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Abstract

Scientists attempt to understand physical phenomena by studying various quanti-

ties measured over the region of interest. A majority of these quantities are scalar

(real-valued) functions. These functions are typically studied using traditional visual-

ization techniques like isosurface extraction, volume rendering etc. As the data grows

in size and becomes increasingly complex, these techniques are no longer effective.

State of the art visualization methods attempt to automatically extract features and

annotate a display of the data with a visualization of its features. In this thesis, we

study and extract the topological features of the data and use them for visualization.

We have three results:

• An algorithm that simplifies a scalar function defined over a tetrahedral mesh.

In addition to minimizing the error introduced by the approximation of the

function, the algorithm improves the mesh quality and preserves the topology

of the domain. We perform an extensive set of experiments to study the effect of

requiring better mesh quality on the approximation error and the level of sim-

plification possible. We also study the effect of simplification on the topological

features of the data.

• An extension of three-dimensional Morse-Smale complexes to piecewise linear

3-manifolds and an efficient algorithm to compute its combinatorial analog.

Morse-Smale complexes partition the domain into regions with similar gradient

flows. Letting n be the number of vertices in the input mesh, the running time

of the algorithm is proportional to n log(n) plus the total size of the input mesh

plus the total size of the output. We develop a visualization tool that displays

different substructures of the Morse-Smale complex.

iii

• A new comparison measure between k functions defined on a common d-manifold.

For the case d = k = 2, we give alternative formulations of the definition based

on a Morse theoretic point of view. We also develop visualization software that

performs local comparison between pairs of functions in datasets containing

multiple and sometimes time-varying functions.

We apply our methods to data from medical imaging, electron microscopy, and x-ray

crystallography. The results of these experiments provide evidence of the usability of

our methods.
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Chapter 1

Introduction

This thesis explores the use of topological analysis for studying features in scien-

tific data. We restrict our study to scalar functions measured on a two- or three-

dimensional space. We develop methods to compute topological properties of scalar

functions, compare two functions based on their topological features, and preserve

these properties while simplifying the representation of the data. In this chapter,

we first motivate the need for a topological approach in order to obtain new and

effective methods for analysis and visualization purposes. Next, we summarize the

contributions of this thesis and introduce the underlying techniques used in our work.

Finally, we outline the layout of the material in this dissertation.

1.1 Scalar Functions

A function uniquely maps members of one set to members of another set. We are

interested in functions that map points from a 2- or 3-dimensional space to real

values. These functions are called scalar functions. Graphs of familiar functions from

elementary calculus are shown in Figure 1.1. Scientific datasets are often functions

but typically do no have an analytic description of the function. In fact, the value of a

function is measured at discrete points in the domain by physical means or computed

using procedural methods. Different interpolation techniques are then used to derive

a continuous and, if necessary, smooth representation of the function. We list below

some of the sources of such functions along with a description of the properties studied

in each case. This list is representative of some of the application areas that we think

our methods can be applied to and is by no means exhaustive.

1
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Figure 1.1: Graphs of some analytic functions. From left to right: y = sin(x),
z = sin(x) + cos(y), and z = x3y3.

Source 1 (X-ray Crystallography) X-ray crystallographers compute the electron

density at various points of a molecular crystal using diffraction measurements from

x-rays bouncing off the crystal. It is essential to know the electron density to perform

structure related studies of the molecule. The electron density is a scalar function

typically defined on a subset of the three-dimensional Euclidean space, R3.

Source 2 (Medical Imaging) Magnetic Resonance Imaging (MRI) is a popular

technique used to take pictures of different slices of the human body. The atom

density over the slice is mapped to a gray-scale image and studied by radiologists

to detect tumors. The scalar function in this case is the density defined on a set of

two-dimensional planes stacked together and can be viewed as a function on a subset

of R3.

Source 3 (Computational Fluid Dynamics) The field of computational fluid dy-

namics studies efficient methods to compute fluid flow properties. Some physical

quantities that play an important role in this context include pressure, temperature,

and fluid density. The scalar function here is one of the above quantities defined

either on the surface of the fluid or on the volume occupied by the fluid.

Source 4 (Electron Microscopy) Electron Microscopy is a technique used to ob-

tain images of macromolecules by placing them in vitreous ice, taking pictures of

2



slices of the object and finally deriving the three-dimensional structure using com-

puted tomography. The scalar function here is a density function defined on a subset

of R3.
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Figure 1.2: The figure on the left shows an isosurface extracted from an electron density
of a hydrogen molecule. The figure on the right is a visualization of the same dataset
using volume rendering where different sections of the volume are mapped to colors that
correspond to the function value but with varying transparency so that the core is also
visible.

Humans are able to easily interpret and comprehend visual information. The field

of data visualization capitalizes on this ability and aims to give the user a deeper

understanding of the data and the underlying laws governing it. This is achieved

by providing a comprehensive display of the data along with annotations. A simple

visualization method interprets the scalar value at each point as an additional coor-

dinate and plots a graph, as shown in Figure 1.1. Obviously, this technique is useful

only if the domain is one- or two-dimensional. Other techniques are available to

handle higher-dimensional domains while being applicable to lower dimensions too.

Figure 1.2 shows two of these techniques applied to visualize electron density data.

Again, these techniques do have limitations and it is imperative to make a good choice

for an effective and efficient visualization. A severe limitation of many of the existing

techniques is the inability to handle huge datasets, which are becoming increasingly

common. One approach towards solving this problem is to compress the data using
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geometric techniques. Another approach is to automatically extract features from

the dataset and present them to the user. Computing the topological properties of

the domain is a step in the latter direction and has been studied, under different

names, for both scalar functions [7, 34, 112] and for vector functions [50, 59, 99].

1.2 Topological Analysis

We now discuss what topological analysis means and how it can be used for extract-

ing features from scientific datasets. For simplicity, let us consider a smooth scalar

function defined on a subset of the plane, R2. The function value can be interpreted

as a third coordinate and a surface plot or terrain can be drawn as shown for the

function sin(x) + cos(y) in Figure 1.1. Distinct features in this terrain include the

mountain peaks, valleys, and mountain passes between the peaks. Each one of these

features correspond to a point in the plane where the gradient of the function is zero.

These points are called the critical points or singularities of the function. A topolog-

ical analysis of the function refers to the computation and classification of structures

over the critical points.

All our methods have their mathematical footing in Morse theory. An important

result in this theory states that any generic smooth function has a discrete set of

non-degenerate critical points. It further says that in the neighborhood of each non-

degenerate critical point, the function has a quadratic behavior. In particular, in

the neighborhood of the corresponding critical point, the surface looks like one of

those shown in Figure 1.3. This quadratic behavior is exhibited in higher dimensions

too. We transport this result to piecewise linear domains in order to classify critical

points. Morse theory also shows the invariance of certain properties of critical points

over all smooth functions defined on a given domain. This suggests that the critical

point behavior is global in nature although the classification can be done locally.
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Figure 1.3: Surface in the neighborhood of non-degenerate critical points of a smooth
function on the plane: (left to right) a minimum, saddle, and maximum.

Note that the number of critical points is usually smaller than the input size.

Therefore, a structure built on top of them will be easy to comprehend. Moreover,

a display of this structure will give a global view of the function behavior making

it easy to identify regions of interest and perhaps obtain a magnified view in later

iterations. In cases where the number of critical points is too large to handle we can

apply simplification techniques to reduce their number. We do not address this issue

in this thesis and mention it as future work. Having given the general context, we

now describe the contributions of this thesis.

1.3 Contributions

An important aspect of the techniques we develop is the separation of combinatorial

and numerical components of algorithms. This separation leads to implementations

that are efficient because combinatorial algorithms are typically simple and fast. We

also simulate different properties of smooth functions like genericity, differentiability

etc. and hence transport intuition from the smooth setting to produce consistent

results in the piecewise linear domain. We have three collections of results: density

map simplification [72], 3D Morse-Smale complexes [28] and scalar function compar-

ison [29].

Density map simplification. We describe an algorithm for simplifying a scalar
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function represented by a tetrahedral mesh. We refer to the function as a density

function/map due to historical reasons: density is a frequently measured quantity in

the scientific community. The algorithm consists of two main ingredients:

1. A topology preserving edge contraction operation that ensures the simplified

models are homeomorphic to the original.

2. A quadratic cost function that determines the order of edge contractions. This

cost function attempts to both preserve the density map as well as improve the

quality of the tetrahedra in the mesh.

We perform extensive experiments to study the effect of increasing the relative weight

of the mesh quality improvement on the density map preservation as well as the size of

the coarsest mesh reachable by simplification. We also study statistics of the critical

point count during the simplification process in order to compare the geometric and

topological simplification.

3D Morse-Smale Complexes. A Morse-Smale complex partitions the domain of

the scalar function into regions with uniform gradient flow behavior. We consider

the case where the domain is three-dimensional. Morse-Smale complexes were defined

more than fifty years ago for smooth functions [98]. We extend these definitions to

the piecewise linear domain. Further, we give algorithms for constructing a complex

that is combinatorially indistinguishable from the Morse-Smale complex. We develop

a visualization tool that combines standard visualization techniques with the display

of sub-structures of the Morse-Smale complex. Working with material scientists,

we study dislocations in a copper crystal using our visualizations. We also study

the shape of biological macromolecules using one-dimensional substructures of the

Morse-Smale complex.

Scalar function comparison. We define a new comparison measure between k
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functions defined on a common d-manifold. For the case when k = d = 2, we give

alternative formulations for the measure that relates it to the Jacobi set, which con-

sists of critical points of one function restricted to level sets of the other. We develop

visualization software that enables the user to compare multiple scalar functions.

We extend the software to time-varying functions and use it to study two functions

measured during a combustion process.

1.4 Layout of Material

We begin the dissertation with this chapter motivating the study of topology for the

development of effective techniques for scientific data visualization. The next three

chapters discuss the three contributions of this thesis: density map simplification, 3D

Morse-Smale complexes, and scalar function comparison. We give our conclusions and

mention future work in Chapter 5. There are various terms used in this dissertation

that may not be new to a reader who is familiar with the areas of topology and

Morse theory. However, other readers may require an introduction to some of the

basic terminology and feel a need to refer back to the definitions while reading the

dissertation. We have collected these terms together with brief descriptions and

placed them in Appendix A, which is organized into four topics: manifolds, simplicial

complexes, homology, and Morse theory.
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Chapter 2

Density Map Simplification

We consider scientific datasets that describe density (scalar) functions over a three-

dimensional domain and study the relationship between topological and geometric

simplification. In this chapter, we describe a simplification algorithm that constructs

the coarser representation with a three-fold objective:

• get a good approximation of the scalar function;

• preserve the topological type of the mesh and;

• improve the quality of the tetrahedral mesh elements.

We evaluate our results by computing the approximation error, visualizing the func-

tion using isosurface extraction, and validating the topological correctness of the

mesh. We assess the change in topological features by tracking the number of critical

points during the simplification process.

2.1 Introduction

2.1.1 Motivation

Scientific datasets are rapidly growing in size making it difficult to visualize them

using traditional techniques. One popular approach to overcome this problem is to

reduce the size of the data and work with the resulting coarser representation. The

smaller size results in fast visualization and analysis of the data. The techniques

used to reduce the size of the data are typically geometric in nature i.e. they work

on the elements of the underlying mesh. Changes to the geometry might affect the
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topology of the mesh, which in turn could affect the analysis drastically. Therefore,

it is important to control the change in topology during the geometry simplification.

2.1.2 Prior Work

Many of the techniques used for tetrahedral mesh simplification are extensions of

the ones used for surface simplification. Surface mesh simplification has been stud-

ied in a wide range of communities including cartography, computational geometry,

computer graphics, computer vision, finite element analysis, and scientific visualiza-

tion. Heckbert and Garland [47] survey the surface simplification algorithms from

the above mentioned fields and classify them based on the type of technical prob-

lem they solve. Decimation methods form the class of simplification algorithms that

start with a polygonal representation and simplify it until the desired level of approx-

imation is achieved. A popular approach to surface decimation uses edge contrac-

tions [41, 42, 51, 53]. An edge contraction deletes an edge by merging its endpoints

into one vertex. The sequence of edge contractions is critical for its success and dif-

ferent criteria have been studied to prioritize the edges. Garland and Heckbert [35]

use a quadric error metric to determine the order of edge contractions and extend

this error measure to surfaces with attributes [36]. Hoppe [52] proposed an extension

of the quadric error metric for storing errors in surface attributes, which scales better

with the number of attributes. Cignoni et al. [19] give a comparison of some of the

above mentioned algorithms. Various other approaches to surface decimation, like

vertex clustering [81], vertex removal [84], and triangle contraction [38], have also

been proposed.

Renze and Oliver [80] extend the vertex removal approach to perform volume

decimation. Trotts et al. [101] extend the triangle contraction operation described

by Gieng et al. [38] to a tetrahedral contraction operation and construct multi-
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ple levels of tetrahedral meshes approximating a density function. Popovic and

Hoppe [77] extended the edge contraction operation used to generate progressive sur-

faces meshes [51] in order to handle triangulations in arbitrary dimensions. Staadt

and Gross [93] apply this extension to the special case of 3D and give a robust im-

plementation for tetrahedral meshes. They also address the definition of appropriate

cost functions for specific applications, like the finite element method. Van Gelder

et al. [102] compare a mass-based and a density-based metric for use in rapidly deci-

mating a tetrahedral mesh. Cignoni et al. [17] compare different cost functions that

have been used to prioritize edge contractions. Software performing tetrahedral mesh

simplification is available now both as freeware visualization packages [18, 104] and

as part of commercial visualization packages like Amira [97], VolView [56], and Ansys

icem cfd [4].

Topological simplification of scalar fields has also been studied, primarily in the

graphics and visualization community, albeit using different notions of what consti-

tutes a topological feature. He et al. [49] reduce the number of holes, tunnels, and

cavities in a surface by representing the surface as a zero set of a function in R3

and then extracting isosurfaces from smoothed versions of the function. Guskov and

Wood [45] order the tunnels in a surface and remove the smaller ones using local

remeshing techniques. Bremer et al. [11] use a hierarchy of Morse-Smale complexes

to generate simplified scalar fields. Some recent work addresses the related issues of

preserving the topology of isosurfaces [16] or controlling the topology simplification

of isosurfaces [37] during the volume simplification.

2.1.3 Approach and Results

We simplify a tetrahedral mesh representing a three-dimensional density function by

a sequence of edge contractions. We modify the quadric error measure described by
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Garland and Heckbert [35] to combine three goals in prioritizing the contractions:

• the accurate approximation of the density function;

• the faithful preservation of global topological type of the mesh;

• the improvement of the mesh quality defined in terms of angles.

To pursue the first goal, we extend well established ideas from R2 to R3. The second

goal needs no new results and is based on applying tests described in [22]. To pursue

the third goal, we develop a new idea, namely the addition of particular hyperplanes

to the quadrics that have a positive influence on the mesh quality. We perform various

experiments which show that a small relative weight of the third goal furnishes dra-

matic improvements in mesh quality. Further increasing that weight adversely affects

the approximation of the density function. Lindstrom and Turk [62] attempt to im-

prove the mesh quality by introducing an additional constraint while determining the

location of the vertex that replaces an edge upon its contraction. The effect of their

method is limited because the new constraint applies only if the other constraints

lead to an ambiguous solution, which happens typically at the mesh boundary. In

contrast, our method influences the placement of every vertex and also affects the

sequence in which the edges are contracted. By adding extra hyperplanes into the

quadric error metric, we pro-actively influence the shape of the tetrahedra created af-

ter an edge contraction. This is stronger than previous techniques, like that described

in [17], which merely do not perform an edge contraction if it results in badly shaped

tetrahedra. We observe an interesting side-effect: a small but non-zero weight on the

mesh quality improvement results in better approximations of the density map.

Another surprising finding concerns the relationship between geometric and topo-

logical simplification, the latter aiming at preserving the critical point structure of

the function. While geometric simplification preserves the overall shape of the func-

11

tion, it sometimes introduces a large number of spurious critical points that confuse

the topological picture. However, we show that these newly created critical points

can be converted to regular points by a small change in function value and hence that

they are of less importance. In other words, geometric simplification is compatible

with but not a substitute for topological simplification.

2.2 Edge contraction

The input to our simplification algorithm is a triangulation K of a 3-manifold with

boundary. We extend K to the triangulation of a 3-manifold without boundary by

connecting a dummy vertex to each boundary component. The dummy vertex can

be connected to simplices on the boundary using the cone operation. The cone from

a vertex x to a k-simplex σ is the convex hull of x and σ, which is the (k +1)-simplex

xσ. The operation is defined only if x is not an affine combination of the vertices of

σ. If Bd K is connected we just add one dummy vertex, ω, and denote the extended

triangulation by Kω = K ∪ ωBd K. The link of a simplex σ ∈ Kω is denoted by

Lkω σ. For a simplex σ ∈ Bd K, the link of σ within the boundary is denoted by

LkBd σ. In a 3-manifold without boundary, the stars and the links are particularly

simple: the link of a vertex is a sphere, that of an edge is a circle, and that of a

triangle is a pair of vertices. Similarly in a 2-manifold, the link of a vertex is a circle

and that of an edge is a pair or vertices. Note that we can determine whether a given

simplicial complex is a triangulation of a 3-manifold by checking if the link at every

vertex is homeomorphic to the 2-dimensional sphere S2. In this section, we discuss

the basic operation in our algorithm that contracts an edge to a vertex. We describe

the conditions used to determine if an edge contraction changes the topological type

and the cost, associated with each edge, that is used to order the edges.

Upon contraction of an edge ab, we replace it with a vertex c. This changes the
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triangulation only in the neighborhood of a and b. In particular, the cofaces of a

and b are deleted and simplices connecting c to the boundary of the created hole are

added. Formally, these simplices are the cones from c to simplices in the link of the

set of simplices L = {ab, a, b}. Figure 2.1 illustrates an edge contraction but shows

only a subset of the simplices that are removed and added.

a

b

c

Figure 2.1: Edge contraction: the edge ab is contracted to the vertex c. Only the changes
in the star of the edge ab are shown.

2.2.1 Preserving Topology

Our simplification algorithm performs a sequence of edge contractions on the tetra-

hedral mesh. Each edge contraction preserves the topological type of the mesh. The

algorithm recognizes the edges that can be contracted without changing the topo-

logical type by looking at their neighborhoods. The ability to make this judgment

based on local computations is crucial for the efficiency of our algorithm.

A 3-complex is a simplicial complex consisting of tetrahedra, triangles, edges and

vertices. Dey et al. [22] derive local criteria, called link conditions, for recognizing

when an edge contraction in a 3-complex preserves the topological type. The link

conditions compare the link of the edge ab that is to be contracted with the links

of its endpoints. Figure 2.2 shows a situation in a 3-manifold where a contraction

would change the topology. In the case of a 3-manifold with boundary, N , Dey et

al. [22] show that the contraction of an edge ab preserves the topological type if the

intersection of the links of the two vertices equals the link of the edge, and this is
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Figure 2.2: Triangle vwp lies in the link of both a and b. After contracting ab to
a new vertex c, the triangle vwp belongs to only one tetrahedron, namely vwpc. The
neighborhood of a point in vwp is thus no longer homeomorphic to R3. The ring of edges
in Lk ab is uvwxyzu.

true both in the extended 3-complex and in the boundary of the 3-complex:

Lkω a ∩ Lkω b = Lkω ab; and (2.1)

LkBd a ∩ LkBd b = LkBd ab. (2.2)

2.2.2 Specialized Link Conditions

In order to implement the above conditions, we would have to consider the cofaces

of ω as special cases because these are not explicitly stored. To simplify the imple-

mentation, we eliminate ω from the condition. We have three cases, depending on

whether ab, a, and b belong to the boundary or the interior.

Case 1: a, b ∈ Bd N and ab 6∈ Bd N . The contraction of ab would change the

topological type of N by pinching. It is therefore prohibited.

Case 2: At least one of a or b 6∈ Bd N . Without loss of generality, assume that b

is not on the boundary. Since b and hence ab are not on the boundary, LkBd b and

LkBd ab are not defined and Condition (2) does not apply. The only vertices and edges

whose links contain ω or any of its cofaces are the ones on the boundary. This implies

Lkω b = Lk b and Lkω ab = Lk ab. Condition (1) now simplifies to Lk a∩Lk b = Lk ab.
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Case 3: ab ∈ Bd N . We necessarily also have a and b on the boundary. We partition

Lkω a into Lk a and the set ωLkBd a that contains the simplices that are cofaces of ω.

Similarly, we partition Lkω b and Lkω ab and obtain

(Lk a ∩ Lk b) ∪̇ (ωLkBd a ∩ ωLkBd b) = Lk ab ∪̇ ωLkBd ab,

which is equivalent to Condition (1). Three of the terms contain no simplex in the star

of ω and the other three contain only simplices in the star of ω. We can therefore

express the condition as a conjunction of two conditions. We further simplify by

removing ω from the second set of three terms and get

Lk a ∩ Lk b = Lk ab; and

LkBd a ∩ LkBd b = LkBd ab.

The following lemma summarizes the results of the case analysis by stating a modified

link condition for a 3-manifold with boundary.

Lemma 1 If N is a 3-manifold with boundary then the contraction of an edge ab ∈ N

preserves the topological type if one of the following is true:

(1) at least one of a and b does not belong to Bd N and Lk a ∩ Lk b = Lk ab;

(2) ab belongs to Bd N , Lk a ∩ Lk b = Lk ab, and LkBd a ∩ LkBd b = LkBd ab.

Lemma 1 applies to our data, which in all cases consists of a tetrahedral mesh of a cube

in R3. In Section 2.3.3, we describe the procedure that checks the link conditions and

explain how to make it more efficient than the direct implementation of the formulas.

2.2.3 Cost of Contraction

We use a cost associated with each edge to determine the order of contractions. A

vertex is a point in R4, with three spatial coordinates and the fourth giving the

15

function value. Each vertex and edge is associated with a finite set of hyperplanes in

R4. The cost of an edge is the minimum, over all points of R4, of the sum of square

distances between the point and the hyperplanes associated with the edge and its

endpoints. This cost can be computed from the hyperplanes using an extension of the

quadric error measure proposed by Garland and Heckbert [35]. Hoppe [52] extends

the quadric error metric for surface attributes by first performing a projection to R3

and then computing geometric and attribute errors. This approach is particularly

efficient when the number of attributes is large unlike our setting with only one

attribute. We chose to use the simple and more direct extension of Garland and

Heckbert’s quadric error metric, namely performing a projection in R4 for computing

the error.

The purpose of the hyperplanes associated with a vertex is to locally preserve the

density function. We use hyperplanes spanned by tetrahedra of the mesh. Initially,

each vertex is associated with the set of hyperplanes spanned by the tetrahedra in

its star. When we create a new vertex c by contracting the edge ab we associate the

union of the sets of a and b to c. The purpose of the hyperplanes associated with an

edge is to locally improve the quality of the mesh. We use perpendicular bisectors of

edges. Specifically, the hyperplanes associated with ab are the bisectors of the edges

in the link of L = {ab, a, b}. For each edge in this link, we take the bisecting plane

in R3 and extend it vertically to a hyperplane in R4. Figure 2.3 illustrates this idea

one dimension lower, where the link of a contractible closed edge is a circle. The

rationale for this choice of hyperplanes is to encourage almost spherical links of new

vertices. As a consequence, the new tetrahedra are almost isosceles, with three almost

equally long edges. Since there are no preferred vertices, we really encourage regular

tetrahedra. The contraction of an edge ab causes a change in the link of all vertices

in Lk a∪Lk b and thus requires an update in the sets of hyperplanes associated with
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Figure 2.3: The dotted link of a closed edge and the solid bisectors of its edges.

the edges incident to these vertices.

Let H be a set of hyperplanes and x = (x1, x2, x3, x4)
T a point in R4. Let the unit

normal of a hyperplane h ∈ H be vh = (v1, v2, v3, v4)
T and the offset δh = −pT · vh,

for any point p ∈ h. The square of the distance between h and x is given by:

Dh = ((x− p)T · vh)
2 = (xT · vh − pT · vh)

2

= (xT · vh + δh)
2 = (xT · vh)

2

= (xT · vh)(v
T
h · x) = xT (vh · v

T
h )x,

where x = (x1, x2, x3, x4, 1)
T and vh = (v1, v2, v3, v4, δh)

T . The sum over all h ∈ H is

D =
∑

h∈H

Dh = xT

(

∑

h∈H

vh · v
T
h

)

x.

The 5-by-5 matrix Q =
∑

h∈H vh · v
T
h is symmetric and positive semi-definite and

is called the fundamental quadric of H. Instead of storing sets of hyperplanes, we

store their fundamental quadrics. This representation requires two types of updates

whenever we contract an edge ab. First the quadric of the new vertex c is computed

as the sum of the quadrics of a and b. This new quadric really represents a multi-set

of hyperplanes because a hyperplane associated with both endpoints is now counted

twice. The difference to the quadric of the set (without double-counting) is however

small since a single hyperplane cannot be counted more than four times. Second, the
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contraction changes all edges that have a or b as endpoint. We update the quadrics

stored at edges associated with the changed bisectors by subtracting the contributions

of the old and adding the contributions of the new bisectors.

Although the edge contraction operation preserves the continuity of the model, it

does not handle the boundary very well. Following the solution proposed by Garland

and Heckbert [35], we rectify this by adding boundary constraints. For each boundary

triangle, we include the hyperplane passing through the triangle and perpendicular

to the hyperplane spanned by the tetrahedron that contains the triangle as a face.

Further, these new hyperplanes are weighted with a large penalty value preventing

vertices from moving too far from the boundary. Weighted hyperplanes can be easily

incorporated into the current setting. The square distance between a vertex x and

a hyperplane h with weight wh is now Dh = wh · x
T (vhv

T
h )x. The sum of square

distances to all hyperplanes can be derived as before. We compute new quadrics by

adding old ones, same as before. The only change is in the step where we compute

the initial quadrics.

Another place where we use weights is in controlling the influence of the mesh

quality improving hyperplanes on the simplification process. Each such hyperplane

is weighed by a constant ϕ ≥ 0, which we refer to as the mesh quality factor. For

example, ϕ = 0 corresponds to no influence from these hyperplanes and ϕ = 1

corresponds to equal influence of both types of hyperplanes.

2.2.4 Optimal Vertex Placement

The cost of an edge ab depends also on the location of the new vertex. In the generic

case, there is a unique location c ∈ R4 that minimizes the error. This minimum is
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given by setting the partial derivatives to zero, for i = 1, 2, 3, 4:

∂D(x)

∂xi

=
∂xT

∂xi

·Q · x + xT ·Q ·
∂x

∂xi

= qT
i · x + xT · qi

= 0,

where qT
i is the i-th row and qi the i-th column of Q. The solution is given by

c = −Q−1 · q, where Q is the upper left 4-by-4 submatrix of Q and q is the 4-vector

consisting of the upper four entries in the fifth column of Q.

In the non-degenerate case, Q has rank four. We detect degeneracies by estimating

the rank of Q before computing c. Ranks three, two and one correspond to a line,

plane and hyperplane of minima in R4, respectively. Note that Q has at least one

non-zero diagonal element and hence the rank is never zero. In each of the three

degenerate cases, we add the contributions of additional hyperplanes to increase

the rank of the matrix. We estimate the rank by comparing the coefficients of the

characteristic polynomial given by

det (Q− λI) = σ4 − λσ3 + λ2σ2 − λ3σ1 + λ4.

Here, σ4 is the determinant and σ1 is the trace of Q. The other two coefficients are

sums of 3-by-3 and 2-by-2 minors of Q. We note that the coefficients are cheaper

to compute than the eigenvalues and may be substituted for the latter in estimating

the rank of the matrix. Specifically, we consider Q to have rank three, two and

one, respectively, if the absolute value of 256σ4/σ
4
1, 16σ3/σ

3
1 and 8σ2/σ

2
1 is small.

Restricting the above ratios to small values is equivalent to bounding the number of

eigenvalues of Q that are close to zero.

Let ab be the edge being contracted. In the case of a rank three matrix, we add

the contribution of the hyperplane normal to the line of minima that passes through
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the midpoint of ab to the fundamental quadric, hoping that the rank increases to

four. If it does not, then our fall back strategy is to select one of the endpoints of ab

or its midpoint as the new vertex location. In the case of a rank two matrix, we have

a plane of minima. We compute two hyperplanes that are orthogonal to each other

and the plane and that pass through the midpoints of ab and add their contributions

to the quadric. We compute the first hyperplane by taking the cross product of the

two independent rows, and the second by taking the wedge product of the now three

independent rows. Similarly, in the case of a rank one matrix, we get three new

hyperplanes and add their contributions to the quadric.

2.3 Algorithm

In this section, we describe our implementation of the edge contraction operation.

Various choices were made in determining the order of contractions, recognizing topol-

ogy preserving contractions, and updating all data structures. We begin with the data

structures and the outline of the simplification procedure.

2.3.1 Data Structure

We use a heap to implement the priority queue for the edges of the mesh. Along with

the edges, we store the cost of contraction and the optimal vertex location. We store

the mesh in a triangle-edge data structure [69], which is a version of the more general

edge-facet data structure by Dobkin and Laszlo [23]. It is made up of triangles,

each represented by the six possible orderings of its three vertices. As illustrated

in Figure 2.4, each ordering maintains a pointer to the next triangle reached by a

rotation about the edge of its first two vertices. The list of triangles is stored in an

array. The coordinates of the vertices are stored in another array, and the indices of

the vertices in this array are used as vertex names.
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Figure 2.4: Each ordering abv stores a pointer to the next triangle: abv.next = abw. By
following these pointers, we traverse the ring of triangles in the star of ab. After contracting
ab to c, the ring of triangles becomes a ring of edges around c.

2.3.2 Algorithm Overview

Function Simplify performs a sequence of edge contractions to simplify the tetra-

hedral mesh K. It continues until the mesh reaches a user-specified number of at

most v0 vertices or no edge can be contracted without changing the topological type,

whichever occurs first.

Mesh Simplify (Mesh K)

initialize priority queue PQ with set of edges in K;

while #vertices in K exceeds v0 do

pop the minimum cost edge from PQ and call it ab;

if PresTop (ab) then

delete edges in St a and St b from PQ;

update costs of edges in St x, x ∈ Lk a ∪ Lk b;

K = Contract (K, ab, c);

insert edges in St c into PQ;

endif

endwhile;

return K.
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The remainder of this section explains the two main functions used in this algorithm.

2.3.3 Checking Link Conditions

Function PresTop uses the two conditions in Lemma 1 to determine whether or

not the contraction of ab preserves the topological type of K. We prevent redundant

tests by first checking which part of the edge is on the boundary and then test zero,

one or two conditions.

boolean PresTop (Edge ab)

if a, b ∈ Bd K and ab /∈ Bd K then return False endif;

if ab /∈ Bd K then return LinkCond1 (ab) endif;

if ab ∈ Bd K then return (LinkCond1 (ab) and LinkCond2 (ab)) endif.

Functions LinkCond1 implementing Condition (1) and LinkCond2 implementing

Condition (2) use enumerations of the simplices in the link of a vertex or edge. In

Function LinkCond2, we also need the restrictions of these links to the boundary of

K, and to facilitate their computation, we label each triangle in Bd K. Each link is

computed by a local search procedure that starts at an ordered triangle provided by

the vertex or edge for which we compute the link. Next, we describe the implemen-

tation of Function LinkCond1, which determines whether or not the intersection of

the links of a and b contains simplices that do not belong to the link of ab. We use

a marking mechanism to keep track of the processed vertices.

boolean LinkCond1 (Edge ab)

foreach v ∈ Lk a do Mark (v) endfor;

foreach v ∈ Lk ab do Unmark (v) endfor;

foreach v ∈ Lk b do if IsMarked (v) then return False endif endfor;

return True.
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After testing the three links, we unmark all vertices again. We repeat the same

test for edges in the intersection of the links restricting it to edges that connect two

vertices in Lk ab. It is not necessary to test triangles. Condition (2) is tested in a

similar manner by Function LinkCond2, which traverses the links of a, b and ab on

the boundary of the mesh.

2.3.4 Contracting Edges

Function Contract updates the mesh K by contracting an edge ab as follows:

Mesh Contract (Mesh K, Edge ab, Vertex c)

foreach triangle axy ∈ St a do

if x, y 6= b then add cxy to K endif

endfor;

foreach triangle bxy ∈ St b do

if x, y 6= a and cxy 6∈ K then add cxy to K endif

endfor;

delete all triangles in St a and St b from K;

return K.

2.3.5 Reentering Edges

Note that the contraction of ab may change the status of other edges in the mesh.

We are interested in edges xy that violate the conditions of Lemma 1 before the

contraction of ab and that satisfy these conditions after the contraction of ab. We say

these edges turn contractible. We detect the edges that have the potential for turning

contractible and add them to the priority queue, using labels to avoid duplicate

entries. We prove below that only edges in a relatively small subset of the link of c

can turn contractible. This result is essential for an efficient detection of these edges.
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Lemma 2 If the contraction of ab causes another edge xy to turn contractible x and

y are contained in Lk ab.

Proof. We have Lk xy ⊆ Lk x ∩ Lk y for every edge xy, and we have equality if xy

does not violate the conditions in Lemma 1. Suppose Lk x∩Lk y consists of the cycle

Lk xy plus some additional simplices. The only way the contraction of ab can cause

xy to turn contractible is by removing these extra simplices. Now, for Lk x∩ Lk y to

shrink, we need a and b in both links. Since a ∈ Lk x iff x ∈ Lk a, this is equivalent

to x, y ∈ Lk a ∩ Lk b. Lemma 2 follows because ab satisfies both link conditions,

particularly Lk a ∩ Lk b = Lk ab.

2.3.6 Accumulating Edge Bisectors

We conclude this section with a brief comparison between two different implementa-

tions of the mesh quality improvement using bisecting hyperplanes. The algorithm,

as explained above, uses a memoryless implementation in which the bisectors at each

step are taken for edges in the current mesh. Alternatively, we could accumulate the

bisectors of edges in the original mesh, similar to the way we accumulate hyperplanes

spanned by tetrahedra in the original mesh. Initially, each vertex stores the quadric

defined by the hyperplanes bisecting the edges in the link. Note that in the case of a

vertex, the link is precisely the boundary of the star. Later in the process the vertex

represents a collection of vertices in the original mesh and stores the quadric defined

by the hyperplanes bisecting edges in the boundary of union of vertex stars. The link

condition guarantees that this is a topological ball and its boundary is a topological

sphere. The quadric of this set of hyperplanes can be computed by accumulation, but

there is a complication caused by the need to remove hyperplanes that bisect edges

in the interior of the ball. We cope with this complication by inclusion-exclusion:
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• initialize a quadric for each simplex of the original mesh defined by the bisectors

of the edges in the boundary of the star of the simplex;

• upon contracting the edge ab to the vertex c, compute the quadric as Q(c) =

Q(a) + Q(b)−Q(ab).

Similarly, we use inclusion-exclusion to compute the quadrics of newly formed edges

and triangles. We note that inclusion-exclusion is also the preferred way to accumu-

late the quadrics of shape preserving hyperplanes, except that the simpler method

of just adding quadrics commits only the negligible error of double-counting certain

hyperplanes.

2.4 Experiments

There are two parameters that affect the performance of our algorithm: the target

vertex count, v0, and the relative weight of the hyperplanes that were added into

the quadric to improve the mesh quality, ϕ. We perform various experiments in

order to determine an good values for ϕ. We evaluate the results by computing

approximation errors, visualizing the simplified mesh through isosurfaces and looking

at critical point statistics. We compute the approximation error of a simplified mesh

as the root mean square and maximum of the error at each vertex of the simplified

mesh. The error at a vertex is the difference between its density value and density

value of the corresponding point in the original mesh. All results reported below are

for the memoryless implementation unless explicitly specified.

2.4.1 Datasets

We apply our simplification algorithm to four datasets. Table 2.1 lists the size of the

datasets. Isosurfaces of the original and several simplified versions of the data can
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be seen in Figures 2.10- 2.14. The first two are MRI scan data from the Chapel Hill

dataset #vertices #tetrahedra

brain 51,772 285,768
head 70,262 391,608
turbine 126,976 714,420
hydrogen 32,768 178,746
ribosome 512,000 2,958,234

Table 2.1: List of datasets used for evaluation.

volume rendering test data set, volume I. The third is density data of a turbine blade.

The fourth contains electron density data for a hydrogen molecule and the fifth is

cryo electron microscopy data of a ribosome. Each of the datasets is available to us

for input as a tetrahedral mesh with function values specified at the mesh vertices and

linearly interpolated within the mesh elements. We eliminate the effects of large scale

differences between the spatial coordinates and the function values by normalizing

the data within the unit hypercube in R4.

2.4.2 Tetrahedral Shape Improvement

The objective of the first experiment is to determine the effect of varying ϕ on the

mesh quality. We do this by applying the simplification using various values of ϕ

and computing the dihedral, solid, and face angles of the tetrahedra in the simplified

meshes. The average values of the three types of angles remain almost constant at

around 1.20, 0.49, and 1.05 radians. We see in Figure 2.5 that the introduction of

a positive value for ϕ sharpens the distribution of angles around their respective

averages. Figure 2.6 provides visual evidence of the improvement in the tetrahedral

shape quality. These results are for experiments run on the hydrogen dataset. The

other datasets behave similarly.
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Figure 2.5: Graph of the standard deviation for the dihedral, solid and face angle
measurements for various values of ϕ. Note the initial dip followed by almost no change.

2.4.3 Approximation Error vs Tetrahedral Shape

As mentioned earlier, we add weighted hyperplanes into the error quadric in the hope

of improving the shape of tetrahedra in the mesh. However, adding these hyperplanes

reduces the weight on the density map error that should be minimized for a good

approximation. The objective of our second experiment is to study the effect of

varying ϕ on the approximation error. Figure 2.7 shows the root mean square and

max error for various values of ϕ, both of which increase for increasing ϕ, as expected.

2.4.4 Topology Preservation vs Tetrahedral Shape

In this experiment, we study the effect of varying ϕ on the smallest achievable vertex

count. Violation of the link condition seems to require badly shaped tetrahedra, so

we expect that we can reach smaller sizes if we increase ϕ. Figure 2.8 is a graph of

the number of vertices in the smallest mesh reachable by the simplification algorithm
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Figure 2.6: The simplified meshes of the hydrogen dataset obtained for ϕ = 0.0 (left)
and ϕ = 0.01 (right). Note the dramatic improvement in the shape of the elements for a
non-zero shape quality factor.

for various values of the parameter ϕ. Note the expected dip followed by an almost

horizontal section. This is consistent with the earlier observation of a dramatic im-

provement in the shape quality of the mesh tetrahedra even with small values of ϕ

followed by no significant change on further increasing ϕ.

2.4.5 Density Map Preservation

The results of the above experiments suggests we choose a mesh quality factor in the

range where the graphs show significant improvement in the shape quality of mesh

tetrahedra. We set ϕ = 0.02 and run the simplification algorithm on the five datasets.

Figures 2.10- 2.14 displays a small sample of isosurface to provide a feeling for the

effect the simplification has on the datasets. Significant artifacts begin to appear

when the target vertex count drops to 10% or below. This is reflected in the root

mean square and max errors shown in Tables 2.2 - 2.4. There is a sharp increase in

error when the target vertex count drops below 10% for the brain, head and turbine

datasets, whereas the hydrogen and ribosome datasets start degrading only below
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Figure 2.7: Graphs of the root mean square error (with values shown on the left) and
maximum error (with values shown on the right) of the simplified meshes for various values
of ϕ. After some erratic fluctuation the errors increase monotonically.

2%. The tables also show the time taken to perform the simplification.

brain

% #vert rms max time

100 51,772

50 25,886 0.001 0.051 224

30 15,531 0.003 0.123 310

20 10,354 0.007 0.145 356

10 5,177 0.015 0.261 406

5 2,588 0.022 0.243 435

3 1,553 0.034 0.492 447

2 1,035 0.036 0.306 453

1 517 0.051 0.344 460

head

% #vert rms max time

100 70,262

50 35,131 0.001 0.045 315

30 21,078 0.004 0.074 438

20 14,052 0.008 0.209 504

10 7,026 0.018 0.399 575

5 3,513 0.026 0.332 616

3 2,107 0.032 0.285 633

2 1,405 0.043 0.463 643

1 702 0.066 0.463 653

Table 2.2: The root mean square and max errors associated with each of the simplified
meshes for the brain and head MRI datasets and the running time in seconds.

2.4.6 Critical Point Statistics

The topography of a density map is often expressed in terms of its critical points,

which in the generic case are of one of four types: minima, 1-saddles, 2-saddles and
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Figure 2.8: Graph of the number of vertices in the smallest mesh reachable by the
algorithm. Similar to the mesh quality we observe a dramatic initial improvement followed
by almost no change.

maxima. As defined in [28], the lower link of a vertex u is the subcomplex of the

link induced by the vertices with smaller function value than u. Using reduced Betti

numbers for measuring the connectivity of the lower link, we classify u as regular or

critical. In the piecewise linear case, a critical vertex can have non-trivial multiplicity

even in the generic case, which is reflected in our statistics shown in Figure 2.9.

Contrary to our initial expectations, the simplification first increases the number of

critical points before decreasing them. We explain this phenomenon by the temporary

creation of spurious critical points in relatively flat regions of the distribution. The

criticality of these vertices is based on small fluctuations of the density function. We

substantiate this rationalization by measuring the importance of a critical point as

the amount of change in function value necessary to turn it into a regular point.

Formally, we compute the persistence of the critical vertices as defined in [31]. In

the graphs of Figure 2.9, we reflect this information by ignoring critical points whose

persistence is less than a threshold that increases from back to front. We see that a
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turbine

% #vert rms max time

100 126,979

50 63,488 0.000 0.008 606

30 38,092 0.001 0.053 825

20 25,395 0.002 0.087 938

10 12,698 0.010 0.275 1,058

5 6,348 0.022 0.364 1,126

3 3,809 0.032 0.602 1,155

2 2,539 0.035 0.602 1,170

1 1,269 0.069 0.692 1,187

hydrogen

% #vert rms max time

100 32,768

50 16,384 0.000 0.010 135

30 9,830 0.001 0.059 187

20 6,553 0.002 0.069 213

10 3,276 0.005 0.092 242

5 1,638 0.009 0.132 257

3 983 0.013 0.132 264

2 655 0.018 0.189 267

1 327 0.026 0.174 271

Table 2.3: The root mean square and max errors associated with each of the simplified
meshes for the turbine and hydrogen datasets and the running time in seconds.

ribosome

% #vert rms max time

100 512,000

50 256,000 0.000 0.016 3,009

30 153,600 0.001 0.223 4,178

20 102,400 0.002 0.684 4,771

10 51,200 0.003 0.392 5,403

5 25,600 0.006 0.140 5,760

3 15,360 0.007 0.205 5,914

2 10,240 0.008 0.218 5,997

1 5,120 0.011 0.310 6,087

Table 2.4: The root mean square and max errors associated with each of the simplified
meshes for the ribosome dataset and the running time in seconds.

very small threshold suffices to erode the gain in critical points caused in the initial

simplification phase.

2.4.7 Sanity Checks

To ensure that the implementation does not have subtle flaws that create biases or

other artifacts is always a challenge when working with non-trivial datasets. Typi-

cally, one looks for unusual behavior while testing the code against special data. In

addition, we check the code by collecting evidence that the output is structurally

correct. We perform low and high level structural checks of the mesh. At the lowest
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Figure 2.9: Graphs of the numbers of critical points in the brain data: The numbers
change from left to right as we simplify the density and from back to front as we eliminate
critical points of low persistence. The graphs for remaining datasets are similar.

level, we test whether the triangles in K are connected the right way. Details of such

tests can be found in Mücke [69]. At a higher level, we compute the Euler character-

istic: χ = s0 − s1 + s2 − s3, where si is the number of i-simplices in K. The Euler

characteristic of a 3-ball is 1, and since our algorithm maintains the topological type,

it must be 1 throughout the process. There is a relation between the Euler charac-

teristic and the critical points, namely χ = c0 − c1 + c2 − c3, where c0, c1, c2 and c3

count the minima, 1-saddles, 2-saddles and maxima, respectively. The compactifica-

tion that changes the 3-ball into the 3-sphere changes the Euler characteristic to 0.

The alternating sum of critical points thus furnishes another test for the correctness

of the simplified mesh.
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2.4.8 Inclusion-Exclusion

We repeated all of the above experiments using the inclusion-exclusion method for

accumulation of bisecting hyperplanes and compared the results with the memoryless

method, finding possibly predictable differences in performance:

(i) the inclusion-exclusion method is faster than the memoryless method by a factor

of about three;

(ii) the approximation error for the inclusion-exclusion method is marginally higher

than that of the memoryless method;

(iii) the reachable limit of maximum simplification increases from about 0.5% for

the memoryless method to about 3% for the inclusion-exclusion method.

In summary, the quality of the simplification is marginally worse for the inclusion-

exclusion method, but the running time is somewhat better. We place more weight on

the quality of the computed result than on speed and thus decided to present detailed

experimental results only of the memoryless method of mesh quality improvement.

2.5 Discussion

We described an algorithm for simplifying a density function represented by a tetra-

hedral mesh of a three-dimensional geometric domain. The main ingredients of the

algorithm are topology preserving edge contractions and quadratic cost functions

that attempt to preserve the density map as well as improve the mesh quality. We

performed various computational experiments to determine relationships between the

parameters that control the algorithm. We ran our algorithm on five datasets and

evaluated the results by computing the approximation error, some isosurfaces, and

the number of critical points, all as variables depending on the amount of simplifica-

tion. We conclude this chapter by mentioning a couple of future projects.
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(1) Use the hierarchy of critical points to get a comparison between two similar

density functions that is more qualitative than the approximation error com-

puted in this work. Study the behavior of this comparison as the functions

become progressively less similar.

(2) Compare the numerical method that maintains the mesh boundary using extra

hyperplane constraints with a combinatorial method based on the general link

condition. The latter method would preserve the face and edge structure of the

mesh boundary and treat boundary vertices with higher priority.

The natural next step in simplifying a density function is a synthesis of geometric

and topological methods, similar to the work of Bremer et al. [11] and Edelsbrunner

et al. [30] for two-dimensional functions. This amounts to constructing the three-

dimensional Morse-Smale complex [28] and simplifying it in a sequence of cancella-

tions ordered by persistence [31]. We describe the construction of the Morse-Smale

complex in three-dimensions in the next chapter and discuss the technical challenges

involved in implementing a hierarchical version. An alternative would be to simplify

the density function by re-prioritizing the edge contractions in our current algorithm

to include topological information about the critical points. An advantage of the

latter idea is that it is potentially easy to implement by extending the existing im-

plementation.
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Figure 2.10: Top-left to bottom-right: isosurfaces extracted from the original brain
dataset and after simplifying the mesh to 50%, 30%, 20% and 10% of its original size.

Figure 2.11: Top-left to bottom-right: isosurfaces extracted from the original head
dataset and after simplifying the mesh to 50%, 30%, 20% and 10% of its original size.
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Figure 2.12: Top-left to bottom-right: isosurfaces extracted from the original turbine
dataset and after simplifying the mesh to 50%, 30%, 20% and 10% of its original size.

Figure 2.13: Top-left to bottom-right: isosurfaces extracted from the original hydrogen
dataset and after simplifying the mesh to 50%, 30%, 10% and 5% of its original size.
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Figure 2.14: Top-left to bottom-right: isosurfaces extracted from the original ribosome
dataset and after simplifying the mesh to 50%, 30%, 20% and 10% of its original size.
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Chapter 3

3D Morse-Smale Complexes

We continue to study three-dimensional scalar functions in this chapter. However,

we now focus on the extraction of topological features to present a global view of

the function. In order to extract the topological features, we use results from Morse

theory, which has been traditionally used for studying the topology of manifolds.

Appendix A describes the basic terminology from Morse theory that we require for

the discussion in this chapter. For a more comprehensive view, we refer to the books

on this subject by Matsumoto [65] and Milnor [68]. The Morse-Smale complex of a

Morse function partitions its domain into regions with uniform gradient flow. Such

partitions were developed to study the behavior of dynamical systems. We extend

Morse-Smale complexes to piecewise linear 3-manifolds and describe a combinatorial

algorithm to compute them.

3.1 Introduction

3.1.1 Motivation

There is an abundance of natural phenomena that can be modeled by three-dimensional

Morse functions. In oceanography, we study the distribution of temperature and

other measurements over the Earth’s oceans. In medical imaging, we reconstruct

the inside of a living body from density distributions measured by MRI and other

sensing technology. In x-ray crystallography, we determine the conformations of pro-

teins and other molecules from electron densities derived from x-ray diffractions. In

each case, essential information is obtained from variations of the density over the
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space. Morse theory offers the basic mathematical language to reason qualitatively

and quantitatively about this variation. In oceanography, we might be interested in

the temperature extrema and how they change over time. In medical imaging, we

use sharp changes in density to segment the body into bone, tissue and other con-

stituents. In x-ray crystallography, we reconstruct geometric structure by following

ridges connecting maxima in the electron density. Clearly, a systematic study of the

variation in density (i.e. gradient of the density function) will be of significant use in

understanding data obtained from the above mentioned scientific domains. Indeed,

such studies have been conducted in the past.

3.1.2 Related work

The Morse-Smale complex captures the gradient flow characteristics of the scalar field

by partitioning the space into regions of uniform flow. Thom is probably the first to

formally develop a way of partitioning space using gradient flows [98]. One of the

earliest work on such partitions that used Morse theory is that of Smale in the context

of dynamical systems [88, 90]. He uses results from the study of these partitions to

construct an elegant proof of the higher dimensional Poincaré conjecture [89, 91].

Besides the work done by Smale, there has been extensive study of such partitions

in the smooth category [85]. All work on piecewise-linear manifolds have, however,

been restricted to the two-dimensional case. Edelsbrunner et al. [30] define the Morse-

Smale complex for piecewise-linear 2-manifolds by considering the PL function as the

limit of a series of smooth functions and using the intuition to transport ideas from

the smooth case. We follow the same approach in 3D. There are newer types of

criticalities and hence new types of cells in the Morse-Smale complex when we move

from 2D to 3D. This makes the extensions of the results from 2D a non-trivial task.

The two-dimensional piecewise-linear case has been studied extensively in different
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fields, under different names, motivated by the need for an efficient data structure to

store surface features. Cayley [15] and Maxwell [67] propose a subdivision of surfaces

using peaks, pits, and saddles along with curves between them. Warntz uses such

partitions to study surfaces arising in social sciences [105]. Pfaltz [76] proposed a

graph based representation of the partition, called a surface network. Applications

and extensions of surface networks have been studied within various fields including

cartography [109], computer vision [57], and crystallography [54]. The development

of different data structures for representing topographical features is discussed in a

collection of expositions edited by Rana [78].

Three-dimensional density functions are commonly visualized by drawing one or

several level sets. In three-dimensional Euclidean space, such a set is generically a

2-manifold, often referred to as an isosurface, which divides the space into inside and

outside. The 1-parameter family of isosurfaces sweeps out each cell in the Morse-

Smale complex in a predictable manner, starting at the minimum and proceeding

towards the opposite maximum while crossing the boundary everywhere at a right

angle. The most popular method for computing an isosurface is the marching cube

algorithm, which assumes the density is given by its values at the vertices of a regular

cubic grid [64]. Extensions and improvements of this algorithm can be found in

[43, 55, 66, 71, 73, 103, 107, 111].

The marching cube algorithm visits the entire grid, which implies a running time

proportional to the number of grid cells. A significant improvement in performance

can be achieved by limiting the traversal to those cells that have a non-empty in-

tersection with the constructed isosurface. Starting at a ‘seed edge’, the algorithm

traverses the cells following the component of the isosurface as it is uncovered [6].

A minimal collection of seed edges that touches each component of every level set is

provided by a minimal covering of the Reeb graph [79], stored for quick access in a
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hierarchical data structure referred to as the contour tree [58]. The Reeb graph is a

compressed representation of the components, but it has no geometric information

related to the gradient flow as expressed by the Morse-Smale complex. Extensions

and improvements of the original algorithm for constructing contour trees can be

found in [14, 75, 96].

Another concept related to Morse-Smale complexes is the medial axis of a shape

in three-dimensional Euclidean space. As introduced by Blum [10], it is the set

of centers of spheres that touch the boundary of the shape in at least two points

without crossing it. Medial axes are used in a wide variety of applications, including

shape representation [21, 86], mesh generation [87], geometric modeling [94], motion

planning [44], image processing [74] and computer vision [110]. If the boundary is an

orientable 2-manifold embedded in three-dimensional Euclidean space, we may define

the signed distance as a function over the space. The medial axis then consists of

arcs and quadrangles in the Morse-Smale complex.

Partitions similar to the Morse-Smale complex have been computed earlier for

vector fields as well but most of them employ numerical methods. Helman and

Hesselink [50] classify the zeros of a vector field and perform particle tracing to

compute the topology of the vector fields in two and three dimensions. Globus et

al. [39] describe a software for visualizing the topology of three dimensional vector

fields that also uses numerical methods to trace the flow lines.

3.1.3 Approach and Results

A fundamental difficulty in applying Morse theoretic ideas to scientific problems is the

lack of smoothness in real data. We take a combinatorial approach to this problem by

simulating smoothness to the extent necessary and then carry on the intuition from

the smooth setting. One advantage of our approach as opposed to a numerical one is
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the guarantees that we can provide about the consistency of the computed structures.

We extend the definition of Morse-Smale complexes to the piecewise linear domain

and describe it as an overlay of the descending and ascending manifolds. We also give

a combinatorial algorithm for constructing it with guaranteed structural correctness.

Finally, we describe our visualization tool for displaying sub-structures of the Morse-

Smale complex. We use the visualizations to study dislocations in a copper crystal

and the shape of biological macromolecules electron microscopy data.

3.2 Definition

The datasets that we work with are piecewise linear. So, we need to transport Morse

theoretic ideas that were originally developed in the smooth setting into the piecewise

linear domain. After giving definitions for the Morse-Smale complex for smooth 3-

manifolds, we introduce quasi Morse-Smale complexes and discuss the artifacts that

arise upon moving to the piecewise linear domain.

3.2.1 Smooth 3-Manifolds

Integral Lines. Given a Riemannian metric on M and a local coordinate system

with orthonormal tangent vectors ∂
∂xi

(p), the gradient of f at p is

∇f(p) =

[

∂f

∂x1

(p),
∂f

∂x2

(p),
∂f

∂x3

(p)

]T

.

It is the zero vector iff p is critical. An integral line γ : R → M is a maximal path

whose velocity vectors agree with the gradient: ∂γ

∂s
(s) = ∇f(γ(s)) for all s ∈ R. Each

integral line is open at both ends, and we call org γ = lims→−∞ γ(s) the origin and

dest γ = lims→∞ γ(s) the destination of γ. Both are necessarily critical points of f .

Integral lines are pairwise disjoint. We consider each critical point as an integral line
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by itself, and with this stipulation the integral lines partition M. We use them to

decompose M into regions of similar flow patterns.

Ascending and Descending Manifolds. The descending and ascending manifolds

of a critical point p are

D(p) = {p} ∪ {x ∈M | x ∈ im γ, dest γ = p},

A(p) = {p} ∪ {x ∈M | x ∈ im γ, org γ = p},

where im γ is the image of the path γ on M. If x and y are points different from p

that belong to the descending and the ascending manifolds of p then f(x) < f(p) <

f(y). This implies that D(p) ∩ A(p) = p. The descending manifolds of f are the

ascending manifolds of −f and, symmetrically, the ascending manifolds of f are

the descending manifolds of −f . This implies that the two types of manifolds have

the same structural properties. Specifically, the descending manifold of a critical

point p of index i is an open cell of dimension dim D(p) = i. Since the integral

lines partition M, so do the descending manifolds. Moreover, they form a complex

as the boundary of every cell is the union of lower-dimensional cells that are its

faces. The ascending manifolds form a dual complex: for critical points p and q of f ,

dim D(p) = 3− dim A(p), and D(p) is a face of D(q) iff A(q) is a face of A(p).

Morse-Smale Complex. A Morse function f is Morse-Smale if the descending and

ascending manifolds intersect only transversally. Suppose D(p) and A(q) have non-

empty common intersection. If dim D(p) = 2 and dim A(q) = 1 then the transversal-

ity assumption implies D(p) ∩ A(q) = p = q. In the more interesting case in which

both are 2-manifolds, A(p) and D(q) are faces of A(q) and D(p) and, as illustrated

in Figure 3.1, the common intersection is a simple path connecting the two critical

points. Following [30], we define the cells of the Morse-Smale complex as the com-

ponents of the sets D(p) ∩ A(q), over all critical points p and q of f . By definition,
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p q

Figure 3.1: The dotted line is the common intersection of the descending 2-manifold of
p and the ascending 2-manifold of q.

each cell of the Morse-Smale complex is a union of integral lines that all share the

same origin q and the same destination p. The dimension of the cell is then the

difference between the two indices. We call the cells of dimension 0 to 3 nodes, arcs,

quadrangles, and crystals. Each two-dimensional cell is indeed a quadrangle, but its

boundary may be glued to itself. The prototypical case of a crystal is a cube, which

we imagine standing on its tip, but more interesting cases are possible as shown in

Figure 3.2.

Figure 3.2: Crystals in the Morse-Smale Complex: The one on the left is the prototypical
case in the shape of a cube and the one on the right is a more interesting case.
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3.2.2 Piecewise Linear 3-Manifolds

Quasi Morse-Smale Complex. We construct a complex that is structurally in-

distinguishable from the Morse-Smale complex by taking open manifolds made up of

simplices in K. It is a decomposition of space into crystals in which the boundary

of each crystal is a quadrangulation. The function f has its critical points at the

nodes of this complex and is monotonic within all the arcs, quadrangles and crys-

tals. It differs from the Morse-Smale complex because the arcs and quadrangles may

not be those of maximal ascent and descent. Let U , V , X and Y be the sets of

minima, 1-saddles, 2-saddles and maxima of f , let R, S and T be the sets of arcs

that connect minima to 1-saddles, 1-saddles to 2-saddles, and 2-saddles to maxima

respectively, and let P and Q be the sets of quadrangles with nodes from U, V,X, V

and V,X, Y,X in that order, respectively, around the boundary. We define a quasi

Morse-Smale complex of f as a decomposition of M into open cells that satisfies the

following properties:

(i) all nodes are from U ∪ V ∪ X ∪ Y , all arcs are from R ∪ S ∪ T , and all quad-

rangles are from P ∪ Q,

(ii) there are no critical points within the arcs, quadrangles and crystals, and

(iii) each arc in S is on the boundary of four quadrangles, which in a cyclic order

alternate between P and Q.

Note that a quasi Morse-Smale complex can be split into complexes defined by U, P

and Y,Q. These are complexes that are structurally indistinguishable from those of

the descending and ascending manifolds.

Simulating disjointness. Integral lines are not well defined for piecewise linear

manifolds. So, following [30], we construct monotonic curves and surfaces that never
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cross. These curves and surfaces can merge together and fork later. When a curve or

surface merges with another curve or surface, we pretend that they remain infinites-

imally close to each other without crossing until they either fork or reach a common

critical point.

3.3 Data Structures

We use two main data structures, one for the triangulation K of the 3-manifold M

and the other for the Morse-Smale complex Q of the function f : M → R. The two

consist of various pieces and are connected to each other as shown in Figure 3.3.

D DQ

K

D

S S S S3210

D0 1 2 3

Figure 3.3: The data structures used to represent the triangulation and the Morse-Smale
complex.

46



3.3.1 Triangulation

The triangulation of M is a 3-dimensional simplicial complex consisting of vertices,

edges, triangles, and tetrahedra. Miscellaneous information about the simplices is

stored in the arrays S0, S1, S2, and S3. Each simplex is identified by its dimension

and its index in the corresponding array. The connectivity between the simplices is

represented by another array, K, whose elements are sextets of pointers that connect

the triangles in rings about the edges. This data structure is akin to the edge-facet

structure introduced in [23]. As illustrated in Figure 3.4, a sextet is made up of the

six ordered versions of a triangle.

The operation enext rotates the ordering of the three vertices cyclically by one

position to the left. The operation sym exchanges the first two vertices in the ordering.

Both move from one to another ordering in the same sextet, but enext moves within

one orientation while sym changes between orientations. Using explicit pointers, a

sextet supports the operation fnext, which moves from an ordered triangle abc to the

next and similarly ordered triangle abd in the ring about the edge ab. Furthermore,

it supports the operation org, which moves from abc to its origin, a. Note that

an ordered triangle abc uniquely defines four ordered simplices, namely a, ab, abc,

and abcd, and can therefore be interpreted as a vertex, an edge, a triangle, or a

tetrahedron, whichever is appropriate or convenient.

To illustrate the functionality of this data structure, consider the computation of

the link of a vertex p = pi. Letting puv be one of the triangles that share that vertex,

we use depth-first search to traverse all triangles in the star. For each visited triangle

pxy, the edge xy belongs to the link of p and so do the triangles that precede and

succeed pxy in the ring around xy. Given the initial triangle puv, the search takes

time proportional to the number of edges in the link.
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Figure 3.4: Algebra of ordered triangles.

With an additional test of the vertex heights, we can identify the lower link as

a subcomplex of the link. We use the reduced Betti numbers of the lower link to

classify the vertex p as regular, minimum, 1-saddle, 2-saddle, maximum or multiple

saddle. The appendix describes the classification process in detail. We get the

reduced Betti numbers by keeping track of the components in the lower link. If

there are no components then β̃−1 = 1 and β̃k = 0 for all k 6= −1, so p is a minimum.

If the lower link is equal to the link then β̃2 = 1 and β̃k = 0 for all k 6= 2, so p

is a maximum. Otherwise, β̃−1 = β̃2 = 0 and β̃0 is one less than the number of

components. We get β̃1 from β̃0 and the Euler characteristic χ = s0 − s1 + s2, where

sk is the number of k-simplices in the lower link of p: β̃1 = β̃0 + 1 − χ. p is regular

if β̃0 = β̃1 = 0 and it is a multiple saddle combining β̃0 1-saddles and β̃1 2-saddles,

otherwise.

3.3.2 Morse-Smale Complex

The Morse-Smale complex of f consists of simple open cells of dimensions 0, 1, 2,

and 3, which we refer to as nodes, arcs, quadrangles, and crystals. Miscellaneous

related information is stored in arrays D0, D1, D2, and D3, as shown in Figure 3.3.
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Each cell is identified by its dimension and its index in the corresponding array. The

connectivity is stored in another array, Q, whose elements are octets of pointers, as

illustrated in Figure 3.5. Similar to ordered triangles, we have the operations anext

sym

anext

an
ex

tanext anext anext

anextanextanext

sy
m

sy
m

sy
m

sy
m

sym

sym

sym

d c

ba

dcba adcbcbad

dabc

badc

abcd bcda cdab

Figure 3.5: Algebra of ordered quadrangles.

and sym, which move between orderings in the same octet. The operation qnext takes

us from abcd to the next similarly ordered quadrangle abef in the ring about the edge

ab. Finally, the operation org takes us from abcd to its origin, a.

A node in the Morse-Smale complex is just one of the vertices of the triangu-

lation, but arcs and quadrangles are more complicated objects that need elaborate

representations. Each arc is an open sequence of edges and, as indicated in Fig-

ure 3.3, it is stored as a sequence of oriented edges or pointers into K. Similarly,

each quadrangle is an open patch of triangles and, as indicated in Figure 3.3, it is

stored as a 2-manifold of oriented triangles or pointers into K. The connectivity can

be recovered from the connectivity information in K, so we can get by with simple

and compact representations. It is important that each arc and quadrangle has its

own fixed orientation, which is then used in the algebra illustrated in Figure 3.5.

We have to be prepared to store partial complexes while constructing the Morse-

Smale complex and to add new quadrangles and arcs. As a general policy, we add
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a new cell when its description in terms of simplices in K is complete. Another

complication is the possibility that cells may fold onto themselves and onto each

other. We keep the data structure of the complex oblivious to such events. Instead,

we use additional data structures to resolve such degeneracies. We describe these

next.

3.3.3 Normal Structures

We say that arc or quadrangle folds onto itself if it contains a point of M multiple

times. Similarly, arcs and quadrangles coincide if they share points of M . While

permitting such events, we simulate an infinitesimal separation so that we can reason

about sidedness and incidences in an unambiguous manner, as we will be able to

without any additional data structures in the absence of folding. A normal disk

captures the infinitesimal structure around an edge and a normal interval captures

the infinitesimal structure normal to a triangle.

The normal structures support the decision making during the construction of the

Morse-Smale complex. They are transient data structures that are used only while

building the Morse-Smale complex. We list the operations supported by the normal

structures, treating them as abstract data structures. Specific implementation with

varying running times per operation can be found in standard algorithm texts [20].

A normal disk belongs to an edge in K and has the structure of a planar graph.

There are points in the interior of the disk, called base points, that represent de-

scending, ascending and intersection arcs containing the edge. There are also points

on the disk boundary that represent how quadrangles containing the edge enter and

exit the disks. The normal disk also contains between these points that represent

the quadrangles containing the edge. A path may connect an interior point to a

boundary point, two boundary points, or two interior points. The third case is a
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degenerate situation where part of a quadrangle collapses onto an arc. The normal

disk contains multiple paths if many quadrangles contain the edge. We require that

all these paths meet the boundary of the normal disk at distinct points. An easy

combinatorial argument shows that for each fixed k and l, there is a finite number

of topological types for the set of paths in an normal disk with k base points and l

paths. In fact, if we fix N points on the boundary of the normal disk and Ni direc-

tions ordered cyclically around each base point, with 2l = N + N1 + . . . + Nk, then

the family determines and is determined by a pairing of these points together with

a placement of the base points that are not connected to the boundary by any path.

However, not every pairing and/or placement can occur.

A difficulty in implementing the normal disk comes from the fact that the graph

may have more than one component and these may be nested. The data type supports

the following operations:

INSERT/DELETE a point (arc) or a path (quadrangle).

MERGE/SPLIT normal disks.

DECIDE whether a given path separates two components or two points.

A normal interval belongs to an ordered triangle in K and lists the ordered quadran-

gles that contain it. The data type supports the following operations:

INSERT/DELETE an ordered quadrangle.

MERGE/SPLIT normal intervals.

Note that the information stored in the normal interval of a triangles is duplicated in

the normal disks of its edges. So, we need not store the normal intervals explicitly.

However, we refer to them in our description for clarity reasons. Figure 3.6 illustrates

folding events and the corresponding normal structures.

51

b

b
a

a

x’
x

x

Figure 3.6: Top: a descending disk starting at a 2-saddle x that folds onto itself and
the normal disk of an edge in the folded region. The two paths x and x′ correspond to
the oriented descending disks passing through the edge. Bottom: two descending disks
merging along their boundary arcs. The normal disk of the shared edge has two vertices in
the interior (base points) corresponding to the two arcs.

3.4 Algorithm

In this section, we first give an overview of the algorithm followed by detailed de-

scriptions of how we construct descending and ascending manifolds.

3.4.1 Overview.

A quasi Morse-Smale complex is constructed during two sweeps over the 3-manifold.

The first sweep is in the order of decreasing function value (height) and computes the

descending manifolds. The second sweep is in the order of increasing height, which

is the preferred order for computing the ascending manifolds. However, instead of
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computing the two collections independently, we use the structure provided by the

descending manifolds and add the ascending manifolds accordingly.

Step 1. Construct the complex formed by the descending manifolds.

Step 2. Construct the ascending manifolds in pieces inside the cells formed by the

descending manifolds.

Some routing decisions in Step 1 require rudimentary structural information about

the ascending 2-manifolds, so we compute that already in Step 1. We compute

the intersections between the descending and the ascending 2-manifolds before we

construct the latter. It is in fact easier to compute these intersections first and then

widen them into the ascending 2-manifolds. An overriding goal is to get the structure

of the quasi Morse-Smale complex right, and to achieve that goal we create various

kinds of degeneracies and use the normal structures to help in resolving them when

necessary. In order to streamline our description of the various steps in the algorithm,

we denote the vertices of K by p1, p2, . . . , pn assuming f(p1) > f(p2) > . . . > f(pn).

Assuming a quasi Morse-Smale complex without any folding events, we claim a

running time that is bounded from above by nlog(n) plus the input size. The nlog(n)

term covers the time needed to sort the n vertices by height. The input size is the

number of simplices in K. By choice of the data structure representing K, Lk pi can

be computed in time proportional to its size. Similarly, the classification of pi, which

reduces to counting the simplices and the components in the lower link, can be done

in time proportional to that size. By definition, the size of the link is the number

of simplices it contains, and because it is a two-dimensional sphere, this is 3ti + 2,

where ti is its number of triangles. Each triangle belongs to only two links, which
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implies that the total size of all vertex links is

n
∑

i=1

3ti + 2 = 6t + 2n,

where n is the number of vertices and t is the number of triangles in K. As we will see

later, the above time analysis applies to most steps taken by our algorithm. Indeed,

we typically work inside a vertex link and compute simple sub-structures, such as

shortest-path trees and circles separating oceans and continents from each other. We

will see that with the assumption of unit length edges both tasks and miscellaneous

others can be performed in time proportional to the size of the link and, in total,

proportional to the size of K. The output size is the total number of simplices used

to describe the complex. In the assumed absence of any folding events, the output

size is less than the input size and can therefore be neglected in the running time

analysis.

The assumption of no folding among the arcs and quadrangles in the quasi Morse-

Smale complex is however not very realistic. Indeed, we do expect folding in practice

and this is the reason why we have introduced the normal structures in the first

place. A triangle can belong to arbitrarily many quadrangles and an edge can belong

to arbitrarily many arcs. The output size is therefore no longer bounded from above

by the input size and hence the running time of the algorithm is bounded from above

by nlog(n) plus the input size plus the output size.

3.4.2 Descending Manifold Construction

We compute the descending 1- and 2-manifolds simultaneously during one sweep. To

simplify the explanation of how this is done, we first discuss them separately, restrict-

ing our attention to simple critical points. One of the delicate parts of the construc-

tion is keeping track of degenerate situations and how they should be resolved. These
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include both foldings and coincidences where descending and/or ascending manifolds

overlap and need to be separated. As mentioned in the previous section, we deal

with these degenerate situations with the help of special data structures, and we will

explain how this is done as we describe the construction.

Descending 1-manifolds. Each descending 1-manifold is an open interval that

belongs to and includes a 1-saddle p = pi. It consists of two descending arcs and

we call p the root of the 1-manifold and of its arcs. As illustrated in Figure 3.7, the

1-manifold descends from its root on both sides and, by simulation of the Morse-

Smale condition, ends at minima of f . It is possible that the two arcs end at the

same minimum, but because they do not contain that minimum, their union is still

an open interval and not a closed circle. In the Morse-Smale case, all vertices of the

Figure 3.7: The descending 1-manifold rooted at a 1-saddle. The spheres sketch the
links of the root, a regular point, and one of the two minima.

1-manifold except for its root are regular, but in the piecewise linear case it is also

possible that the 1-manifold passes through another critical point pj. We have j > i

because pj is necessarily lower than the root. For an arc it makes little difference

whether it passes through a regular or a critical point. However, since pj starts its
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own descending manifold, we need to make sure that the arcs descending from pi and

pj are consistent in the sense of simulated disjointness. A consistent choice of edges

will be automatic in the descending case because we extend each arc by adding the

edge from the current endpoint to the lowest vertex in its lower link. This choice of

extension implies, for example, that once two arcs merge, they go together until they

both end at the same minimum. The structure can be much more subtle, however, if

descending disks and other elements of the structure intersect these arcs as we will

see later.

We distinguish between three operations in the construction of the descending

1-manifolds: starting, extending and gluing. The same three operations also occur in

the construction of descending 2-manifolds, and they are processed within the same

logical structure. The starting operation applies if p is a 1-saddle and starts the two

arcs of the corresponding 1-manifold using edges from p to the lowest vertex in each

ocean of the link. The extending operation continues all descending arcs ending at

p by adding an edge from p to the lowest vertex in its lower link. An exception to

this rule occurs if p is a 1-saddle. In this case, we will later start an ascending 2-

manifold manifested in the link by a closed cycle in the continent that separates the

two oceans. We then extend each descending arc to the lowest vertex in the specific

ocean that is not separated from the arc by that ascending 2-manifold. The gluing

operation applies if p is a minimum, which it declares a node of the Morse-Smale

complex, and glues the descending arcs ending at p to each other.

Structure of a 2-manifold. The construction of the descending 2-manifolds is

more complicated than that of descending 1-manifolds. We begin by discussing their

structure and by formulating an invariant maintained by the algorithm. Each de-

scending 2-manifold is an open disk that belongs to a 2-saddle, which we call its root.

The disk descends from the root, which is its highest vertex. Its boundary is a circle
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along which we alternately encounter 1-saddles and minima joined by descending

arcs. This boundary circle might be partially glued to itself along one or more arcs.

Note that this is fundamentally different from the case in which the disk folds onto

itself: the folding can be simulated away since it does not happen for smooth func-

tions, while the boundary gluing is an inherent feature of descending 2-manifolds. It

is important that the descending 2-manifold does not contain its boundary, else it

would not necessarily be a disk. In the most extreme case, the boundary circle is a

single vertex so that the closure of the disk is a sphere.

Beyond being an open disk which descends from its root, we require that the

restriction of f to the descending 2-manifold has no critical points other than the

maximum at its root p. This property is guaranteed by an invariant maintained

during the construction. At any moment, we have an open disk whose boundary

is partially final or frozen and partially unfrozen. The frozen boundary grows from

the empty set to a collection of open segments, which eventually merge to form a

complete circle. The unfrozen boundary shrinks from a complete circle to a collection

of closed segments, until it eventually disappears.

Disk Invariant. Let q be a vertex in the unfrozen portion of the boundary of a

disk and let qu be an interior edge. Then u is either an interior vertex or a

frozen boundary vertex, and f(u) > f(q).

Note that the Disk Invariant prohibits interior edges that connect two unfrozen

boundary vertices. This implies that as long as the entire boundary is unfrozen,

there are no interior edges connecting two boundary vertices, and all edges descend

from the interior to the boundary. Figure 3.8 illustrates the resulting structure of a

descending disk. A regular vertex u in the restriction of f to the disk is characterized

by a non-empty connected lower link. In other words, the edges in the star change
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between descending from u to descending towards u and back again exactly once

around u. The disk is extended at the highest unfrozen vertex q which either lies in

u

p

q

Figure 3.8: A portion of the triangulation of a partially constructed descending 2-man-
ifold. The edges are oriented from the higher to the lower endpoints.

the interior of an unfrozen boundary segment or is the endpoint of a frozen boundary

segment. In the former case, all interior edges descend towards q. In both cases we

maintain the Disk Invariant by extending the disk such that all newly added edges

descend from q. It follows that the only new interior vertex, which is q itself, is a

regular point of f restricted to the disk.

Starting a 2-manifold. We start descending disks at 2-saddles and extend them

at all unfrozen boundary vertices. Let p = pi be a 2-saddle, as shown in Figure 3.9,

and let q be the lowest vertex in its link. By assumption, the lower link is a retract

of the belt-like ocean around the link, and q belongs to that ocean. We start the

corresponding descending disk by constructing a circle in the lower link, making sure

that the circle contains q as one of its vertices. Even though we call it a circle, it

may fold onto itself, and sometimes such folding is unavoidable. There are many

ways to construct such a circle. We find a short circle using the shortest-path tree
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q
p

Figure 3.9: The disk rooted at p starts by connecting p to a circle in the belt-like ocean
that passes through the lowest vertex q.

rooted at q that spans the lower link. Here we stipulate unit length edges so that

shortest translates to minimum number of edges. After constructing the tree, we

classify non-tree edges in the lower link depending on whether or not they divide

the two continents. The circle is then defined by the dividing non-tree edge in the

lower link whose two endpoints minimize the sum of distances to q. Returning to the

classification, we note that the tree cuts the link open but keeps it connected. If we

cut along a non-tree edge, we split the link into two disks. Consider the case where

one of the disks contains both continents while the other is contained inside the ocean.

The latter disk is triangulated and, by construction, its triangulation has all vertices

on its boundary so it can be collapsed. We can therefore remove the triangles from

this disk by repeated collapsing: at each step remove a triangle that has both edges

on the boundary and declare the third edge a new boundary edge. The classification

of non-tree edges in the lower link thus proceeds by repeated collapsing, which marks

all non-dividing edges and leaves all dividing edges unmarked.

Extending a 2-manifold. In the non-degenerate case in which we are currently

working, an interior vertex of a disk is typically a regular point of f , although it can
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also be a 1-saddle or a 2-saddle. We first consider a regular point p = pi and assume

it belongs to the boundary of a descending disk. Recall that we visit the vertices in

the order of decreasing height, so p is the highest unfrozen boundary vertex. There

are three cases, illustrated in 3.10. In the first case, p is adjacent to two unfrozen

boundary edges and has two neighbors a and b, connected to p by unfrozen boundary

edges. In the second case, there is only one unfrozen neighbor, c, with the other

neighbor frozen. In the final case both neighbors are frozen, as are the edges, but p is

not yet frozen. The algorithm treats the first two cases similarly and simultaneously.

a
b c

q

p

d f
e

Figure 3.10: Three descending disks that touch p and intersect the link in a path each.
One path starts and ends in the ocean, another starts in the continent and ends in the
ocean, and yet another starts and ends in the continent.

Specifically, it constructs a shortest-path tree from the lowest vertex q in Lk−p. The

points a and b belong to the lower link and are therefore vertices of the tree. We

connect a to q along the unique path in the tree and extend the corresponding disk

by connecting p to the edges of that path. We do the same for b and c and for all

other vertices that are connected to p by unfrozen boundary edges. Note that no two

paths cross one another, but it is possible that some paths fold onto each other and

we must keep track of sidedness as before. In the third case where both neighbors of
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p are frozen, the disk is developing a structure that we call a spike. The descending

paths that enter at the points e and f , which may be the same, merge or continue

merged as they exit from p to q. The disk is continued by imagining an infinitesimal

strip that sits between the two merged paths. As the process continues from this

point on this spike is then treated for lower vertices as a degenerate version of this

third case, where both endpoints and the descending path all degenerate to a single

point.

There is no essential difference in the computations if p is a 2-saddle, except that

p itself starts an additional descending disk. By using the same tree for starting disks

and for extending disks we avoid intersections, but as usual, folding onto themselves or

each other is allowed. The case of a 1-saddle p is more interesting. If the two neighbors

of p along the boundary of the disk are both unfrozen and belong to opposite polar

oceans in the link then we do the same computations within both oceans. The point

p remains on the boundary, but its two neighbors change to the vertices that are

adjacent along the descending 1-manifold rooted at p. Before continuing, we declare

p and the two incident boundary edges frozen for the descending disk. If the two

neighbors of p along the boundary of the disk belong to the same ocean, then we

proceed as we did for a regular point, working in this single ocean. In this case none

of the new edges are frozen.

If either or both neighbors of p are frozen we have a special situation to consider.

A frozen endpoint lies on a descending arc that will be continued parallel to one of

the ends of the descending 1-manifold started at p. In order to make routing decisions

in this case, we require the structure of the ascending disk that originates at p. We

discuss this situation later.

Simulated disjointness. Before proceeding to the general case of a multiple-saddle

with all the complications that this will bring, it is time to introduce some extra
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structure to describe the singular behavior we have encountered so far.

First consider the coincidence of two descending arcs. One way this can happen is

when we have a multiple-saddle. In this case a descending arc will be started for each

ocean, and descending 1-manifolds will be described by a pairing of some of these arcs.

When an arc is paired with more than one other, it will represent a coincidence. The

other way that this happens among descending arcs is when one encounters another

critical point with more than one ocean. Then it will be continued in parallel to one

of the arcs started at this point, creating a coincidence. We can track coincidences

by simply assigning a multiplicity to the edges they share. When descending disks

meet these descending arcs, however, we need more precise information about which

disk intersects which copy, etc.

The coincidence of a descending disk and a descending arc can occur in an es-

sential way, when the descending arc is part of the boundary of the closure of the

descending disk, or in an incidental or tangential way, when a descending arc contacts

a descending manifold either at its root or at another point. In either case the arc

always follows the steepest edge path and the descending disk always contains the

lowest point in its link at each step of the construction, so once the contact is made

the descending arc remains inside the disk until it terminates at one of the minima on

the boundary of the disk. The simulation then ”pushes” the arc off in the direction

normal to the disk that it entered. When several disks contain a descending arc in

their boundary, they are ordered consistently around it to prevent them intersecting.

We store this information in the normal disks associated with edges in the arc.

When two descending arcs merge at a point p, their normal disks are joined

along a segment of their boundary to make a new normal disk for the outgoing

edge. Furthermore, their sets of paths are merged (sometimes a path is unchanged,

sometimes two paths join to make a new single path). A coincidence also happens
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when one descending disk contains the root of another or when two descending disks

come together at some later point in their construction. Both cases show up in

the process of extending a 2-manifold. After an extension step at a point p has

been completed the various descending disks are ordered in normal intervals of the

triangles that they pass through in St p.

Simultaneous construction. As mentioned earlier, the descending arcs and disks

are really constructed simultaneously, in a single sweep over the 3-manifold. Fur-

thermore, instead of unfolding the multiple-saddles into simple ones, we work with

general points where possibly β̃0 + β̃1 ≥ 2. Notice that for both regular and critical

points of all types, the link has β̃0 + 1 oceans and β̃1 + 1 continents. We process a

vertex p in five steps:

Step 1.1. Start β̃1 descending disks.

Step 1.2. Prepare β̃0 ascending disks.

Step 1.3. Start β̃0 descending 1-manifolds.

Step 1.4. Extend descending arcs that touch p.

Step 1.5. Extend descending disks that touch p.

Figures 3.19-3.23 illustrate these steps by showing the structural changes within the

link of a vertex that has three oceans and three continents. The primary difficulty

in the simultaneous construction is the coordination of the descending and ascending

arcs and discs so that they all intersect in a locally and globally consistent manner

that correctly simulates the structure we would expect for a smooth function. Keeping

track of all this requires some terminology that we now introduce.

The initial structure at p. When we arrive at the vertex p during the construction

of descending manifolds in the downward sweep, certain structures will already have
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been created in its link. We restrict our attention to the structures contained in

descending 1- and 2-manifolds that begin above and contain p. Other tangential

structures lying on Lk p are handled either at an earlier or a later stage in the sweep.

A D-point is the vertex in Lk p where one or more descending arcs that pass

through p intersect its link. A D-point x comes equipped with a normal structure,

namely that of the edge xp. A D-path is the path of intersection between Lk p and

a descending disk that contains p. If this intersection is closed then we refer to it as

a D-cycle. When we arrive at p, each D-path has its vertices in a single continent

except for its endpoints which either lie in an ocean or at a D-point. The normal

structures give the incidence relationship between the D-paths and D-points. We

distinguish between five types of D-paths:

(i) Both endpoints lie in a single ocean.

(ii) Each endpoint lies in a different ocean.

(iii) One endpoint lies in an ocean and one at a D-point.

(iv) Both endpoints lie on D-points.

(v) The entire path lies within a normal disk for a single D-point.

The final descending structure at p. Steps 1.1 to 1.6 will create the following

structures at p: when β̃0 > 0, a descending arc is begun for each ocean by adding an

edge joining p and an appropriate vertex in the ocean. p now becomes a D-point for

each such vertex in the oceans. The newly added edges will have associated normal

disks whose base points and paths will be inserted as the rest of the structure is

constructed. The descending 1-manifolds that begin at p are described by a set of β̃0

pairs of these newly added edges with each edge appearing in at least one pair.

Each ocean O has a graph consisting of a shortest path tree rooted at the lowest

point q plus β1(O) marked edges that along with edges in the tree make β1(O) cycles.
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The inclusion of the graph into O is a homotopy equivalence. Hence, the graph is a

union of β1(O) D-cycles, each obtained by following the two ends of a marked edge

back to q. Each edge of the graph will have an associated normal interval, namely

that of the triangle containing the edge and p, that stores the number of oriented

times the D-cycles pass through it. Note that only one pass occurs through a marked

edge.

Each continent C with β1(C) > 0 has a graph consisting of a tree plus β1(C)

marked edges that along with edges in the tree make β1(C) A-cycles. The tree is

rooted at the highest point of its continent. Again each edge has a normal interval

structure that has similar properties as the edges of graphs in the oceans.

The descending disks and arcs ending at p are extended into the oceans. p becomes

a D-point for each vertex to which a descending arc is extended to. The descending

disks meet Lk p in a collection of D-cycles and D-paths that are obtained by extending

the D-paths in the initial structure at p. Each D-cycle passes through the lowest point

of the unique ocean that it meets and each D-path either ends at the lowest points

of the two oceans it connects, connects the lowest point in an ocean to a D-point in

a continent, connects two D-points that lie in a single continent, or lies completely

within a normal disk as a path connecting two base points. As always, each edge

contained in a D-path or D-cycle has an associated normal interval representing the

directions and multiplicity of the elements that pass through it. We now describe the

five steps in the construction.

Steps 1.1 and 1.2: Constructing families of circles. In Steps 1.1 and 1.2, we

start a family of descending disks and prepare the starting of the ascending family.

The former are contained in the oceans and separate the continents, while the latter

lie on the continents and separate the oceans, as illustrated in Figure 3.11. We extend

the algorithm described earlier to construct the first family of circles in the oceans.

65

Figure 3.11: We draw β̃1 = 2 (dotted) circles to separate the three continents and β̃0 = 1
(dashed) circle to separate the two oceans. The descending disks that start at p intersect
the link in the dotted circles, and the ascending disk intersects the link in the dashed circle.

We start with the tree consisting of shortest-paths from the lowest vertex in each

ocean, and classify non-tree edges in the lower link depending on whether or not

they divide the continents into two non-empty sets. Once we have selected a dividing

edge, we add it to the tree that contains its endpoints, thereby making a cycle, and

continue using collapses to eliminate edges that do not divide the continents. We

repeat until we have added β̃1 edges to the collection of trees. These edges define the

β̃1 cycles required in Step 1.1.

We repeat the same algorithm in Lk+p switching the roles of oceans and con-

tinents. This will give the β̃0 circles required in Step 1.2. Note however that the

construction of the second family is complicated by the presence of D-paths from the

descending disks of higher vertices. We next describe these complications and how

we cope with them.

Transversal intersections. Each relevant D-path intersects at most two oceans and

one continent. Clip the path to the boundary of that continent and let x and y be

the endpoints of the clipped path. The four possible cases are shown in Figure 3.12:
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• both x and y lie in the continent ( d1);

• x lies in the continent and y lies on the boundary of the continent (d2, d3 and

d4);

• x and y lie on a common boundary component (d5);

• x and y lie on different boundary components (d6).

d

d
d d
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Figure 3.12: Some of the descending disks passing through p form barriers in our effort
to draw circles preparing ascending disks within the continents. The squares are gateways
at which the dashed circle may cross the paths.

We take precautions to ensure that the ascending disks either do not cross the D-

paths or cross them minimally and transversally. In particular, if a D-path meets

Lk p in two different oceans then it should cross every ascending disk, which is started

by a circle separating the two oceans, exactly once. We cope with this difficulty by

modifying the continents before building the circles.

Consider a single continent C, and let G be the graph made up of the edges

of the D-paths that meet it. Cut C open along G in order to form a barrier that

ensures transversal intersection between a D-path and a circle constructed in the

continent. In practice, we create these barriers by duplicating all edges and most

vertices of G that lie in C. A few vertices, called gateways, are not duplicated. These
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gateways are potential points of intersection between the D-paths and circles in the

continent. The two copies of a duplicated edge or vertex lie on different sides of the

barrier and are connected to simplices in the star lying on the respective side. G

could have vertices with degree greater that two. For example, the D-paths d2, d3

and d4 in Figure 3.12 share a D-point. In this case, the vertex could possibly be split

into multiple vertices partitioning the neighborhood of the vertex in C into multiple

wedges. We now describe how we choose the gateways. The graph G consists of one

or more connected components. Consider a component that consists of vertices with

degree at most two. This could be an edge path of type (iii) or (iv) or two paths

of type (ii) alongwith perhaps a sequence of paths of type (i) that together make a

simple path connecting one or two components of the boundary of C. We choose the

highest vertex of this graph component as a gateway.

Let V3 denote the set of vertices in G that have degree at least three. The second

type of graph components have at least one vertex from V3. These components

contain two types of paths: type I that connect the boundary of C to a vertex in V3;

type II that connect two vertices in V3. Let there be k paths of type II in G. If all

vertices in V3 are made gateways then β1(C) increases by k. This is because splitting

along a type II path introduces a loop whereas splitting along a type I path leaves

β1(C) unchanged. If none of the vertices in V3 are made gateways then C shatters

into multiple regions. We need to choose an appropriate subset of V3 as gateways

such that no loops are introduced and C remains connected. Identifying this subset is

easier if we construct a graph, G̃, representing the connectivity between the different

regions of C. G̃ is constructed as follows: Add the set of vertices from V3 and add

a vertex for each region of C formed when none of the vertices in V3 are gateways.

Introduce an edge between a vertex associated with a region of C and a vertex from

V3 if the region contains the vertex. Our goal now reduces to finding a subgraph, T̃ ,
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of G̃ that is homotopy equivalent to C and containing all vertices of G̃. The edges

of G̃ that are not included in T̃ will correspond to the splits of vertices in V3. If a

vertex of V3 is not split then it becomes a gateway. We choose all but one boundary

component of C and follow the regions adjacent to each component, tracing edges

of G̃ in this process. Include these edges into T̃ and then add enough edges to T̃ in

order to ensure that all vertices of G̃ are included and no loops are introduced in T̃ .

Figure 3.13 illustrates the use of G̃ to determine the gateways.

(a)

(c)

(b)

Figure 3.13: Creating barriers in continents to ensure minimal and transversal inter-
sections between ascending and descending disks: an illustration for a continent that has
three adjacent oceans. (a) Multiple descending disks could pass through the continent.

(b) Compute graphs G̃ and T̃ . Vertices of G̃ are shown as black disks and its edges are

shown in bold. Edges belonging to T̃ are marked. (c) Split a vertex of V3 if its incident

edges are not included in T̃ .
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After creating the barriers in C, we can construct the shortest-path trees rooted

at the highest point in the continent and route the circles as explained before. This

completes steps 1.1 and 1.2. Note that in both cases we make additions to normal

intervals and disks where appropriate to track the new elements. Notice that the A-

cycles constructed by this procedure may pass through some of the D-points. This is

in fact what typically happens at a vertex of G with degree greater than two. When

this happens, the circles are routed through the normal disk so that they miss all the

base points and intersect the paths inside the normal disk minimally. This routing

will be part of what determines the pairings of descending arcs that make descending

1-manifolds.

Steps 1.3 and 1.4: Starting and extending descending arcs. When β̃0 > 0,

there is a descending 1-manifold dual to each ascending disk starting at p. We start

a descending arc for each ocean by adding an edge from p to its lowest point. The

descending 1-manifolds are then described by pairing these arcs. The A-cycles divide

Lk p into regions, each containing a single ocean. The descending arcs for two oceans

are then paired if and only if they are separated by a single A-cycle. A base point is

added to the normal disk of each edge that constitutes a descending arc originating

at p. This normal disk could contain a path representing a descending disk started

at p into this ocean. The D-cycle corresponding to this descending disk divides Lk p

into two components and hence separates the descending arcs paired with the one in

its ocean into two sets. The path in the normal disk separates the base points in the

same way as the D-cycle separates the descending arcs.

The ascending disks originating at p are also used to tell us how to extend de-

scending arcs that pass through p. This is more subtle because the ascending disks

can cut through the normal disk associated with a D-point. The descending arc is

routed into an ocean without causing any intersections with ascending disks.
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Step 1.5: Extending descending disks. We extend the procedure described

earlier for extending descending disks to the case of multiple oceans. We start with

a D-path that could be one of five types as listed earlier. In the first three types,

atleast one end of the D-path lies in an ocean. We extend the end(s) lying in an

ocean by a path to the lowest point in the ocean thereby creating a D-cycle. We also

add a path in the normal disk of any D-point that the extension meets. Each such

path in the normal disk will connect two boundary points and will not meet any base

point. If the D-path crosses an A-cycle, then both ends are extended to lowest points

in the appropriate oceans. This extension might result in the creation of a spike in

which case a path connecting base points is added to the normal disk. Extending the

fourth type of D-path restricts it to the normal disk of a D-point creating a spike.

The ocean containing this D-point is not separated from the D-path by an A-cycle.

We create a path between two new base points in the normal disk of this D-point. In

the fifth and final case, the D-path connects two base points in the normal disk of a

D-point representing a previously created spike. This spike is simply carried through.

3.4.3 Ascending manifold construction

We construct the ascending manifolds during a sweep of the 3-manifold in the direc-

tion of increasing function value.The construction is similar to that of the descending

manifolds, except for the complications caused by the fact that the latter already

exist. The added constraints are expressed in terms of barriers formed within ver-

tex links. Conceptually, we first construct the ascending 1-manifolds by connecting

2-saddles to maxima and the intersection curves between the descending and ascend-

ing 2-manifolds by connecting 1-saddles that lie on the boundary of a descending

2-manifold to its source 2-saddle. The intersection curves and ascending arcs trace

the boundary of the quadrangles that constitute the ascending 2-manifolds. These
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quadrangles can now be filled in one at a time. The algorithms performs all these

constructions simultaneously.

As with descending manifolds, let’s first understand the constructions one at a

time in the case where all critical points are non-degenerate. We will also suppress

the discussion of normal disks and intervals for now.

Intersection curves and ascending arcs. Recall that for a Morse-Smale function

on a 3-manifold, the intersection between a descending disk D and an ascending disk

A is either empty or is a curve connecting their roots. From D’s point of view, the

curve starts at a 1-saddle on its boundary and increases strictly monotonically until

it ends at its root. The Disk Invariant maintained during the construction of the

descending disks implies that the restriction of f to D has no critical points other

than the maximum at its root. To construct the curve, we thus start at the 1-saddle

and repeatedly extend the path by connecting its endpoint to the highest adjacent

vertex in the triangulation of D. The curves starting from various 1-saddles on the

boundary may meet but never cross and eventually end at the root of D. Two curves

from different descending disks may also meet, but these cases are resolved along

with the descending disks by simulation of an infinitesimal separation given by the

normal structures.

We start the two arcs of an ascending 1-manifold at every 2-saddle. The algorithm

is similar to the one for descending 1-manifolds, except that we now avoid crossing

any of the already established descending disks. Consider the D-cycle constructed in

the ocean for starting the descending disk from a 2-saddle p. This D-cycle consists

of a tree along with two shortest paths from end points of a special edge e to the

root of the tree. Furthermore, each descending disk that contains p is extended by

adding the path in this tree to its root, thereby forming a new D-cycle or extending

the D-path. In particular, no such D-cycle or D-path contains the edge e.
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Consider the connected components of Lk p that are cut out by the D-cycles

and D-paths created while extending the descending disks that pass through p, not

including the D-cycle corresponding to the dist starting at p. We will call the closures

of these components as the slabs of p. Since none of the D-cycles and D-paths contains

e, the slab that contains e meets both continents. We start the two ascending arcs by

connecting p to the highest point in each continent that lies in this slab, making no

intersection with the disks descending from above. If either or both of these points

lie on the boundary of a slab, then the ascending arc is being constructed within

one or more descending disks and the choice of which way to route the arc will be

determined by the normal disk.

Ascending disks. The lowest point of a quadrangle on an ascending disk is the

1-saddle at which the disk is rooted. This 1-saddle is connected to 2-saddles by two

continuous intersection curves emanating from the 1-saddle, and the 2-saddles are

connected to a common maximum along ascending arcs. We construct the individual

quadrangles, which then fit together to form the ascending disk. Each quadrangle

is constructed in a process similar to the one for descending disks. In this case, the

frozen part of the boundary occurs when the boundary of the quadrangle meets either

an intersection curve or an ascending arc. Edges and vertices on these curves and

arcs are frozen, except for the vertices where we transition from frozen to unfrozen

edges, which are considered unfrozen. The process also maintains the analogous Disk

Invariant with the inequality reversed.

Let p = pi be a 1-saddle. The ascending disk at p has already been prepared

during the descending sweep. It meets the continent in a circle, which is cut into a

collection of segments by the descending disks that pass through p. The collection

of triangles containing p and edges from each such segment from the initial portion

of a quadrangle. The endpoints of these segments lie on intersection curves. To
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discuss the extension of an ascending quadrangle, suppose that p is the lowest point

on its unfrozen boundary. In this case, the picture is similar to that of Figure 3.10

with the roles of oceans and continents reversed i.e. the two points adjacent to p on

the boundary of the quadrangle either both lie in the continent of p or one lies in

the continent and the other is frozen in the ocean. These points all lie in a single

slab. (This is in fact why we work with quadrangles!) In each case, connect the end

points in the continent to the highest point in the slab that contains them, using a

shortest path tree that spans the slab and is rooted at its highest point. With this

background, we are now ready to describe the full construction.

Simultaneous construction. We actually construct the intersection curves, as-

cending arcs and ascending quadrangles in a single pass from bottom to top without

explicitly splitting multiple-saddles into simple ones. As before, we consider a gen-

eral point p = pi, which is not a maximum or a minimum and has β̃0 + 1 oceans and

β̃1 + 1 continents and describe the construction when we reach p during the sweep.

We process p in six steps:

Step 2.1. Start β̃1 ascending 1-manifolds.

Step 2.2. Start β̃0 ascending disks.

Step 2.3. Start intersection curves.

Step 2.4. Extend ascending arcs that touch p.

Step 2.5. Extend intersection curves that touch p.

Step 2.6. Extend ascending quadrangles that touch p.

These steps are illustrated in Figures 3.24-3.26 for the example that we considered

earlier during the descending manifold construction.

The initial structure at p. Just as for the descending pass, when we arrive at the

point p during the construction of the ascending manifolds, certain structures will
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already have been created in its link. As before we only care about those structures

that contain p (see Figure 3.24).

The initial structure at p contains all the elements of the final descending struc-

ture. Additionally, it contains three new elements: ascending arcs, ascending disks

and intersections curves that have come from below p. The ascending arcs show up as

points, called A-points, in the oceans of p. The ascending disks interesect Lk p along

paths whose interior vertices lie in the oceans and endpoints lie either in a continent

or on an ascending arc in an ocean. We call these paths A-paths. The intersection

curves appear as single points in Lk p where A-paths intersect D-paths and D-cycles.

Figure 3.24 shows an ascending arc, depicted as a square box, lying on the A-path

that contains y.

Points describing ascending arcs and intersection curves have associated normal

disks. These normal disks contain more information than those encountered in the

descending sweep because the disks now store both descending and ascending arcs

and disks. First of all, there are two types of base points, those for descending arcs

and those for ascending ones. Secondly, there are two types of paths, those that

describe descending disks and those that describe ascending disks. All of these meet

the boundary of the normal disk in distinct points. Finally, the two types of paths

intersect minimally and only at points that correspond to intersection curves.

Steps 2.1 and 2.2: Starting ascending arcs and ascending disks. We start

an ascending arc for each continent by adding an edge from p to the highest point

in the continent, and create a normal disk corresponding to this edge. These arcs

are paired, by duality, with descending disks starting at p. Ascending disks starting

at p were prepared during the descending sweep. We now start constructing them

by adding in the triangles. In Figure 3.25 ascending arcs are started at the points

labeled 7, 8 and 9. Ascending disks are described by the dashed lines in the figure.
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Step 2.3: Starting intersection curves. Start new intersection curves by adding

the edge from p to points where the A-cycles that start ascending disks intersect

D-cycles or D-paths. At this stage of the construction, all of these points lie in

continents of p and particularly at a gateway. When this gateway is a D-point or

A-point, the intersection curve is represented by an intersection of an ascending path

and a descending path in the normal disk. If there are more than one of these in the

normal disk, then we start an intersection curve for each. When the gateway does

not lie at one of these points, i.e. when it was chosen as the highest vertex of a path

connecting two oceans and did not coincide with a D-point or an A-point, then we

start a new normal disk and store the intersection pattern in it.

Step 2.4: Extending ascending arcs. Each ascending arc that touches p enters

into its link in an ocean and has an associated normal disk. The paths in this normal

disk together with the D-paths and D-cycles lying within the oceans divide the link

into slabs. We continue each ascending arc by adding an edge from p to the highest

point in the slab that contains its entry point and the new edge inherits the normal

disk. If a single normal disk contains more than one A-point and these are routed

to different A-points in the continents, then we split the normal disk along the paths

that separates them and the different edges now inherit the individual sections of the

normal disk.

Steps 2.5 and 2.6: Extending intersection curves and ascending disks. We

first describe the extension of ascending disks. An A-path can be of five possible

types similar to the D-paths while extending descending disks. In the cases where

atleast one endpoint lies in a continent, we connect it to the continent’s highest

point using the shortest path tree that was constructed while preparing ascending

disks. During the process of extension, we avoid intersections within normal disks

except at gateways. In the cases where one endpoint is an oceanic A-point, it is
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possible that the A-path intersects a D-cycle or D-path. In order to avoid this illegal

intersection, it is necessary to add a spike starting from the oceanic A-point and

following the ascending arc henceforth. For example, the A-path ending at y in

Figure 3.26 intersects a D-cycle. One of its endpoints is extended to 8 and a spike is

added towards 7 to make the intersection legal. When the entire A-path lies within

a normal disk of an A-point, it is carried on along with its associated ascending arc.

No additional work needs to be done for the extension of intersection curves. We

recognize and extend them along with the ascending disks.

3.5 Experiments

In this section, we report our experimental results and discuss possible ways of using

Morse-Smale complexes for the analysis of various datasets. We begin with a de-

scription of the datasets and then discuss their visualization using the Morse-Smale

complex and isosurfaces.

3.5.1 Datasets

We use synthetic data to illustrate the structure of the Morse-Smale complex and

demonstrate their use in visualizing and analyzing scientific data from two different

application domains: cryo electron microscopy (cryo-EM) and crystal lattice dislo-

cation studies. All of our data is available as a tetrahedral mesh of the domain

with function values specified at vertices. We add a dummy vertex at infinity along

with new tetrahedra that have the boundary simplices and the dummy vertex as

faces. This ensures that the input to our algorithm is a 3-manifold. We do this just

for convenience and to avoid treating the boundary simplices as a special case in

each step of the algorithm. Table 3.1 lists the datasets along with their respective

sizes. 4pdist and 3mindist are synthetic datasets constructed by sampling analytic
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functions within a unit cube. For the 4pdist dataset, the function is the prod-

uct of distances from four fixed points lying in the interior of the unit cube. The

3mindist dataset is constructed using a function defined as the minimum distance

from three fixed points.

dataset #vertices #tetrahedra

4pdist 1,728 7,986
3mindist 5,832 29,478
dislocation 32,768 178,746
dnaB 125,000 705,894
dnaB-dnaC 125,000 705,894

Table 3.1: List of datasets used for evaluation.

Dislocation data. The dislocation dataset contains results from atomistic simu-

lations of dislocations in a crystal lattice. Atomistic simulation have been very useful

for studying the formation of complex junction structures in metals undergoing work

hardening [12]. Ductile metals bend under tensile stress by performing lateral mo-

tions between planes of atoms. Studies of copper crystals reveal a large number of

mobile dislocations flowing through the solid that eventually collide with one another

to form permanent rigid junctions. If the junction density is sufficiently high, frac-

tures begin to appear because the solid can no longer bend through the dislocation

motion. The dislocation dataset is available as a potential energy map over a 3D

FCC lattice.

Cryo-EM data. Two of our datasets contain cryo-EM images of macromolecules.

These datasets are freely available from the macromolecular structure database main-

tained by the European Bioinformatics Institute [24]. Cryo electron microscopy is a

technique used to determine the structure of biological molecules where the sample

is suspended in vitreous ice for imaging. The vitrified samples are transferred to an

electron microscope where they are imaged using low electron doses. The cryo-EM

datasets are available to us as density maps over a cubic grid. Higher density regions
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in the data correspond to the biological molecule whereas the lower density regions

represent the solution. Cryo-EM datasets are considered to have medium resolution

as opposed to high resolution data available from x-ray crystallography. The latter

provides atomic resolution data but is significantly more time consuming to generate.

We use two datasets: the first is a DNA helicase called dnaB and the second is that

of a complex 1 between dnaB and another protein called dnaC . DNA helicase is an

enzyme that unravels the DNA double helix and breaks the hydrogen bonds. So, it

plays a critical role in the replication process. dnaB is the major replicative helicase

among the 12 present in E-coli. dnaC is also a protein that plays a critical role in

the replication of DNA. It delivers dnaB to the site of action on the DNA template

by first binding with DNA in solution to form a complex. The structure of dnaB and

dnaB-dnaCwere first studied by a reconstruction from cryo-EM images of frozen and

hydrated molecules [83].

3.5.2 Visualization

The Morse-Smale complex has a rich structure in the presence of numerous topological

features and hence visualizing it presents the same problems as in the display of the

raw data, namely that of visual clutter. However, sub-structures of the Morse-Smale

complex can be displayed individually and efficiently. We now describe the different

sub-structures that can be visualized and demonstrate their use in analyzing our

datasets.

Ascending/Descending arcs. The ascending (descending) arcs we compute are

piecewise linear curves between 2-saddles (1-saddles) and maxima (minima, respec-

tively) passing through edges of the input mesh. It is difficult to perceive depth from

1The term complex is used in this paper for two different entities. One is a mathematical structure,
namely the Morse-Smale complex. The other is a biological entity, the dnaB-dnaC complex, that
denotes a molecule made up of a dnaB and a dnaCmolecule. The context determines which one
we refer to.
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a typical presentation of the arcs as a set of line segments and so we display them

as thin tubes. Different descending arcs might merge at regular vertices but once

they do, all of them remain together till they terminate at a minimum. This merging

property can be easily seen for the descending arcs in the 4pdist dataset (see Fig-

ure 3.14). In most datasets, there are certain regions that are more interesting than

others. These regions could be in Euclidean or function space. We provide some

filters that allow the user to display arcs lying within such regions. For example,

the user can clip the arcs to those that originate from saddles with function values

in a given range. A threshold arc length can be chosen to clip away short arcs that

typically represent less significant topological features. The user can also prune away

the arcs that span a short interval in the function space. This is akin to smoothing

of the function to remove minor perturbations. There is an interesting correspon-            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 3.14: Ascending and descending arcs computed for the 4pdist dataset: The
descending arcs are represented as cylinders. All of them begin at the 1-saddles (cyan) and
end at the four minima (blue). Some of them merge after which they stay together till their
destination. The ascending arcs are represented as thin lines and they trace the edges of
the cube beginning at 2-saddles (green) and ending at maxima (red).
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dence between isosurface components and the filtered ascending (descending) arcs.

Each isosurface component encloses at least one local maximum (minimum) and if

the ascending (descending) arcs are filtered at the corresponding isovalue then we are

left with the skeletal shape of the isosurface. We found it useful to work with this

skeletal shape while exploring the data. For example, we locate interesting isosur-

faces by progressively filtering the arcs and finally extracting one isosurface instead

of multiple isosurfaces.
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Figure 3.15: Atomistic simulations of dislocations emerging in a copper crystal under
stress. The simulation does not have any geometric model of the dislocations. Topological
analysis can extract explicit representation of the fractures created in the crystal structure.
Left: an isosurface extracted from the dataset. Right: an explicit representation of the
fractures in terms of ascending arcs.

This density map in the dislocation dataset is from the final time step in the

atomistic simulation when fractures have appeared in the crystal. However, there

is no explicit representation available for these fractures. The ascending arcs in the

dislocation data abstract the fractures propagating through the copper crystal.

This explicit representation enables further quantitative analysis of the fracture. For

example, the number of connected components, length, and spatial extent of the
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fracture can be computed.
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Figure 3.16: Isosurfaces (rendered translucent) extracted from the dnaB (left) and
dnaB-dnaC complex (right) datasets along with the ascending arcs clipped to values above
the isovalue. The ascending arcs trace the ring-like shape in both datasets. The
dnaCmolecule attaches itself to one face of the dnaBmolecule. This is reflected in the
isosurface extracted from the dnaB-dnaC complex but the tunnel is retained in the complex
as can be seen from the ascending arcs.

dnaB has a ring shaped hexamer structure. The six subunits do not have the same

size. Three of them are significantly larger than the remaining. The two kinds of

subunits alternate around the ring. Also, the two faces of the ring-like molecules are

different one having threefold symmetry and the other having a sixfold symmetry.

The shape of the dnaB-dnaC complex is also ring-like, similar to that of dnaB . Each

one of the six subunits of dnaC interacts with two subunits of dnaB and vice-versa.

So, the dnaCmolecule sits on the face of dnaB that has sixfold symmetry. The shapes

of these molecules were originally determined by visually inspecting different isosur-

faces and determining an appropriate isovalue. Extracting and displaying multiple

isosurfaces is a time consuming task. Instead, we progressively applied our filters on

the ascending arcs in a much faster process and observed that the ring-like structure

of the DNA helicase is persistent over a sizeable range of density values. Figure 3.16

shows the corresponding isosurface. Figure 3.17 shows how tunnels in the isosurface
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correspond to loops in the ascending arcs and when the tunnel opens up then so does

the loop.
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Figure 3.17: Two isosurfaces and ascending arcs clipped at the corresponding isovalue for
the dnaB dataset. Note how the loops in the ascending arcs break along with the isosurface.
Possibly interesting isosurfaces can be located by exploring the data using their skeletal
shape traced by the ascending arcs.

Descending arcs exhibit similar behavior in datasets where local minima capture

important features. We envision the ascending and descending 1-manifolds as visual

aids for the exploration of volumetric data. Note that this complements existing

approaches like the contour spectrum [8]. The skeletal shape can be generated for

isovalue ranges determined from the contour spectrum.

Ascending/Descending disks. The ascending (descending) disks we compute are

piecewise linear surfaces passing through the triangles of the given mesh. These are

indeed displayed as triangle meshes that are possibly translucent to show occluded

regions. The boundary of each ascending (descending) disk consists of a collection of

ascending (descending) arcs and their corresponding nodes. The tube representation

of arcs can be used to highlight the boundary of the disks. Figure 3.18 shows an

ascending disk originating from one of the saddles in the 3mindist dataset. Note the

two descending arcs starting from this 1-saddle dual to the ascending disk. The disk
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is actually a collection of quadrangles from the Morse-Smale complex, namely the

ones containing the above 1-saddle and neighboring maxima as nodes. The ascend-

ing/descending disks can be used to annotate particular isosurfaces as well. This can

be done efficiently by computing the intersection of the disks with an isosurface as

an isocontour over the disk.
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Figure 3.18: Visualizations of a function defined as the minimum distance from a set of
three points (0.25, 0.5, 0.5), (0.5, 0.5, 0.5), and (0.75, 0.5, 0.5) within a unit cube. Assume
a minimum at infinity connected to all points on the boundary. The critical points are
displayed as small spheres in blue, cyan, green, and red for minima, 1-saddles, 2-saddles,
and maxima respectively. The edges in the interior are the descending arcs going between
1-saddles and minima. The ascending arcs are on the boundary connecting 2-saddles to
maxima. The figure on the left shows an isosurface with three components about to merge
at two 1-saddles. The figure on the right shows an ascending disk originating at one of
these 1-saddles.

Critical points. The nodes of the Morse-Smale complex represent the critical points

(singularities) of the function. They contain information about the local features

in the data. We display the four types of critical points as color coded spheres.

Figure 3.18 shows the critical points in 3mindist . There are 3 minima (the fourth

is at infinity), 16 maxima lying along the edges of the cube, 16 1-saddles, and 28

2-saddles. Clearly the number of critical points can be substantial even for such a

simple dataset.
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3.6 Discussion

This chapter introduces the Morse-Smale complex for a function over a 3-manifold

as a decomposition of the 3-manifold into crystals with quadrangular faces. It also

gives an algorithm to construct a quasi Morse-Smale complex for a piecewise linear

function that guarantees structural correctness. Letting n be the number of vertices

in the input triangulation, the running time is proportional to n log n plus the size of

the input triangulation plus the total size of the output.

Various interesting issues remain open. We can transform the quasi Morse-Smale

complex into the Morse-Smale complex by applying a sequence of operations called

handle slides. As described for 2-manifolds in [30], using this approach we obtain a

Morse-Smale complex that is numerically as accurate as the local rerouting opera-

tions used to control handle slides. For 3-manifolds, it is unclear how to find and

order the handle slides that bring us closer to the Morse-Smale complex. In the pre-

vious section, we note the presence of substantial number of critical points even for

simple datasets. Therefore, it is clearly useful to have a hierarchical representation of

the Morse-Smale complex while working with large data sets. In the past, numerical

methods [48, 61, 63, 99, 100] have been used on vector fields to generate simplified

models of the flow topology introduced by Helman and Hesselink [50]. These meth-

ods typically cluster the critical points based on the given filtering parameter and use

one critical point to represent each cluster. This approach is prone to computational

errors at various stages of the simplification, which is the reason we prefer to follow

the approach of Edelsbrunner et al. [30] and Bremer et al. [11] to get a combinatorial

algorithm for computing the hierarchy followed by a numerical algorithm to con-

struct the monotonic regions of the simplified Morse-Smale complex. The hierarchy

is created by performing a sequence of cancellations of pairs of critical points ordered
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by their topological persistence [31]. Extending this cancellation procedure and its

geometric realization to 3D is a challenging problem.
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Figure 3.19: Initial structure when the algorithm reaches p in the downward sweep: The
figure shows Lk p with three oceans and three continents. One of the continents is shown
as the unbounded exterior. Seven D-paths and four D-points are present in the continents.
The D-points are numbered 1, 2, 3, 4 and their normal disks are shown on the right. The
base points in the normal disks represent descending arcs passing through.
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Figure 3.20: Starting descending disks and arcs: Two circles are constructed passing
through the lowest point a in the ocean. The two marked edges are added to the shortest
path tree to form the circles. The normal disk attached to the D-point a has two paths
representing the two disks. Three descending arcs are started as edges to the lowest point
in each ocean. These arcs are not yet paired to determine the descending 1-manifolds.
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Figure 3.21: Preparing ascending disks: Two circles (dashed) are constructed in the
continent to separate the three oceans. These circles intersect existing D-paths at gateways
(shown as squares). The two marked edges are added to the shortest path tree rooted at
the highest vertex, 7, in the continent to form the circles. Base points are added in the
normal disks of a, b, c and labelled to represent the pairing og descending arcs. Both dashed
circles pass through the D-point 3 twice and hence show up as four paths in its normal
disk.
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Figure 3.22: Extending descending arcs: Descending arcs ending at p and passing
through D-points 2, 3, 4 are extended to the lowest point a in the adjacent ocean. Note
that extension of these arcs to b or c will cause an illegal intersection with an ascending
disk.
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Figure 3.23: Extending descending disks: All D-paths are extended towards the lowest
point in the ocean by following the shortest path in the tree. Paths corresponding to these
extensions are added to the normal disks of a and b. Note that the path between 2α and
2β is carried through to a.
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Figure 3.24: Initial structure when algorithm reaches p in the upwards sweep: Three
A-paths and two A-points (y and x) are present in the oceans. Note that x is actually a
base point lying in the normal disk of a.
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Figure 3.25: Starting and extending ascending arcs: Three ascending arcs are started
towards the highest vertex in each continent (7, 8, 9). The two continents corresponding to
paired arcs are separated by one of the circles in the ocean. The ascending arcs ending at
p are extended to a continent without causing any illegal intersections.
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Figure 3.26: Extending ascending disks: The three A-paths are extended towards the
highest vertices in the appropriate continents using the path to the root in the shortest path
tree. This introduces new paths in the normal disks of 7, 8, and 3. A spike is introduced
to prevent an illegal intersection between one of the descending disks starting at p and the
ascending disk represented by the A-path between y and 8. This spike is represented within
the normal disk of 7 by the path between base points 78 and y.
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Chapter 4

Scalar Function Comparison

In this chapter, we introduce a measure for comparing scalar functions defined over

a common domain. We begin the chapter by explaining the use of such a comparison

measure. We then define our measure, give algorithms to compute it and describe

how we use it in our visualization software for studying scientific datasets. We end

the chapter with some ideas for future work.

4.1 Introduction

4.1.1 Motivation

Scientists try to understand physical phenomena by studying the relationship between

multiple functions measured over a region of interest. For example, the temperature,

volume, pressure distribution etc. can be used to predict the flow behavior of a fluid.

Some of these functions may be redundant i.e. two or more functions have similar

behavior and hence it is enough to study one of them. The redundant functions

may be filtered out provided they can be detected, say by using a measure that

compares local similarities. Another application of such a measure would be in the

study of time-varying functions. For example, distributions of hydrogen, oxygen,

and other gases are measured at various time steps during a combustion process.

Ideally, we would want fine discretization of the time scale when there are interesting

changes in the function and coarse discretization otherwise. A graph plot of a measure

that compares functions at successive time steps can help identify interesting time

steps and hence guide the level of discretization. Another example of a time-varying
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function is when we have data from multiple computations over the period of a few

years when the software is being modified and different versions of the code used to

produce the output. A comparison measure between outputs from successive versions

of the code could identify significant changes made to the software.

4.1.2 Approach and Results

Given k scalar functions, F = (f1, f2, . . . , fk), defined over a common d-manifold, we

introduce new local and global comparison measures that compare the gradients of

the functions. The average value of the local measure over the d-manifold specifies

a global comparison measure κ(F ). For the case when k = d = 2, we describe

alternative formulations of the measure in terms of the Jacobi set [27], which consists

of the critical points of one function restricted to the isocontours of the other. We

also describe a visualization tool for exploring datasets that contain multiple, possibly

time-varying, function. We illustrate the local and global measures by applying them

to both synthetic and scientific datasets.

4.1.3 Related Work

We compare our measure to two concepts: the correlation coefficient and Earth

mover’s distance. The correlation coefficient is a standard and popular statistical

measure used to determine if two sets of values are linearly related by comparing their

deviations from the respective mean values [33, Chapter 8]. When two functions are

sampled at discrete points, the correlation coefficient is computed as

% =

∑n

i=1(xi − x̄) · (yi − ȳ)
√

(
∑n

i=1(xi − x̄)2) · (
∑n

i=1(yi − ȳ)2)

where xi, yi are the corresponding values of the two functions and x̄, ȳ are the mean

values of the two functions. Two functions have a high correlation coefficient if they
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deviate consistently from their respective mean values i.e. if one function takes a

value close to its mean then so does the other function at the same point on the

domain. However, this measure is unsuitable to identify local similarities, because

connectivity information is not recorded in its computation. The definition for %

can be extended to multiple functions in a straightforward manner. Note that the

correlation coefficient is a global measure and there is no notion of a local comparison

of the functions as compared to our measure. Our measure instead uses the gradients

for comparing the local variation of the functions and uses it to define a global measure

as well. The correlation coefficient can determine if the functions co-vary positively or

negatively. If the functions are positively correlated over some regions of the domain

and negatively correlated over other regions, then the correlation coefficient attains

a value near zero and the functions are reported as independent. Our measure is not

able to differentiate between positive and negative co-variation.

The correlation coefficient gives equal weight to all points on the domain whereas

in many applications we want to match the features of the functions alone. These

features are typically specified by the critical points. The Earth mover’s distance,

introduced by Rubner et al., computes the distance between the critical points of the

two functions under a special metric and is therefore a measure that compares only the

features. Given two sets of critical points, one is considered as a mass of earth spread

in space and the other as a collection of holes in that same space. The Earth mover’s

distance measures the least amount of work needed to fill the holes with earth. A

unit of work corresponds to transporting a unit of earth by unit ground distance. The

ground distance measurement depends on the problem at hand. Originally introduced

for comparing color patterns [82], it has been since used in modified forms for a

variety of applications like contour matching [40], object tracking [108], polyhedral

shape matching [95], and for comparing vector functions [9, 60]. Nearness under the
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Earth mover’s distance does not require similar features to be present within the

same region of the domain. Therefore, it does not capture local similarity the way

our measure does.

4.2 The Measure

Consider k scalar functions defined over a d-manifold: F = (f1, . . . , fk) : Md → Rk.

We first introduce k-forms and then use them to define a comparison measure between

the k functions. For a more detailed introduction to k-forms, we refer to the book

by Weintraub [106].

4.2.1 k-Forms

The expression

dfi =
∂f1

∂x1

dx1 +
∂f1

∂x2

dx2 + · · ·+
∂f1

∂xd

dxd

is called a differential 1-form (or simply a 1-form) in d variables. The 1-form is very

similar to a vector field. In fact, we can set up a correspondence between the two such

that the gradient of fi, ∇fi, corresponds to dfi. The notation is powerful because we

can now talk about higher degree forms, which also have corresponding vector fields

but these are more cumbersome to describe. A wedge product df1 ∧ df2 between two

1-forms gives a 2-form. The wedge product can thus be used to generate a k-form:

df1 ∧ df2 ∧ . . . ∧ dfk.

This k-form can be written in terms of the basis of the associated
(

d

k

)

-dimensional

vector space:

df1 ∧ df2 ∧ . . . ∧ dfk =
∑

1≤i1<···<ik≤d

ωi1,...,ik dxi1 ∧ . . . ∧ dxik
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where ωi1,...,ik =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂f1

∂xi1

∂f1

∂xi2

· · · ∂f1

∂xik

∂f2

∂xi1

∂f2

∂xi2

· · · ∂f2

∂xik

...
...

...
∂fk

∂xi1

∂fk

∂xi2

· · · ∂fk

∂xik

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

We define the norm of the k-form as

‖ df1 ∧ df2 ∧ . . . ∧ dfk ‖ =

√

∑

1≤i1<···<ik≤d

ω2
i1,...,ik

dx.

4.2.2 Definition and Properties

For a domain D ⊆ M we define the comparison measure over D as the normalized

integral of the value of the k-form,

κD(F ) =

∫

x∈D

‖ df1 ∧ df2 ∧ . . . ∧ dfk ‖ / vol(D).

We obtain the global comparison measure as κ(F ) = κM(F ) and note that 0 ≤ κ(F ) <

∞. We may also shrink D toward a point x ∈ M and obtain the value κx(F ) in the

limit This furnishes the local comparison measure, which is the function κ : M→ R

defined by κ(x) = κx(F ). Note that the global measure is the average local measure:

κ(F ) =

∫

x∈M

κ(x) dx / vol(M).

Using this relationship we can deduce properties of the global from properties of the

local measure. The local comparison measure can be evaluated directly at a point as

the norm of the k-form

κ(x) =

√

∑

1≤i1<···<ik≤d

ω2
i1,...,ik

.
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For example, if we have k = 2 functions on a 2-manifold embedded in R3, then κ(x)

is the length of the cross-product of the two gradients at x.

The comparison measure satisfies a number os useful algebraic properties. How-

ever, it does not satisfy the triangle inequality. This can be easily seen from a counter

example for the case k = 2. Let g be a constant function over Md. This implies

κ(f1, g) and κ(g, f2) are equal to zero whereas κ(f1, f2) can attain an arbitrarily large

positive value.

1. Symmetry: κ(. . . , fi, . . . , fj, . . .) = κ(. . . , fj, . . . , fi, . . .).

2. Degeneracy: κ(F ) = 0 if dfi = dfj for 1 ≤ i 6= j ≤ k.

3. Scaling: κ(αf1 + β, f2, . . . , fk) = |α| · κ(f1, f2, . . . , fk), with α, β ∈ R.

4. Sub-additivity: κ(f1 + g1, f2, . . . , fk) ≤ κ(f1, f2, . . . , fk) + κ(g1, f2, . . . , fk).

5. Sub-multiplicativity:
κ(f1, . . . , fi, fi+1, . . . , fk)

vol(M)
≤ κ(f1, . . . , fi)·κ(fi+1, . . . , fk).

The degeneracy, scaling, and symmetry properties follow immediately from the defini-

tion. The wedge product is bilinear. Therefore, the k-form (d(f1+g1)∧df2∧. . .∧dfk)

can be written as a sum of (df1 ∧df2 ∧ . . .∧dfk) and (dg1 ∧df2 ∧ . . .∧dfk). Writing

out the expression for the norm, we can see that the sub-additivity property holds

for κ(x) at every point on the d-manifold and hence for κ(F ).

The proof of the sub-multiplicativity property requires more work. We look at

the special case i = 1 in detail. We show that κx(f1, . . . , fk) ≤ κx(f1) · κx(f2, . . . , fk)

for every point x ∈ M. To this end, we develop each determinant ωi1,...,ik along the

first row. Writing r for the sequence of k indices from 1, 2, . . . , d, we get

ωr =
∑

s

(−1)πr(s)+1ωs · ωŝ,

where s ranges over all indices in r (or subsequences of r of length 1), ŝ is the

complementary subsequence of k− 1 indices from r, 1 ≤ πr(s) ≤ |r| is the position of
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s in r, ωs denotes elements in the first row and ωŝ denotes the corresponding minors.

Squaring the determinant and summing over all choices of k indices from 1, 2, . . . , d

we get

∑

r

ω2
r =

∑

r

(

∑

s

(−1)πr(s)+1ωs · ωŝ

)2

=
∑

r

∑

s

ω2
s · ω

2
ŝ +

∑

r

∑

s6=t

(−1)πr(s)+πr(t)ωs · ωŝ · ωt · ωt̂

Let A denote the second sum. We rewrite this sum, A, over the cross terms by pairing

ωs with ωt̂ instead of ωŝ. Note that the sequence t̂ contains s. Given two disjoint

sequences, α and β, we combine them by sorting the indices obtained from the union

and denote this new sequence by α; β. Let m be a subsequence of k− 2 indices from

r. We express t̂ as the union of indices in s and m to get

A =
∑

r

∑

s6=t

s;t;m=r

(−1)πr(s)+πr(t)ωs · ωs;m · ωt · ωt;m

Let a be a sequence of k− 2 indices from 1, . . . , d and b be a sequence of unit length

that is not contained in a. In order to get an upper bound on the above sum, consider

the following sum of squares:

B =
∑

a

(

∑

b

(−1)πb;a(b)ωb · ωb;a

)2

=
∑

a

∑

b

ω2
b · ω

2
b;a +

∑

a

∑

b6=c

(−1)πb;a(b)+πc;a(c)ωb · ωb;a · ωc · ωc;a

by merely expanding the squares. In the next step we extract all terms containing

ω2
u, 1 ≤ u ≤ d and therefore switch the order of the summation in the first sum. We

switch the order of summation in the second sum as well. b; c; a forms a sequence

96



of length k. Denoting this sequence as r, we reorganize the terms as a sum over all

sequences r. m, s and t replace a, b and c respectively.

B =
∑

u,a

ω2
u · ω

2
u;a +

∑

r

∑

s6=t

s;t;m=r

(−1)πr(s)+πr(t)−1ωs · ωs;m · ωt · ωt;m

=
∑

u,a

ω2
u · ω

2
u;a − A

Note that either πb;a(b) = πr(s)− 1 or πc;a(p) = πr(t)− 1 depending on whether the

index in the sequence b is greater or smaller than the one in c. Since B is non-negative,

we have

A ≤
∑

u,a

ω2
u · ω

2
u;a

Therefore, we get an upper bound on
∑

r ω2
r , namely

∑

r

ω2
r ≤

∑

r

∑

s

ω2
s · ω

2
ŝ +

∑

u,a

ω2
u · ω

2
u;a

=

(

∑

u

ω2
u

)(

∑

v

ω2
v

)

letting v range over all subsequences of k− 1 indices from 1, 2, . . . , d. This is because

a term ω2
u · ω

2
v appears either as ω2

s · ω
2
ŝ if u and v do not have any common indices

or as ω2
u · ω

2
u;a otherwise. Because this inequality holds for all points x ∈M, we have

κ(f1, . . . , fk) · vol(M) ≤ κ(f1) · vol(M) · κ(f2, . . . , fk) · vol(M),

which implies the sub-multiplicativity of κ for the case i = 1.

4.2.3 PL Algorithm

In practice, functions are measured at discrete points in the manifold and linearly

interpolated within simplices in a triangulation of the manifold. In such a setting,
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κ(F ) is computed in a loop over the d-simplices in the triangulation. Since all func-

tions are linear over a d-simplex, their differentials are constant within the d-simplex.

The norm of the k-form is evaluated at a point within the d-simplex directly from

the formula and weighted by the volume of the d-simplex. We divide this weighted

sum by the volume of the triangulation to get κ(F ).

4.3 Jacobi Set Interpretation

In this section, we give an alternate interpretation for our comparison measure in

terms of critical points of the functions. We have a result only for the case when

k = d = 2. We begin with an introduction to Jacobi sets, which play an important

role in this alternate interpretation.

4.3.1 Jacobi Sets

The Jacobi set of two Morse functions defined over a common 2-manifold is the

set of critical points of the restrictions of one function to the level sets of the other

function. For a generic pair of Morse functions, the Jacobi set is a smoothly embedded

1-manifold. Equivalently, the Jacobi set is the set of points where the gradients of

the functions are parallel and is hence symmetric with respect to the two functions.

The Jacobi set of two Morse functions, f and g, is denoted by J = J(f, g) = J(g, f).

We think of piecewise linear functions as the limit of a series of smooth functions and

use this intuition to transport the definition of Jacobi sets from the smooth to the

piecewise linear setting.

Now, let f and g be two piecewise linear functions defined over a triangulation

of a 2-manifold. The Jacobi set of the two functions is a one-dimensional subcom-

plex of the triangulation that can be thought of as the limit of Jacobi sets for the

corresponding pairs of smooth functions. The algorithm identifies edges lying on the
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Jacobi set and returns the union of these edges. Each edge ab is individually classi-

fied to be in the Jacobi set or not by determining if it is critical with respect to the

function hλ = f + λg, where the value of the parameter λ is given by the condition

hλ(a) = hλ(b). Criticality testing of an edge is done similar to that of a vertex namely,

based on the structure of the lower link of the edge. In a 2-manifold, the link of an

edge consists of two vertices. The function IsJacobi does the criticality testing.

integer IsJacobi (Edge ab)

λ = f(b)−f(a)
g(a)−g(b)

;

Let x, y be vertices in Lk ab;

if (hλ(x) < hλ(a) and hλ(y) < hλ(a)) then return Maximum endif

if (hλ(x) > hλ(a) and hλ(y) > hλ(a)) then return Minimum endif

return Regular.

Jacobi sets were introduced by Edelsbrunner and Harer [27] and we refer to their

paper for detailed proofs of the assertions and the algorithm.

4.3.2 Alternative Formulations

Consider two Morse functions f, g : M2 → R. Assuming that M2 is embedded1 in R3,

we first rewrite ‖ df ∧ dg ‖ as the length of the cross product between the gradients

of f and g. κ(F ) is equal to

κ(f, g) =

∫

x∈M2 ‖ ∇f(x) × ∇g(x) ‖ dx
∫

x∈M2 dx
.

We now rewrite κ(f, g) as an integral over the Jacobi set, which can also be expressed

as the set of critical points of f restricted to level sets of g. Let v be a point on the

1All results in the paper hold without this assumption as well because the tangent plane at each
point in M2 can be embedded in R3. However, notation required to represent the gradients and
their different embeddings becomes too cumbersome.
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Figure 4.1: UV and V W are two strips on M2 connecting subsets of the Jacobi set.

Jacobi set and let u,w ∈ J be its neighbors along the isocontour g−1(g(v)). By

definition, v is either a maximum or a minimum of the restriction of f . If v is a

local maximum of f restricted to g−1(g(v)), then u and w are local minima. Let V

be a connected subset of J containing v such that the neighbors of points in V along

isocontours of g form two connected subsets U and W , of J (see Figure 4.1). M2 can

be partitioned into strips like UV and V W that are union of isocontour segments

connecting points in V with those of U and W respectively. ‖ ∇f × ∇g ‖ is equal to

the product of ‖ ∇T (g)f ‖ and ‖ ∇g ‖, where ∇T (g)f(p) is the directional derivative

of f at the point p along the tangent to the isocontour g−1(g(p)). This is because

∇T (g)f is exactly the projection of ∇f in the direction normal to ∇g. The integral

of ‖ ∇f × ∇g ‖ over the strip UV can be expressed as double integral to give

∫

x∈UV

‖ ∇f(x) × ∇g(x) ‖ =

∫

x∈UV

‖ ∇T (g)f(x) ‖ ‖ ∇g(x) ‖ dx

=

∫

v∈V

(
∫

x∈uw

‖ ∇T (g)f(x) ‖

)

‖ ∇g(v) ‖ dv.

Here, uw is the section of the isocontour g−1(g(v)) between u and w and passing

through v. f is monotonic along the isocontour and so the inner integral is computed

as the difference between the values that f evaluates to at u and v, the boundary

points.

∫

x∈UV

‖ ∇f(x) × ∇g(x) ‖ =

∫

v∈V

|f(v)− f(u)| ‖ ∇g(v) ‖ dv.
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This equality holds for the strip V W also. Adding the integrals over UV and V W ,

we get

∫

x∈UV

‖ ∇f(x) × ∇g(x) ‖ +

∫

x∈V W

‖ ∇f(x) × ∇g(x) ‖ dx

=

∫

v∈V

|f(v)− f(u)| ‖ ∇g(v) ‖ dv +

∫

v∈V

|f(v)− f(w)| ‖ ∇g(v) ‖ dv

=

∫

v∈V

|2f(v)− f(u)− f(w)| ‖ ∇g(v) ‖ dv.

The sum of integrals over all such subsets V of J is equal to the sum of integrals of

‖ ∇f × ∇g ‖ over the corresponding strips UV and V W . The latter sum equals

twice the integral of ‖ ∇f × ∇g ‖ over M2 because each strip is counted twice in the

above sum. We now have our second formulation for κ(f, g) namely

κ(f, g) =

∫

v∈J
|2f(v)− f(u)− f(w)| ‖ ∇g(v) ‖ dv

2
∫

x∈M2 dx
. (4.1)

where u,w ∈ J are neighbors of v along g−1(g(v)). This formulation shows that

κ(f, g) captures the deviations of one function over isocontours of the other.

We now derive a third formulation again as an integral over the Jacobi set. We

split the integral over J in Equation (4.1) into two integrals:

∫

v∈J

|2f(v)− f(u)− f(w)| ‖ ∇g(v) ‖ dv

=

∫

v∈J

|f(v)− f(u)| ‖ ∇g(v) ‖ dv +

∫

v∈J

|f(v)− f(w)| ‖ ∇g(v) ‖ dv

Each point in J is counted four times, twice in each integral. The sum of these

two integrals can written as one integral by introducing a sign function to give a

formulation of κ(f, g) that does not use any explicit pairing along the isocontours:

κ(f, g) =
2
∫

v∈J
sgn(v) f(v) ‖ ∇g(v) ‖ dv

∫

x∈M2 dx
(4.2)
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where sgn(v) =

{

1 if v is a maximum of f in g−1(g(v))
−1 if v is a minimum of f in g−1(g(v))

Each generic level set g−1(t) is a collection of topological circles and f restricted

to this level set has equally many minima and maxima. Letting k be this common

number, we form a pairing {(ui, vi) | 1 ≤ i ≤ k} between the minima ui and the

maxima vi such that f(vi) − f(ui) > 0 for all i. We further develop the integral in

Equation (4.1) to find a formulation in which the pairing directly relates to a ranking

of these critical points. Writing pers(ui) = pers(vi) = f(vi)− f(ui), we get

κ(f, g) =

∫

v∈J
pers(v) dg
∫

x∈M2 dx
. (4.3)

Indeed, Equation (4.1) is a special case in which the integration is done over two

pairings of the points in the Jacobi set. A more meaningful (single) pairing is obtained

using the concept of persistent homology [31]. It is easy to explain for a Morse

function ft : S1 → R, which has equally many minima and maxima. Sweeping the

circle in the direction of increasing function value, we get a new component whenever

we pass a minimum and we merge two components whenever we pass a maximum,

except that we complete the circle when we pass the last maximum. Each component

is represented by its oldest minimum (the one with smallest function value).

Rule 1. If a maximum merges two components we pair it with the younger of the

two minima representing the two components. The older minimum stays on to

represent the merged component.

Rule 2. The last maximum is paired with the first minimum.

The persistence is a notion of importance of a critical point that has found use in a

number of applications involving smooth functions, see for example [2, 13, 30].
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4.3.3 Alternative Algorithms

The alternative formulae for κ also lead to algorithms that compute κ(f, g) for piece-

wise linear functions f and g on a triangulation K of M. We first describe an

algorithm that follows directly from Equations (4.2).

Integral over Jacobi set. In the piecewise linear setting, the integral over J in

Equation (4.2) becomes a sum over all edges in J. The contribution of an edge to

κ(f, g) can now be expressed in a closed form because f varies linearly over the edge.

Let a, b be the end points of an edge in J. IsJacobi (ab) classifies an edge ab ∈ J as

a maximum or a minimum. The contribution of the edge is equal to 1
2
· (f(a)+f(b)) ·

|g(b)− g(a)| if the edge is a maximum and is equal to − 1
2
· (f(a)+ f(b)) · |g(b)− g(a)|

if the edge is a minimum.

Isocontour sweep algorithm. We need to sweep K in the direction of increasing

value of g, maintaining the level set, g−1(t) in order to implement both Equations (4.1)

and (4.3). An edge in the Jacobi set is identified using the IsJacobi subroutine. We

can then use the persistence algorithm to compute pers(v) for all critical points v

of g−1(t), which are the intersection points between the level set and the Jacobi set.

However, in order to implement (4.3), we need to identify the level sets of g where

the persistence pairing changes. This is unclear and we mention this problem as

future work. The characterization of when the pairing changes is easier in the case

of Equation (4.1). Before describing the implementation of Equation (4.1), we derive

its analogous expression in the piecewise linear setting.

A connected subset of an edge in the input triangulation is called a segment.

The end points of a segment on a given edge can be specified by the value of the

function g because it is linearly interpolated within the edge. The Jacobi set of

two functions defined over a triangulation of a 2-manifold consists of critical edges
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of the triangulation. Each point v ∈ J is paired with two other points u,w ∈ J

namely the critical points of f restricted to g−1(g(v)) that are adjacent to v in the

isocontour. We call (u, v) and (v, w) as J-pairs. Extending this concept to segments,

if s and t are segments on J whose points form J-pairs then we call [s, t] a segment-

pair. Figure 4.2 shows two components of J and a few segment-pairs. Note that two

segment-pairs have at most one common J-pair. κ(f, g) is expressed as an integral

u

g   (g(q))

g   (g(x))

g   (g(b))cba

qp

yx
w g   (g(v))v

−1

−1

−1

−1

Figure 4.2: [g(a), g(p)] and [g(b), g(q)] are a segment-pair within the same component
of J and [g(b), g(x)] and [g(c), g(y)] are a segment-pair between different components of J.
The solid lines are components of J and the dashed lines are the isocontours.

over J in Equation (4.1). We split this integral into two as before and rewrite it as a

sum over all segment-pairs:

κ(f, g) = 2

∫

(u,v)∈P

|f(v)− f(u)| ‖ ∇g(v) ‖ dv

= 2
∑

[s,t]∈Ps

∫

u∈s,v∈t

|f(v)− f(u)| ‖ ∇g(v) ‖ dv

where P is the set of all J-pairs and Ps is the set of all segment-pairs. Each J-pair

is counted twice in the integral over J and hence the factor 2 in the integral over

P . The integral over a segment-pair can be rewritten using the mean value theorem

because f and g vary linearly within a segment.

∫

u∈s,v∈t,[s,t]∈Ps

|f(v)− f(u)| ‖ ∇g(v) ‖ dv = |fmid(s)− fmid(t)| ·∆g(t).
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Here, ∆g(t) is the difference between the values of g at the end points of segment t

and fmid(s) denotes the value of f at the midpoint of segment s.

Determining the segment-pairs is an important step in evaluating κ(f, g). The

topology of the isocontour changes as we sweep the manifold using isocontours of

g with increasing isovalues. At any stage of the sweep, a segment of J could start,

stop, or continue to intersect the current isocontour. The first two events happen

only when the isocontour passes through a vertex. We are now ready to describe the

isocontour sweep algorithm.

We compute κ(f, g) by maintaining a list of segment-pairs that intersect the

current isocontour during the sweep. The sweep is done by traversing the vertex list

sorted on the value of the function g. The contribution of a segment-pair is added

when it stops intersecting the current isocontour. The processing done at each step

of the sweep depends on the configuration of the upper and lower stars of the current

vertex v with respect to the function g.

Regular : The new edges that the isocontour crosses when the sweep passes through

a regular vertex are exactly the ones in the upper star. If J does not pass

through the vertex then there is nothing to do. If it does, then at least one

segment-pair stops intersecting the isocontour. For each one of the segment-

pairs that is destroyed, we add its contribution to κ(f, g). Figure 4.3 shows

a scenario where the segment-pair [a, b] is deleted and two new segment-pairs

[a′, x] and [y, b′] are inserted into the list of segment-pairs.

Minimum : J passes through the minimum by definition. No segment pairs are

destroyed because the isocontour does not intersect any edges in St v before the

sweep past the minimum. At least two segment-pairs are born and we insert

them into the list. Figure 4.4 shows the neighborhood of a minimum after the
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sweep crosses it.

Maximum : J passes through a maximum by definition. We compute and add

contributions of the segment-pairs that are destroyed and delete them from the

list. Note that no segment-pair is born because the isocontour component is

destroyed as we sweep past the maximum (see Figure 4.4).

Saddle: Figure 4.5 shows the neighborhood of a saddle before and after the iso-

contour sweeps past the vertex and how the connectivity of the isocontour

changes. The change in connectivity destroys some segment-pairs and intro-

duces new ones. In addition, other segment-pairs could be created or destroyed

by segments of J passing through the saddle. The new segment-pairs are in-

serted into the list and contributions of the segment-pairs that get destroyed

are added to κ(f, g) before they are deleted from the list.

JJ
ba

v v

a’ b’x y

Figure 4.3: The segment-pairs before and after the isocontour passes through a regular
vertex. The dark line is a portion of J passing through v, the dashed line is the isocontour
and the dotted lines are edges of the lower link.

κ(f, g) is computed as the sum of contributions from each segment-pair at the

end of the sweep. There are a couple of issues that need to be handled in practice

which, if neglected, could lead to erroneous results. The first one deals with consistent

handling of boundary edges and the second deals with degeneracies in the data. The

former can be easily handled while the latter requires a non-trivial solution. We

discuss the former issue and describe how to handle degeneracies in Section 4.3.5.
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Figure 4.4: The segment-pairs after the isocontour passes through a local minimum (a)
and local maximum (b). The dark line is a portion of J passing through v, the dashed line
is the isocontour and the dotted lines are edges of the lower link.
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Figure 4.5: The segment-pairs before and after the isocontour passes through a 3-way
saddle. The dark line is a portion of J passing through v, the dashed line is the isocontour
and the dotted lines are edges of the lower link.

A basic assumption we make is that each point in J has a pair. This is true

if our domain is a 2-manifold. But, often the input functions are defined over a

surface mesh that has a boundary. The isocontours in such a case may no longer be

closed 1-manifolds. One way to resolve this issue is to introduce vertices at infinity

corresponding to each boundary component and add simplices containing boundary

simplices and the new vertices as faces. This modified the domain to become a 2-

manifold. A drawback of this approach is the increase in number of simplices to be

processed. Instead, we simulate this construction by including the edges lying on

the boundary into J. These edges are paired only in one direction i.e towards the

interior.
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4.3.4 Local Contributions

κ(f, g) can be computed using the definition or by implementing one of the alternative

formulae. We define functions express the contributions to κ(f, g) from triangles

in the mesh or edges in J as the case maybe. The contribution from triangles in

the mesh to κ(f, g) equals the area of the triangle times κx(F ) for a point x lying

inside the triangle. κt assigns this value to each triangle t. Each edge in J consists

of multiple segments each of which contribute to κ(f, g) when it is computed using

Equation (4.1). κ̃e assigns the sum of contributions of these segments to the edge in J.

These local contributions help rank the Jacobi set edges and triangles in the manifold

based on their importance. Visualizing these functions helps identify interesting

regions of the manifold. The contributions from the Jacobi set edges to κ(f, g) when

computed using Equation (4.2) are not useful in this respect because they could be

negative as well.

4.3.5 Handling Degeneracies

Degeneracies should be handled consistently for a correct implementation of the al-

gorithms described in this chapter. In the generic case,

1. No two vertices have the same function value and

2. No vertex in the link of an edge ab has the same value of hλ (= f + λg) as the

edge. Here, the value of the parameter is computed by determining when ab

becomes horizontal i.e. hλ(a) = hλ(b).

The degenerate cases have to be handled while computing the lower link in IsJa-

cobi. We resolve the degenerate cases by simulating a perturbation scheme similar

to SoS [32] but applied to two functions f and g. Let f i and gi, i = 1, . . . , n denote
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the value of the functions f and g at vertex i of the triangulation. We perturb both

functions as follows:

f̃ i = f i + εi , g̃i = gi + δi

with εi = ε2i

, δi = ε2n+i

, i = 1, . . . , n

for a suitably small but positive value of ε. Clearly

ε1 >> ε2 >> . . . >> εn >> δ1 >> δ2 >> . . . >> δn.

Let ab be an edge and v a vertex in its link with 1 ≤ a < b < v ≤ n. The value of λ

for which ab becomes horizontal is given by

λ =
f b − fa

ga − gb
.

The vertex v lies in the lower link of ab if hλ(v) ≤ hλ(a) for the above value of λ2.

We have

f v +
f b − fa

ga − gb
gv ≤ fa +

f b − fa

ga − gb
ga.

Multiplying both sides with (ga − gb) and rearranging the terms, we get

(fa − f v)(ga − gb) + (f b − fa)(ga − gv) ≥ 0 and (ga − gb) > 0 or

(fa − f v)(ga − gb) + (f b − fa)(ga − gv) ≤ 0 and (ga − gb) < 0.

Let

X = (fa − f v)(ga − gb) + (f b − fa)(ga − gv).

We can rewrite it as

X = fa(gv − gb) + f b(ga − gv) + f v(gb − ga).

2Note that we can use hλ(b) instead of hλ(a) in this inequality
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Replacing f i, gi with their perturbed versions in the expression for X, we get

X̃ = X + εa(g
v − gb) + εb(g

a − gv) + εv(g
b − ga)

+ δa(f
b − f v) + δb(f

v − fa) + δv(f
a − f b)

+ δa(εb − εv) + δb(εv − εa) + δv(εa − εb)

We can determine if v is in the lower link of ab from the sign of X and (ga − gb).

However, one or both X and (ga − gb) could be zero, making it difficult to classify

v. This problem does not arise if we use the perturbed versions instead i.e. X̃ and

(g̃a − g̃b). The values of X and X̃ are the same no matter which edge-vertex pair

is chosen from the triangle abv. We use this fact to unify the lower link test for all

inputs from the triangle abv. Table 4.1 lists the test for each edge-vertex pair from

the triangle abv (a < b < v). Computing the perturbed functions is not feasible

Input Test

Edge Vertex

(a, b) v X̃ · (g̃a − g̃b) > 0

(v, a) b X̃ · (g̃v − g̃a) > 0

(b, v) a X̃ · (g̃b − g̃v) > 0

Table 4.1: Lower link tests for edge-vertex pairs from a triangle abv.

because we need very high precision. So, we simulate the perturbation scheme by a

series of comparisons. We now give the algorithm that classifies a vertex present in

the link of an edge.
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boolean LowerLink (Edge ij, Vertex k)

Sort i, j, k and store in a, b, v (a < b < v)

Let indexi ← Index of i in sorted list

Let indexj ← Index of j in sorted list

if indexj = (indexi + 1) mod 3

then return ((Pos1(X̃) and Pos2(g̃i − g̃j)) or (Neg1(X̃) and Neg2(g̃i − g̃j)))

else return ((Pos1(X̃) and Pos2(g̃j − g̃i)) or (Neg1(X̃) and Neg2(g̃j − g̃i)))

endif

Pos1 and Pos2 return True if and only if their inputs are positive and Neg1 and

Neg2 return True if and only if their inputs are negative (i.e. Pos1 and Pos2,

respectively, are False). Pos2 uses the indices i and j to compare the perturbed

functions if gi is equal to gj. More comparisons are required to simulate perturbation

of X in Pos1.

boolean Pos1 (Expression X̃)

if X 6= 0 then return (X > 0) endif

if gv 6= gb then return (gv > gb) endif

if ga 6= gv then return (ga > gv) endif

if f b 6= f v then return (f b > f v) endif

return True

The sequence of comparisons is determined by the fact that εa >> εb >> εv >>

δa >> δb >> δv and the respective terms will dominate the expression for X̃ if they

are not multiplied by zero.

4.4 Experiments

We perform multiple computational experiments to illustrate properties of our com-

parison measure. The visualizations show how the local measure helps study the

111

relationships between functions.

4.4.1 Synthetic Functions

We first use a set of five analytic functions to get a feel for our global measure.

All functions are sampled on a regular grid over the region [−2π, 2π] × [−2π, 2π].

This point set is triangulated and a piecewise linear approximation of the function

is available as our data. Table 4.2 lists the various functions that we use along

with the values of κ for each function pair. We have κ(cup) = κ(sad) = 9.61,

κ(sin) = κ(cos) = 0.96, and κ(abs) = 1.0. Note that although sin can be obtained

from cos by shifting the axes, the two functions differ according to our measure (i.e.

κ does not go to zero) because we require local similarity as well. κ is not scale

invariant and therefore it cannot be used to decide whether a given pair of functions

is more similar than another pair.

cup sad sin cos abs

x2 + y2 cup 0.00 78.96 5.76 5.24 6.28

x2 − y2 sad 78.96 0.00 5.76 6.28 6.28

sin x + sin y sin 5.76 5.76 0.00 0.63 0.64

cos x + cos y cos 5.24 6.28 0.63 0.000 0.63

|x| abs 6.28 6.28 0.64 0.63 0.00

Table 4.2: Table of k-values for pairs of analytic functions. The matrix is symmetric
and diagonal entries are equal to zero illustrating the symmetry and degeneracy properties
of our global measure.

4.4.2 Testing Algebraic Properties

We illustrate the algebraic properties satisfied by our measure using the five analytic

functions mentioned above and their variants. The entries in the diagonal of the

matrix in Table 4.2 gives the value of κ(f, f) for different functions f and hence

they are all equal to 1. Also, note that the (i, j)th entry in the matrix is equal to

the (j, i)th entry because our measure is symmetric. Three examples illustrate the
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scaling property in Table 4.3. Evidence for the inequality under function addition and

sub-multiplicativity are also shown using three examples each in Tables 4.4 and 4.5.

f(x, y) g(x, y) h(x, y) κ(f, g) κ(h, g)

cos x + cos y sin x + sin y 3(cos x + cos y) + 5 0.632 1.897

x2 + y2 x2 + y2 −x2 − y2 0.000 0.000

cos x + cos y 2(sin x + sin y) + 3 3(cos x + cos y) + 5 1.265 3.795

Table 4.3: Testing the scaling property: The value of κ(F ) scales with the functions and
does not change when one of the functions is modified by adding a scalar. This is shown
this using three examples where f1 has been scaled and shifted to get f2.

f1(x, y) f2(x, y) g1(x, y) LHS RHS

x2 + y2 x2 − y2 sin x + sin y 79.20 84.72

sin x + sin y cos x + cos y x2 + y2 5.29 5.87

sin x + sin y cos x + cos y |x| 0.81 1.26

Table 4.4: Testing sub-additivity: Three examples give evidence for sub-additivity
property. LHS and RHS refer to the left and right side expressions of the inequality in the
statement of the property.

f1(x, y) f2(x, y) LHS RHS

x2 + y2 x2 − y2 0.50 92.43

sin x + sin y cos x + cos y 0.004 0.91

sin x + sin y |x| 0.004 0.96

Table 4.5: Testing the sub-multiplicativity property: Three examples give evidence
for the inequality under wedge product. LHS and RHS refer to the left and right side
expressions of the inequality in the statement of the property.

4.4.3 Comparative Visualization

We develop visualization software for studying scientific data consisting of multiple

functions measured over a common 2-manifold. Individual functions can be visualized

using a color map, a terrain map, or isocontours. A visual editor allows a particular

pair of functions to be chosen from the data. We can compare the two functions

using, for example, a terrain map for one and a color map for the other. On the

other hand, we can do the comparison by visualizing κt and κ̃e, which give the local
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contributions from mesh triangles and Jacobi set edges to the comparison measure. A

viewing parameter panel lets the user choose one of these options. Figure 4.6 shows a

screenshot of the visualization tool. We first compare some of the analytic functions

mentioned above.            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 4.6: Screenshot of the visualization tool used to compare multiple time-varying
functions. The panels on the right can be used to select different pairs of functions or time
steps and adjust different view parameters.

cup/sad. A comparative visualization reveals that the cup and sad functions are

increasingly dissimilar along diagonals towards the corners of the square domain (see

Figure 4.7). The isocontours are orthogonal here and this is reflected in κt, which

takes on high values in the neighborhood of the diagonal. There exist some regions

where the two functions are similar but the dissimilar regions outweigh the effect of

the former.

sin/cos. Figure 4.8 shows results from a comparative visualization between sin and

cos. Note again that the isocontours in regions with high values of κt are orthogonal

and parallel where κt takes on low values. The two functions are periodic and this
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Figure 4.7: (left) Isocontours extracted from the parabola (gray) and sad (black).
(right) A color-mapped visualization of the local contributions from triangles to κ. Note
that the contribution is high in regions where the isocontours are orthogonal and low where
they are parallel.

can be seen in the visualizations. The edges of the Jacobi set are colored to represent

their contribution to κ. The pairing between edges of the Jacobi set can be obtained

by tracing isocontours. We can also trace regions where the variation of sin over

cos is large, by following isocontours between pairs of Jacobi set with higher values

of κ̃e.
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Figure 4.8: (left) Isocontours extracted from the sin (gray) and cos (black). (middle)
Visualization of the local contributions from triangles to κ using a color map. The regions
where the isocontours of the two functions are orthogonal contribute more. (right) The
Jacobi set with edges colored to represent their contribution to κ.

Time-varying data. The visualization tool can handle time-varying data as well.

We study data from the simulation of a combustion process within an engine. Multi-

ple quantities are measured during the numerical simulation of the combustion with

the objective of understanding the influence of turbulence on ignition, flame propaga-

tion and burnout in compression ignition engine environments [25]. The simulation
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is done on a dilute air-fuel mixture that ignites upon compression. Inhomogeneity

in the mixture causes ignition to occur at multiple spots. After ignition, the flame

propagates from these spots outwards or burns out depending upon the air-fuel ratio.

We look at two quantities measured during the simulation, namely prog (progress:

measure of completion of combustion) and H2 (hydrogen: the fuel). The quantities

are available on a 600× 600 grid over 67 time steps. We triangulate the grid and lin-

early interpolate the quantities within the triangles to obtain time-varying piecewise

linear functions.
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Figure 4.9: The comparison measure κ (scale on right vertical axis) and the correlation
coefficient (scale on left vertical axis), both as functions of time as prog and H2 from the
combustion dataset change. The vertical markers at time steps 28, 50 and 66 indicate the
ones shown in Figure 4.10. The plot of the correlation coefficient shows that prog and
H2 are negatively correlated, which is expected because the fuel depletes with progress in
combustion.

A time series editor allows the user to choose the time steps for two quantities.

Although this level of control is good to have, it may not be useful in practice because

of the sheer number of possible pairs of functions. As an aid in choosing time steps
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Figure 4.10: Local comparison of the functions prog and H2 from the combustion dataset.
The function κt, which measures contributions from triangles to κ, is shown using a terrain
map and prog is mapped to color. From left to right: ignition phase, burning phase, and
the end of combustion. The fronts of the flames are tracked by a region that has large
contribution to κ. This region is represented by the peaks that enclose the burnt region.

that may be “interesting”, we compute κ between the selected quantities at each time

step and plot it as a graph. Time steps where κ changes rapidly or attains a global

minimum or global maximum are possibly when an interesting event happens.

For the H2 -prog pair, the time steps where κ begins to rises from near zero value

corresponds to the ignition phase. prog and H2 are turbulent initially. However, both

the hydrogen concentration as well as the progress of combustion is low throughout

the domain. Therefore, κ has a very low value. After ignition, there is a growing

region, namely the front of the flame, over which H2 concentration decreases sharply

as compared to the slower increase in prog . This causes an increase in κ till the end

of the simulation. Figure 4.9 shows the plot of κ between prog and H2 . The different

phases of combustion cannot be immediately detected from the plot of κ. We just

get an indication that something interesting happens when κ begins to take larger

values after time steps 28. The phases become apparent from the visualization of κt.

Figure 4.10 shows snapshots of the simulation with κt mapped to a terrain. Three

time steps are shown: the ignition, burning, and the final phase. Note that the flame

front is tracked by regions with large contributions. The functions are dissimilar at

the front because there is a sharp change for both functions while crossing it, albeit

at vastly different rates. The higher peaks in the terrain correspond to sections of
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the front that are progressing faster.

Electrostatic potentials. In order to study our local and global comparison mea-

sures for functions defined over a three-dimensional domain, we look at an application

in biology. A protein-protein complex consists of two or more proteins docked in a

stable conformation. For example, the barnase-barstar complex (1BRS) consists of

two proteins. The electrostatic potential defined by barnase (N) and barstar (S)

individually in their docked conformation and the potential defined by the complex

are available to us as functions sampled over the space. We triangulate the space

and linearly interpolate to obtain three piecewise-linear functions fN , fS, and f1BRS.

N S 1BRS N,S N,1BRS S,1BRS N,S,1BRS

κ 4.01 3.22 7.22 2.30 6.83 5.17 18.66

Table 4.6: The global measure κ computed for all combinations of the three electrostatic
datasets.
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Figure 4.11: Visualization of local comparison measure between electrostatic potentials
defined by barnase and barstar in the complex 1BRS. Top: an overview of the regions
with high values of κ in the complex. The proteins are shown as alpha-carbon traces, with
barnase in magenta and barstar in yellow. Bottom: a closeup of a hydrogen bond cluster.
Asp 39 of barstar hydrogen bonds with Arg 87, Arg 83, and His 102 of barnase. All
four residues are highly important in the interaction between barnase and barstar.

Table 4.6 lists the values of our global measure for the individual functions, the three

pairs, and the triplet. Initial observations show that regions where our local compar-
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ison measure between fN and fS is high correspond to salt bridges/strong hydrogen

bonds. Figure 4.11 shows a visualization of the local contributions to κ(fN , fS). The

colored dots in the figure indicate high values of κ values, namely those in the range

[0.002, 0.0207] and are mapped from blue to red. The dots with values lower than

0.002 are not displayed. The gold lines indicate the hydrogen bonds corresponding

to those regions of space.

4.4.4 Robustness

In order to get a feeling of the sensitivity of our measure to noise in the data, we

compare the values of κ for both the synthetic functions as well as the combustion

data after introducing noise with varying amplitudes. The noise is introduced in

each function as follows: let R be the maximum allowed amplitude for the noise. R

is specified as a percentage of the range of the function. Random noise r is introduced

at each vertex as a uniform distribution in the interval [−R,R]. The new function

value at each vertex is obtained by adding (r/100) times the range of the function to

the original value. Table 4.7 shows the error introduced in the values of κ computed

cup sad sin cos abs

cup 1% 0.00 0.28 0.03 0.07 0.07
5% 0.00 8.31 0.98 1.11 2.36

sad 1% 0.28 0.00 0.01 0.02 0.07
5% 8.31 0.00 0.34 0.35 1.85

sin 1% 0.03 0.01 0.00 0.00 0.00
5% 0.98 0.34 0.00 0.02 0.11

cos 1% 0.07 0.02 0.00 0.00 0.01
5% 1.11 0.35 0.02 0.00 0.01

abs 1% 0.07 0.07 0.00 0.01 0.00
5% 2.36 1.85 0.11 0.12 0.00

Table 4.7: Error introduced in κ when 1% and 5% random noise is added to the synthetic
functions.

for the synthetic functions. Figure 4.12 shows the plot of κ for both the original
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Figure 4.12: κ computed for the original pair and perturbed pair of functions (with 1%
noise) in the combustion dataset. There is only a small difference between the graph plots.

pair of functions as well as the pair of perturbed functions (with noise percentage

R = 1%). Note that the noise causes only a minor change in the plot.

4.5 Discussion

Various questions related to the extension of our comparison measures remain open.

We mention three problems:

• Our definition restricts the number of functions to at most the dimension of

the manifold. It would be interesting to extend it to the case k > d.

• For the particular case k = d = 2, we give alternate interpretations of κ using

Jacobi sets. These interpretations generalize to the case k = d > 2, but what

about k < d?

• What is the sensitivity of our measure to the triangulation of the manifold? A

detailed understanding of this question is useful in situations where functions
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are given on different triangulations of the same manifold. All functions need

to be first specified over a common mesh, ideally having a small size, before we

are able to compute κ.

We use our visualization tool for a local comparison of two functions measured

during the simulation of a combustion process and are able to track the front of the

flames after ignition. In future, we want to extend the software to be able handle

data in 3D.
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Chapter 5

Conclusions

We use a topological approach to develop new methods for extracting features from

scientific data. We argue that it is no longer viable to study the properties of this data

using traditional visualization techniques because the datasets are becoming increas-

ingly complex . Automatic computation of features followed by a visualization of the

function annotated with these features is helpful in understanding the behavior of the

function. We restrict our attention to scalar functions measured at discrete points

in space and linearly interpolated elsewhere. All our algorithms are combinatorial

in nature and numerical issues are handled by a simulation of the smooth setting

thereby leading to a robust and efficient implementation. The main contributions of

this thesis are:

• an algorithm for simplifying a 3D scalar function that improves the quality of

the underlying mesh and a study of the preservation of topological features

during this simplification process;

• the introduction of Morse-Smale complexes for piecewise linear 3-manifolds and

a combinatorial algorithm to compute them;

• the development of a visualization tool that displays the Morse-Smale complex;

• new local and global measures for comparing scalar functions that are defined

over a common manifold domain;

• development of software for visual comparison of multiple, and possibly time-

varying, scalar functions.
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Open problems raised by the work presented in this dissertation are discussed at the

end of the appropriate chapters. The success of the methods proposed in this thesis

when applied to large models depends on how they are extended to two important

paradigms: the data streaming model and the I/O model. We end this chapter by

discussing these extensions.

With rapidly increasing data sizes, many of the high performance computing

systems built today are based on a client-server architecture. The server is typically

a supercomputer that performs the expensive computation and streams data to the

various clients that have limited resources. Data transfer and conversion are the

major bottlenecks in these systems. The data stream model abstracts this system

and is used to develop efficient schemes for data transfer. The visualization of Morse-

Smale complexes in this model is non-trivial because it is possible that the number of

critical points is large. A multi-resolution representation of the Morse-Smale complex

needs to be developed. Note that the different resolutions are required both in domain

as well as function space.

The I/O model analyzes the efficiency of an algorithm by counting the number of

disk read/write operations as opposed to the number of comparisons or computation

steps. While working with large datasets that do not fit into the main memory, it

pays to be conscious about the expensive disk operations. I/O efficient algorithms

have been developed in the past within the field of visualization [1]. The popular

approaches to the design of such algorithms include a change of the data layout or

the use of divide and conquer techniques. Developing I/O efficient versions of the

algorithms described in this thesis will be a set of interesting research projects.
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Appendix A

Algebraic Topology Basics and Morse

Theory

In an effort to ensure that this dissertation is self-contained, we collect the definitions

of various terms used in previous chapters and present them in this appendix. Most

of these definitions are from topology. We group them into manifolds, simplicial

complexes, and algebraic topology in Sections A.1, A.2, and A.3 respectively. We

also introduce some Morse theoretic concepts both for smooth functions defined on

3-manifolds (in Section A.1) and for the piecewise linear category (in Section A.3). We

refer to the books by Matsumoto [65] and Milnor [68] for further background on Morse

theory for smooth functions and to the books by Munkres [70] and Alexandrov [3]

for background on related concepts from algebraic and combinatorial topology.

We deal with scalar functions in this thesis. Let us first define them before

moving on. A function is a relation which uniquely associates members of one set

with members of another set. A set is a finite or infinite collection of objects in

which order has no significance, and multiplicity is not allowed. The objects that

constitute the set are called elements. Formally, a function f : X → Y associates

each element in set X with a unique element of set Y . X is called the domain and Y

the co− domain of the function. Scalar functions have a one-dimensional co-domain

and vector functions have a two- or higher-dimensional co-domain. We are interested

in functions where the domain looks like the Euclidean space (at least locally) and

the co-domain is the one-dimensional real line, R.
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A.1 Manifolds

Definition A.1 (Homeomorphic Spaces) Two topological spaces X and Y are

homeomorphic or have the same topological type if there is a homeomorphism X → Y .

Definition A.2 (k-Manifold) A topological space M is a k-manifold if every point

x ∈M has an open neighborhood homeomorphic to Rk.

Definition A.3 (k-Manifold with Boundary) A topological space N is a k-manifold

with boundary if every point x ∈ N has an open neighborhood homeomorphic to Rk

or to the closed halfspace, Hk = {(x1, x2, . . . , xk) ∈ Rk | x1 ≥ 0}.

Definition A.4 (Boundary of a k-Manifold with Boundary) The boundary, Bd N ,

of a k-manifold with boundary is a subset consisting of points whose neighborhood

is homeomorphic to Hk.

Let M be a smooth compact 3-manifold without boundary. Examples are the

3-sphere, which consists of all points at unit distance from the origin in R4, and

the 3-torus, which can be obtained by identifying opposite square faces of a three-

dimensional cube. Let f : M → R be a smooth map. The differential of f at a

point p ∈M is a linear map from the tangent space at p to R, dfp : TMp → R. The

criticality of p is determined by the differential of f at p.

Definition A.5 (Critical Point) A point p ∈M is critical if dfp is the zero map.

Definition A.6 (Regular Point) A point p ∈ M is regular if dfp is not the zero

map.
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Given a local coordinate system, the Hessian at p is the matrix of second order partial

derivatives:

H(p) =









∂2f

∂x2
1

(p) ∂2f

∂x1∂x2
(p) ∂2f

∂x1∂x3
(p)

∂2f

∂x2∂x1
(p) ∂2f

∂x2
2

(p) ∂2f

∂x2∂x3
(p)

∂2f

∂x3∂x1
(p) ∂2f

∂x3∂x2
(p) ∂2f

∂x2
3

(p)









.

Definition A.7 (Non-Degenerate Critical Point) A critical point p is non-degenerate

if the Hessian at p is non-singular.

Definition A.8 (Morse Function) A function f is called a Morse function if all

of its critical points are non-degenerate and f(p) 6= f(q) whenever p 6= q are critical.

Lemma A.1 (Morse Lemma) If p is non-degenerate we can choose local coordi-

nates and signs such that

f(x1, x2, x3) = f(p)± x2
1 ± x2

2 ± x2
3

in a local neighborhood of p.

critical point index

minimum 0
1-saddle 1
2-saddle 2
maximum 3

Table A.1: The index for each type of critical point.

Note that the Morse lemma implies that non-degenerate critical points are isolated.

The number of minuses is the index of the critical point. It is independent of the

coordinate system and equals the number of negative eigenvalues of H(p). In three di-

mensions, there are four types of non-degenerate critical points: minima, 1-saddles ,
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2-saddles , and maxima. The index for each type of critical point is shown in Ta-

ble A.1. We get intuitive local pictures by drawing a small sphere around the point

p. The level curve of points x with f(x) = f(p) decomposes the sphere into oceans ,

consisting of points x with f(x) < f(p), and continents , consisting of points x with

f(x) > f(p). Figure A.1 shows the local pictures of a regular point and of the four

types of non-degenerate critical points.

Figure A.1: The local pictures with shaded oceans and white continents of a regular
point, a minimum, a 1-saddle, a 2-saddle, and a maximum. Take notice of the symbols
used to mark the different types of vertices at the centers of the spheres.

A.2 Simplicial Complexes

Definition A.9 (k-Simplex) A k-simplex σ is the convex hull of k + 1 affinely

independent points.

Definition A.10 (Face) A face τ of a simplex σ is the simplex defined by a nonempty

subset of the k + 1 points and is denoted as τ ≤ σ.

Definition A.11 (Coface) A simplex σ is a coface of τ if τ is a face of σ.
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Definition A.12 (Cone) The cone from a vertex x to a k-simplex σ is the convex

hull of x and σ, which is the (k + 1)-simplex xσ. The operation is defined only if x

is not an affine combination of the vertices of σ.

Definition A.13 (Simplicial Complex) A simplicial complex K is a finite collec-

tion of non-empty simplices for which σ ∈ K and τ ≤ σ implies τ ∈ K and σ1, σ2 ∈ K

implies that the intersection σ1 ∩ σ2 is either empty or a face of both, σ1 and σ2.

Definition A.14 (Underlying Space) The underlying space of K is the union of

simplices: |K| =
⋃

σ∈K σ.

Definition A.15 (Triangulation) A triangulation of a topological space X is a

simplicial complex K whose underlying space is homeomorphic to X.

Definition A.16 (Closure) The closure of a subset L of a simplicial complex K is

the smallest subcomplex of K that contains L

L = {τ ∈ K | τ ≤ σ ∈ L}.

Definition A.17 (Star) The star of a subset L is the set of cofaces of simplices

St L = {σ ∈ K | σ ≥ τ ∈ L}.

Definition A.18 (Link) The link of a subset L is the set of all faces of simplices

in its star that are disjoint from simplices in L

Lk L = St L− St L.

Let K be a simplicial complex that triangulates the k-manifold M. This means

there is a homeomorphism between M and the underlying space of K, but to simplify

the discussion, we assume that M is the underlying space. Let f : M → R be

128



a continuous real-valued function that is linear on every simplex of K. To say this

more formally, we note that every point x in a simplex is a unique convex combination

of its vertices u`: x =
∑

` λ`u` with 1 =
∑

` λ` and λ` ≥ 0 for all `. Assuming f is

given at the vertices, we have f(x) =
∑

` λ`f(u`). We refer to f as a height function

and use relative terms such as ‘upper’ and ‘lower’ to identify subsets of the star and

link of a vertex.

Definition A.19 (Lower Star) The lower star of a vertex u contains all simplices

in the star for which u is the highest vertex.

St−u = {τ ∈ St u | x ∈ τ =⇒ f(x) ≤ f(u)}.

Definition A.20 (Upper Star) The upper star of a vertex u contains all simplices

in the star for which u is the lowest vertex.

St+u = {τ ∈ St u | x ∈ τ =⇒ f(x) ≥ f(u)}.

Definition A.21 (Lower Link) The lower link contains all simplices in the link

that are faces of the lower star.

Lk−u = {υ ∈ Lk u | υ ≤ τ ∈ St−u}.

Definition A.22 (Upper Link) The upper link contains all simplices in the link

that are faces of the upper star.

Lk+u = {υ ∈ Lk u | υ ≤ τ ∈ St+u}.

Let f denote a piecewise linear function give at vertices of a 3-dimensional simpli-

cial complex and linearly interpolated within each simplex. Strictly speaking, critical

points of f are not defined, but we may use small bump functions and think of f
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as the limit of a series of smooth maps. This is the intuition we use to transport

concepts and results from the smooth to the piecewise linear category. We use the

topology of the lower link to distinguish regular from critical vertices and to classify

the latter.

A.3 Algebraic Topology

The topology of the lower link is expressed using ranks of reduced homology groups.

We explain this after giving some background on chain complexes and homology

groups. Hatcher [46] gives a good introduction to homology groups and we refer to

Artin [5] for more background on group theory.

Definition A.23 (Group) A group is a set G together with a binary operation

+ : G× G → G that is associative and has an identity element and each element of

G has an inverse element.

Definition A.24 (Abelian Group) A abelian group is a group whose operation is

commutative.

Definition A.25 (Subgroup) A subset H ⊆ G of a group (G, +) is called a subgroup

if (H, +) is a group.

The infinite set of integers with addition, (Z, +) is an abelian group. The set of even

numbers with addition is a subgroup of (Z, +). The finite set of non-negative integers

less than k together with addition modulo k, (Zk, + mod k), is a finite abelian group.

Let (G, +) be an abelian group and (H, +) be a subgroup. We can partition G using

equivalence classes, called cosets, generated by the congruence relation

a ≡ b if b = a + h, for some h ∈ H.
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Definition A.26 (Coset) A coset is a subset of the form x + H = {x + h |h ∈ H}.

Two cosets can be added using their representatives. It does not matter which rep-

resentative is chosen for addition. The resulting coset is always the same.

Definition A.27 (Quotient Group) The quotient group G|H is the collection of

cosets with addition defined by (x + H) + (y + H) = (x + y) + H.

Note that there is a bijective map between H and each coset sending h to x + h.

Further, if G is finite then all cosets have the same size. Now, since the congruence

relation generates a partition of G, we have the following relationship between the

cardinalities of G, H, and G|H:

card G|H = card G/card H.

Definition A.28 (Group Homomorphism) A homomorphism between groups G

and H is a function h : G→ H that commutes with addition: h(x+y) = h(x)+h(y).

Definition A.29 (Kernel of Homomorphism) The kernel of a homomorphism

h between groups G and H is the subset of G that is mapped to the identity element

0 ∈ H.

Definition A.30 (Image of Homomorphism) The image of a homomorphism h

between groups G and H is the subset of H whose elements have preimages in G.

Definition A.31 (Isomorphism) An isomorphism between groups G and H is a

bijective homomorphism.

G and H are said to be isomorphic (G ∼= H) if there is an isomorphism between them.

Groups can be constructed on collections of simplices by defining an addition

operation. We restrict ourselves to addition modulo 2.
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Definition A.32 (k-Chain) A k-chain is a subset of k-simplices.

The sum of two k-chains is the symmetric difference of the two sets:

c + d = (c ∪ d)− (c ∩ d).

This is addition modulo 2 because a simplex lies in c + d iff it belongs to exactly one

of c or d. Let Ck be the set of k-chains and (Ck, +) the group of k-chains.

Definition A.33 (Boundary of a Simplex) The boundary of a k-simplex is the

set of its (k − 1)-simplex faces: ∂σ = {τ ≤ σ | dim τ = dim σ − 1}.

Definition A.34 (Boundary of a k-Chain) The boundary of a k-chain is the sum

of boundaries of its simplices: ∂c =
∑

σ∈c ∂σ.

We connect chain groups of different dimensions by homomorphisms ∂k that map

chains Ck to their boundary Ck−1.

Definition A.35 (Chain Complex) The chain complex of a simplicial complex K

is the sequence of its chain groups connected by boundary homomorphisms,

. . .
∂k+2
→ Ck+1

∂k+1
→ Ck

∂k→ Ck−1
∂k−1
→ . . .

0 0

1

1B

Z

0

0

01

2 1 0 −1−1

C

B

Z

C

C

0

Figure A.2: The chain complex and the connecting boundary homomorphisms.

Two types of chains are important for defining homology groups: the ones without

boundary and the ones that bound.
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Definition A.36 (k-Cycle) A k-cycle is a k-chain c with ∂c = 0.

Definition A.37 (k-Boundary) A k-boundary is the boundary of a k-chain.

k-cycles and k-boundaries are clearly subgroups of k-chains. The boundary of every

k-boundary is empty. This can be proved directly using the definition of the boundary

of a k-chain. Figure A.2 shows the chain complex and the nested boundaries and

cycles (Bk and Zk) contained in the chain groups. Since we use reduced homology

groups, we extend the list of non-trivial chain groups by adding C−1
∼= Z2. We define

the boundary of a vertex to be ∂0(u) = 1, addition within C−1: 1 + 1 = 0, and

boundary of the non-zero element in C−1: ∂−1(1) = 0.

Definition A.38 (k-th Reduced Homology Group) The k-th reduced homology

group is the quotient defined by the k-cycles and k-boundaries: H̃k = Zk|Bk.

The size of H̃k measures the number of k-cycles that are not k-boundaries. The ranks

of the homology groups are the most useful aspects of homology groups because they

have intuitive interpretations in terms of the connectivity of the space. Given any

subset Y ⊆ G, we can form all sums of elements in Y to form a subgroup of G. The

subset Y is a basis if it is a minimal set that generates the entire group. All bases of

G have the same size, called the rank of G.

Definition A.39 (k-th Reduced Betti Number) The k-th reduced Betti number

is the rank of the k-th reduced homology group, β̃k = rank H̃k.

Since we add modulo 2 for all groups (chains, cycles and boundaries), they are finite

and β̃k is the binary logarithm of the size of H̃k. This is true for the ranks of Bk and

Zk too, which

rank Hk = rank Zk − rank Bk.
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We classify critical points using the reduced Betti numbers of the lower link. The

reduced homology groups and Betti numbers (H̃k and β̃k) differ from the more com-

mon non-reduced versions (Hk and βk) only in dimensions 0 and −1. Specifically,

β̃0 = β0 − 1 for non-empty lower links, and β̃−1 = 1 for empty lower links. Since

lower links of 2-manifolds are two-dimensional, only β̃−1 through β̃2 can be non-zero.

As shown in Table A.2, the simple critical points are the ones that have exactly one

non-zero reduced Betti number, which is equal to one. The reason that we prefer

reduced over non-reduced Betti numbers is this simple correspondence with the index

of the critical point. A multiple saddle is a vertex that falls outside the classification

β̃−1 β̃0 β̃1 β̃2

regular 0 0 0 0

minimum 1 0 0 0
1-saddle 0 1 0 0
2-saddle 0 0 1 0
maximum 0 0 0 1

Table A.2: The classification of regular and simple critical points using reduced Betti
numbers.

Figure A.3: A multiple saddle is split into a simple 1-saddle and 2-saddle. Note that
drawing a circle in the link passing through the other ocean would result in splitting the
multiple saddle into a regular vertex and yet another multiple saddle and is hence not useful
for unfolding. However, a cut as shown in the figure can always be found.

of Table A.2 and therefore satisfies β̃−1 = β̃2 = 0 and β̃0 + β̃1 ≥ 2. It can be unfolded

into simple 1-saddles and 2-saddles. One way to do that is to repeatedly cut the link

along a circle that intersects the level curve separating the oceans and continents

in exactly two points. The reduced Betti numbers on the two sides add up to the
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original ones: β̃k = β̃kL + β̃kR, for k = 0, 1. We can always choose the circle such that

the sum of the reduced Betti number are non-zero on both sides. It follows that the

reduction ends after β̃0 + β̃1 − 1 cuts and generates β̃0 1-saddles and β̃1 2-saddles.

Figure A.3 shows how a multiple saddle with two continents and two oceans can be

unfolded into a 1-saddle and a 2-saddle.
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