. The
weighted Voronoi diagram may be extended to repre-
sent the contribution from each atom to the union of
balls. Consider an atom p. Define Bp as an open ball
having the radius of the atom p. Let Vp be the weighted
Voronoi cell corresponding to p, where the weight is
equal to the square of the atom radius. The contribu-
tion from each atom p is equal to Bp ∩ Vp, the inter-
section between the ball corresponding to the atom and
the weighted Voronoi cell of p. The corresponding dual
structure is a subcomplex of the weighted Delaunay tri-
angulation and called the dual complex, see Figure 4.

Edelsbrunner et al. [7, 10, 3] consider a growth model
where the ball radii grow, and track the changes in the
dual complex. The growth parameter, α, corresponds to
a radius

√
r2p + α2 for a ball centered at p with radius

rp. The weight of the pointw(p) increases tow(p)+α2.
Note that α = 0 corresponds to no growth. The dual
complex corresponding to a set of balls after they are
grown by α is called the alpha complex.

Given a simplicial complex K, a finite sequence,
∅ = K0,K1, . . . ,Km = K, of subcomplexes of K
is a filtration if K0 ⊂ K1 ⊂ · · · ⊂ Km. The rank
of a subcomplex refers to its position in the filtration.
The set of alpha complexes obtained by varying α from
−∞ to ∞ is a filtration of the Delaunay triangulation.
In particular, we consider the filtration that is generated
by inserting the simplices one at a time and ties broken
based on the dimension of the simplex.
Voids and Pockets. Let the alpha complex K repre-
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Figure 6: A filtration generated by inserting simplices
in a particular order. The arrival time and the behavior
of the simplices are also shown in the boxes.

sent a molecule at a given value α and D be the De-
launay complex of the weighted point set. A cavity is
a maximally connected component of the complement
D −K. Voids and pockets are cavities that are, respec-
tively, bounded and not bounded by the union of balls.
Figure 5 illustrates a void and a pocket in 2D.

Topological persistence. The alpha complex helps
represent and track voids via the growth process. A
void is represented by a 2-cycle, which is a collection
of 2-simplices whose boundary is empty. A 2-cycle
is created when the last triangle in the collection is in-
serted and it is destroyed by the insertion of a tetrahe-
dron. Topological persistence of a k-cycle measures its
lifetime (k ≥ 0) in a filtration [9]. It is equal to the
difference between the ranks of alpha complexes in the
filtration where the cycle is created and destroyed. If a
2-cycle doesn’t have a destroyer then its persistence is
equal to∞. Given a filtration, the persistence of cycles
can be computed efficiently [9]. The insertion of every
simplex either creates a cycle or destroys a lower di-
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mensional cycle. The persistence value associated with
a simplex is equal to the topological persistence of the
corresponding cycle.

Figure 6 illustrates creation and destruction of cycles
in a filtration of a small simplicial complex. The num-
ber in each box denotes the timestamp. The simplex
that is added is denoted in the adjacent box along with a
positive or a negative sign which respectively signifies
creation or deletion of a cycle.

3 Robust Voids and their Compu-
tation

We introduce a notion of robust voids based on two
parameters, one local and another global. The local
parameter is referred to as stability and the global pa-
rameter is specified by topological persistence. In or-
der to simplify the description, we assume that the
voids are computed for the α-complex corresponding
to α = 0. However, the definitions, methods, and sub-
sequent analysis are valid for all values of α.

3.1 ε-stable and π-persistent voids
Consider the interval [−ε, ε] of α values, where ε ≥ 0.
A void is called an ε-stable void if it remains a single
connected void within all α-complexes for α values in
the range [−ε, ε]. In other words, using the lifetime ter-
minology, the void is born, possibly split into multiple
components, and destroyed at α-values that lie strictly
outside of this interval. A void is π-persistent if its
topological persistence is greater than π i.e., the void
size measured in terms of its lifetime is greater than π.
Combining the two notions of robustness, we call a void
to be (ε, π)-stable if it is both ε-stable and π-persistent.

The above definitions help measure the stability of
the voids when the radii are perturbed by a small
value. The local parameter considers perturbation
within a small interval centered at the α-value of inter-
est whereas the global parameter measures the size of
the void in terms of its lifetime in the filtration. Voids of
interest may often not be stable with respect to both no-
tions. For example, a large sized void (π-persistent for
some large π) may be born within the interval [−ε, ε].
However, note that a small perturbation in the radii of
atoms that line the surface of the void could result in an
earlier birth time, hence making the void to be ε-stable.
We aim to extract all voids that are either stable as is or
can be made stable via a small perturbation.

3.2 Computing (ε, π)-voids
The location of the atoms that constitute a protein
molecule together with their van der Waals radii is ob-
tained from the protein data bank in pdb format. Given
ε and π, we compute the set of (ε, π)-stable voids as
follows.

1. Compute the weighted Delaunay triangulation of
the input [14]. The atom centers form the set of
points that are weighted using their van der Waals
radii.

2. Build the alpha shape spectrum [3], which is a fil-
tration of the weighted Delaunay triangulation.

3. Modify the filtration based on the value of ε.
4. Compute the set of (ε, π)-stable voids by identi-

fying all voids [16] of the modified filtration at
α = 0, and retaining only those voids that have
persistence at least π.

Modifying the filtration. The filtration of the
weighted Delaunay triangulation as defined by the
α-values provides an explicit representation of the
birth/death times of each void and the evolution during
its lifetime. We propose to alter the birth/death times
of voids by modifying the filtration instead of directly
modifying radii of atoms that line the surface of the
void. While the latter approach follows directly from
the definition, it is cumbersome and computationally
inefficient. For example, varying the radii without ex-
plicit control may lead to changes in the triangulation
and the alpha complex. These changes need to be ex-
plicitly tracked, else they may lead to inconsistencies
between the alpha complex that represents the molecule
and the space-fill model. Resolving such inconsisten-
cies would necessitate the re-computation of all repre-
sentations. On the other hand, the former approach is
simpler and computationally efficient.
Delayed simplex insertion. One or more simplices are
inserted to obtain a rank i+1 simplicial complex from a
rank i simplicial complex in the filtration. Higher ranks
correspond to higher values of α. The topology of voids
may change when the simplices are inserted. In partic-
ular, the insertion of a triangle may either not affect any
void, split a void into two, or create a new void. On
the other hand, the insertion of a tetrahedron always de-
stroys a void. These topology changes may therefore be
avoided by delaying the insertion of the simplices that
change the topology of voids. LetKj be the alpha com-
plex corresponding to α = ε. Consider the set of sim-
plices, Σ, inserted into the filtration for values of α in
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the range [−ε, ε]. Let Σt ⊂ Σ be the set of the triangles
that split a void, and ΣT ⊂ Σ be the set of tetrahedra.
We delay the insertion of simplices σi in Σt and ΣT

such that σi /∈ Kj but σi ∈ Kl, where Kj ⊂ Kl ⊂ D.
Simplicial complexes in the filtration of the weighted
Delaunay triangulation and the order of simplices that
are inserted to generate the filtration satisfy several con-
tainment and incidence properties. These properties
should be satisfied for the modified filtration as well.
Towards this, we propose a conservative but computa-
tionally efficient approach to modify the filtration:

1. Move all tetrahedra in ΣT to the end of the filtra-
tion. All such tetrahedra are present in D but not
in any Ki ⊂ D.

2. For each triangle in Σt, find its incident tetrahedra
τ1, τ2.

3. Delay the insertion of the triangle and the two
tetrahedra, τ1 and τ2, to the end of the filtration.

(a)

(b)

Figure 7: 2D illustration of simplex insertion causing a
void to split. (a). Voids occur near to each other and the
edge that splits the single void into two. (b). The two
voids merge into one if the simplex insertion is delayed.

To illustrate the modification in 2D let us consider a
void split into two as shown in Figure 7(a). Assume
that the highlighted edge (triangle in 3D) becomes part
of the alpha complex in the interval [−ε, ε]. Further it
also satisfies the criterion that it bounds two different
tunnels (voids in 3D). So it becomes a candidate for
delayed insertion. We move the edge to the end of the
filtration, which means that it does not belong to the
alpha complex as shown in Figure 7(b). Also the radii of
atoms centered at the end points of the edge (triangle in
3D) are changed accordingly in relation to the ε value.

Selective modification of the radii of a specific set of
atoms is hence achieved in a controlled manner.
Implication of the modified filtration. Consider the
delayed insertion of a triangle (edge in 2D) to avoid the
split of a void into two as illustrated in Figure 7. The
delay corresponds to shrinking the atoms centered at the
vertices of the triangle. However, note that the radii are
not yet modified. We optionally modify the radii later
for further analysis of the void. A triangle that creates
a void is left untouched and the corresponding void is
also declared to be ε-stable. The triangle insertion may
be advanced to ensure that the void is created outside
the interval. This corresponds to a small increase in the
radii of the atoms centered at the vertices of the trian-
gle. We choose not to explicitly advance the triangle
insertion because it does not affect the results for small
values of ε. After the filtration is modified as described
above, we recompute the voids from the alpha complex.

We compute the persistence of the ε-stable voids ob-
tained and retain only those having persistence greater
than π. This pruned set of voids are (ε, π)-stable. Note
that the persistence is computed with respect to the orig-
inal filtration. The above notion of stability can be ex-
tended to pockets as well.

3.3 Implementation details

The filtration obtained from the alpha shape spectrum
(Step 2) is stored as a list. The index of each sim-
plex in this list represents the rank of that simplex. For
each triangle, we additionally store the indices of its co-
face tetrahedra. For a given ε, we first compute the
ranks k1 and k2 of the alpha shape at α = −ε and
α = ε, respectively, and the set of voids present in the
interval, α ∈ [−ε, ε]. If the addition of a triangle σk,
k1 ≤ k ≤ k2, splits a void, σk is added to the set Σt.
The coface tetrahedra τ1 and τ2, of σk is added to ΣT .
All tetrahedra having their rank in the range [k1, k2] are
added to ΣT . The set of triangles and tetrahedra in Σt

and ΣT , respectively, are sorted in the increasing or-
der of their ranks. Instead of explicitly moving these
simplices to the end of the filtration, we perform an im-
plicit move. These simplicies are marked as invalid in
the list containing the original filtration. The new filtra-
tion is obtained by traversing the original filtration, ig-
noring the invalid simplicies, followed by traversing Σt

and ΣT . An advantage of using this approach is that,
when the value of ε is changed, it is easy to revert to the
original filtration and recompute the new filtration.
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3.4 Analysis

Let m be the number of simplices in the Delaunay tri-
angulation of the input protein having n atoms, m =
O(n2). Computing the set of voids takes O(mα(m))
time using the union-find data structure. Here, α is the
inverse Ackermann function. Given ε, Σt and ΣT is
computed in O(m) time using a sequential search over
the filtration. Identifying the set of tetrahedra incident
on triangles in Σt, and moving all the simplices to the
end of the filtration takes O(m) time. Thus the time
required to modify the filtration is O(mα(m)).

3.5 Stability of pockets

The notion of stability defined for voids can be extended
to pockets as well. A pocket may be destroyed in the
filtration by the addition of a triangle. By destroying
the pocket, this triangle creates a void, or a void-pocket
pair. In our current implementation, the voids that are
created by the triangle are given preference over pockets
that are destroyed in the (−ε, ε) range. We choose to do
this because a pocket with a very narrow opening (size
less than ε) will not allow any ion to pass into it, and
hence functions more as a void. Therefore, the only sta-
ble pockets that are identified correspond to those that
are destroyed or split into a void-pocket pair outside of
the (−ε, ε) range. However, in case a pocket is pre-
ferred over a stable void, the algorithm can be easily
modified to delay the insertion of the triangle that de-
stroys the pocket, along with its coface tetrahedra.

4 Results
Given the input protein, our software RobustVoids first
computes the alpha complex of the input. The user can
visualize the protein either as a skin surface, or as a
volume mesh for different α-values. The set of (ε, π)-
stable cavities are computed using the values of ε and
π specified by the user. The software also reports the
cavity volume and surface area.
Visualization of stable cavities. Figure 8(a) shows
protein 2CI2, which has 3 voids. Using a value of
ε = 0.3 and π = 0.01 results in two (0.3, 0.01)-stable
voids, see Figure 8(b). Note that a value of ε = 0.3
is equivalent to an increase / decrease of the radius of
an atom by at most 0.33Å, which is within the tolerated
0.5Å used by the biologists. Modifying the filtration
and computing the stable voids for this protein takes

Figure 8: Visualization of voids of the protein 2CI2.
The values ε = 0.3 and π = 0.01 was used to compute
the set of stable voids. (a) Voids in the volume com-
puted at α = 0. Number of voids = 3. (b) The set of
(0.3, 0.01)-stable voids. Number of (0.3, 0.01)-stable
voids = 2. (c) Two nearby voids in the protein rendered
in solid and the skin surface of the molecule rendered
in wireframe mode. (d) The merged stable void shown
along with the skin surface of the molecule.

0.1 s.
The protein 4HHB has a total of of 72 voids, shown

in Figure 9(a). Using a value of ε = 1.0 and further
removal of voids having persistence π < 0.01 results
in a total of 70 (1.0, 0.01)-stable voids, see Figure 9(b).
Figure 9(c) shows two nearby voids in the protein which
merge to form a single stable void, see Figure 9(d).
Note that a value of ε = 1.0 is equivalent to an increase
/ decrease of the radius of an atom by at most 0.33Å,
which is within the tolerated 0.5Å used by the biolo-
gists. Modifying the filtration and computing the stable
voids for this protein takes 62 secs. Figure 10 shows
the visualization of the (ε, π)-stable voids for the pro-
tein 4B87. Modifying the filtration and computing the
stable voids for this protein takes 33 secs.

The implementation for now uses a naive approach of
explicitly computing the voids/pockets while construct-
ing the set of simplices which needs to be moved and
thus the running time is large. This can be reduced
by tracking the creators of voids/pockets as described
in [9].
Properties of stable cavities. Figures 11 and 12
plots the number and volume of (ε, π)-stable voids for
various values of ε. Note that increasing the value of
ε implies that voids from a larger α range are consid-
ered. This could potentially increase the number of
ε-stable voids. However, such voids usually have low
persistence and are therefore not (ε, π)-stable. We use
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Figure 11: Graphs showing the variation of the number of voids with varying ε. Note that there is an increase in
ε-stable voids as we consider a larger interval but (ε, π) voids are less than or equal to original number of voids.
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Figure 12: Graphs showing the variation of the total volume of voids with varying ε.

Figure 9: Visualization of voids of the protein 4HHB.
The values ε = 1.0 and π = 0.01 was used to compute
the set of stable voids. (a) Voids in the protein com-
puted at α = 0. Number of voids = 72. (b) The set
of (1, 0.01)-stable voids. Number of (1.0, 0.01)-stable
voids = 70. (c) Two nearby voids in the protein. (d)
These two voids merge together resulting in a single
stable void.

Figure 10: Visualization of voids of the protein 4B87.
The values ε = 1.0 and π = 0.01 was used to compute
the set of stable voids. (a) Voids in the protein com-
puted at α = 0. Number of voids = 47. (b) The set of
(1.0, 0.01)-stable voids. Number of (1.0, 0.01)-stable
voids = 44. (c) Two of the nearby voids in the protein.
(d) These voids merge together resulting in a single sta-
ble void.
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Figure 14: Plot of the computed and actual volumes
of the artificial voids that were generated using mutant
models.

a constant value of π = 0.01 in all experiments. The
total volume of all stable voids increases marginally
(< 1%) with increasing ε. The merging of two nearby
voids into a single stable void does not effect the total
volume. However, volumes of individual voids could
change drastically. The volume of the stable void in
Figure 8(b) is approximately equal to sum of the vol-
ume of the unmerged voids. The volumes are verified
against known results [1].
Robustness of (ε, π)-stable cavities. Figure 13 plots
the number of (ε, π)-stable voids and π-persistent voids
for various values of α for ε = 1.0 in case of 4HHB
and 4B87 and ε = 0.3 in case of 2CI2. The number of
(ε, π)-stable voids remain constant over an interval as
the method considers all the creation/destruction events
happening in the interval [−ε, ε] for the computation.
But the number of π-persistent voids vary as they are
sensitive to creation/destruction of voids at a particular
α value.
Validation of computed cavity volumes. There is
usually a variation in the volumes of cavities computed
using various methods [1]. This variation may arise due
to the different models used for computing the volumes.
Therefore, we perform an additional normalization of
the computed volumes using model mutants [1] to elim-
inate such variations. We used 13 different model mu-
tants to create a set of artificial voids. We use the result-
ing volumes to compute the linear normalization func-
tion, see Figure 14. The volumes computed using our
computation is normalized as follows:

V olume = 2.54× ComputedV olume+ 60.77.

In order to verify the correctness of the volumes com-
puted by our software RobustVoids, we compare them
to the volumes computed using MCCavity [1], see Fig-
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Figure 15: Comparison of normalised volumes com-
puted using RobustVoids and MC Cavity.

ure 15. Note that we use normalised volumes in this
graph.

5 Conclusions

We have defined a novel notion of robust cavities that is
insensitive to the perturbation of the atomic radii. Ro-
bust cavities are computed via a controlled modification
of the filtration that represents the molecule and its cav-
ities. Identifying robust cavities is important so that the
biologist only targets these cavities in tedious mutation-
based experiments.

The method addresses the inaccuracies in the mea-
surements of the radii by selectively varying the radii
for a specific set of atoms. But the positional uncer-
tainties which arise due to the motion of the molecules
is not addressed. We have been able to present some
visual evidence that slight perturbations in the radii re-
sults in a larger cavity instead of smaller cavities. The
value of ε is lower than the typical experimental error
in crystallographic measurements. We plan to further
investigate the relationship between the perturbation in
the atom radii corresponding to the delayed simplex in-
sertion and the structural and functional properties of
the protein. Future work also includes generalizing the
framework to use empirically determined intervals of
radii for each atom type and addressing the issue of bi-
ological implications of the method.
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Figure 13: Graphs showing the variation of the total volume of voids for constant ε and varying α.

References

[1] CHAKRAVARTY, S., BHINGE, A., AND
VARADARAJAN, R. A procedure for detec-
tion and quantitation of cavity volumes in
proteins. Journal of Biological Chemistry 277, 35
(2002), 31345–31353.

[2] DUNDAS, J., OUYANG, Z., TSENG, J.,
BINKOWSKI, A., TURPAZ, Y., AND LIANG, J.
CASTp: computed atlas of surface topography of
proteins with structural and topographical map-
ping of functionally annotated residues. Nucleic
acids research 34, 2 (2006), W116–W118.

[3] EDELSBRUNNER, H. Weighted alpha shapes.
University of Illinois at Urbana-Champaign, De-
partment of Computer Science, 1992.

[4] EDELSBRUNNER, H. Biological applications of
computational topology. In Handbook of Discrete
and Computational Geometry, J. E. Goodman and
J. O’Rourke, Eds. CRC Press, 2004, pp. 1395–
1412.

[5] EDELSBRUNNER, H. Computational Topology.
An Introduction. Amer. Math. Soc., 2010.

[6] EDELSBRUNNER, H., AND FU, P. Measuring
space filling diagrams and voids. Tech. rep.,
UIUC-BI-MB-94-01, Beckman Inst., Univ. Illi-
nois, Urbana, Illinois, 1994.

[7] EDELSBRUNNER, H., KIRKPATRICK, D., AND
SEIDEL, R. On the shape of a set of points in the
plane. IEEE Transactions on Information Theory
29, 4 (1983), 551–559.

[8] EDELSBRUNNER, H., AND KOEHL, P. The ge-
ometry of biomolecular solvation. Combinatorial
& Computational Geometry 52 (2005), 243–275.

[9] EDELSBRUNNER, H., LETSCHER, D., AND
ZOMORODIAN, A. Topological persistence and
simplification. Discrete & Computational Geom-
etry 28, 4 (2002), 511–533.

[10] EDELSBRUNNER, H., AND MÜCKE, E. Three-
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OTYEPKA, M. MOLE: A Voronoi diagram-based
explorer of molecular channels, pores, and tun-
nels. Structure 15, 11 (2007), 1357–1363.
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