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Abstract In this paper, we explore a novel idea of us-
ing high dynamic range (HDR) technology for uncer-
tainty visualization. We focus on scalar volumetric data
sets where every data point is associated with scalar
uncertainty. We design a transfer function that maps
each data point to a color in HDR space. The lumi-
nance component of the color is exploited to capture un-
certainty. We modify existing tone mapping techniques
and suitably integrate them with volume ray casting to
obtain a low dynamic range (LDR) image. The resulting
image is displayed on a conventional 8-bits-per-channel
display device. The usage of HDR mapping reveals fine
details in uncertainty distribution and enables the users
to interactively study the data in the context of corre-
sponding uncertainty information. We demonstrate the
utility of our method and evaluate the results using
data sets from ocean modeling.
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1 Introduction

Data sets in science and engineering often have ancillary
uncertainty information. The uncertainty may refer to
various quantities associated with data including error,
accuracy, variability, noise, or completeness of the data.
These uncertainties usually arise due to errors in data
acquisition and data processing. When visual analysis
is used to interpret the data, it is important to com-
municate the associated uncertainty information, as it
enables users to be conscious of the confidence of inter-
pretations of the data and decisions made based on the
visualization.

Various approaches may be used to quantify and
represent uncertainty depending on its nature [1]. For
example, it can be represented by a scalar or a multi-
dimensional vector. In this paper, we focus on the use
of a scalar value to represent uncertainty. The scalar
value could be the confidence level, variability, or error
associated with the scalar data.

Simple methods such as error bars and box plots are
effective for visualizing scalar uncertainty in 1D scalar
fields. Various uncertainty visualization methods have
been studied for scalar data over 2D surfaces [2–5]. In
this work we are interested in 3D data where each point
in the domain volume has an associated scalar data
value and a corresponding value for the uncertainty.
The above mentioned 1D and 2D methods are not di-
rectly applicable to the 3D cases. Existing methods for
uncertainty visualization in 3D often modify a basic vi-
sualization method by introducing glyphs or textures
to convey uncertainty [6]. These methods can represent
only coarse details in uncertainty, and lead to visual
clutter when detailed visualizations are attempted.

In this paper, we propose an uncertainty visualiza-
tion method based on direct volume rendering. Volume
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rendering [7] is a classical method used to visualize 3D
scalar fields, where the volume is projected onto the
screen. An important step in the volume rendering pro-
cess is the definition of a transfer function that maps
the data points to visual attributes like color and opac-
ity. Typically, a color is represented using three pri-
mary components namely red, green, and blue. When
data is combined with the associated uncertainty, it in-
creases the amount of information to be conveyed visu-
ally. A standard scheme for encoding colors, with 8-bit
channels for each of the RGB components, forces con-
siderable approximations in both uncertainty and data
values. This causes the resulting visualization to suf-
fer from loss in details. We overcome this limitation by
employing High Dynamic Range (HDR) technology.

The ratio of maximum luminance to the minimum
non-zero luminance of colors in an image or a scene
is referred to as its dynamic range. There is a limit
to the maximum dynamic range of any digital image
inherently imposed by the color representation that it
uses. The conventional color representation with one
byte to encode each color component does not capture
the entire dynamic range of a typical natural scene,
which is about 105 : 1. HDR imaging uses floating point
color components and hence can be used to capture
all the perceivable information in most natural scenes.
However, a HDR image cannot be directly displayed on
a typical display device such as a CRT monitor whose
dynamic range is limited. To overcome this limitation,
tone mapping techniques are employed to generate Low
Dynamic Range (LDR) images that preserve most of
the details present in the HDR image.

We propose the use of colors in HDR space to de-
sign transfer functions that capture detailed variation in
both data and uncertainty. To achieve this, we represent
the uncertainty in the luminance component of color.
Luminance of a color is an approximate measure of how
bright it appears. We apply tone mapping techniques
in our visualization pipeline to preserve the details in
uncertainty while creating a LDR representation of the
data. This LDR image can be displayed on conventional
8-bits-per-channel display devices.

A good visualization method for uncertainty should
not only create detailed visuals but also allow the users
to explore the data and enable answering queries like:
What are the regions of high or low uncertainty in the
domain? and What is the distribution of uncertainty
within a given spatial region of interest? We design a
software tool for uncertainty visualization that supports
user interactions and provides the necessary framework
to answer queries of the kind mentioned above.

The main contributions of this paper are:

– Design of a suitable transfer function that maps
data and uncertainty into HDR colors, making it
possible to capture details in both data and uncer-
tainty in the visualization.

– Modification of the HDR volume visualization pipeline
[8,9] specifically to address the problem of uncer-
tainty visualization. Our modifications allow for faster
user interaction with the visualization.

– Definition of an interaction scheme with the ren-
dered visualization to enable data and uncertainty
exploration. This serves as a powerful tool to make
inferences under circumstances where the knowledge
of uncertainty contributes to deeper insights into the
data.

The outline of the rest of this paper is as follows.
In Section 2, we present previous work related to un-
certainty visualization and also provide an overview of
prior work in HDR imaging. In Section 3, we explain
our uncertainty visualization method in detail and pro-
vide implementation details. In Section 4, we discuss
applications of our approach and demonstrate results
on data sets from ocean modeling. In Section 5, we sum-
marize our technique and conclude with directions for
future work.

2 Related Work

Literature pertinent to the techniques presented in this
paper fall into two main categories: uncertainty visual-
ization techniques, and HDR Imaging and HDR volume
visualization techniques. We briefly outline prior work
done in each of these areas below.

2.1 Uncertainty Visualization

Uncertainty visualization research has gained momen-
tum in the visualization community since the work of
Johnson and Sanderson [10] that emphasized its signif-
icance.

Pang et al. [11] present how significant amounts of
uncertainty are often introduced in the process of sim-
ulation and data acquisition due to usage of different
approximation algorithms and interpolation methods
in data processing and visualization. Their work also
presents a variety of techniques suitable for visualizing
the introduced uncertainty. These techniques include
addition and modification of geometry and attributes,
animation, sonification, and psychovisual methods. How-
ever, these methods are not applicable to 3D scalar data
sets with uncertainty.

Lodha et al. [12] used glyphs to visualize uncertainty
in scalar fields. Wittenbrink et al. [13] studied vector
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fields on surfaces and used glyphs for visualization of
uncertainty in magnitude as well as direction of vectors.
A drawback of these methods is that the glyphs can
only be placed at discrete grid points and hence can
not display detailed variations in uncertainty without
visual clutter.

There has been a considerable amount of research
done on uncertainty visualization of scalar fields over
2D surfaces. The work of Cedilnik and Rheingans [2]
describes a technique with minimal interference. They
employed procedural techniques to distort geometric
primitives like grids that annotate the data. Grigoryan
and Rheingans [3] addressed the problem of visualizing
surface uncertainty by rendering the surface as a collec-
tion of points and displacing each point from its original
location along the surface normal by an amount propor-
tional to the uncertainty at that point. Lee and Varsh-
ney [4] described the visualization of molecular surfaces
whose position is uncertain due to thermal vibrations.
They generated fuzzy surfaces by rendering multiple
layers of transparent surfaces at different configurations
formed by vibrating points. The transparency of a point
in a layer is decided by the confidence level of its posi-
tion.

Haroz et al. [14] describe an interactive technique
for visualizing bounded (location) uncertainty and un-
bounded (velocity) uncertainty associated with time-
variant cosmological particles that occupy a volume.
The technique renders a distribution of particles rather
than a volume, and encodes uncertainty in the color of
the particles. This primary spatial visualization of the
particle locations is augmented with a parallel coordi-
nates view of the data that enables user interaction and
selection of regions of interest.

Though these methods are effective for visualization
of surface uncertainty or discrete particle sets, they are
not directly applicable to volume rendering of 3D scalar
fields. Djurcilov et al. [6] identified this drawback and
presented a direct volume rendering approach for visu-
alizing scalar volumetric data with uncertainty infor-
mation. They discussed postprocessing of the rendered
volume by introducing discontinuities such as speckles,
depth shaded holes, adding noise, and using textures to
represent the uncertainty. Studying detailed variations
in uncertainty using this method requires the introduc-
tion of noise textures during post-processing, which of-
ten results in visual clutter. Lundström et al. [15] ex-
plore detailed variations in uncertainty using animation
but uncontrolled movement and flickering of the image
causes visual fatigue.

These limitations can be overcome by using color to
encode uncertainty in data. This is explored by Hengl [5],
who used the HSI color space to visualize uncertain 2D

geographic data sets. The hue was chosen based on the
scalar value and luminance was defined as a function of
uncertainty. However, the number of colors available in
HSI space are too few to capture the detailed variation
in the scalar values and uncertainty while dealing with
three dimensional data. We overcome this limitation
by using HDR image techniques. In recent work, we
explored the feasibility of applying HDR image maps
for uncertainty visualization and presented some pre-
liminary results [16] . In this paper, we develop a com-
plete uncertainty visualization method by designing a
HDR transfer function that maps the scalar data val-
ues and uncertainty into the high dynamic range colors.
We then develop a renderer that is able to take this
representation and create visualizations that preserve
the detailed variation in data and uncertainty. We ap-
ply optimizations to the visualization pipeline to make
interaction with the visualization feasible and create
a tool that enables data exploration and examination
based on specific queries. The interaction enhances the
understanding of the data.

Sanyal et al. [17] presented a user study to com-
pare four uncertainty visualization techniques that are
applied to 1D and 2D synthetic datasets. In conclu-
sion, they acknowledge that data from real sources has
its merits because it can establish direct returns from
results of a user-study. We evaluate our proposed tech-
nique using data studied by oceanographers and verify
whether an expert in the field is able to make mean-
ingful inferences based on the visualizations that we
generate.

2.2 HDR imaging and HDR volume visualization

Debevec and Malik [18] introduced the concept of HDR
imaging by developing a mechanism to recover and rep-
resent HDR radiance maps from a sequence of LDR
photographs of a scene captured at different exposures.

Typical display devices are not capable of displaying
images with dynamic range more than 1000 : 1. There-
fore tone mapping algorithms have been developed to
enable the viewing of HDR images on LDR (Low dy-
namic Range) display devices. The tone mapping al-
gorithms are inspired by concepts in image processing,
photography and human visual system modeling. Apart
from reducing dynamic range, the tone mapping op-
erators attempt to provoke same perceptual responses
as when viewing a HDR scene in the real world. Tone
mapping algorithms can be broadly classified into two
categories:

– Global tone operators: where the same transforma-
tion is applied to color at every pixel in the im-
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age [19–21]. The transformation is typically non-
linear and depends on the properties of the image
as a whole.

– Local tone operators: where the dynamic range of
the image is reduced by a transformation which is
not spatially uniform. These operators exploit the
fact that perception of color at a pixel is mainly
influenced by the surrounding colors. Variants of
image processing techniques such as adaptive his-
togram equalization [22] and bilateral filtering are
employed to perform the tone mapping. The con-
trast reduction applied at a pixel is usually deter-
mined by its local neighborhood [23–26].

The use of HDR technology in visualization is rela-
tively recent and the benefits of using HDRI are yet to
be studied extensively. Ghosh et al. [27] used HDR dis-
play technology for volume rendering. Yuan et al. [8,9]
used volume rendering with colors in extended dynamic
range especially for visualization of high precision scalar
volumetric data sets with high spatial resolution. They
used floating point color components in transfer func-
tion design to allow for HDR luminance values. Tone
mapping methods were used to display the volume ren-
dered HDR image on conventional display devices. In
this paper, we focus on using HDR volume rendering
to create and interact with visualizations of scalar field
with uncertainty. We present details of our approach in
the following section.

3 Our approach

We work with 3D scalar data sets in form of rectilinear
grids where a pair of scalars (µp, σp) is available at ev-
ery grid point p, representing the data value and uncer-
tainty respectively. The scalar and uncertainty values at
intermediate locations of the grid points are obtained
by trilinear interpolation within the voxel. A schematic
diagram of our visualization method is shown in Fig-
ure 1. It has two important modules:

1. HDR Transfer Function designer
This involves mapping a data point to color and
opacity. A good transfer function captures all im-
portant details in data and uncertainty.

2. HDR Volume Renderer
The application of transfer function on the data set
yields a 3D color volume possibly with a high dy-
namic range. We use ray casting and tone mapping
methods to produce a volume rendered image that
can be displayed on a conventional display device
with limited dynamic range.

Fig. 1 Schematic diagram of our visualization method using

HDR volume rendering.

We now discuss each of these modules in detail.

3.1 HDR transfer function designer

The quality of a volume rendered image is mainly de-
termined by the transfer function used. Hence, transfer
function design plays an important role in any visual-
ization method that involves direct volume rendering.

We use CIELAB color space to encode a color. In
this space, a color is represented by a lightness compo-
nent (L∗), a pair of chromaticity components (a∗, b∗)
and an opacity component (α), each of which is a sin-
gle precision floating point number. The CIELAB color
space is selected because it closely approximates a per-
ceptually uniform color space, where uniform changes
in values of L∗, a∗, or b∗ result in uniform changes in
color perceived [28]. Though it is not used routinely for
volume rendering, the CIELAB color space has unique
properties that have been leveraged in the context of
generating harmonic colormaps for volume visualiza-
tion [29]. In this color space, hue of a color depends
on its chromaticity components and the luminance de-
pends on its lightness component. Perceptual research
indicates that hue plays a major role in visual grouping.
However, if we use different hues to represent data and
uncertainty, it results in insufficient number of colors
to encode all the information. Therefore, we use hue
property to represent only the scalar value. We use lu-
minance component to encode uncertainty. The use of
floating point color components gives us a wide range
of luminance values to encode uncertainty, and thus al-
lows the user to study fine details in uncertainty distri-
bution. Figure 2 illustrates this approach to define the
mapping between data values and color.

We allow the user to specify a map from scalar value
µp at point p to chromaticity (ap, bp) and opacity αp
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Fig. 2 Visualization of a synthetic data set consisting of three concentric spheres having different scalar values. Different hues

distinguish these scalar values. Lightness is defined to be proportional to uncertainty. We can see that the uncertainty of the green
sphere is higher compared to the other two.

components. A suitable method can be used to define
this mapping depending on the kind of data being vi-
sualized. For example, if one is interested in identify-
ing the structure of different materials in the volume, a
multidimensional transfer function to enhance material
boundaries [30] can be used.

We determine lightness component L∗p of the color
based on uncertainty σp at point p. For generic data
sets, we observe that it is useful to define lightness at a
point p as

L∗p = C. L∗R.

(
σp − σmin
σmax − σmin

)
, (1)

where L∗R is defined to be 100, the lightness of the
reference white. We use CIE standard illuminant D50
(with CIEXYZ components being 0.96422, 1.00000, and
0.82521) as reference white in the equations for color
space transformation.

σmax and σmin are the maximum and minimum val-
ues of uncertainty in the volume, and C is the propor-
tionality constant interactively set by the user. As the
value of C increases, uncertain regions are mapped to
brighter colors.

To assist users in exploring the data better, we al-
low a uncertainty range of interest to be specified. The
points that do not have uncertainty in this range are
made invisible by making them transparent (αp = 0).
Depending on the application domain and kind of queries
posed on the uncertainty distribution, alternative map-
pings for lightness may be used.

3.2 HDR volume renderer

We use ray casting [7] to render the volume on the view
plane. Since we use colors in HDR space, it is neces-
sary to incorporate tone mapping in the visualization
process to generate images that can be displayed on
conventional display devices.

A straightforward way to achieve this is to use the
HDR volume visualization pipeline [8,9] introduced by
Yuan et al. It involves casting a ray through the volume
for every pixel in the view plane, and blending colors
along the ray to obtain the color at the pixel. The dy-
namic range of the resulting image is determined by the
distribution of uncertainty in the volume, and hence can
be very high. An existing tone mapping algorithm can
be applied to reduce this dynamic range and display
the resulting image on screen. This model is shown in
Figure 3.

It is possible to define an alternative approach to
rendering, which is more effective in our case, by ex-
ploiting the way in which the transfer function is de-
signed. Since L∗p at an arbitrary point p in the domain
is defined as a linear function of σp, it can be obtained
by trilinear interpolation of lightness values associated
with corners of the voxel containing p. This is not true
in general for simple volume rendering of a scalar field
with a user-specified transfer function. In our case, we
can pre-shade the lightness values without losing de-
tails. In other words, we can initially obtain a HDR
lightness field by mapping every grid point into a light-
ness value. We can then apply tone mapping on this
3D field instead of applying it on the final image. The
result is a regular 3D grid of lightness values which
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Fig. 3 Schematic of the HDR volume visualization pipeline.

constitutes a LDR lightness field with most details pre-
served. While ray casting, we obtain the L∗p value at
a point p by interpolating the tone mapped lightness
values. This model is shown in Figure 4, and helps us
improve upon the earlier model in following respects.

1. Typically, a tone operator applies a parametric func-
tion on color at every pixel in the 2D image to re-
duce its dynamic range. Most of the existing algo-
rithms configure themselves and choose optimal pa-
rameters adaptively depending on the input image
to preserve most details in the resulting LDR im-
age. Though we have a 2D image as a result of ray
casting, it is essentially a visualization of the vol-
umetric data. Different images are produced when
user interacts with the visualization by rotating or
scaling the volume. It is important to use same tone
mapping parameters for all these images to avoid
any inconsistency in visualization.

2. Local tone operators typically rely on the properties
of local neighborhood of a pixel and apply suitable
transformation on the pixel. When the points are in
3D domain, it is better to study their neighborhood
properties in 3D.

3. In our model, tone mapping is applied only once
during initialization. While the user is interacting
with the visualization, any existing methods like ray
casting or splatting can be directly used to render
the volume. This allows for efficient user interac-
tion with the visualization without any additional
overhead of tone mapping. In fact, we can think of
the pre-shading of lightness values followed by tone
mapping, and the user-specified transfer function for

hues as collectively constituting a simple transfer
function.

Our tone mapping method for 3D is based on the al-
gorithm described by Durand and Dorsey for images [24].
Initially, we obtain L∗ values at grid points using equa-
tion 1 with constant C set to one. We use C to scale the
lightness values after tone mapping. Therefore lightness
at a grid point p is given by:

L∗p = L∗R

(
σp − σmin
σmax − σmin

)
(2)

We perform tone mapping on the logarithm of L∗ values
as differences in logarithmic scale correspond to con-
trast ratios, Lp = logL∗p. An edge preserving bilateral
filter is applied on L values to obtain a base field, B:

Bp =
1

k(p)

∑
y∈Ω

f(||y − p||) g(Ly − Lp) Ly (3)

where Ω is the set of all grid points in the 3D domain
and k(p) is the normalization factor,

k(p) =
∑
y∈Ω

f(||y − p||) g(Ly − Lp) (4)

Bilateral filter effectively blurs the input while preserv-
ing sharp edges (or surfaces). We use Gaussian func-
tions for f and g in spatial domain and lightness domain
respectively. We restrict Ω to be the set of grid points
in the local neighborhood of p as the remaining points
do not contribute significantly to the summation.

The difference between Lp and Bp is referred to as
detail at point p. The detail field contains most of the
fine details in the distribution and its dynamic range
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Fig. 4 Schematic of our improved HDR ray casting-based pipeline for uncertainty visualization.

is typically low. Dynamic range reduction is applied on
base field using an appropriate scaling factor s. The
tone mapped lightness values L′p are obtained by expo-
nentiating the sum of detail values and the scaled base
values.

L′p = e(Lp−Bp(1−s)) (5)

The resulting LDR lightness field is stored in memory
and is used whenever the volume needs to the rendered.

We use ray casting to render the volume on screen.

1. Points are sampled at regular intervals in the volume
along rays that pass through every pixel x on the
image.

2. Lightness at a sampled point q is obtained by trilin-
ear interpolation of tone mapped lightness values.
The lightness value is scaled by a user specified con-
stant C and a small bias (20% of the lightness of
reference white) is added to avoid dark colors:

L̃∗q = 0.2L∗R + 0.8C L′q (6)

3. The chromaticity (a∗q , b
∗
q) and opacity αq at q is ob-

tained from the transfer function based on scalar
value at q.

4. The color (L̃∗q , a
∗
q , b
∗
q) is transformed to RGB color

space to obtain (Rq, Gq, Bq). The componentsRq, Gq
and Bq are scaled by αq. The RGB colors along a
ray, thus obtained are accumulated using the vol-
ume rendering integral to obtain the final pixel color
(Rx, Gx, Bx).

Rx ← Rx + (1− αray) αqRq
Gx ← Gx + (1− αray) αqGq
Bx ← Bx + (1− αray) αqBq
αray ← αray + (1− αray) αq (7)

When C is less than one, the RGB components at every
pixel lie within the range zero to one. As the value of
C is increased, the uncertain regions tend to saturate
and become more visible.

Fig. 5 As the value of lightness is increased (from left to right),

red hue tends to shift towards orange.

Our method has a minor drawback. Each hue has a
threshold lightness beyond which it is not well-defined.
In other words, as the lightness L∗ of a color is increased
keeping its chromaticity (a∗, b∗) constant, beyond a cer-
tain point the colors do not have valid equivalents in
RGB space. For example, in Figure 5 we see that the
red hue is defined for values of lightness only up to
about 54% of reference white. In such cases, when we
clamp the RGB values to be within zero to one, a slight
hue shift is introduced. This effect is apparent in Fig-
ure 16 where we observe hue shift from red to orange
and blue to purple in regions of high uncertainty.

3.3 Implementation details

We have developed a visualization tool to demonstrate
the usability of our method. The scalar field and corre-
sponding uncertainty field are loaded in the form of 3D
grids from separate files having the same dimensions.
Histogram of the scalar values is presented to the user.
We obtain mappings for chromaticity and opacity from
the user as a function of scalar values. Figures 6 and 7
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Fig. 6 User interface for color selection

Fig. 7 Transfer Function Designer

show the user interface provided for color selection and
hue transfer function design respectively.

The uncertainty values at grid points are mapped to
lightness values and tone mapping is performed. The re-
sulting lightness field serves as input to the ray casting
module. Ray casting is implemented in hardware using
OpenGL fragment shaders to render the volume at in-
teractive speeds. A user perceives depth information by
rotating and zooming in/out of the volume using a vir-
tual trackball interface. The visual effect of uncertainty
is controlled by interactively modifying the constant C.
Users can explore the data set in uncertainty space by
specifying uncertainty range of interest. Further, we en-
able users to study data or uncertainty patterns inde-
pendently by rendering with a constant function for
lightness, or by disabling hues respectively.

4 Results and discussion

We use geo-spatial data sets from ocean modeling to
evaluate our visualization method. In the following sub-
sections, we study ocean temperature and salinity fields
measured in the Middle Atlantic Bight (MAB) region

Fig. 8 MAB region with land and sea shown in different colors.
Highlighted rectangle shows the region where temperature and

salinity measurements are available.

and in the Bay of Bengal region. The interpretations are
based on discussions with an oceanographer at Indian
Institute of Science, Bangalore.

The preprocessing of lightness values to generate the
LDR volume is implemented by applying bilateral fil-
tering to 125 grid points in the neighborhood of each
point. Our current implementation is in the CPU and
it is found to take about 2.2 seconds for preprocess-
ing the Bay of Bengal data set and about 8 seconds
for the Mid-Atlantic Bight data set. No optimizations
were applied to the implementation, there is scope to
achieve better performance by implementing the algo-
rithm in hardware. After the preprocessing, we achieve
a frame rate of 20 fps for a resolution of 650 × 650 on
a NVIDIA 8800 GTX graphics card with a ray cast-
ing sampling step size of 0.1% of volume dimensions. A
simple volume of scalar values can be rendered without
uncertainty based lightness processing at a rate of 50
fps. We observed frame rates of about 40 fps with a step
size of 1% of volume dimensions.

4.1 Results on Middle Atlantic Bight data

The data [31] consists of physical variables including
temperature and salinity measured on the Middle At-
lantic Bight (MAB) south of New England, off the east
coast of the United States. Measurements are taken at
hourly intervals and at different depth levels. Figure 8
shows the extent of the data set in the MAB region. We
visualize first 15 depth levels which consists of data up
to 200m deep from the surface. Data within each level
is sampled on a regular 149× 175 sized grid with each
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measurement being a floating point value accurate up to
three decimal places. We compute the mean and stan-
dard deviation of the hourly measurements over a day
and consider the resulting values as scalar field and its
uncertainty respectively. The range of scalar values and
uncertainty in the resulting dataset is given in Table 1.
In this application, uncertainty refers to variability of
the scalar values over a day.

Minimum Maximum

Temperature field 5.891◦C 27.417◦C

Temperature Uncertainty 0.004◦C 3.532◦C

Salinity field 29.255 g/L 36.461 g/L
Salinity Uncertainty 0.001 g/L 0.692 g/L

Table 1 Range of values in Mid-Atlantic Bight data set.

Figure 9 shows visualization results on the MAB
salinity field. It demonstrates how we can study the
scalar field and corresponding uncertainty by represent-
ing them as hues and lightness respectively. The con-
stant C allows users to control the effect of uncertainty
field on the visualization as demonstrated in Figure 11
and the accompanying video. The scalar field distribu-
tion can be studied by setting C to a suitable low value
where most hue patterns are clear. With the increase
in C, the uncertain regions appear brighter and allow
us to perceive uncertainty information. We also allow
the users to study specific regions in the volume having
uncertainty values within a range of interest as demon-
strated in Figure 10. Since the scalar field and uncer-
tainty each has a dynamic range of the order of 103,
HDR volume rendering enhances the quality of visual-
ization considerably. This is demonstrated in Figures 13
and 14. The left image shows the rendering of temper-
ature and salinity fields respectively with a lightness at
each point determined by Equation 1 with C ≈ 1.5.
No preprocessing is applied on the lightness during ray
casting and color composition is performed with 8-bit
color components. The resulting color components at
pixels are clamped to be within the displayable range.
Lack of details in dark regions and presence of some
bright regions illustrate that the data is of high dy-
namic range and calls for HDR methods to process the
visualization. The middle image is rendered using our
visualization pipeline. We can observe that the use of
HDR tone mapping on the lightness field enhances de-
tails in dark regions as well as bright regions. The image
in the right is generated by applying image based bilat-
eral tone mapping on the final HDR image instead of
initial preprocessing of lightness values in 3D. We ob-
serve that this image is not very different from the one
rendered using our pipeline.

Fig. 15 Highlighted rectangle shows the extent of the temper-
ature and salinity data sets in the Bay of Bengal region. (Image

source: Wikipedia)

The following are some of the inferences that can be
made from the visualizations, which were validated by
the oceanographer:

– We observe the low salinity waters near the shore
mixing with the ocean waters having high salinity
from Figures 9 and 10.

– The salinity field exhibits high uncertainty at the
MAB shelf/drop off where the mixing is prominent.
This is evident from Figure 10.

– We also infer that the regions of low uncertainty of
salinity are found deep in the ocean from Figure 11.

– From Figure 12, we infer that the temperature near
the ocean surface is higher compared to deeper re-
gions. We see that the lightness channel effectively
captures distribution of uncertainty. We note that
regions of high uncertainty lie close to the surface
especially near the MAB shelf, and correctly reflect
the fact that interaction of water with the atmo-
sphere and also the presence of currents on the sur-
face lead to greater uncertainty in the temperature
values.

– By choosing suitable uncertainty ranges of interest,
we observe that the deeper regions in the ocean ex-
hibit negligible deviation in temperature.

4.2 Results on Bay of Bengal data

The data consists of daily measurements of salinity and
temperature at different depth levels in the Bay of Ben-
gal region (10◦N to 25◦N and 80◦E to 100◦E). This
region is shown in Figure 15. We visualize the top 25
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Fig. 9 (Left) A simple volume rendering of the ocean salinity field, with all points mapped to a constant lightness of 0.35. (Middle)
The patterns in lightness correspond to the uncertainty distribution. Higher the lightness, more uncertain the region is. (Right) Hue

and lightness values together convey details in data as well as uncertainty.

Fig. 10 Regions of interest in the MAB salinity field having uncertainty values less than 0.025 gram per liter, in between 0.025 and

0.08 gram per liter, and greater than 0.08 gram per liter respectively from left to right.

Fig. 11 Effect of proportionality constant C on the visualization of the MAB salinity field. The uncertain regions saturate with
increasing values of C (left to right). Deeper regions of the ocean remain dark indicating low uncertainty.
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Fig. 12 (Left) Uncertainty visualization of MAB temperature field. (Middle) Regions having uncertainty less than 0.2◦C. (Right)

Regions having uncertainty greater than 0.5◦C. The temperature is high on the surface. Further, the uncertainty is also high near the
ocean surface.

depth levels which constitute data up to 200m deep.
Data within each level is sampled on a regular 81× 61
sized grid. We compute the mean and standard devi-
ation of measurements over a year and consider the
resulting values as scalar field and its uncertainty re-
spectively. As in the previous case study, uncertainty
here refers to variability of the temperature and salinity
measurements over the year. The range of scalar values
and uncertainty in the dataset is given in Table 2.

Minimum Maximum

Temperature field 14.145◦C 29.135◦C
Temperature Uncertainty 0.263◦C 3.409◦C

Salinity field 22.121 g/L 35.092 g/L
Salinity Uncertainty 0.002 g/L 3.949 g/L

Table 2 Range of values in Bay of Bengal data set.

Figure 16 shows the distribution of salinity and its
variation over a period of one year. We observe regions
of low salinity in the North due to the inflow of fresh wa-
ter from the river Ganga. We also observe that salinity
increases with depth and in the south-west direction.
In addition, from the same visualization, we are also
able to observe that salinity varies more near the coast,
again due to mixing with the river water and ocean cur-
rents that flow in the south west direction. Figure 17
shows the region with high variation in salinity. Fig-
ure 18 shows the temperature distribution and its vari-
ation during the year. We observe that the temperature
decreases with depth is independent of latitude and lon-
gitude . The wedge shaped transparent region corre-
sponds to Andaman and Nicobar islands. Temperature
variation in the year is high towards the east and at a
depth range of 50m-150m. This observation is validated

by the oceanographer’s knowledge of the region, and is
due to the presence of waves with a large wavelength
that cause a vertical shift of water. The temperature
decreases rapidly in this depth range. So, the vertical
shift causes the large variation during the year.

The oceanographer working with us on the study of
both data sets found the visualizations helpful because
they presented the scalar field distribution and the un-
certainty in a unified view. The volume rendered images
and the interactive tool provided a more intuitive visu-
alization of the data compared to their existing scatter
plot based visualization. It was clear that the ability
to examine and explore the uncertainty in a scalar field
was useful to make meaningful inferences from the data.

5 Conclusions and future work

We have developed a method to visualize scalar volu-
metric fields that allows users to explore the data in
both uncertainty space and the scalar data space. The
key contributions of our work are listed below:

1. A novel application of HDR technology for uncer-
tainty visualization by encoding data as well as un-
certainty using colors in HDR space. Our volume
rendering-based method is able to display detailed
variations in data as well as uncertainty. It over-
comes the limitation of using uncertainty glyphs or
noise textures that can lead to visual clutter. Our
method is applicable to slices, isosurfaces, and scalar
fields in lower dimensions.

2. Design of HDR transfer function that separates map-
pings for lightness and hue channels of color. The
lightness is used to represent uncertainty, while hue
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Fig. 13 (Left) LDR rendering of the MAB temperature field. Lightness is determined using Equation 1. (Middle) HDR rendering of

MAB temperature field with lightness preprocessing as per our visualization pipeline. (Right) HDR rendering of MAB temperature
field. Tone mapping is applied on the final image instead of preprocessing lightness values in 3D.

Fig. 14 LDR rendering of the MAB salinity field. Lightness is determined using Equation 1. (Middle) HDR rendering of MAB salinity

field with lightness preprocessing as per our visualization pipeline. (Right) HDR rendering of MAB salinity field. Tone mapping is
applied on the final image instead of preprocessing the lightness values in 3D.

is used to represent the scalar value. This design
enabled us to modify the existing HDR volume vi-
sualization pipeline by using pre-shading and tone
mapping of lightness values in 3D, making the ren-
dering process more efficient and making it possible
to achieve real-time rendering speeds.

3. Development of an interface that supports user in-
teraction with the uncertainty visualization and al-
lows exploration of detailed variations in both data
and uncertainty values. The process of interaction
enabled highlighting the uncertainty by increasing
the absolute values of lightness. The proposed tech-
nique enabled visualization of data based on uncer-

tainty ranges by manipulating transparency values
of interactively selected regions.

We demonstrated the applicability of our approach us-
ing data sets from ocean modeling, and our interpreta-
tions of the visualizations were validated by an oceanog-
rapher.

As future work, we plan to explore alternate transfer
function designs tailored to specific applications. It is
possible to apply our method to analyze uncertainty in
the context of specific measurement devices and define
their characteristics. We believe that using HDR tech-
nology to enable perception of details in visualization
can be extended to other attributes besides uncertainty.
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Fig. 16 Uncertainty Visualization of Bay of Bengal salinity
field. Salinity increases with depth and in the south-west direc-

tion. The uncertainty is high near the coast.

Fig. 17 Regions in the Bay of Bengal salinity field having de-
viation greater than 0.5 gram per liter. The uncertainty is high

along the coastal regions.
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Fig. 18 Uncertainty visualization of Bay of Bengal temperature
field. Temperature decreases with depth. The uncertainty is high

at depth ranges of 50m-150m and towards the east. The black

wedge-like region towards the east is due to the Andaman and
Nicobar Islands.
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