
Segmenting Point Sets

Ichitaro Yamazaki∗

yamazaki@cs.ucdavis.edu
Vijay Natarajan†

vijayn@ucdavis.edu
Zhaojun Bai∗

bai@cs.ucdavis.edu
Bernd Hamann†,∗

hamann@cs.ucdavis.edu

Institute for Data Analysis and Visualization (IDAV)†

and Department of Computer Science∗

University of California, Davis, California 95616

Abstract

Extracting features from point sets is becoming in-
creasingly important for purposes like model classifica-
tion, matching, and exploration. We introduce a tech-
nique for segmenting a point-sampled surface into dis-
tinct features without explicit construction of a mesh
or other surface representation. Our approach achieves
computational efficiency through a three-phase segmen-
tation process. The first phase of the process uses a topo-
logical approach to define features and coarsens the input,
resulting in a set of supernodes, each one represent-
ing a collection of input points. A graph cut is employed
in the second phase to bisect the set of supernodes. Sim-
ilarity between supernodes is computed as a weighted
combination of geodesic distances and connectivity. Re-
peated application of the graph cut results in a hier-
archical segmentation of the point input. In the last
phase, a segmentation of the original point set is con-
structed by refining the segmentation of the supernodes
based on their associated feature sizes. We apply our seg-
mentation algorithm on laser-scanned models to eval-
uate its ability to capture geometric features in com-
plex data sets.

Keywords: point sets, sampling, features, geodesic dis-
tance, normalized cut, spectral analysis, hierarchical seg-
mentation.

1. Introduction

Recent developments in scanning technologies have
led to a substantial increase in the number of avail-
able surface models. Features in a surface model are
its distinct parts that characterize the surface model.
Examples of features are legs of a horse or fingers in a
hand. We propose a new definition of features and de-
scribe an efficient three-phase segmentation process for

partitioning a given point-sampled surface into distinct
parts without explicit construction of a triangle mesh.
In the first phase, we use the intrinsic dimension of the
point sample, which is typically lower than the dimen-
sion of the embedding space, to identify sets of points
that constitute distinct features. We adopt a topologi-
cal approach to define features: a discrete function and
its associated gradient flow field are constructed for the
input point set. The discrete function measures the cen-
trality of each point within the surface. A collection of
points that flow into a common sink of this flow field
constitute a feature. Each sink represents a feature and
is called a supernode. In the second phase, we use spec-
tral analysis to bisect a graph constructed over the su-
pernodes. Repeated application of this bisection results
in a hierarchical segmentation of the surface point set.
This segmentation is refined in the third phase, where
segments with insignificantly small features are merged
into a neighboring segment with a larger feature. Our
approach has the following advantages:

• Efficiency. Point primitives support simple and
flexible modeling of complex shapes and are there-
fore increasingly being used to represent surfaces
[25, 34]. We work directly with the point primi-
tives used to represent the surface without explicit
construction of a mesh. This approach leads to ef-
ficient usage of storage and computing resources
to segment a point set.

• Simple implementation. Our program modules for
all three phases of segmentation consist of a total
of around 350 lines of code.

• Hierarchy. A hierarchical segmentation supports
multiple views of the partition based on a desired
level of detail.

• Extension to higher dimensions and non-Euclidean
spaces. Since we operate only on point primitives,
all three phases of the segmentation can be ap-
plied to higher-dimensional data. Also, the embed-

ding space is not restricted to be Euclidean. We
merely require the points to be embedded in a met-
ric space. Our method can potentially be used to
segment point sets lying on a sub-manifold within
a high-dimensional space [31].

2. Related Work

Current approaches to feature-based segmentation
typically require that a surface model is provided ex-
plicitly via a triangle mesh [14, 18, 24, 32] or that a
mesh is procedurally constructed [4].

Segmenting a model into its distinct parts and ex-
tracting its features are crucial for several applications
like shape recognition, classification, matching, sim-
plification, analysis, morphing, retrieval, and surface
reconstruction [7, 9, 12, 16, 19, 28]. Numerous sur-
face segmentation methods have been developed based
on techniques from computer vision, load partitioning
in finite element methods (FEM), point set cluster-
ing in statistics, and machine learning. These methods
can be broadly classified into two categories based on
their objective, namely patch-type segmentation and
part-type segmentation [29]. Patch-type methods ob-
tain segments that are topological disks whereas part-
type methods partition a surface into segments that
correspond to features.

Existing surface segmentation methods typically as-
sume a surface to be represented by mesh. Various ap-
proaches have been used successfully for mesh segmen-
tation: watershed segmentation simulates the accumu-
lation of water into basins [19, 24]; spectral clustering
methods analyze an affinity matrix that stores mea-
sures of similarity between all pairs of mesh faces in
order to partition the mesh [10, 18]; mesh partitioning
methods are a crucial ingredient in various load balanc-
ing algorithms, where the goal is to partition the input
into independent sets that can be processed in paral-
lel [27]; and point clustering methods are used for ef-
ficient organization of data with applications in infor-
mation retrieval [15].

The method described by Dey et. al. [4] and the first
phase of our method both initially identify local max-
ima of a discrete function. Though these local maxima
constitute distinct features, they are computed differ-
ently. Dey et al. describe the discrete function on an ex-
plicitly computed three-dimensional mesh. We, on the
other hand, define a discrete function over the point
sample. Points are assigned to a feature by Dey et al.
based on the flows induced within the mesh whereas
we determine features based on gradient flow of the
discrete function. Since we work in a lower dimension,
namely on the surface, our approach computes a seg-

mentation 5-7 times faster than their approach. Zhang
et al. [33] propose a method to identify segments corre-
sponding to local maxima of the average geodesic dis-
tance function, which is similar to our method. They
are, however, interested in obtaining a patch-type seg-
mentation for surface parameterization. A features is
identified by growing a region based on the geodesic
distance from a local maximum and searching for a
feature boundary, which results in an abrupt increase
in the surrounded region. The approach of Katz and
Tal [16] also decomposes a mesh using representative
faces for distinct features. These representative faces
are chosen iteratively using a k-means algorithm. Faces
are assigned to a feature based on the geodesic distance
between the face and representative.

3. Three-phase Segmentation

Given a point-sampled surface as input, we want to
partition the surface into distinct parts by associating
each point with the feature that it belongs to. We pro-
pose a three-phase process to perform this segmenta-
tion:

1. Feature identification. In the first phase, we define
features using a topological approach. This phase
sets the stage for performing hierarchical segmen-
tation in an efficient manner by coarsening the in-
put into supernodes. Each supernode represents
a collection of input points that constitute a fea-
ture.

2. Hierarchical segmentation. In the second phase, we
bisect the set of supernodes while ensuring that
similar supernodes remain together. Repeated ap-
plication of this bisection step results in a hierar-
chical segmentation of the input point set. A near-
optimal bisection is computed by using spectral
analysis of a graph whose edge weights correspond
to the similarity between the end point supern-
odes. The second phase of segmentation process
can be applied directly to the input point set. How-
ever, computing a near-optimal bisection is signif-
icantly faster when applied on smaller sets of su-
pernodes. Moreover, the first phase ensures that a
feature lies within a single segment.

3. Refinement. In the third phase, we post-process
the segmentation to ensure that all segments con-
tain at least one significant feature. Small-scale
features, that are present as individual segments,
are merged with a neighboring segment.

In the following sections, we discuss these three phases
in detail and provide results of our experiments for var-
ious laser scanned models.

4. Feature Identification

We use ideas from Morse theory to define features
in the input. Morse theory was originally developed to
study the relationship between the shape of a space and
the critical points of smooth functions defined on the
space [20, 21]. Recently, it has been successfully used to
construct multi-resolution structures for the visualiza-
tion of scalar field data [2, 11, 23]. Dey et al. adapted
ideas from Morse theory for smooth functions to a dis-
crete domain to segment 3D models [4]. The above ap-
plications of Morse theory require an explicit represen-
tation of the domain space, i.e., a triangle or tetrahe-
dral mesh. We, on the other hand, work directly with
point sets. We construct a discrete function f that mea-
sures the centrality of a point within the surface. The
notion of centrality has been studied in the context of
social networks [6] and more recently in the context of
shape matching [13]. In our segmentation process, cen-
trality of a point p is defined as the average geodesic
distance from p to other points on the surface, and it
measures the importance of the point to capture a fea-
ture in the surface. A shortest path in a graph G that
connects every point to its k-nearest neighbors approx-
imates the geodesic distance between two points on the
surface when a sufficiently dense point-sampled surface
is provided [31].

6

8

7

5

9

6

9
a

b

Figure 1. Geodesic distance computation. Distance

between two points is given by the Euclidean metric in

the embedded space (left). A graph connecting every

point to its k-nearest neighbors for k = 3 (middle).

Shortest path between two points a and b approximat-

ing the geodesic distance (right).

A discrete gradient of f at an input point p is de-
fined as

max
|f(p) − f(q)|
‖p − q‖2

among k-nearest neighbors q of p where ‖‖2 denotes
the Euclidean distance between p and q. Thus, discrete
gradient for an input point is defined by the edge in
G that corresponds to the steepest ascent of function
f . In our segmentation process, sinks of this discrete

gradient flow field define distinct features, and they are
called supernodes.

Figure 2. Features and their constituent points.

Left: two local maxima of the discrete function; mid-

dle: edges with steepest gradient are followed from

each point toward a local maximum; right: all points

grouped into two sets based on their associated lo-

cal maxima.

Given a point set P , the first phase of the segmen-
tation approach proceeds as follows:

1. Store P in a kd-tree.

2. For each point p ∈ P , compute the k-nearest
neighbors using a kd-tree [22].

3. Construct a weighted graph G over P whose edges
are given by the k-nearest neighbors resulting from
step 2. Set the weight of an edge to the Euclidean
distance between its end points.

4. Compute a discrete function f at each point p as
the average shortest distance from p to all points
in G. Use Dijkstra’s shortest path algorithm [3] to
compute the distance between two points in G.

5. For each point p ∈ P , compute a discrete gradient
flow by considering the edge incident on P along
which f increases maximally. Declare p a sink if
none of its neighbors has a higher function value.

6. Follow the gradient flow field from each point p to-
ward a sink, and include p into the feature identi-
fied by its associated sink.

In our experiments, we use the value k = 7 to construct
G. A higher value of k may be required if the points
are embedded in a higher-dimensional space. Figure 1
shows the construction of G, for k = 3. Figure 3 shows
the distribution of f for different surface models. Sinks
of the discrete gradient flow field correspond to local
maxima of f and are marked in red. Figure 2 illustrates
the identification of features corresponding to the sinks,
Figure 4 shows features extracted from various surface
models. Sinks and their associated points capture dis-
tinct features like legs, fingers, ears, etc. Furthermore,
the locations of sinks and features are invariant un-
der rigid transformation of the input. Henceforth, each

hand chair horse skeleton santa bunny

Figure 3. Discrete function measuring centrality of points. PointShop3D [34] was used to generate the three figures

on the left. The three figure on the right were generated using a simple mesh viewer. A mesh was created only for the

purpose of visualization. Bluer colors correspond to larger function values. The red dots are local maxima of the function.

Local maxima are located at the extremal points and represent distinct features of surface models such as fingers, legs,

and ears. Points further away from local maxima have smaller function values and contain less distinct features.

hand chair horse skeleton santa bunny

Figure 4. Features in surface models. Points with same color are collapsed to form a supernode while distinct features

such as fingers, legs, and ears are captured. For the three models on the right, triangles between two supernodes have

been deleted to emphasize the boundary between them.

feature is represented by its sink and called a supern-
ode.

5. Hierarchical segmentation

In the second phase of our segmentation process, we
partition the set of supernodes. We compute a parti-
tion by repeated application of a graph cut procedure
to a weighted graph over the supernodes. All pairs of
supernodes have an edge between them, but only those
pairs that lie within the same connected component of
G are connected by an edge with non-zero weights.

First, we compute the similarity between two su-
pernodes, u and v, using their geodesic distance in the
graph G. The weight W of the edge between u and v
is defined as

W (u, v) =




e−d(u,v) if u and v are connected
by a path in G;

0 otherwise,

where d(u, v) is the geodesic distance between u and
v. Small weights are assigned to the edges that con-
nect weakly related supernodes, and large weights are
assigned to the edges that connect similar supernodes.

We use the similarity measure W to compute a seg-
mentation such that supernodes within a segment are
closely related, and supernodes in different segments
are weakly related, i.e., the set of supernodes V is bi-
sected into two disjoint sets V1 and V2 such that the
normalized cut value

NCut(V1, V2) =
cut(V1, V2)

assoc(V1, V)
+

cut(V1, V2)
assoc(V2, V)

,

is minimized. Here,

cut(V1, V2) =
∑

v1∈V1,v2∈V2

W (v1, v2)

and
assoc(V1, V) =

∑
v1∈V1,v∈V

W (v1, v).

Minimizing NCut maximizes the association within a
segment while minimizing the cut between segments.
Minimizing NCut also avoids bias toward small seg-
ments, which are favored if the cut value is minimized
without normalization.

Discrete minimization of NCut is NP -complete. Shi
and Malik introduced the idea of a normalized cut for
image segmentation and showed that an approximate
solution to the above minimization problem can be ob-
tained by first solving the generalized eigenvalue sys-
tem

(D − W)y = λDy,

where D is a diagonal matrix, whose ith diagonal entry
dii is the degree of vi ∈ V , i.e.,

dii =
∑

v∈V \vi

W (vi, v),

and the eigenvector y corresponds to the second small-
est eigenvalue [30]. They also proved that NCut(V1, V2)
is minimized when

yi =
{

a, vi ∈ V1

b, vi ∈ V2.

For a near-optimal bisection, all points vi that lie
within a cluster have approximately same value yi. We
determine the split value α that identifies the near-
optimal cut from a set of uniformly spaced values be-
tween the smallest and largest elements in the eigen-
vector. Then, we form two clusters of vi that corre-
spond to the near-optimal solution of the normalized
cut:

vi ∈
{

V1 if yi < α
V2 otherwise.

We recursively bisect each subset to obtain a hierar-
chical segmentation. The recursion terminates when
NCut becomes greater than a specified threshold. Fig-
ure 5 shows segments of a hand for different levels of
the hierarchy.

Solving a generalized eigenvalue system for all eigen-
vectors requires O(m3) operations, where m is the
number of supernodes. Since m is small, i.e., in the or-
der of tens for our examples, the computational cost to
solve the eigensystem is not significant. Furthermore,
NCut approximation requires only an estimate of the
eigenvector associated with the second-smallest eigen-
value. High-precision computation of eigenvector ele-
ments is not required, and signs of the eigenvector el-
ements are often sufficient to determine a good seg-
mentation. We use the method proposed by Lanczos
to compute an approximation of the eigenvector effi-
ciently [17]. Figure 6 shows the eigenvector components
of a hand model.

Figure 5. Three levels in the hierarchical segmenta-

tion of hand model. The figure on left shows the first

bisection of hand that extracts the thumb. The mid-

dle figure shows the second bisection where the other

fingers have been extracted from the palm. The figure

on right shows the sixth and the last bisection where

all fingers have been extracted.

1 2 3 4 5 6 7 8 9 10 11 12 13
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

1 2 3 4 5 6 7 8 9 10 11 12
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 6. Eigenvector analysis for hierarchical seg-

mentation of hand model. The green dots represent

the values of individual eigenvector components, and

the blue line indicates the split value used for bisec-

tion. The left graph shows the eigenvector for the first

bisection of the hand that segments out the thumb.

The right graph shows the eigenvector for the sec-

ond bisection that segments out the four fingers. All

eigenvectors are computed to a required precision us-

ing a single Lanczos iteration, and eigenvector compo-

nents have approximately piecewise constant values.

6. Refinement

In the second phase of our segmentation process,
a segmentation of supernodes is constructed based on
the similarity of supernodes. However, significance of
the corresponding features is not considered when con-
structing the segmentation. Some segments may not
contain any significant features. In a segment that does
not contain a significant feature, the maximum differ-
ence in values of f within the segment, called the fea-
ture size, is relatively small. In the third phase, the seg-

hand chair horse skeleton santa bunny

Figure 7. Segmentation of point-sampled surfaces.Distinct parts of a model such as fingers, legs, and ears are identified

without using an explicit surface representation.

mentation of supernodes is refined based on the feature
sizes of segments so that each segment contains at least
one significant feature. When the feature size of a seg-
ment is smaller than a specified threshold, it is merged
with a neighboring segment that has a long boundary
with it and has a large feature size.

After refinement, the segmentation of input points
is constructed simply by replacing each supernode with
points that constitute its associated feature. Figure 7
shows the results of our segmentation process.

7. Analysis and Optimization

In the following, we analyze storage costs and
run time complexity of our algorithms and de-
scribe an approximation scheme that results in an
order-of-magnitude improvement in run time behav-
ior.

Memory requirement is an issue when the input data
set is large. Our method uses Euclidean and geodesic
distances between points. However, only distances be-
tween certain points need to be stored during the con-
struction of segmentation. For example, Euclidean dis-
tances between near neighbors are used to compute
the geodesic distances. Thus, the space requirement to
store Euclidean distances is Θ(kn), where n is the num-
ber of input points, and k is the number of nearest
neighbors considered for each point. Geodesic distance
between two local maxima is used to compute similar-
ity between the corresponding supernodes. Thus, only
the geodesic distances between m local maxima need
to be stored, resulting in Θ(m2) storage complexity.

Table 1 summarizes our experimental results.
Clearly, the geodesic distance computations re-
quired to evaluate centrality is a computational
bottleneck. The computational complexities of the dif-
ferent steps are:

k-nearest neighbor computation: O(kn log(n))
Centrality function computation: O(n2 log(n))
Feature identification: O(kn)
Hierarchical segmentation: O(lm2)
Refinement: O(l2).

Here, l is the number of segments resulting from the
second phase. The number of Lanczos iterations re-
quired to obtain a desired precision for the second
eigenvector is assumed to be independent of the in-
put size.

It is possible to modify our segmentation process so
that the computational bottleneck in the geodesic dis-
tance computation between all pairs of input points
can be avoided while maintaining the quality of seg-
mentation. This modification is based on the following
steps:

1. Construct a weighted graph G over P whose edges
are given by the k-nearest neighbors. Set the
weight of an edge to the Euclidean distance be-
tween its end points.

2. Compute a discrete function f̃(p) at each point p
that approximates the centrality f(p).

3. Declare local maxima of f̃ as supernodes.

4. Construct a graph of supernodes.

5. Compute shortest paths distance between all pairs
of supernodes.

6. Compute a hierarchical segmentation of supern-
odes.

7. Refine the segmentation of supernodes and con-
struct a segmentation of the input point set.

Since the number of supernodes is much less than
the number of input points, the all-pair shortest path
computation between supernodes is significantly faster
than that between input points.

Similar to the approach proposed by Eppstein and
Wang [5], we approximate the centrality of each point

Data size Run time (sec) Optimized (sec)
Dataset n m l t kNN Cen Snode HSeg Ref AppCen Dij
hand (LoRes) 4, 000 13 7 6 0.00 5.33 0.02 0.14 0.01 4.39 0.02
horse (LoRes) 4, 002 32 6 6 0.02 5.15 0.01 0.72 0.02 0.01 0.04
bunny (LoRes) 4, 088 25 4 4 0.00 5.65 0.01 0.27 0.02 0.01 0.04
santa (LoRes) 5, 002 28 7 5 0.01 8.33 0.02 0.59 0.03 0.02 0.05
chair (LoRes) 5, 015 99 9 6 0.07 8.13 0.06 2.19 0.06 0.12 0.18
skeleton (LoRes) 5, 992 35 6 6 0.05 11.71 0.02 1.08 0.06 0.30 0.08
chair 10, 019 143 7 6 0.08 34.71 0.12 2.01 0.25 0.35 0.43
hand 30, 000 55 15 7 0.15 383.95 0.17 1.25 1.07 2.29 0.65
bunny 34, 834 58 4 4 0.19 665.91 0.18 0.99 1.82 0.36 0.75
horse 40, 002 130 8 7 0.17 709.77 0.32 3.75 2.30 74.21 2.23
skeleton 49, 991 97 11 8 0.33 1, 161.87 0.57 3.31 4.32 1.72 2.31
santa 50, 002 89 5 5 0.25 1, 498.52 0.61 1.57 3.75 41.13 3.21

Table 1. Performance data for each step of segmentation process. kNN: k-nearest neighbor computation; Cen: central-

ity function computation; Snode: supernode identification; Hseg: hierarchical segmentation; and Ref: refinement. The

two right columns show the run time based on the optimization technique. App: approximate centrality computation in-

cluding computation of approximate centrality and identification of local maxima in the graph; Dij: shortest-path com-

putation between local maxima using Dijkstra’s algorithm. These two steps in the optimization replace centrality func-

tion computation step in the segmentation process. The other steps in the segmentation process, i.e., computation of

k-nearest neighbors, constructing the graph of supernodes, the hierarchical segmentation of supernodes, and refine-

ment, take about the same amount of time, with or without optimization. Here, n is the number of input points, m is the

number of supernodes, l is the number of segments after hierarchical segmentation, and t is the number of segments af-

ter refinement. k-nearest neighbors are computed using a kd-tree [22], and the first two phases, Cen and Snode, were

implemented in C. All other algorithms were implemented in MATLAB. We used a laptop PC with a 1.7GHz proces-

sor and 1GB RAM for our experiments.

from a small sample of input points. However, instead
of approximating centrality from a random sample, we
sample points uniformly over the point set. We choose
a sample point furthest from all points that have been
sampled previously. Given a weighted graph G over P ,
the relevant steps to approximate the centrality are:

i. Compute shortest path distance d(p, q) from a
given point p to all points q in P .

ii. Create a set S of sample points and set S = {p}.
iii. Create two arrays g and f̃ , and set g(q) = f̃(q) =

d(p, q) for all q in P .

iv. Pick a point r with largest g(r)

v. For all points q in P

(a) compute shortest path distance d(r, q) from
r to q,

(b) update f̃(q) = f̃(q) + d(r, q), and
(c) replace g(q) = min{g(q), d(r, q)}.

vi. Update S = S ∪ {r}
vii. Repeat Step 4 - 6 until the size of S becomes

greater than a given threshold.

viii. f̃(q) = f̃(q)/|S| for all q in P where |S| is the size
of S.

After the completion of the above steps, f̃(p) contains a
value that is approximately equal to the centrality of p.
We sample Θ(

√
n) points, and therefore, the complex-

ity of computing approximate centrality of all points
becomes O(n

√
n log(n)).

Figure 8 shows that the samples are uniformly dis-
tributed over the input point sets and that the location
of the local maxima of f̃ are close to the location of lo-
cal maxima of f . If centralities are normalized to have
values between zero and one, the root mean squared er-
rors are less than 0.08 for all point sets used in this pa-
per. Figure 9 shows that there is no loss in the quality
of segmentation due to the approximation. The right
columns in Table 1 document the benefit of the op-
timization. The run time is reduced by an order-of-
magnitude.

8. Future Work

We have introduced a technique for partitioning
point-sampled surfaces into distinct features without

skeleton santa bunny

skeleton santa bunny

Figure 8. Top: uniform distribution of sample points

(red) in input point sets (blue). Bottom: discrete func-

tion measuring approximate centrality. Blue regions

have larger function values. The uniform distribution

of sample points results in a good approximation of

centrality.Maximaof the function (marked in red) rep-

resent distinct features similar to maxima of the func-

tion shown in Figure 3.

explicit construction of a mesh. Since our method
works directly with a point set, it can be extended
to segment point sets in high-dimensional and non-
Euclidean spaces, where each point represents a fixed-
length feature vector. Examples are collection of pro-
tein shape analysis [26] and hand-written character
recognition [31] represented as sets of points in high-
dimensional space. Each dimension would correspond
to a characteristic attribute of a protein or a hand-
written character. We plan to extend our method to
construct meaningful segmentations of such data sets.

We are also considering an alternate approach to
feature identification, using a new function f2(p) that
measure the geodesic distance from p to its supernode
which is the local maximum of f . This approach allows
us to identify ridge-separated features in a point sam-
pled surface such as a laser scan of a cube shown in
Figure 10.

One phenomenon, that we have observed in the first
phase of our segmentation process, is that the gradi-
ent field of f flows from a few local minima to several
local maxima. This phenomenon can result in some ar-
tifacts. For example, some parts of torso are assigned to
legs and arms of santa in Figure 7. Furthermore, when
many segments merge at a local minimum, a large num-
ber of sampling points is required for the approximate
centrality computation in order to obtain a reasonably

hand chair horse

skeleton santa bunny

Figure9.Segmentationofpoint-sampled surfaces us-

ingapproximatecentrality.Distinctparts are identified

similarly to the results shown in Figure 7.

Figure 10. Results of two-step discrete function com-

putation. Left figure shows features identified using

the centralitymeasure f . The local maxima of f are lo-

cated on the ridges of the input surface. Middle figure

shows the features identified using a distance func-

tion f2 computed as the geodesic distance from a

point to its corresponding supernode. With f2(p), the

ridge-separated features are identified. The right fig-

ure shows the distribution of values of f2.

good segmentation. We are considering an alternative
approach where both local maxima as well as local min-
ima of the gradient field create supernodes. We believe
that this alternative approach will improve the qual-
ity of segmentation and also speedup the segmentation
process.

Acknowledgements

The point sets used for our experiments were down-
loaded from on-line 3D scan repositories [1]. We used
qslim [8] to generate low-resolution models.

This work was supported by the National Science

Foundation under contracts ACI 9624034 (CAREER
Award) and ACI 0222909, through the Large Scientific
and Software Data Set Visualization (LSSDSV) pro-
gram under contract ACI 9982251, and a large Informa-
tion Technology Research (ITR) grant, and Lawrence
Livermore National Laboratory (B347878, B503159,
B523294). We thank the members of the Visualization
and Computer Graphics Research Group at the Insti-
tute for Data Analysis and Visualization (IDAV) at the
University of California, Davis.

References

[1] Level of detail for 3d graphics.
http://lodbook.com/models/.

[2] Bremer, P.-T., Edelsbrunner, H., Hamann, B.,

and Pascucci, V. A topological hierarchy for functions
on triangulated surfaces. IEEE Transactions on Visual-
ization and Computer Graphics 10, 4 (2004), 385–396.

[3] Cormen, T. H., Leiserson, C., Rivest, R. L., and

Stein, C. Introduction to Algorithm, 2 ed. MIT Press,
Cambridge, Massachusets, 2001.

[4] Dey, T. K., Giesen, J., and Goswami, S. Shape
segmentation and matching with flow discretization.
In Proc. Workshop on Algorithms and Data Structure
(2003), vol. 2748 of LNCS, pp. 25–36.

[5] Eppstein, D., and Wang, J. Fast approximation of
centrality. Journal of Graph Algorithm and Applications
8, 1 (2004), 39–45.

[6] Freeman, L. C. Centrality in social networks: Concep-
tual classification. Social networks 1 (1979), 215–239.

[7] Funkhouser, T., Kazhdan, M., Shilane, P., Min,

P., Kiefer, W., Tal, A., Rusinkiewicz, S., and

Dobkin, D. Modeling by example. ACM Trans. Graph-
ics 23, 3 (2004), 652–663.

[8] Garland, M. Qslim simplification software.
http://graphics.cs.uiuc.edu/∼garland/software/qslim.html.

[9] Garland, M., Willmott, A., and Heckbert, P. S.

Hierarchical face clustering on polygonal surfaces. In
Proc. Symposium on Interactive 3D graphics (2001),
pp. 49–58.

[10] Gotsman, C. On graph partitioning, spectral analysis,
and digital mesh processing. In Proc. Intl. Conf. Shape
Modeling and Applications (2003), pp. 165–174.

[11] Gyulassy, A., Natarajan, V., Pascucci, V., Bre-

mer, P.-T., and Hamann, B. Topology-based simpli-
fication for feature extraction from 3d scalar fields. In
Proc. IEEE Conf. Visualization (2005), pp. 535–542.

[12] Heckel., B., Uva, A. E., and Hamann, B. Cluster-
based generation of hierarchical surfacemodels. InProc.
Scientific Visualization (1997), pp. 113–122.

[13] Hilaga, M., Shinagawa, Y., Komura, T., and Ku-

nii, T. L. Topology matching for fully automatic sim-
ilarity estimation of 3d shapes. In Proc. SIGGRAPH
(2001), pp. 203–212.

[14] Hitoshi, Y., Lee, S., Lee, Y., Ohtake, Y., Belyaev,

A., and Seidel, H.-P. Feature sensitive mesh segmen-
tation with mean shift. In Proc. Intl. Conf. Shape Mod-
eling and Applications (2005), pp. 236–243.

[15] Jain, A. K., Murty, M. N., and Flynn, P. J. Data
clustering: a review. ACM Computing Surveys 31, 3
(1999), 264–323.

[16] Katz, S., and Tal, A. Hierarchical mesh decomposi-
tionusing fuzzy clusteringand cuts. ACMTrans.Graph-
ics 22, 3 (2003), 954–961.

[17] Lanczos., C. An iteration method for the solution of
the eigenvalue problem of linear differential and integral
operators. J. Res. Nat. Bur. Stand. 45 (1950), 255–281.

[18] Liu, R., and Zhang, H. Segmentation of 3d meshes
through spectral clustering. In Proc. Pacific Graphics
(2004), pp. 298–305.

[19] Mangan, A. P., and Whitaker, R. T. Partition-
ing 3d surface meshes using watershed segmentation.
IEEE Trans. Visualization and Computer Graphics 5,
4 (1999), 308–321.

[20] Matsumoto, Y. An Introduction to Morse Theory.
Amer. Math. Soc., 2002. Translated from Japanese by
K. Hudson and M. Saito.

[21] Milnor., J. Morse Theory. Princeton Univ.Press, New
Jersey, 1963.

[22] Mount, D. M., and Arya., S. Ann: A li-
brary for approximate nearest neighbor searching.
http://www.cs.umd.edu/∼mount/ANN/.

[23] Natarajan, V., and Pascucci, V. Volumetric data
analysis using Morse-Smale complexes. In Proc. Intl.
Conf. Shape Modeling and Applications (2005), pp. 320–
325.

[24] Page, D. L., Koschan, A., and Abidi, M. A.

Perception-based 3d triangle mesh segmentation using
fast marching watersheds. In Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition (2003), vol. 2,
pp. 27–32.

[25] Pauly, M., Keiser, R., Kobbelt, L. P., and Gross,

M. Shapemodelingwithpoint-sampledgeometry. ACM
Transactions on Graphics (2003), 641–650.

[26] Roger, P., and Bohr., H. A new family of global pro-
tein shape descriptors. ACM Computing Surveys 182
(2003), 167–181.

[27] Schloegel, K., Karypis, G., and Kumar, V. CRPC
Parallel Computing Handbook. Morgan Kaufmann,
2000, ch. Graph partitioning for High performance sci-
entific simulations.

[28] Shalfman, S., Tal, A., and Katz, S. Metamorpho-
sis of polyhedral surfaces using decomposition. In Proc.
Eurographics (2002), pp. 219–228.

[29] Shamir, A. A formulation of boundary mesh segmen-
tation. In Proc. Second International Symposium on
3DPVT (2004), pp. 82–89.

[30] Shi, J., and Malik., J. Normalized cuts and image seg-
mentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22 (2000), 888–905.

[31] Tenebaum, J. B., de Silva,V., andLangford., J. C.

A global geometric framework for nonlinear dimension-
ality reduction. Science 190, 5500 (2000), 2319–2323.

[32] Wu, K., and Levine, M. D. 3d part segmentation
using simulated electrical charge distributions. IEEE
Trans. Pattern Analysis and Machine Intelligence 19,
11 (1997), 1223–1235.

[33] Zhang, E., Mischaikow, K., and Turk, G. Feature-
based surface parameterization and texture mapping.
ACM Transactions on Graphics 24, 1 (2005), 1–27.

[34] Zwicker, M., Pauly, M., Knoll, O., and Gross, M.

Pointshop3d:An interactive system forpoint-based sur-
face editing. In SIGGRAPH (2002), pp. 322–329.

